H

o metabolites

Article

The mwtab Python Library for RESTful Access and Enhanced
Quality Control, Deposition, and Curation of the Metabolomics
Workbench Data Repository

Christian D. Powell 1234

check for

updates
Citation: Powell, C.D.; Moseley,
H.N.B. The mwtab Python Library for
RESTful Access and Enhanced
Quality Control, Deposition, and
Curation of the Metabolomics
Workbench Data Repository.
Metabolites 2021, 11, 163.
https:/ /doi.org/10.3390/
metabo11030163

Academic Editor: Seongho Kim

Received: 6 February 2021
Accepted: 10 March 2021
Published: 12 March 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Hunter N.B. Moseley 2345

Department of Computer Science (Data Science Program), University of Kentucky,

Lexington, KY 40506, USA; christian.powell@uky.edu

Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA

Superfund Research Center, University of Kentucky, Lexington, KY 40506, USA

Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
Institute for Biomedical Informatics, University of Kentucky, Lexington, KY 40506, USA
Correspondence: hunter.moseley@uky.edu

U= N

Abstract: The Metabolomics Workbench (MW) is a public scientific data repository consisting of
experimental data and metadata from metabolomics studies collected with mass spectroscopy (MS)
and nuclear magnetic resonance (NMR) analyses. MW has been constantly evolving; updating its
‘mwTab’ text file format, adding a JavaScript Object Notation (JSON) file format, implementing a
REpresentational State Transfer (REST) interface, and nearly quadrupling the number of datasets
hosted on the repository within the last three years. In order to keep up with the quickly evolving
state of the MW repository, the ‘mwtab” Python library and package have been continuously updated
to mirror the changes in the ‘mwTab’ and JSONized formats and contain many new enhancements
including methods for interacting with the MW REST interface, enhanced format validation features,
and advanced features for parsing and searching for specific metabolite data and metadata. We
used the enhanced format validation features to evaluate all available datasets in MW to facilitate
improved curation and FAIRness of the repository. The ‘mwtab’ Python package is now officially
released as version 1.0.1 and is freely available on GitHub and the Python Package Index (PyPI) under
a Clear Berkeley Software Distribution (BSD) license with documentation available on ReadTheDocs.

Keywords: metabolomics workbench; data validation; data deposition; python package

1. Introduction

The Metabolomics Workbench (MW) is a public scientific data repository of metabolomics
experimental datasets that was established in 2013 [1]. The repository consists of experi-
mental data and metadata from metabolomics studies collected with mass spectroscopy
(MS) and nuclear magnetic resonance (NMR) technologies. Specific projects, studies, and
experiments (analyses) can be accessed via MW in ‘mwTab’ (text-based files) or JavaScript
Object Notation (JSON) formatted files [2,3]. MW offers a web-based interface to analyze,
track, deposit, or download data. Additionally, MW offers a REpresentational State Trans-
fer (REST) interface to download and view data [4]. When the ‘mwtab’ Python package
was first published in August 2017 (30 August 2017), the MW contained a total of 634
analyses. Over the last three years, the MW repository has continued to quickly grow and
now contains more than 1000 projects as of November 2020, which can be subdivided into
more than 1500 studies and more than 2500 individual analyses. The MW has maintained
its ‘mwTab’ file format, consisting of text-based blocks, which use tabs to organize data,
and published an updated specification guide at the beginning of 2019.

The ‘mwtab’ Python package was originally released in 2017 with the intent of creating
a programmatic means of accessing and analyzing ‘mwTab’ formatted files from MW [5].
This package had the basic facilities for creating ‘mwTab’ formatted files to facilitate more

Metabolites 2021, 11, 163. https:/ /doi.org/10.3390/metabo11030163

https://www.mdpi.com/journal /metabolites

https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0002-4242-080X
https://orcid.org/0000-0003-3995-5368
https://doi.org/10.3390/metabo11030163
https://doi.org/10.3390/metabo11030163
https://doi.org/10.3390/metabo11030163
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/metabo11030163
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo11030163?type=check_update&version=1

Metabolites 2021, 11, 163

20f16

automated deposition processes. In doing so, the package aimed to follow the FAIR data
principles of findability, accessibility, interoperability, and reusability [6,7]. Since then
the ‘mwtab’ package has seen a few updates, which have included various bug fixes and
improvements. With the 1.0.1 release written in Python 3, we aimed to dramatically increase
the functionality of the ‘mwtab’ package, while also updating the present methods to keep
in line with changes in MW [8]. Release 1.0.1 includes updates to reflect the evolving
changes in the ‘mwTab’ format specification, incorporates methods that utilize the MW’s
REST interface, and provides a range of new validation functionality for quality control and
curation purposes. These changes lay the foundations for expanding the ‘mwtab” package
functionality as a Command-Line Interface (CLI) and Python Application Programming
Interface (API) to the MW data repository.

2. Results
2.1. Additional Functionality of the ‘mwtab’ Package Interface

The package can be used in two ways: (1) as an API within Python scripts (see Table 1)
and (2) as a CLI (see Table 2). The 1.0.1 release of the ‘mwtab’ package includes a number
of new features and changes for both APl and CLI usage. The 1.0.1 release is now available
for import via pip from the Python Package Index (PyPI) or can be manually installed from
the GitHub repository [9,10].

Table 1. Common patterns for using the ‘mwtab’ as a library.

Usage Example

create first REST URL
mwt_rest_url = mwtab.GenericMWURL({

.o

“context”: “study”,

“input_item”: “analysis_id”,

“input_value”: “AN000002,

“output_item”: “mwtab”,

“output_format”: “txt”}).url

create second REST URL

another_mwt_rest_url =
next(mwtab.generate_mwtab_urls(“AN000003"))
create a generator to call REST URLS and create
MWTabFile objects

mwt_generator = mwtab.read_files(mwt_rest_url,

another_mwt_rest_url)

Reading ‘mwTab’ Files From REST

make a generator to create MWTabFile objects

mwtabfile =

next(fileio.read_files(“path-to-mwtabfile-dir”))
Extracting Metadata # extract metadata

extracted_values =

mwextract.extract_metadata(mwtabfile,

“LAST_NAME”")

make a generator to create MWTabFile objects
mwtabfile_gen =
fileio.read_files(“path-to-mwtabfile-dir”)

create matcher object

matcher =
mwextract.generate_matchers([(“PR:LAST_NAME”,
“Smith”)])

extract metabolites data

metabolite_dict =
mwextract.extract_metabolites(mwtabfile_gen, matcher)

Extracting Metabolites

Metabolites 2021, 11, 163 3of 16

Table 2. Command patterns for using the ‘mwtab’” as a Command-Line Interface.

Command Description Example

$ mwtab download all

$ mwtab download 1

$ mwtab download AN000001

$ mwtab download ST000001 —context=study \

Download files through g ' v : . e
download the Metabolomics :mPUt_:FTr;ST—C'Iy_;d —output-item=mwtab \
Workbench REST API output-format=jso

$ mwtab download C20H34011
—context=compound \
—input-item=formula —output-item=all
—output-format=txt

$ mwtab extract metadata
ANO000001.txt./LAST_NAME \
CHROMATOGRAPHY_TYPE —to-format=csv

Extract data or metadata $ mwtab extract metabolites

from file(s) file_dir/./PR:LAST_NAME \

Smith CH:CHROMATOGRAPHY_TYPE
“Reversed phase” \
—to-format=json

extract

2.2. Evaluation of the Metabolomics Workbench Repository
2.2.1. Analysis IDs with Files Missing from the Metabolomics Workbench

As of 19 November 2020, a total of 1891 analyses were available for download through
MW’s REST interface. When we attempted to download all available analyses, a number
of analyses were not present for download in a given format. Of those analyses, three (3)
could not be downloaded in ‘mwTab’ format and fifty (50) could not be downloaded in
JSON format (see Table 3). Only blank pages were present for these files.

Table 3. List of analysis IDs and the format of files that could not be downloaded through
Metabolomics Workbench’s REST API.

File Format Analysis ID
‘mwTab’ ANO002380, AN002381, and AN002384

ANO000255, AN000404, AN000405, AN000410, AN000415, AN000436,
ANO000439, AN000444, AN000446, AN000450, AN000663, AN000665,
ANO000667, AN000871, AN001856, AN002131, AN002132, AN002133,
ANO002134, AN002135, AN002136, AN002137, AN002138, AN002141,
JSON AN002142, AN002145, AN002147, AN002148, AN002149, AN002150,
ANO002151, AN002152, AN002153, AN002154, AN002157, AN002158,
ANO002159, AN002160, AN002161, AN002162, AN002163, AN002164,
ANO002165, AN002166, AN002167, AN002168, AN002169, AN002170,
ANO002171, and AN002314

2.2.2. Analysis Files Which Could Not Be Parsed

Of the 1888 downloaded analyses in ‘mwTab’” format, seventy (70) files could not be
parsed into ‘~mwtab.mwtab.MWTabFile” objects. Of the 1841 downloaded analyses in
JSON format, 139 files could not be parsed into ‘~mwtab.mwtab.MWTabFile” objects.

Of the seventy (70) ‘mwTab’ files which could not be parsed; fifty (50) files contained
formatting errors in one or more data lines in their ‘SUBJECT_SAMPLE_FACTORS’ section,
seven (7) files contained ‘"MS_METABOLITE_DATA'’ sections missing their ‘# prefix, four
(4) files contained errors in the “VERSION’ line of their ‘METABOLOMICS WORKBENCH’
section, four (4) files contained a duplication of the ‘PRINSTITUTE’ item in their ‘PROJECT”
section, two (2) files contained formatting errors in the "AN:ANALYSIS_TYPE' line of their
"ANALYSIS’ section, one (1) file was missing the tab delineator in the ‘'SP:SAMPLEPREP_

Metabolites 2021, 11, 163

40f16

PROTOCOL_FILENAME' line of its’ ‘SAMPLEPREP” section, one (1) file contained a large
number of excessive tabs in its ‘METABOLOMICS WORKBENCH' header line, and one (1)
file was missing the ‘METABOLOMICS WORKBENCH' section in its entirety.

The 139 JSON files, which could not be parsed into ‘~mwtab.mwtab.MWTabFile’
objects, could not be parsed due to various formatting errors which broke the JSON format
standard and prevented the loading of the file string into dictionary objects with the
exception of a single file which lacked the 'METABOLOMICS WORKBENCH' section. It
is also notable that there were thirteen analyses for which both the ‘mwTab” and JSON
formatted files contained errors.

It is also notable that for twenty-four (24) analysis IDs, both the ‘mwTab” and JSON
formatted files contained errors, which prevented the files from being parsed. For a full list
of files containing parsing errors see Supplemental Table S1.

2.2.3. Consistency Errors between ‘mwTab” and JSON Formatted Files

After the analyses were filtered to remove those that were missing data files or con-
tained processing errors, a total of 1655 analyses remained for which data files were
present in both ‘mwTab’ and JSON formats. These analyses were then parsed into
‘~mwtab.mwtab.MWTabFile” objects. We then compared the pair of objects represent-
ing a single analysis to determine if the parsed items were equivalent. Of the 1685 analyses,
1345 analyses had ‘mwTab’ and JSON formatted files that did not match (see Figure 1).
Fourteen (14) analyses had ‘mwTab’ and JSON files which contained different section keys.
This was commonly due to the extraneous inclusion of a blank ‘'CHROMATOGRAPHY’
section within the ‘mwTab’ formatted data file. The remaining errors between formats can
be broken down into; (1) errors in item sections (e.g., ‘PROJECT’, ‘STUDY’, ‘SUBJECT’,
etc.), (2) errors in the ‘SUBJECT_SAMPLE_FACTORS’ section, and errors in data sections
(e.g., 'MS(NMR)_METABOLITES_DATA’, 'NMR_BINNED_DATA’, ‘METABOLITES’, or
‘EXTENDED_MS(NMR)_METABOLITES_DATA).

When validating the item sections, 198 analyses contained mismatched item keys
within a given section, and 982 analyses had mismatched item values within a given section.
Most of the analyses which had data files containing mismatched item keys within sections
had additional item keys in the ‘mwTab’ formatted data file. Additionally, two (2) analyses
had JSON files in which the ‘CHROMATOGRAPHY” section was a list as opposed to the
expected dictionary.

When validating the ‘SUBJECT_SAMPLE_FACTORS' section of analyses, thirteen (13)
analyses contained mismatched values in the section.

When validating the ‘"MS(NMR)_METABOLITES_DATA’” and ‘NMR_BINNED_DATA’
sections (further referred to as ‘_DATA’ sections), 869 analyses had some inconsistency
within the section. Four (4) of the analyses (AN001492, AN001493, AN001499, and
ANO002428) had errors due to their JSON files missing a ‘Data’ item representing the
‘mwTab’ files ‘MS_METABOLITES_DATA’ section. Five (5) analyses (AN000441, AN001960,
ANO002398, AN002403, and AN002404) contained mismatched ‘'_DATA’ units items, all
likely due to encoding differences in characters used in the unit’s value. The remaining
analyses contained mismatched values within the individual data entries.

Metabolites 2021, 11, 163 50f 16

Consistency Errors Between mwTab and JSON Data Files

t
<)
|
=
w
=
2 1500
3
0
@
> 1000
©
<
“5 500
a 198
- 2 1IN
£ o o
= % %
= % 0
>
v
)
%A
%
®
Error Type

Figure 1. Bar chart depicting the count of consistency errors between ‘mwTab” and JSON formatted data files. The total
number of analyses for which both ‘mwTab” and JSON formatted files were available upon download and could be parsed
into ‘~mwtab.mwtab.MWTabFile” objects is shown in blue on the left. The total number analyses with inconsistencies
between the two available data file formats is shown in dark red second from the left. The remaining red bars show the
number of analyses which possess each given inconsistency type.

2.2.4. Validation Errors in ‘mwTab’ Formatted Files

The downloaded ‘mwTab’ formatted files which could be parsed into ‘~mwtab.mwtab.
MWTabFile” objects were validated using the ‘~mwtab.validator.validate_file()’ method. Of
the 1818 ‘mwTab’ files which could be parsed, 1539 of the files contained some validation
error(s) (see Figure 2). In total, 1272 analysis files were found to have schema errors; 706
analysis files had null values in section items; and 391 data files had inconsistent sample
IDs across their ‘SUBJECT_SAMPLE_FACTORS’ and ‘_DATA' sections. Additionally, one
(1) data file had inconsistent sample IDs across its ‘SUBJECT_SAMPLE_FACTORS’ and
"EXTENDED_MS_METABOLITE_DATA'’ sections. Thirty-seven (37) data files had missing
'_DATA' sections with no ‘"MS_RESULTS_FILE’ item in their ‘MS’ section, effectively lacking
any experimental data. Five (5) data files had null values in one or more fields within a
sample data line in their ‘SUBJECT_SAMPLE_FACTORS’ section.

Metabolites 2021, 11, 163

6 of 16

Number of Analyses with Error

Validation Errors in mwTab Data Files

1500

1000

500

Error Type

Figure 2. Bar chart depicting the count of validation errors in ‘mwTab’ formatted data files. The total number of analyses

for which ‘mwTab’ files were available upon download and could be parsed into ‘~mwtab.mwtab.MWTabFile” objects is

shown in blue on the left. The total number of analyses with validation errors is shown in dark red second from the left.

The remaining red bars show the number of analyses which possess each given error type.

2.2.5. Consistency Issues in ‘"METABOLITES’ Section Metabolite Metadata Headings

MS and targeted NMR (files containing a ‘NMR_METABOLITES_DATA' section) files
from the downloaded analysis entries also had their metabolite metadata headings (field
values) within their ‘METABOLITES’ section searched with Regular Expressions (RegExs)
for fields which matched the standardized field names (i.e., pubchem_id, inchi_key, etc.). Of
the 1818 downloaded ‘mwTab’ files, 1216 of the files contained field names which matched
commonly used fields. The RegExs used and values matched can be seen in Table 4. While
MW allows for users to specify these fields, the lack of consistency in field names across
files presents a large issue hindering reuse of multiple studies in meta-analyses.

A few logical errors were also found with some of the user-specified field names during
the matching process. One user-specified field name that matched the ‘retention_index’
standardized field name was ‘retention index (min)’. The retention index is a dimensionless
measure as it is a normalization of a given compound retention time in relation to the
retention times of two eluted standards. Additionally, it was found that some user-specified
fields which matched the standardized ‘retention_time’ field contained unit denotations in
the field name (e.g., ‘retention_time(min)”) while others did not. We suggest that depositors
include a ‘retention_time_units” heading for increased parsability.

Metabolites 2021, 11, 163

7 of 16

Table 4. List of common metabolite metadata headings from "METABOLITES’ blocks of MS and
targeted NMR analyses, Regular Expressions (RegExs) used to match field names, and examples of
similar/matching fields present in analysis files. See Supplemental Table S2 for a full list of matched
field names.

Common Field

RegEx Pattern(s) Example Matched Field Names
Name
HMDB ID (*representative)
hmdb id r”(?)[\s | \SI{,}(HMDB)” HMDB (*Representative ID)
- r”(?i)(Human Metabolome D)[\SK,}” HMDB_ID
... Total 14 Fields
Inchi_Key
o N InChIKey
s ? ”
inchi_key r”(?1)(inchi)[\S}{,} InchiKey
... Total 10 Fields
KEGG
. r”(?i)(kegg)$” KEGGI
keggid 1 (?i)(kegg)(\s |)(i)” Kegg ID
... Total 6 Fields
m/z
moverz r’(?i)(m/z)” M/Z

m/z rounded

Quantified m/z
r”(?i)(moverz)(\s | _)(quant)” quantitated mz

(i) (quan)[\SI{,}(\s | _)m)[\SI{,}(z)"” Moverz Quant
... Total 10 Fields

Other ID
Other_ID

PubChem CID
Pubchem ID
PubChem

... Total 9 Fields

moverz_quant

other_id r”(?)(other)(\s |)(id)$”

pubchem_id r”(?i)(pubchem)[\SI{,}”

retention time index
r”(?i)(r)$” ri
r”(?1)(ret)[\s | \SI{,}(index)” Retention index

... Total 9 Fields

retention_index

retention_times
retention time index
Retention Time

... Total 20 Fields

retention_time r”(2i)(r)[\s I \SI{,}(time)[\S]{,}”

2.3. Files which Lack Data

MW serves as a repository for MS and NMR study data, and as a result, all files should
contain either MS or NMR processed intensity data. If data are not explicitly included in
the 'MS_METABOLITE_DATA’ for NMR analyses, a ‘MS_RESULTS_FILE’ item should be
included in the files ‘MS’. Currently, there is no equivalent ‘NMR_RESULTS_FILE’ item
in MW’s format specification for the 'NMR’ section. Further, 37 analyses from the down-
loaded ‘mwTab’ files contained no experimental data and failed to include a results file
line. It is notable that result files from studies which do contain a ‘MS_RESULTS_FILE’
item can be downloaded through the MW File Transfer Protocol (FTP) server in the form of
http:/ /www.metabolomicsworkbench.org/Studies / \T1\textquotedblrightresults_filename\
T1\textquotedblright.

http://www.metabolomicsworkbench.org/Studies/\T1\textquotedblright results_filename\T1\textquotedblright
http://www.metabolomicsworkbench.org/Studies/\T1\textquotedblright results_filename\T1\textquotedblright

Metabolites 2021, 11, 163

8 of 16

3. Discussion

Since the first release of the ‘mwtab’ Python package, the MW repository and the
‘mwTab’ file format have seen a number of revisions and have expanded greatly. In order
to keep up with MW, the ‘mwtab’ package has also seen a number of changes and bug
fixes to match changes in both the ‘mwTab’ file format and MW’s web-based interfaces.
The 1.0.1 release of the ‘mwtab’ package not only includes changes to update to the latest
standards of MW, but also includes new functionality to improve programmatic access to
MW. The package can now be used to work with MW’s JSON formatted analysis files. The
package includes new validation functions that are useful in implementing or improving
automatic data deposition pipelines and in facilitating multi-study meta-analyses. Further,
the package includes new functionality to retrieve and interact with data from MW, which
is not in its ‘mwTab’ file format. All improvements and expansions to the package are
mirrored in both the APIand the CLI. The extensive documentation for the ‘mwtab’ package
has been expanded to document all new functionalities. The documentation includes a
“User Guide’, ‘Tutorial’, and ‘API reference’ generated automatically from the source code
and is still available at http:/ /mwtab.readthedocs.io. The ‘mwtab’ package’s automated
unit-tests have been expanded to test all new modules and functionality of the package
and also generate test coverage reports.

We used the updated ‘mwtab’ package to check the metadata quality and data reusabil-
ity of all available metabolomics datasets from the MW Data Repository. During our quality
control and quality assessment (QC/QA) analysis, we found a large number of errors and
consistency issues in data hosted by MW. When attempting to retrieve entries from the
depository, fifty-three (53) analyses had blank entries for either their ‘mwTab’ or JSON
formatted data file; 185 analyses contained gross formatting errors in either their ‘mwTab’
or JSON formatted data files (70 ‘mwTab’ and 139 JSON formatted files), which prevented
the files from being parsed into ‘~mwtab.mwtab.MWTabFile’ objects; and 1345 of the 1655
analyses for which both ‘mwTab’ and JSON formatted data files could be downloaded
contained inconsistencies across the file formats. A vast majority of ‘mwTab’ formatted
files (1539 of 1818 files), which could be parsed into ‘~mwtab.mwtab.MWTabFile’ objects,
contained validation errors in their content. Further, a large number of files (1216 of 1818
files) contained consistency errors in the naming of their metabolite metadata headings.
Additionally, 37 analysis files lacked processed experimental data altogether.

We provided the complete QC/QA validation report to Metabolomics Workbench
in early February 2021. At the time of acceptance of this paper, the vast majority of the
missing and non-parsable entry files had been fixed by Metabolomics Workbench staff.
Further, most of the consistency issues are being actively addressed.

There is a need for improving data and metadata quality and for the establishment
of deposition standards [11-14]; however, we present the following suggestions that
are narrowly focused on the repository format itself. Specifically, the prevalence of a
large number of errors and consistency issues in data files from MW shows the need for
improvements from the repository with respect to the implementation and maintenance
of the ‘mwTab’ format. While MW has continued to update its file specifications, it
has not updated many existing data files to the new standard. One way to address
this could be to include named versions of the file specification and include the value
as an item in the ‘"METABOLOMICS WORKBENCH' header sections. MW appears to
include a “VERSION' item line in the ‘METABOLOMICS WORKBENCH’ section, but it
is unclear if the line specifies the version of the data file or the version of the ‘mwTab’
file specification. Additionally, the only version number present is “1” despite earlier
data files not matching the updated file specification. A file specification version item
line would allow for files hosted in a legacy specification to be easily identified from new
up-to-date data files. Many public repositories include versioned file specification, such
as the Protein Data Banks’ PDB file specification and Biological Magnetic Resonance Data
Bank’s BMRB file specification, and these version specifications indicate major version,
minor version, and patch or bug fix version of their respective format separated by a

http://mwtab.readthedocs.io

Metabolites 2021, 11, 163

9o0f 16

period [15,16]. Moreover, having both a data file version item line and a file format version
item line is preferred so that both changes in content and format can be easily distinguished.
We also recommend that MW implements methods to help standardize user-submitted
headings. The methods should include common metabolite metadata headings matching
in the ‘"METABOLITES’ section along with whitespace stripping. These validation and
consistency errors would hinder multi-study meta-analyses and large-scale computational
analysis of the MW. Further, many of the consistency issues between ‘mwTab’ and JSON
formatted data files appear to be caused by changes in character encodings. Therefore, we
recommend adopting UTF-8 variable-width character encoding across both ‘mwTab” and
JSON formats. However, adopting UTF-8 encoding can be problematic for some legacy
REST interface implementations.

In all fairness, many of the issues presented here are directly or indirectly due to a
lack of diligence and effort from depositors. Moreover, the support and maintenance of
a public scientific repository requires a community effort and should not be viewed as
the sole responsibility of the repository itself, but what incentive do depositors have to
do a good deposition, let alone a superior deposition, when a poor deposition is enough
to satisfy the minimum data sharing requirements from journals and funding agencies?
Therefore, we propose the idea of certification levels for depositions based on the quality
and consistency of metadata provided. Since data quality is experiment dependent, the
certification requirements would focus on metadata quality and indirectly data quality via
the inclusion of data quality metrics. This idea has similarities to various curation metrics
such as the UniProt Knowledgebase annotation score, which provides a heuristic score
representing both the quality and quantity of the content supporting a UniProtKB entry
or proteome [17,18]. However, there is a fundamental difference, since completeness of
metadata to a certain high standard would be a requirement for the proposed certification.
Furthermore, a certification system that includes a high-standard “gold” level would
provide an incentive for depositors to do more than just the minimum required, since
such certifications would help demonstrate research product quality and could be used in
grant proposals and yearly progress reports. Since standard deposition would not require
certification, depositors can still satisfy initial deposition requirements for publication
while working towards refining depositions for certification. Further, the metabolomics
repositories and the research community via scientific societies and standardization groups
could work together to develop the requirements for deposition certification that would
promote FAIRness and enable large-scale meta-analysis. Eventually, workshops could be
developed for training depositors to reach certification.

4. Methods
4.1. Updates to the ‘mwTab’ Format

The ‘mwTab’ format specification was last updated on 5 February 2019. The updated
‘mwTab’ format specification is available on the MW website (mwTab file format spec-
ification. Available online: https://www.metabolomicsworkbench.org/data/mwTab_
specification.pdf, accessed on 19 November 2020).

The ‘mwTab’ format has remained mostly the same with the exception of a few
additions (see Figure 3). These additions to the ‘mwTab’ format include (1) the addi-
tion of DataTrack and Project IDs in the ‘METABOLOMICS WORKBENCH' header line,
(2) the requirement of a ‘'RAW_FILE_NAME' item in the “Additional sample data’ col-
umn (also now present as the ‘Raw file names and additional sample data’ column)
of the ‘SUBJECT_SAMPLE_FACTORS’ section, (3) the expansion of key-value pairs in
the ‘MS:MS_RESULTS_FILE’ lines in the ‘MS’ block, and (4) the allowance of a ‘NMR _
METABOLITES_DATA’ block for targeted NMR studies. Many of these items are not
explicitly stated as being updates to the ‘mwTab’ format, but as of November 2020 are
present in a significant number of analyses.

https://www.metabolomicsworkbench.org/data/mwTab_specification.pdf
https://www.metabolomicsworkbench.org/data/mwTab_specification.pdf

Metabolites 2021, 11, 163 10 of 16

#METABOLOMICS WORKBENCH STUDY_ID:STe0@001 ANALYSIS_ID:ANeeeeel PROJECT_ID:PReQgeE1

VERSION 1
CREATED_ON 2016-09-17
b #SUBJECT_SAMPLE_FACTORS: SUBJECT(optional) [tab]SAMPLE[tab]FACTORS...[tab]Additional sample data
SUBJECT_SAMPLE_FACTORS = SampleID1l Factorl:Val RAW_FILE_NAME = filename.raw
C #MS
MS:DETECTOR_TYPE Orbitrap
MS : SOFTWARE_VERSION Xcalibur 3.@.63
MS :ACQUISITION_DATE March, 2014
MS:MS_RESULTS_FILE STE@1181_AN@@1959 Results.txt UNITS:Peak area

Figure 3. Overview of the updated ‘mwTab’ format: (a) Updated header block which now includes ‘PROJECT_ID’ key-value
pair; (b) Uploaded ‘SUBJECT_SAMPLE_FACTORS’ block format with the additional ‘/RAW_FILE_NAME" field in the
“Additional sample factors’ column; and (c) Updated ‘MS’ block format with additional key-value pairs appended to
‘MS:MS_RESULTS_FILE' line.

Additionally, we have worked with the MW staff in developing one major improve-
ment to the ‘mwTab’ file format and one convention in the format’s use, which have
been accepted in depositions to MW. The major improvement to the ‘mwTab’ file for-
mat is the creation of the ‘TEXTENDED_MS(NMR)_METABOLITE_DATA’ subsection in
the ‘'METABOLITES’ section, which allows the deposition of data that are both sample-
specific and metabolite-specific and beyond the single intensity value allowed in the
'MS(NMR)_METABOLITE_DATA’ block. Figure 4 illustrates this new addition to the
‘mwTab’ format, which includes both the metabolite identifier and the sample identifier
along with any additional data and metadata field that are simultaneously sample-specific
and metabolite-specific. This allows for the inclusion of various additional measure-
ments such as peak-width and peak-height for NMR datasets and the retention time for
chromatography-separated mass spectrometry. Moreover, various data quality metrics
can now be included in a ‘mwTab” entry such as an intensity standard deviation or an
assignment confidence. The new format convention facilitates deposition of related subject
and sample information as extra codified metadata in the ‘SUBJECT_SAMPLE_FACTORS’
block. This allows for the capture and representation of lineages of subjects and samples
and the metadata associated with each subject and sample. For example (see Figure 5),
a simple lineage could be cells extracted from a human subject for a cell culture experi-
ment with downstream samples taken as aliquots for different analyses, but more complex
subject-sample lineages could include multiple passages through a PDX mouse model.
Further, the inclusion of these subject-sample lineages makes it much easier to link data
across ‘mwTab’ entries from the same project representing separate analyses of different
samples derived from the same group of subjects.

Metabolites 2021, 11, 163 11 of 16

#METABOLITES
METABOLITES_START

METABOLITES_END

EXTENDED_MS_METABOLITE_DATA_START

metabolite_nameconcentration concentration%type sample_id

(5)-2-Acetolactate Glutaric acid Methylsuccinic acid-13C00 calculated from standard samplel
(5)-2-Acetolactate Glutaric acid Methylsuccinic acid-13C00 calculated from standard sample2

EXTENDED_MS METABOLITE_DATA_END
#END

Figure 4. Overview of an 'EXTEND_MS_METABOLITE_DATA’ section in the ‘METABOLITES’ block of an example
‘mwTab’ file.

#SUBJECT_SAMPLE_FACTORS: SUBJECT(optional)[tab]SAMPLE[tab]FACTORS...[tab]Additional sample data

SUBJECT _SAMPLE_FACTORS - samplel repl-lipid Treatment Protocol:allogenic lineage 1 =samplel repl;
protocolid = [‘allogenic’]; replicate = 1; species = Mus musculus; species_type = Mouse; taxonomy_id = 10090; time_point = 42; line-
age 2=samplel repl; protocolid =['mouse tissue collection’, ‘tissue_quench’, ‘frozen tissue grind’]; lineage 3 =samplel repl-
lipid; protocolid = ['lipid_extraction’, 'FTMS _file storage52']; type = cell_extract; weight = 0.7521; weight%units = g; lineage 4=
samplel repl-protein; protein weight = 1.2093335004111359; protein weight%units = mg; protocolid = [‘protein_extraction’];
RAW FILE NAME = samplel _repl.raw

Figure 5. Overview of a ‘SUBJECT_SAMPLE_FACTORS’ block of an example ‘mwTab’ file. Additional sample-specific
data and metadata can be included in this block as key-value pairs separated by semicolons (as highlighted). While their
inclusion may appear cluttered, these key-value pairs are computer parsable and therefore interoperable.

4.2. Metabolomics Workbench [SON File Format

When the ‘mwtab’ Python package was created, methods for converting MW's
‘mwTab” formatted files into JSON files were included. MW now allows for distribu-
tion of their data files in their own JSON format. The ‘mwtab’ Python package has been
updated to mirror MW’s JSON format. The ‘~mwtab.mwtab.MWTabFile’ object is based
upon an ordered dictionary structure. The dictionary structure of the object was changed
to mirror the JSON format, allowing for ‘mwTab’” formatted files to be directly converted
into their equivalent JSON format.

4.3. Overview of the Metabolomics Workbench REST Interface

The MW data repository provides multiple means of accessing the data stored. The
Workbench provides a REST interface which allows for data to be accessed via HTTPS
requests. REST URLs consist of three main parts; a context, an input specification, and an
output specification (see Figure 6). The context specifies the type of data/resource intended
to be accessed. The input specification describes the item to be requested and consists of
two parts; an input item and an input value. The input specification is dependent upon the
context requested. The output specification describes the output to be generated by the
request and also consists of two parts; an output item and an output format. The full MW
REST API specification is available on the MW website (Metabolomics Workbench REST
URL-based API Specification. Available online: https://www.metabolomicsworkbench.
org/tools/MWRestAPIv1.0.pdf, accessed on 19 November 2020).

https://www.metabolomicsworkbench.org/tools/MWRestAPIv1.0.pdf
https://www.metabolomicsworkbench.org/tools/MWRestAPIv1.0.pdf

Metabolites 2021, 11, 163

12 of 16

https://www.metabolomicsworkbench.org/rest/<context>/<input specification>/<output specification>
<context> = study | compound | refmet | gene | protein | moverz | exactmass

<input specification> = <input item>/<input value>
<output specification> = <output item>/[<output format>]

Figure 6. Pattern for crafting HTTPS requestable URLs to interface with the Metabolomics Workbench REST interface.

4.4. Package Implementation

The ‘mwtab’ Python package previously consisted of seven modules: ‘mwtab.py’, ‘tok-
enizer.py’, ‘fileio.py’, ‘converter.py’, ‘mwschema.py’, ‘validator.py’, and ‘cli.py’. In the 1.0.1
release, changes were made to six of those modules (‘mwtab.py’, ‘tokenizer.py’, ‘fileio.py’,
‘mwschema.py’, ‘validator.py’, and ‘cli.py’), and two additional modules (‘mwrest.py” and
‘mwextract.py’) were added to the package (see Figure 7). The updates to the original
package modules either (1) mirrored updates made to the ‘mwTab’ file format, (2) greatly
expanded the ‘mwTab’ format validation capabilities, or (3) incorporated new functionality
provided by the ‘mwrest.py’ and ‘mwextract.py’ modules.

mw

b € typing.Hashable

'

€ object

51

mwtab

A __init__.py

__main__.py
= cli.py

= converter.py
~ fileio.py

~ mwextract.py
= mwrest.py

~ mwschema.py
~ mwtab.py

= tokenizer.py
~ validator.py

¢ mwtab.mwrest.GenericMWURL ¢ mwtab.mwrest.MWRESTFile

C & typing.Hashable

1

€ object
| - |

© json.encoder.JSONEncoder

¢ mwtab.mwextract.ItemMatcher

T

€ mwtab.mwextract.SetEncoder

T

¢ mwtab.mwextract.ReGeXMatcher

Figure 7. Organization of the ‘mwtab’ Python package represented with Unified Modeling Language (UML) diagrams:
(a) UML package diagram of the ‘mwtab’ Python library; (b) UML class diagram of the ‘fileio.py” module; (c) UML class
diagram of the ‘mwtab.py’ module; d. UML class diagram of the ‘converter.py’ module.

The ‘mwextract.py’ module implements a number of classes and functions for extract-
ing metabolite data or metadata from ‘mwTab’ files (in both ‘mwTab” and JSON format).
The ‘~mwtab.mwextract.extract_metadata()’ method allows multiple ‘mwTab’ files to be
searched and for a list of possible values to be generated from given section metadata keys.
The ‘~mwtab.mwextract.extract_metabolites()” method allows for multiple ‘mwTab’ files
to be searched and for a list of metabolites to be generated from files containing a given set
of metadata key-value pairs. The ‘~mwtab.mwextract.extract_metadata()’ method can be

Metabolites 2021, 11, 163

13 of 16

used to generate a list of metadata key-value pairs to use in the ‘~mwtab.mwextract.extract_
metabolites()” method.

The ‘mwrest.py’ module implements the ‘~mwtab.mwtab.GenericMWURL’ and
‘~mwtab.mwtab. MWRESTFile’ classes. The ‘~mwtab.mwrest.GenericMWURL'’ class pro-
vides a programmatic representation of a URL constructed for use with MW’s REST APIL
The ‘~mwtab.mwrest.GenericMWURL' class takes two parameters; (1) a string repre-
senting a base URL which directs users to MW’s REST API (defaults to https://www.
metabolomicsworkbench.org/rest/) and (2) a dictionary of key-value pairs of REST param-
eters. The class validates that the given REST parameters are valid and then combines them
with the base URL to create a specific URL which can be used to access MW’s REST interface.
These changes do not alter the standard usage of the ‘~mwatb.fileio.read_files()’ method, but
enable these methods to take the ‘url’ parameter from a ‘~mwtab.mwrest.GenericMWURL'
object and retrieve ‘mwTab’ formatted files. Behind the scenes, these methods perform
HTTPS requests to retrieve the described data and/or metadata from the MW REST in-
terface, provided the url specifies a valid entry which can be represented as an ‘mwTab’
formatted entry. Further, the functionality of the package has been increased beyond deal-
ing with ‘mwTab’ formattable data. The ‘~mwtab.mwrest MWRESTFile’ class mirrors
the ‘~mwtab.mwtab.MWTabFile’ class in the ‘mwtab.py’ module, but serves as a repre-
sentation of files which cannot be represented in an ‘mwTab’ format. There is now a
‘~mwtab.fileio.read_mwrest()’” function for downloading data which cannot be represented
in an ‘mwTab’ file (ie. csv, json, and plain text data).

The ‘validator.py” module has seen a large number of improvements and now includes
a number of new methods for validating additional sections of ‘mwTab’ files. The module
previously contained methods for validating sample and factor ids and the section schemas
of ‘mwTab’ files. The ‘validator.validate_file()’ method existed for these functions. The
method has now been improved to include gathering of all existing validation errors
and searches for an expanded number of errors. Methods now exist for validating the
metabolites and metadata headings in the ‘METABOLITES’ block and for validating the
data in the ‘"MS(NMR)_METABOLITE_DATA’ or ‘NMR_BINNED_DATA’ blocks. All
of these specific validation methods are called by the ‘~mwatb.validator.validate_file()’
method.

The “cli.py’, ‘fileio.py’, ‘mwschema.py’, and ‘mwtab.py’ modules have all been up-
dated to match the changes to the ‘mwTab’ file format and include the new functionality
provided from the new ‘mwrest.py” and ‘mwextract.py’ modules. For the full documenta-
tion, see the Read the Docs page at https://mwtab.readthedocs.io/ [19].

As of 1 January 2020, Python 2 reached its end-of-life and will no longer be receiving
new bug reports, fixes, or changes from the Python Software Foundation [8]. As a result,
the 1.0.1 release of the ‘mwtab’ Python package was not developed with Python 2 support,
and no future updates are planned to include Python 2 support. The 0.1 releases of the
‘mwtab’ package which does support Python 2 will, however, remain available through
both GitHub and PyPL

4.5. Evaluation of the Metabolomics Workbench Repository

The ‘mwtab’ package functionality was again evaluated on every available ‘mwTab’
and JSON formatted file available from MW (as of 19 November 2020). A total of 1891
analysis IDs were available, and the downloading of both ‘mwTab” and JSON format data
files was attempted through the MW REST interface.

The files from MW were evaluated for a number of formatting and consistency er-
rors/issues via a set of tested assertions. First, the successful download of each analysis
file through MW’s REST API was tested in both ‘mwTab’ and JSON format. Second, the
successful parsing of each downloaded file into MWTabFile objects was tested. Third, the
consistency between parsed data from ‘mwTab” and JSON formats was tested. Fourth,
each parsed ‘mwTab’ formatted file was validated using the validation methods in the
updated ‘mwtab’ Python package. Only ‘mwTab’ formatted data files where validated

https://www.metabolomicsworkbench.org/rest/
https://www.metabolomicsworkbench.org/rest/
https://mwtab.readthedocs.io/

Metabolites 2021, 11, 163

14 of 16

with the validation methods used would likely give fairly redundant results across both
‘mwTab’ and JSON formats. Lastly, the analysis file which contained ‘METABOLITES’
sections had its metabolite metadata headings parsed with RegExs which were used to
detect commonly used fields. This was used to detect consistency issues in field names
across analyses, which could hinder cross-study analysis.

The method used to download all analysis files became the “download all’ CLI function.
The method uses the ‘~mwtab.mwrest.analysis_ids()” function to retrieve a list of available
analysis IDs from MW. The method then retrieves and saves a data file for each of the
available analysis IDs. We called the method twice: once to retrieve ‘mwTab’ formatted
files (—to-format = txt) and once again to retrieve JSON formatted files (-to-format = json).

We then attempted to parse each downloaded file into a ‘~mwtab.mwtab.MWTabFile’
object.

Next, we used the ‘~mwtab.validator.validate_file()’ method to validate the contents
of each resulting ‘~mwtab.mwtab.MWTabFile’ object. The method consists of four main
sub-validation functions. The first function validates the consistency of sample ID and
sample factors across the file. This function ensures that there are no blank sample ids
or factors and that a subset of the sample ids from the ‘SUBJECT_SAMPLE_FACTORS’
block is present in the ‘_DATA’ blocks. The second function validates the consistency
of metabolite names across the ‘"MS(NMR)_METABOLITE_DATA’ and ‘"METABOLITES’
blocks in MS files and targeted NMR files. The function ensures that there are no blank
metabolite names and that the metabolites are present in both blocks of the file. The third
function validates that no non-numeric values are present in MS processed experimental
data. The fourth and final function validates each file against the expected ‘mwTab’ file
format (‘mwTab’ schema). The function ensures that each required section is present with
the appropriate metadata items.

MS analysis files contain a ‘"METABOLITES’ section which consists of a table of
metabolites and metabolite metadata headings (i.e., fields). Commonly used fields include
but are not limited to: Human Metabolome Database ID (hmdb_id), International Chemical
Identifier (inchi_key), KEGG ID (kegg_id), mass over charge value (moverz), quantified
mass over charge value (moverz_quant), PubChem ID (pubchem_id), retention index
(retention_index), and retention time (retention_time) [20-23]. MW's deposition policy
allows users to specify the names of these fields, which makes it difficult to accurately
parse these field names due to spelling inconsistencies. Therefore, we created RegExs to
detect common aberrations so that a list of standardized field names can be used.

4.6. Updates to the ‘mwtab” Package Documentation

Updates to the codebase were consistently documented using the Sphinx Python
documentation style [24]. All additional documentation (‘User Guide’, “Tutorial’, “API
Reference’, etc.) was also updated and is available at https://mwtab.readthedocs.io/.

The updated package documentation includes improvements to the docs/tutorial.ipynb
file which contains basic information about the ‘mwTab’ file format as well as mwtab
package usage details and examples. Additional Jupyter notebooks (api_examples.ipynb,
cli_examples.ipynb, and diabetes_search.ipynb) have been included in the FigShare reposi-
tory which provides a range of examples for using the application programming interface,
the command line interface, as well as details on how to use the added mwextract module
functionality to search directories of ‘mwTab’ formatted files for analyses associated with
specific diseases (with the given example being diabetes).

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/2218-198
9/11/3/163/s1, Table S1: List of analysis IDs and the format of files which could not be parsed into
‘~mwtab.mwtab.MWTabFile” objects and Table S2: List of common metabolite metadata headings
from ‘METABOLITES’ blocks of MS analyses, Regular Expressions (RegExs) used to match field
names, and examples of similar/matching fields present in analysis files.

https://mwtab.readthedocs.io/
https://www.mdpi.com/2218-1989/11/3/163/s1
https://www.mdpi.com/2218-1989/11/3/163/s1

Metabolites 2021, 11, 163 15 of 16

Author Contributions: Conceptualization, C.D.P. and H.N.B.M.; methodology, C.D.P. and HN.B.M,;
software, C.D.P; validation, C.D.P,; formal analysis, C.D.P,; investigation, C.D.P,; resources, C.D.P.
and H.N.B.M.; data curation, C.D.P; writing—original draft preparation, C.D.P,; writing—review and
editing, C.D.P. and H.N.B.M.; visualization, C.D.P,; supervision, H.N.B.M.; project administration,
C.D.P. and H.N.B.M,; funding acquisition, H.N.B.M. Both authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by NIH/NIEHS, grant number P42ES007380 (UK Superfund
Research Center); NSE, grant number 1419282 (Moseley); NSF, grant number 2020026 (Moseley); and
NIH, grant number R030D030603 (Moseley).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study, supplemental materials, scripts
used, and version of the updated mwtab Python package used are openly available in FigShare at
https:/ /doi.org/10.6084 /m9.figshare.12094104.

Acknowledgments: The authors would like to acknowledge the amazing degree of care and effort
that Shankar Subramaniam, Eoin Fahy, and the whole MW /UC San Diego team have put into provi-
sioning FAIR access to metabolite studies and their incredible effort in expanding and maintaining
the repository. We have been in regular contact with the MW staff members, and when we have
raised issues with errors in specific data files or had questions, they have always promptly responded
to resolve the issue, in some instances replying and resolving the issue in less than 12 h.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References

1.

10.
11.

12.

13.

14.

15.

Sud, M.; Fahy, E.; Cotter, D.; Azam, K,; Vadivelu, I; Burant, C.; Edison, A ; Fiehn, O.; Higashi, R.; Nair, K.S.; et al. Metabolomics
Workbench: An international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and
training, and analysis tools. Nucleic Acids Res. 2016, 44, D463-D470. [CrossRef] [PubMed]

Bray, T. The Javascript Object Notation (Json) Data Interchange Format (No. RFC 8259). Technical Report. 2017. Available online:
https:/ /tools.ietf.org/html/rfc8259 (accessed on 11 March 2021).

Crockford, D. Javascript Object Notation, RFC 4627; Internet Engineering Task Force: Fremont, CA, USA, 2006.

Fielding, R. Representational state transfer. Architectural Styles and the Design of Network-Based Software Architectures. Ph.D.
Thesis, University of California Irvine, Irvine, CA, USA, 2000.

Smelter, A.; Moseley, H.IN.B. A Python library for FAIRer access and deposition to the Metabolomics Workbench Data Repository.
Metabolomics 2018, 14, 64. [CrossRef] [PubMed]

Wilkinson, M.D.; Dumontier, M.; Aalbersberg, 1].; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten,].W.; da Silva Santos,
L.B.; Bourne, P.E,; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018.
[CrossRef] [PubMed]

Boeckhout, M.; Zielhuis, G.A.; Bredenoord, A.L. The FAIR guiding principles for data stewardship: Fair enough? Eur. J. Hum.
Genet. 2018, 26, 931-936. [CrossRef] [PubMed]

Van Rossum, G. Python Programming Language. In Proceedings of the USENIX Annual Technical Conference 2007, Santa Clara,
CA, USA, 17-22 June 2007; Volume 41, p. 36.

Python Package Index. Available online: https://pypi.org/ (accessed on 1 January 2021).

GitHub. Available online: https://github.com/ (accessed on 1 January 2021).

Fiehn, O.; Robertson, D.; Griffin,].; Van Der Werf, M.; Nikolau, B.; Morrison, N.; Sumner, L.W.; Goodacre, R.; Hardy, N.W.; Taylor,
C.; et al. The metabolomics standards initiative (MSI). Metabolomics 2007, 3, 175-178. [CrossRef]

Salek, R.M.; Neumann, S.; Schober, D.; Hummel, J.; Billiau, K.; Kopka, J.; Correa, E.; Reijmers, T.; Rosato, A.; Tenori, L.; et al.
Coordination of Standards in MetabOlomicS (COSMOS): Facilitating integrated metabolomics data access. Metabolomics 2015, 11,
1587-1597. [CrossRef] [PubMed]

Spicer, R.A.; Salek, R.; Steinbeck, C. A decade after the metabolomics standards initiative it’s time for a revision. Sci. Data 2017, 4,
1-3. [CrossRef]

Rocca-Serra, P.; Salek, R.M.; Arita, M.; Correa, E.; Dayalan, S.; Gonzalez-Beltran, A.; Ebbels, TM.D.; Goodacre, R.; Hastings, J.;
Haug, K,; et al. Data standards can boost metabolomics research, and if there is a will, there is a way. Metabolomics 2016, 12, 1-13.
[CrossRef] [PubMed]

Berman, H.M.; Westbrook,].D.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, LN.; Bourne, P.E. The Protein Data
Bank. Nucleic Acids Res. 2000, 28, 235-242. [CrossRef] [PubMed]

https://doi.org/10.6084/m9.figshare.12094104
https://doi.org/10.6084/m9.figshare.12094104
http://doi.org/10.1093/nar/gkv1042
http://www.ncbi.nlm.nih.gov/pubmed/26467476
https://tools.ietf.org/html/rfc8259
http://doi.org/10.1007/s11306-018-1356-6
http://www.ncbi.nlm.nih.gov/pubmed/29706851
http://doi.org/10.1038/sdata.2016.18
http://www.ncbi.nlm.nih.gov/pubmed/26978244
http://doi.org/10.1038/s41431-018-0160-0
http://www.ncbi.nlm.nih.gov/pubmed/29777206
https://pypi.org/
https://github.com/
http://doi.org/10.1007/s11306-007-0070-6
http://doi.org/10.1007/s11306-015-0810-y
http://www.ncbi.nlm.nih.gov/pubmed/26491418
http://doi.org/10.1038/sdata.2017.138
http://doi.org/10.1007/s11306-015-0879-3
http://www.ncbi.nlm.nih.gov/pubmed/26612985
http://doi.org/10.1093/nar/28.1.235
http://www.ncbi.nlm.nih.gov/pubmed/10592235

Metabolites 2021, 11, 163 16 of 16

16.

17.
18.

19.
20.

21.

22.

23.

24.

Ulrich, E.L.; Akutsu, H.; Doreleijers,].F.; Harano, Y.; Ioannidis, Y.E; Lin, J.; Livny, M.; Mading, S.; Maziuk, D.; Miller, Z.; et al.
BioMagResBank. Nucleic Acids Res. 2007, 36 (Suppl. S1), D402-D408. [CrossRef] [PubMed]

UniProt Annotation Score. Available online: https://www.uniprot.org/help/annotation_score (accessed on 1 January 2021).
Pundir, S.; Magrane, M.; Martin, M.].; O’'Donovan, C. The UniProt Consortium Searching and Navigating UniProt Databases.
Curr. Protoc. Bioinform. 2015, 50, 1-27. [CrossRef]

ReadTheDocs. Available online: https://readthedocs.org/ (accessed on 1 January 2021).

Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vazquez-Fresno, R; Sajed, T.; Johnson, D.; Allison, P; Karu, N.; et al.
HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46, D608-D617. [CrossRef]

Heller, S.R.; McNaught, A.; Pletnev, 1.V,; Stein, S.; Tchekhovskoi, D. InChl, the IUPAC International Chemical Identifier. . Chemin
2015, 7, 1-34. [CrossRef]

Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu,
T.; et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2007, 36 (Suppl. S1), D480-D484. [CrossRef]
[PubMed]

Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, PA.; Yu, B.; et al. PubChem 2019
update: Improved access to chemical data. Nucleic Acids Res. 2019, 47, D1102-D1109. [CrossRef] [PubMed]

Sphinx: Python Documentation Generator. Available online: https://www.sphinx-doc.org/en/master/ (accessed on
1 January 2021).

http://doi.org/10.1093/nar/gkm957
http://www.ncbi.nlm.nih.gov/pubmed/17984079
https://www.uniprot.org/help/annotation_score
http://doi.org/10.1002/0471250953.bi0127s50
https://readthedocs.org/
http://doi.org/10.1093/nar/gkx1089
http://doi.org/10.1186/s13321-015-0068-4
http://doi.org/10.1093/nar/gkm882
http://www.ncbi.nlm.nih.gov/pubmed/18077471
http://doi.org/10.1093/nar/gky1033
http://www.ncbi.nlm.nih.gov/pubmed/30371825
https://www.sphinx-doc.org/en/master/

	Introduction
	Results
	Additional Functionality of the ‘mwtab’ Package Interface
	Evaluation of the Metabolomics Workbench Repository
	Analysis IDs with Files Missing from the Metabolomics Workbench
	Analysis Files Which Could Not Be Parsed
	Consistency Errors between ‘mwTab’ and JSON Formatted Files
	Validation Errors in ‘mwTab’ Formatted Files
	Consistency Issues in ‘METABOLITES’ Section Metabolite Metadata Headings

	Files which Lack Data

	Discussion
	Methods
	Updates to the ‘mwTab’ Format
	Metabolomics Workbench JSON File Format
	Overview of the Metabolomics Workbench REST Interface
	Package Implementation
	Evaluation of the Metabolomics Workbench Repository
	Updates to the ‘mwtab’ Package Documentation

	References

