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Abstract: Metabolic flux analysis requires both a reliable metabolic model and reliable metabolic
profiles in characterizing metabolic reprogramming. Advances in analytic methodologies enable
production of high-quality metabolomics datasets capturing isotopic flux. However, useful metabolic
models can be difficult to derive due to the lack of relatively complete atom-resolved metabolic
networks for a variety of organisms, including human. Here, we developed a neighborhood-specific
graph coloring method that creates unique identifiers for each atom in a compound facilitating
construction of an atom-resolved metabolic network. What is more, this method is guaranteed to
generate the same identifier for symmetric atoms, enabling automatic identification of possible
additional mappings caused by molecular symmetry. Furthermore, a compound coloring identifier
derived from the corresponding atom coloring identifiers can be used for compound harmonization
across various metabolic network databases, which is an essential first step in network integration.
With the compound coloring identifiers, 8865 correspondences between KEGG (Kyoto Encyclopedia
of Genes and Genomes) and MetaCyc compounds are detected, with 5451 of them confirmed by other
identifiers provided by the two databases. In addition, we found that the Enzyme Commission numbers
(EC) of reactions can be used to validate possible correspondence pairs, with 1848 unconfirmed pairs
validated by commonality in reaction ECs. Moreover, we were able to detect various issues and errors
with compound representation in KEGG and MetaCyc databases by compound coloring identifiers,
demonstrating the usefulness of this methodology for database curation.

Keywords: metabolomics; atom-resolved metabolic network; atom identifier; compound identifier;
database harmonization; graph theory; common subgraph isomorphism

1. Introduction

Metabolic flux analysis is an essential approach to access metabolic phenotypes [1,2] that requires
both reliable metabolic profiles as well as reliable metabolic models [3-5]. Advances in analytical
technologies like mass spectrometry (MS) and nuclear magnetic resonance (NMR) greatly contribute
to the detection of thousands of metabolites from biofluids, cells, and tissues [6]. Application of those
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analytical techniques to stable isotope resolved metabolomics (SIRM) experiments facilitates production of
high-quality metabolomics datasets capturing isotopic flux through cellular and systemic metabolism [7,8].
Now, the challenge is to construct meaningful metabolic models from the corresponding metabolic profiles
for downstream metabolic flux analysis. A metabolic network is usually represented by compounds
connected via biotransformation routes [9]. Obviously, information at the atom level is not represented
in such metabolic networks, making it impractical to derive appropriate metabolic models for SIRM
datasets. Prior work demonstrated an atom-resolved metabolic network that included both central and
intermediate metabolism in Escherichia coli that allowed atom-to-atom tracing [10,11]. However, currently
there are no relatively complete atom-resolved databases of metabolic networks available for human
metabolism that can be used to trace individual atoms [12].

To construct an atom-resolved metabolic network, compounds and metabolic reactions with
detailed documentation at the atom level are required. One approach is to reconstruct a hypothetical
atom-resolved metabolic network from generalized reaction descriptions that are atom-specific [13].
However, it is unclear what level of validation and curation such an approach would require to
construct a reasonably accurate atom-resolved metabolic network for generating metabolic models
usable in the analysis of SIRM datasets. An alternative is to use curated metabolic databases currently
available, in particular the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the MetaCyc
metabolic pathway database. The popular molfile description of a compound is a text-based chemical
table file format developed by MDL Information Systems and contains information about atoms,
bonds, connectivity, and coordinates [14], which is available in most databases including KEGG and
MetaCyc. For atom-resolved metabolic reactions, the KEGG reaction pair (RPAIR) database stores
patterns of transformations occurring between two reactants in a single reaction [15]. In addition,
MetaCyc contains direct atom mappings for every metabolic reaction [16]. Previous work only made
use of atom mappings in either the KEGG RPAIR database [17,18] or MetaCyc [19] for atom tracing.
However, both databases cover metabolism for many common organisms, clearly indicating that
these two databases are not independent of each other. A necessary first step for constructing a more
comprehensive network is to integrate compounds from different databases without redundancy [20].

In an atom-resolved metabolic network, each node should include information at both
molecule-specific and atom-specific levels. To name each atom in a compound, two rules need
to be obeyed: (1) different atoms must have different identifiers; (2) symmetric atoms must share the
same identifier. Previous work used the atom index in the molfile associated with a compound in
finding atom-specific metabolic pathways without considering molecular symmetry [18,19]. Likewise,
molecular symmetry has been ignored in prior atom-resolved metabolic network reconstruction
approaches [13]. One group tried to assign a unique name for every atom in the compound based on
the compound’s International Union of Pure and Applied Chemistry (IUPAC) International Chemical
Identifier (InChl) representation [21], which does not apply to this scenario since symmetric atoms can
share the same routes in the metabolic network. In addition, any InChl-based approach cannot handle
the compound entries with R-groups. To our knowledge, no appropriate method has been previously
published that provides each atom in a compound with a useful identifier for the explicit purpose
of constructing an atom-resolved metabolic network, either because the identifier was not unique or
because it was not consistent for symmetric atoms.

In this paper, we developed a novel neighborhood-specific graph coloring method that creates
a unique identifier for each atom in a compound by expanding the type (color) of each atom based
on its “neighborhood” of atoms (nodes) bonded (edges) to it. This approach is related to but distinct
from atom typing performed in chemoinformatics, which determines an augmented atom type based
on the local chemical environment, especially the directed bonded atoms [22]. Atom coloring creates
an augmented atom type based on both directly and indirectly bonded atoms that are part of the
graph neighborhood around a given atom. Moreover, the method is guaranteed to generate the same
coloring identifier for symmetric atoms. Furthermore, compound coloring identifiers derived from the
corresponding atom coloring identifiers can be used for compound harmonization across metabolic
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databases. In this context, only molecular configuration (i.e., changes requiring the breaking of a bond)
and not molecular conformation (i.e., changes not requiring the breaking of a bond like a bond rotation)
are considered in the generation of these identifiers. To our knowledge, this is the first attempt to
create unique atom and compound identifiers that are consistent with respect to molecular symmetry
and for the explicit purpose of harmonizing compounds across the KEGG and MetaCyc databases,
ultimately to facilitate the construction of an integrated atom-resolved metabolic network.

2. Results

2.1. Owverview of KEGG and MetaCyc Databases

The numbers of compounds and atom-resolved reactions in KEGG and MetaCyc databases are
summarized in Table 1. MetaCyc has 1.09 times as many compound entries as KEGG and 1.53 times as
many atom-resolved reaction entries.

Table 1. KEGG and MetaCyc databases summary.

Data Types KEGG MetaCyc MetaCyc/KEGG ?
Compounds 18636 20264 1.09
Reactions 11427 17203 151
Atom-resolved reactions 10282 15909 1.53

2 Ratio of MetaCyc entries to Kyoto Encyclopedia of Genes and Genomes (KEGG) entries.

To initially evaluate the level of overlap between KEGG and MetaCyc databases, we used existing
identifiers in each database to find the correspondences between KEGG and MetaCyc compounds.
Not all compounds in either database have all the chemical identifiers listed in Table 2. Some compounds
in MetaCyc have a direct identifier to the corresponding KEGG compound [19]. We can see that the
number of matched compounds (correspondences) detected by different identifiers are not consistent,
with a total of less than 5700. We also generated InChl identifiers based on the molfile provided for
each entry in each database using Open Babel [23], which utilizes the InChl software library provided
by the InChl Trust [24]. We were able to generate 16,530 InChl from KEGG and 15,765 InChl from
MetaCyc, providing 3103 correspondences. When combined with ChEBI and KEGG Compound IDs,
a total of 5929 consistent correspondences were detected. Two issues may appear when applying these
identifiers to compound integration across various databases. On the one hand, there is no easy way to
check if some correspondences are missing. In addition, it is difficult to tell if the results generated by
those identifiers are correct, since errors can exist in every database [21,25]. Such errors are illustrated
by the 964 out of 13,216 KEGG compound entries with InChl that are inconsistent with the InChl
generated from their associated molfile, representing 7.3% of the InChl-containing entries in KEGG.
Likewise, 55 out of 15,076 MetaCyc compound entries have InChl that are inconsistent with the InChl
generated from their associated molfile, representing 0.4% of the InChl-containing entries in MetaCyc.

Table 2. Correspondences between KEGG and MetaCyc compounds.

Identifiers KEGG MetaCyc Correspondences
InChI 13216 (70.9%) 15076 (74.4%) 2336
ChEBI 15353 (82.4%) 8404 (41.5%) 3106
KEGG 18636 (100%) 5402 (26.7%) 5402

Either-ID 18636 (100%) 15216 (75.1%) 5681

InChlI: IUPAC International Chemical Identifier; ChEBI: Chemical Entities of Biological Interest.

Therefore, a reliable, systematic naming method for chemical compounds that solves problems
at the atom-level as well as at the compound-level is required for constructing an atom-resolved
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metabolic network. Towards this end, we have developed a neighborhood-specific graph coloring
method (see Section 4.6) that derives unique identifiers for atoms as well as compounds.

2.2. Aromatic Substructure Detection

The neighborhood-specific graph coloring method described in Section 4.6 is very sensitive to the
specific structural representation. Moreover, aromatic substructures are not consistently represented in
both databases. Instead of being directly labeled as an aromatic bond type, single and double bonds
are used alternatively to depict the aromatic substructure. CPD-6962 in MetaCyc has a direct reference
KEGG compound C15523 (Figure 1). We can see that the positions of double bonds and single bonds
within the benzene ring vary between these two representations, which can lead to two different sets
of atom identifiers. Therefore, we needed to ensure that compound representation is consistent across
databases so that each compound will have a single set of atom identifiers. In this case, we first detect
the aromatic substructures in all compounds from both databases, and change the single and double
bonds within the aromatic substructure to aromatic bond.

HO OH HO /N| OH
O
o NS
OH
o
MetaCyc: CPD-6962 KEGG: C15523

Figure 1.  Correspondence between KEGG and MetaCyc compound entries with different
molecular representations.

Two independent aromatic detection methods were used in aromatic substructure detection:
our Biochemically Aware Substructure Search (BASS) method [26] which uses neighborhood-specific
graph coloring [27] to greatly improve subgraph isomorphism detection [28] and the aromatic detection
facilities in the Indigo package [29]. First, we compared the aromatic substructures derived by these
two methods. As shown in Table 3, Indigo appears more conservative than BASS in detecting aromatic
substructures, detecting roughly 85% of what the BASS method does. Figure 2 shows an example of an
aromatic substructure that can be missed by Indigo. We assume that Indigo cannot detect aromatic
substructures with a double bond connected to atoms outside of the ring. This is not surprising,
since BASS leverages the curated set of aromatic substructures in KEGG and has very high precision
(99.9%) in the detection of aromatic substructures in KEGG compounds, while Indigo uses a set of
simplified aromatic detection heuristics along with hard-coded algorithmic limitations of ring sizes
being searched. However, we had concerns that some valid aromatic substructure representations
in MetaCyc compounds may not exist in the reference aromatic substructure set derived from the
KEGG database, which would be missed by the BASS method. This was confirmed by Indigo
detecting 30 additional MetaCyc compounds with aromatic substructures not detected by the BASS
method. Therefore, we combined the KEGG aromatic substructures with additional Indigo-detected
substructures from MetaCyc. By using both methods, we were able to detect aromatic substructures in
about half of the compounds in each database (Table 4). When an aromatic substructure was detected,
all bonds for the aromatic substructure were changed to an aromatic bond type and the modified
molfile was saved. All analyses were performed on a desktop computer with an i7-6850K CPU (6-core
with HT), 64 GB RAM, and 512 GB solid state drive. On this hardware, the aromatic substructure
detection took less than 5 min for KEGG and roughly 15 min for MetaCyc in terms of execution time.
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Table 3. Incomplete detection of aromatic substructures by BASS and Indigo.

Databases BASS Indigo
KEGG 0 ~1500
MetaCyc 30 ~1700
OH
HO ‘ﬁ ‘
370
!
OH O :
L.
v~ “OH
OH

KEGG: C20727

Figure 2. Example aromatic substructure that cannot be detected by Indigo.

Table 4. Compounds with aromatic substructure.

Databases Count
KEGG 9204 (49.4%)
MetaCyc 8292 (40.9%)

2.3. Generating Identifiers for Atoms Using a Graph Coloring Method

Since symmetric atoms share the same neighbors, the graph coloring method is guaranteed to
create the same identifier for them. Our concern is whether atoms with the same identifier are actually
symmetric. In our graph coloring method, we only include 0_layer identifiers (see Section 4.6 for graph
coloring method) in atom coloring to avoid long name strings. In some extreme cases, this shortcut can
assign the same identifier to atoms that are asymmetric. An example is shown in Figure 3A. We can see
that this compound does not contain any symmetric atoms. Without considering the upper right ring,
the bottom two rings are symmetric. Therefore, atom 1 and 2 have the same 0_layer identifier, which is
the same for atom pairs 4 and 5 and 6 and 7. In addition, once atom 1 and 2 reach atom 3, they will
share the same route to the upper right substructure. Finally, atom 1 and 2 will share the same coloring
identifier (Figure 3B) even though they are not symmetric. To deal with this problem, atom coloring
validation and recoloring is performed. We can see that atom 1 and 2 have distinct identifiers after
recoloring (Figure 3C).

We validate symmetry after a first round of coloring, recolor the compound if asymmetric atoms
have the same identifier, and verify symmetry again. After this coloring-validation-recoloring-validation
process, our results indicated that the graph coloring method is able to generate the same identifier for
symmetric atoms and asymmetric atoms have unique identifiers for all compounds in both KEGG and
MetaCyc databases.
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KEGG: C10782

B. 'CCCHINDNCCCINICICCICICDCDCCINC 1IN DCCDINDC(C N, DC(C 1) (N NC(C 1)
CLCCICDC(CING INCLC(CINCING,LC(C DG INC NG (CING 1N(C, L) (C (S LNC(CINC 1)T(C 1N
CLIC(CCDC(CING N, C(C,INC LN, LC(CINC AN AC(CIUN,DCC LN, DHCS(CINCL)CIC L(CLYCL)
CICCUCLCCLCINC DC(CANCAN(CICACAHNICINCHCHNCCLICANACICINCHNAC(C1)
(NNCCAHCHCCANAOINCACHACAHCHCCACHNCIHCACHOCHNACTACHC(CANAN
O 1C(CHINA)0,1)): [1, 2]

C. 'CCCHMNINSCINCONCINCIHCINC(CINCLCICDCINDCIC )N DCIC N, CC NN (C(C)(C
)C(C1(CDCCC NG CCINC,INC,CIC,INC IS DN(C,ICINC, DN(C, IS, L)C ) NC(CINC D SCINC,
1)C(C,1)(C1)C(C,1)C )N, 1C(C,IC, 1N, L)C(C1NC, AN AC(C, 1N, D) C(C, 1IN, D) CC, 1 DC(CINC,INC L)
C1)(CINCLC(CINC INCDCICANCAN(C 1)(CACAN(C,L)(CANCANCCINCANAC(CINCANACIC LN,
1C(CANCAC(C, AN, A0, NC(CANC,A)C(CANC,ACCANCAN(C1NC ANCAOCINC(CANC,ACT(C,A)(NANO,1)
CCANA)ONCINC(C(CINCINC(CINCDC(C LN, NC(CNCDCICINCHC(CINCINCIN(CINCI)
C)C(CINC,DCC,INC, DN, DC(C,1)(C 1IN, DC(C, 1IN, DCIC LN, 1SS, 1IN, DN CC IS DC(CINCINC ) CC,
1(C1)(C,DCCC NG IN(C,1)C,(C,IN(C1NC, 1) (S HN(C,1C,A)(C,4)) (CLNCNN(C, S, 1HC,DICC LS,
DN, DC(CLNDCCHINDHCCANCSCINCDSCANCANCS(CINCANCNICINCANCIN(CINCINC,
DN(C,1)(C1)CDNCC,INC,1C(C,INC,C(C, 1, 1)C(C,1HC,DC(C,INC, 1) (N L)C(C,IC, 1IN, DC(C LN C AN AT
C1)(N,1)C(C N, LC(C, 1IN, DNCIC,1)(C,1)C(CINC,DC(C,1)(C,LNC1CIC,1C,IC, (S INC(CTS(C NN
C,1)C(CANCAN(CC ANCANCINCACONCINCICL): [1]

'CUC(C DN, D)C(C,INC NG, 1)CINC,HNC(CIC, 1SS, C, DN, 1)C(C, (N, DC(C, DN, DC(C D (N, 1) (C(C,1)(C
DIC(CINC,DCIC,INCING DICIC,ING IS, DC(C,ING, IS, IN(C, I(C, IS, DIN(C,(C NG, D NCIC,INC, 1 SC)(S,
1)C(C,1)(C,1)C(C (S )N, 1)C(C1(C, 1) (N 1IC(C TN A)C(C 1N, 1) C(C, 1N, )(C(C, 1)(C1IC(C, 1)(C,1)(C DT
CCINCC(C NG INC,DCICANC,ANC 1(CANC,AN(C, 1) (CANCANC(CN(CANAC(CINC AN, C(C 1IN,
DC(CACACT(CAN O, DICCANCAIC(CANCAC(CANCAN(CINCANCAHOC,HICT(CACAC(CA)(N4)(O,1)
CCANANO,1NCIN,DCCICINC, NC(C,1)(CDC(C N, DHC(CINC, 1CCCDC(CINCLYCNICINC L)
CINC(CCDC(CINC DN, DC(CICINDSCINCAHNAC(C LN DCICINNIMCS(CINCDHC(CINCINC
JC(CINCINCLC(CINCINC DC(CANCANCANCINCIN(CINCINCNICINCANCANCICNIN(CINCL
HCINCICINC LN, DC(C LN, DC(C,IUN, IS, 1S, 1C(C,1)(C 1C(C NG IUC (S INC INC NG INC NG,
DN(CINCINCIN(CINCANC NS CINC L) C(CINCDC(CINC 1SS INCDC(CING 1IN DC(CNC, 1IN, C(
CINCANACCLINDC(C NN DCC LN, INCCINCDHSCINCLCS(CINCINCC(CINCINCLS(CINC L)
C1C(C1YC NG DC(CANCANC,INCANCHN(CINCANCANCINCINCL): 2]

Figure 3. (A) Example of compound with same atom identifier for asymmetric atoms using an overly

simplistic coloring approach; (B) the atom identifiers for atom 1 and 2 before symmetry validation;

(C) the atom identifiers for atom 1 and 2 after symmetry curation.

2.4. Detection of Correspondences Between KEGG and MetaCyc Compounds via Coloring Identifiers

After creating a single set of atom identifiers for each compound, we were able to derive
ordered compound coloring identifiers at different levels of chemical specificity, which can be used to
harmonize compounds across databases. Since KEGG and MetaCyc can include different numbers of
H (hydrogen atoms) in the molfile, we exclude H in coloring at this point. We first tried to include
information of bond stereochemistry, atom charge, atom stereochemistry, and isotope stereochemistry
in coloring to ensure each compound has a unique name. With the relatively specific coloring identifiers,
1762 correspondences between KEGG and MetaCyc compounds can be detected (see Table 5), which is
not satisfactory compared to 5681 pairs discovered by other identifiers (e.g., KEGG, CHEBI, and InChl
as shown in Table 2). This lack of correspondence is due to the inconsistencies in bond stereochemistry,
atom charge, atom stereochemistry, and isotope stereochemistry information between these two
databases. An example is shown in Figure 4, where compound CPD-20570 in MetaCyc has a direct
reference to KEGG compound C13014.
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O
0 0 OH
MetaCyc: CPD-20570 Harmonized KEGG: C13014

Figure 4. Example of charge inconsistency of compound representations between databases. The middle
harmonized compound representation enables loose coloring that facilitates compound harmonization.

For the following analysis, we only included information of atom type and bond type to keep the
backbone of a compound in atom naming. It took less than 10 min of execution time on a desktop
computer built by System76 (Denver, CO, USA) with an Intel i7-6850K CPU (6-core with HT), 64 GB
RAM, and a 512 GB solid state drive to generate these coloring identifiers for all compound entries in the
KEGG and MetaCyc databases. About 8865 correspondences between KEGG and MetaCyc are detected
(see Table 5 and spreadsheets in supplementary material), and 5451 of them can be confirmed by other
identifiers. With both tight and loose compound coloring identifiers, about 95.95% compounds pairs
detected by other chemical IDs can be discovered. We manually checked the compound pairs that were
discordant with other chemical IDs and found that none of them are caused by an inconsistency between
the coloring identifier and the compound representation. Figure S1 uses the MetaCyc CPD-20570
and KEGG C13014 as an example, illustrating how loose coloring addresses the issues caused by
tight coloring (Figure 4) and facilitates compound harmonization. The question then becomes how
to validate the remaining 3414 possible pairs. Matched compounds are supposed to take part in
the same metabolic reactions. The Enzyme Commission (EC) number is a numerical classification
scheme for enzymes, playing a key role in classifying enzymatic reactions [30,31]. We expected matched
compounds to take part in metabolic reactions with similar EC numbers.

Table 5. Matched compounds detected by the compound coloring identifiers.

Identifiers Color Matched Pairs ID Verified Pairs
Tight coloring identifier 1763 1448
Loose coloring identifier 8865 5451

Then, we analyzed the metabolic reactions in KEGG and MetaCyc databases (see Table 6). We can
see that the documentation of EC number in KEGG is more complete compared to MetaCyc, but the
number of metabolic reactions in MetaCyc is 50% larger than in KEGG. Around 80% of reactions in
both databases can be related to at least a 3-leveled EC number.

Table 6. Analysis of Enzyme Commission (EC) types involved in reactions in KEGG and MetaCyc.

EC Types KEGG (Count/Percentage) = MetaCyc (Count/Percentage)
No EC 1263/11.05% 3427/19.92%
1-leveled EC 24/0.21% 11/0.06%
2-leveled EC 126/1.10% 67/0.39%
3-leveled EC 1081/9.46% 2958/17.19%
4-leveled EC 8933/78.17% 10740/62.43%

Next, we tested how well EC numbers work in the validation of correspondences between KEGG
and MetaCyc compounds (see Table 7). We first identified color-harmonized pairs that both take part
in some reactions in their respective database. There are 4227 ID confirmed pairs and 2292 possible
pairs involved in the metabolic reactions. We further investigated if those pairs participate into the
same type of reaction indicated by EC number. If we use the first 3 levels of the sectioned EC number
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as the standard, 3810 (90.13%) ID-confirmed pairs are verified by 3-leveled EC numbers. In addition,
3580 of them can be further confirmed by 4-leveled EC numbers. Furthermore, 1848 and 1540 possible
pairs are confirmed by 3-leveled and 4-leveled EC numbers, respectively. These results suggest that EC
numbers may be useful in validating possible pairs that have slight coloring deviations. All of the
detected compound pairs are listed in Spreadsheet S1 (Supplementary Materials).

Table 7. Correspondences between KEGG and MetaCyc compounds verified by reactions.

Conditions ID-Confirmed Pairs Possible Pairs
Pairs not in reaction 1224 1122
Pairs in reactions 4227 2292
Verified by 3-leveled EC 3810 1848
Verified by 4-leveled EC 3580 1540

2.5. Compound Representation Errors and Issues Detected in the KEGG and MetaCyc Databases

When harmonizing compounds between KEGG and MetaCyc databases, we found that there are
various compound representation issues and errors existing in both databases, which can be grouped
into several categories like mismatch between compound image and molfile, incorrect cross-referencing,
and different bonds attached to metal ions. Here, we give a brief description with some examples, and
all the detected inconsistency is documented in Spreadsheet S2 (Supplementary Materials).

2.5.1. Incomplete KEGG Aromatic Atom Types

KEGG atom types annotate every atom in every compound of the KEGG Compound database.
The KEGG atom type of an atom maps that atom to a unique chemical substructure and these
substructures often map to functional groups (e.g., the atom type “Ola” represents an oxygen of
a hydroxyl group). However, the set of KEGG atom types is not complete, especially with regard
to aromatic heterocycle atoms. In particular, there are no oxygen and sulfur aromatic KEGG atom
types defined, which prevents full automation of aromatic substructure determination based on
KEGG atom type alone. We used a simple heuristic method (i.e., a simple deterministic decisioning
approach) to consider oxygen and sulfur atoms as aromatic when they are part of a ring where all
other carbon and nitrogen atoms are labeled as aromatic, based on KEGG atom types. However,
this aromatic substructure detection approach has limitations that require some manual inspection,
as highlighted in Figure 5. KEGG Compound entry C03861 contains a 1,4-dioxin flanked by aromatic
rings. The 1,4-dioxin is not aromatic. In a counter-example KEGG Compound entry C07729 contains an
aromatic pyridine substructure flanked by benzyl rings. The presence of both examples illustrates why
aromatic substructure detection cannot be fully automated based on the current set of KEGG aromatic
atom types. In addition, Figure S2 shows a KEGG compound with an S-containing aromatic ring.

As an aside, the quinoid fragment in KEGG Compound entry C03861 is likely mislabeled as
aromatic, since quinoid fragments are standardly antiaromatic [32]. This quinoid fragment was
likely mislabeled as aromatic due to the whole three-ring structure obeying Huckel’s rule. While we
treated KEGG-identified aromatic substructures as completely correct, this example does indicate
the presence of some error in KEGG’s aromatic substructure detection methods. Comparison of
Indigo to KEGG may provide a means for detecting suspect KEGG aromatic substructures, but a
manual inspection of all suspect substructures is not practical, especially from an automated analysis
perspective. Moreover, aromatic mislabeling should not impact compound harmonization if applied
consistently across databases.
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O,

KEGG: C03861 KEGG: C07729

Figure 5. Compound with incomplete KEGG aromatic atom types. The middle ring of compound
C03861 (left) is not aromatic while the middle ring of compound C07729 (right) is aromatic.

2.5.2. Inconsistent Compound Representations

Using ID-based compound harmonization, we found that there are about 10 MetaCyc compounds
that contain valid aromatic substructures not detected by either the BASS or Indigo methods (Figure 6).
To deal with this problem, we incorporated those valid aromatic substructures into the reference

I Hfs

N N

L::;. P '_r,;i;- <|'\\| | NJ
H

MetaCyc: CPD-15916 KEGG: C02380

aromatic substructure set.

Figure 6. Compound with different aromatic representations. These two corresponding compound
entries across KEGG and MetaCyc have two different aromatic substructure representations.

2.5.3. Incorrect Cross-Referencing

There are some matched compounds detected by other identifiers that do not have the same
coloring identifier. Compound CPD-19437 in MetaCyc has a direct reference to KEGG compound
C12187, but their coloring identifiers are different (see Figure 7). We can see that the compound
representation in MetaCyc is not consistent with its counterpart in KEGG. In addition, CPD-19437 and
C12187 have the same ChEBI reference compound 32074, and the representation in ChEBI is the same
with that of KEGG, suggesting the representation in MetaCyc may be incorrect.

OH

MetaCyc: CPD-19437 KEGG: C12187 ChEBI: 32074
Figure 7. Example of inconsistent compound representations between KEGG and MetaCyc.

2.6. Estimating the Error Rate of the Graph Coloring Method

2.6.1. Ambiguous Coloring Identifiers

During the compound harmonization process, tight atom and compound coloring was loosened
(see Figure 4 for an example), keeping only atom type and bond type in the atom coloring for the final
steps in compound harmonization. With the loose coloring, multiple compounds in one database can
have the same coloring identifier. We first tested if a compound can have a unique coloring identifier
when all information is included in the atom coloring with hydrogen (H) atoms excluded (Table 8).
Here, we did not count compounds with a generic R group representing ambiguous functional groups
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and substructures; however, the results that include all compounds are described in Supplementary
Table S1. Several types of compounds cannot be distinguished by the tight coloring identifier except
for those duplicates (see Figure S3). When we only include atom type and bond type in the atom
coloring, many more compounds share the same coloring identifier. After compound harmonization,
we are able to detect compounds with the same coloring identifier from the source database.

Table 8. Compounds with the same coloring identifier, excluding R groups.

Databases Tight Coloring Identifier Loose Coloring Identifier
KEGG 99 (0.5%) 968 (4.8%)
MetaCyc 117 (0.6%) 1144 (5.6%)

When the compound identifier is ambiguous, a compound in one database can be mapped to
several different compounds in the other database during compound harmonization. For ID confirmed
pairs, 28 MetaCyc compounds can be linked to more than one KEGG compound, which is caused by
inconsistency of different ID references. In addition, about 478 MetaCyc compounds have several
KEGG correspondences among the 1848 pairs verified by 3-leveled EC. This highlights the value
in leveraging metabolic reactions and the corresponding atom mappings to disambiguate multiple
possible mappings while constructing an integrated metabolic network.

2.6.2. Pseudosymmetric Atoms

Omitting information in the atom coloring can also lead to pseudosymmetric atoms. We tested if
incorporation of atom charge, atom stereochemistry, or bond stereochemistry in the atom coloring
will erase some symmetric atoms (Table 9). After addition of atom charge, 148 MetaCyc and 38 KEGG
compounds lose symmetry. Most of them are caused by terminal atoms, like CPD-321 (Figure 8).
Since either symmetric atom can be labeled with charge, asymmetry caused by atom charge can be
ignored in constructing a metabolic network. In addition, both databases contain compounds affected
by bond and atom stereochemistry. We need to take bond and atom stereochemistry into consideration,
since some enzymes are stereochemically specific. A heuristic method could be used to test if symmetric
atoms are affected by bond and atom stereochemistry, and then atom coloring identifiers incorporated
with bond and atom stereochemistry will be generated to overcome this issue. However, more complex
molecular symmetries like those illustrated by KEGG C04167 will require the use of algorithms that
can detect all possible molecular symmetries (i.e., automorphisms induced by rotations and reflections
of the R3 embedded graph) using a 3-dimensional representation of the compound [33].

Table 9. Compounds gaining asymmetry after addition of extra information in the atom naming.

Databases Atom Stereochemistry Atom Charge Bond Stereochemistry

KEGG 232 38 169
MetaCyc 219 148 227
0 HO OH

o
OJ\/\\TK '
™ C

MetaCyc: CPD-321 KEGG: C04167

Figure 8. Examples of compounds gaining asymmetry after the addition of tight atom coloring
information. For CPD-321, the two oxygens bound to the nitrogen are asymmetric with tight atom
coloring and symmetric with loose atom coloring.
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2.6.3. Changeable Graph Representation

There are two types of matched compounds that cannot be detected by coloring identifiers.
One group of compounds can have either linear or circular representations (see Figure 9), and there are
about 26 examples in this category. The other group is caused by resonance structures (see Figure 10),
and we discovered about 46 similar cases. Artificial sets of atom mappings can be created to represent
chemical transformations that are spontaneous.

HO_ CH
m n 3
© : HO™ 0" ™0

MetaCyc: MEVALDATE KEGG: C00772

Figure 9. Compound with linear and circular representations.

OH
N~ HO O
o o

H
OH

MetaCyc: CPD-6543 KEGG: C11343
Figure 10. Compound with different resonance structures.

3. Discussion

Here, we have developed a graph coloring method that creates unique identifiers for each
atom in a compound with consideration for molecular symmetry. The atom-specific identifiers can
capture additional cross-reaction atom mappings caused by symmetric atoms, which will contribute
to the construction of a more complete atom-resolved metabolic network requiring information
at both the compound and atom levels. Towards this overall goal, the ordered compound coloring
identifiers derived from the corresponding atom coloring identifiers facilitate compound harmonization
across metabolic databases, which is an essential first step in cross-database network integration.
Different databases can have a distinct preference in compound representations, especially for aromatic
substructures. To overcome inconsistent aromatic representations between databases, we devised a
pragmatic BASS method [26] for aromatic substructure detection that leverages the labeled aromatic
substructures in KEGG. Application of BASS to KEGG validated the method, providing confidence
in its application to the MetaCyc database. The automatic aromatic atom detection method in
Indigo [29] further validated the comprehensiveness of our BASS aromatic substructure detection
method, which leverages KEGG’s curated aromatic substructures. The combination of BASS and Indigo
can achieve good performance in aromatic substructure detection. This was further augmented by
detecting additional aromatic substructure representations in MetaCyc through ID-based compound
harmonization. In addition, compound states such as atom charge are not always the same between
KEGG and MetaCyc. Therefore, identifiers like InChl that include these details to achieve an
unambiguous label are not a good choice for maximizing cross-database compound harmonization in
this situation. Furthermore, InChl cannot handle the compound entries that contain R-groups. However,
InChl is very useful for validation of the presented methods’ development. Simplified molecular-input
line-entry system (SMILES) identifiers and its derivatives are not a good option, because SMILES
and its derivatives are not guaranteed to generate a unique identifier. In addition, neither InChI nor
SMILES deal with the unique naming of atoms that is consistent for symmetric atoms. While the
molecular graph coloring method has similarities to molecular canonicalization methods [24,34,35],
it was designed to facilitate harmonization of compounds between metabolic databases. The graph
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coloring method is flexible in adjusting information used in atom coloring, which can help detect more
possible matched compounds with a higher false positive rate. With the coloring identifiers, we were
able to detect 8865 correspondences between KEGG and MetaCyc compounds, and 5451 of them can be
confirmed by other identifiers. In addition, commonality in EC numbers associated with reactions and
compounds provided another avenue for both validating and predicting possible correspondence pairs.
This method validated 1848 pairs unconfirmed by other identifiers. While harmonizing compounds
between KEGG and MetaCyc, we detected various issues and errors in the databases by coloring
identifiers which are enumerated in the supplemental material, suggesting that this method can also
be used for curation of current metabolic databases. Furthermore, the graph coloring method and
compound harmonization approach can be used to integrate any metabolic database that provides
a molfile representation of compounds, greatly facilitating future construction of more complete
integrated metabolic networks.

4. Materials and Methods

4.1. Compound and Metabolic Reaction Data

All data were downloaded directly from the corresponding databases. The KEGG COMPOUND
and KEGG REACTION data is from the version available from KEGG on May 2019 via its REST
interface. MetaCyc compound and reaction data is in version 23.0, downloaded from BioCyc.

4.2. Overview of Major Analysis Steps

A compound can be represented as a graph where each node is an atom in the compound and
each edge between atoms is a chemical bond. Based on the molfile, we are able to create a graph
representation for the corresponding compound. After we detect the aromatic substructures for a
compound, we can change the bonds within the aromatic substructures to aromatic type (molfile [14]
bond designation 4). After curation of aromatic substructures and double bond stereochemistry, we
performed atom coloring and validation to guarantee that symmetric atoms share the same identifier
and different atoms have different identifiers. Each set of atom identifiers for a compound is used
to derive the corresponding compound coloring identifier. Finally, we detect corresponded pairs of
compounds across two databases using ordered compound identifiers for each compound in each
database. The flowchart of the overall compound harmonization procedure is shown in Figure 11.

[ Parse molfile representation J

!

[ Detect aromatic substructure J

v

( Identify double bond stereochemistry ]

v

[ Color atoms and validate }

v

[ Generate ordered compound identifiers ]

v

[ Detect corresponded compound pairs J

Figure 11. Overview of major compound harmonization steps.
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4.3. Molfile Parser

We used a modified ctfile Python 3 package [36] to parse a molfile into atom and bond blocks, and
saved them into the JavaScript Object Notation (JSON) format [37], facilitating access and modification.

4.4. Aromatic Substructure Detection

We used two methods in aromatic substructure detection. One is based on common subgraph
isomorphism detection, and the other is an automatic aromatic atom detection method in Indigo
packages [29]. In the KEGG database, aromatic atoms in a compound are specified in its KEGG
Chemical Function (KCF) file [38]. Based on the aromatic atoms, we were able to extract the aromatic
substructures present within a compound, and then saved every substructure into a separate molfile.
If several aromatic rings are connected, we would fuse them together as one substructure. Then,
we built a set of all aromatic substructures detected from the KEGG compounds without duplication.
Furthermore, we manually inspected the set of aromatic substructures to ensure data quality. With this
curated set of reference aromatic substructures, we tested each compound in a database for the presence
of any of these aromatic substructures using the BASS method [26]. We analyzed KEGG to validate the
aromatic substructure detection method itself. Then, we analyzed MetaCyc and labeled the bonds of
detected aromatic substructures as aromatic. Furthermore, valid aromatic substructures in MetaCyc
compounds can be detected by Indigo and other IDs. Finally, we created 366 KEGG-derived and 21
MetaCyc-derived aromatic substructures in the reference aromatic substructure set.

4.5. Identification of Double Bond Stereochemistry

The C = C double bond stereochemistry is not clearly specified in the molfile in both databases.
To distinguish cis/trans stereoisomers, we adopted a method for automated identification of double
bond stereochemistry [39]. This method requires fully hydrogenated compounds. Therefore, we first
used Open Babel [23] to add hydrogen atoms for every compound, and then performed the calculation.

4.6. Neighborhood-Specific Graph Coloring Method

Our neighborhood-specific graph coloring method is based on a breadth-first search algorithm [40].
This method names each atom based on its own and neighbors’ chemical information, which can include
atom type, atom charge, atom stereochemistry, isotope, bond type, and bond stereochemistry. The method
is flexible in adjusting the chemical information included in the atom coloring. A flowchart of the graph
coloring method is shown in Figure 12. First, the method names each atom with its own chemical
information, which is saved as the 0_layer identifier and the start of the current atom identifier. Then,
the method builds a dictionary that relates each atom with its 0_layer identifier and directly linked atoms.
Directly bonded atoms of each atom are initialized as its neighbors. The method continues to extend
the name of each atom, adding information about its neighbors into the 0_layer dictionary to its current
identifier, and updating neighbors with neighbors’ neighbors that have not been used in extending the
name of that atom. The method first repeats this process 3 times for all the atoms to avoid early stopping
that can lead to non-unique compound coloring identifiers. Then, the method checks if an atom has a
unique identifier. Atom naming will continue for those atoms that still share the same identifiers with
other atoms until all the atoms in the compound have been used in name extension. Finally, the current
name for each atom will be its coloring identifier. Compound C00047 in KEGG database (Figure S4) is
used as an example to illustrate how the method works (Table S2).
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Name each atom with its own chemical information (0_layer & current identifier).

v

Create a 0_layerdictionary of each atom with its own

plus directly linked atoms’ 0_layer identifiers.

v

Initialize each atom’s neighbors with its directly linked atoms.

Extend an atom’s current identifier with its neighbors’ information

— | into the 0_layer dictionary, and update its neighbors with neighbors’

neighbors that have not been used in name extension for that atom.

\

If an atom has a unique current identifier

Continue the above process if an atom does OR all the atoms in the compound has

nothave a unique current identifier. been used in name extension. STOP

Figure 12. Flow chart of atom coloring.
4.7. Atom Coloring Validation and Recolor

The atom coloring validation and recoloring are also based on a breadth-first search algorithm.
The atom coloring validation flowchart is shown in Figure 13. For atoms with the same coloring
identifier, we checked if neighbors of these atoms are also the same, layer by layer, until all the atoms in
the compound have been tested. Then, the recoloring method corrects atoms with the same identifier
that do not have the same neighbors. The recoloring process is similar to the graph coloring method.
Instead of creating a 0_layer identifier dictionary, we use a full identifier dictionary. In addition,
we only color atoms to where they have different neighbors to distinguish between them.

[ Atoms in a compound share the same identifier. ]

Create a full identifier dictionary of eachatom
with its own plus neighbors’ identifier.

[ Initialize each atom’s neighbors with its directly linked atoms. ]

|

Check if the neighbors” information in the dictionary is also the same for

-

L 4

atoms with the same identifier, and update atoms’ neighbors with

neighbors’ neighbors that have not beenused in validation for that atom.

/\i

If neighbors are the same, continue the above
process until all the atoms in the compound

If neighbors are different, recolor these

atoms till this layer.
have been used in validation for that atom.

Figure 13. Flow chart of atom coloring.
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4.8. Creation of Compound Coloring Identifiers Based on Atom Coloring Identifiers

Once we create the identifiers for all the atoms in a compound, we can combine the number of
atoms with the same identifier along with the atom coloring identifier. We sorted all the substrings,
and then concatenated them together to form an ordered coloring identifier for the compound.
The formulation is shown in Equation (1), which represents the order of string concatenation with 7
being the number of atoms with coloring a;. The parenthesis and bracket characters are included in the
resulting string.

Compound color identifier = (ny)[a1](na)[az](n3)[as] . ... (ng)[a] 1)

4.9. Prediction of Possible Compound Correspondence via Metabolic Reactions

We connected each compound with the metabolic reactions of which it is a part. For matched
compounds between KEGG and MetaCyc, we tested if the compound shared at least one metabolic
reaction indicated by the EC number in both databases.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/9/0368/s1,
Figure S1: Derived coloring identifier, Figure S2: KEGG compound with S-containing aromatic ring, Figure S3:
Representative compounds that cannot be distinguished by coloring identifier, Figure S4: KEGG Compound
C00047, Table S1: Compounds with the same coloring identifiers, which includes R groups, Table S2: Generation of
atom identifiers for compound C00047 via graph coloring method, Spreadsheet S1: All pairs detected by coloring
identifiers, Spreadsheet S2: Inconsistency between KEGG and MetaCyc.

Data Availability: All data used and the results generated in this manuscript are available on: https://doi.org/10.
6084/m9.figshare.12894008.v1.
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