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We report results from a study of the spin and parity of Z,(2970)* using a 980 fb~! data sample
collected by the Belle detector at the KEKB asymmetric-energy ete™ collider. The decay angle
distributions in the chain E,(2970)* — 5,(2645)°z" — Efz~ 2" are analyzed to determine the spin
of this charmed-strange baryon. The angular distributions strongly favor the £,(2970)" spin J = 1/2 over
3/2 or 5/2, under an assumption that the lowest partial wave dominates in the decay. We also measure the
ratio of 2,(2970)* decay branching fractions R=B[Z,(2970)* = E.(2645)°z*]/B[E,.(2970)* - E0x*]|=
1.67+0.29(stat) "535 (syst) £0.25(IS), where the last uncertainty is due to possible isospin-symmetry-
breaking effects. This R value favors the spin-parity J© = 1/2% with the spin of the light-quark degrees of
freedom s; = 0. This is the first determination of the spin and parity of a charmed-strange baryon.

DOI: 10.1103/PhysRevD.103.L111101

Charmed-strange baryons comprise one light (up or down)
quark, one strange quark, and a more massive charm quark.
They provide an excellent laboratory to test various theoretical
models, in which the three constituent quarks are effectively
described in terms of a heavy quark plus a light diquark system
[1,2]. The ground and excited states of E. baryons have been
observed during the last few decades [3]. At present there is no
experimental determination of their spins or parities.

Excited E. states with an excitation energy less than
400 MeV can be uniquely identified as particular states
predicted by the quark model [4]. However, in the higher
excitation region, there are multiple states within the typical
mass accuracy of quark-model predictions of around
50 MeV/c?, making a unique identification challenging.
In order to identify and understand the nature of excited =,
baryons, experimental determination of their spin-parity is
indispensable.

In this Letter, we report the first measurement of the spin-
parity of a &, baryon. We choose =.(2970), earlier known as
E.(2980), an excited state of the lightest charmed-strange

“Present address: Hiroshima University, Higashi-Hiroshima,
Hiroshima 739-8530.
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baryons, for which a plausible spin-parity assignment is not
given in Ref. [4]. It was first observed in the decay mode
A} Kz by Belle [5] and later confirmed by BABAR [6] in the
same decay mode. It was also observed in the E.(2645)x
channel at Belle [7]. Its mass and width have been precisely
measured with a larger data sample using the E.(2645)x
channel by a recent study [8], which also observed the decay
mode E.x for the first time. The high statistics of the Belle
data, especially for the E.(2645)x channel, recorded in a
clean ete” environment provides an ideal setting for the
experimental determination of the spin and parity of
charmed-strange baryons.

Theoretically, there are many possibilities for the spin-
parity assignment of E.(2970). For example, a quark-model
calculation by Roberts and Pervin [9] listed J© = 1/2%,
3/2*%, 5/2%, and 5/27 as possible candidates. Similarly,
most quark-model-based calculations predict the Z.(2970)
as a 28 state with J© = 1/2% or 3/2% [1,2,10-12], while
some of them find negative-parity states in the close vicinity
[1,13]. There are even calculations that directly assign
negative parity to the =.(2970) [14,15]. The unclear
theoretical situation motivates an experimental determination
of the spin-parity of the Z.(2970)" that will provide
important information to test these predictions and help
decipher the nature of the state.

In this study, the spin is determined by testing possible
spin hypotheses of Z.(2970)" with angular analysis of the
decay Z.(2970)" — E.(2645)°z" — Efz~z*. Similarly,
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its parity is established from the ratio of branching frac-
tions of the two decays, E.(2970)* — =Z,.(2645)°z" and
E.(2970)" - EPz*. We note that recently LHCb
observed two new states in the AfK~ channel [16] and
a narrow third state 2.(2965), which is very close in mass
to the much wider E.(2970). It is however assumed,
because of their significantly different widths and different
decay channels in which they are observed, that they are
two different states. In this work, we assume that the peak
structures observed in E.(2645)x and E.z channels come
from a single resonance.

The analysis is based on a sample of e* e~ annihilation
data recorded at or near Y(nS) (n = 1-5) resonances,
totaling an integrated luminosity of 980 fb~!, by the Belle
detector [17] at the KEKB asymmetric-energy e*e”
collider [18]. Belle was a large-solid-angle magnetic
spectrometer consisting of a silicon vertex detector, a
50-layer central drift chamber, an array of aerogel threshold
Cherenkov counters, a barrel-like arrangement of time-of-
flight scintillation counters, and an electromagnetic calo-
rimeter comprised CsI(TI) crystals, all located inside a
superconducting solenoid coil that provided a 1.5 T mag-
netic field. Using a GEANT-based Monte Carlo (MC)
simulation [19], the detector response and its acceptance
are modeled to study the mass resolution of signals and
obtain reconstruction efficiencies.

The E.(2970)" is reconstructed in the two decay
modes HL(2645) 7t and EP7zt with E,(2645)° —» Ef 7~
and E° — 2%, closely following the earlier analysis by
Belle [8]. The only difference is that ZF and Z0 are
reconstructed in the decay modes Zf — Z 72" and 20 —

E at/Q KT [with E7(Q7) » Az~ (K~) and A - prn~],
which have high statistics with good signal-to-background

ratios. The scaled momentum x, = p*c/+/s/4 —m*c?,
where p* is the center-of-mass (c.m.) momentum of the
E.(2970)" candidate, /s is the total c.m. energy, and m is
the mass of the .(2970) " candidate, is required to be greater
than 0.7.

The invariant-mass distributions are shown in Figs. 1 and 2
in which the E.(2645)°z* (E2) signal regions are selected
by |M(Efz™) - m[E.(2645)°]] <5 MeV/c? (|M(Eey)-

[”’0]| < 8 MeV/c?) with m[E,(2645)°] =2646.38 MeV/
¢ (m[E?] = 2579.2 MeV/c?) [4]. For both decay channels,
we perform fits using a Breit-Wigner function convolved
with a double Gaussian as signal and a first-order polynomial
as background.

In order to determine the spin of E.(2970)%, two
angular distributions of the decay chain Z.(2970)*
2.(2645)°7 — Efzyn] are analyzed. The first one is
the helicity angle 6, of £.(2970)", defined as the angle
between the direction of the primary pion z; and the
opposite of boost direction of the c.m. frame, both
calculated in the rest frame of the Z.(2970)". Such an
angle was used to determine the spin of A.(2880)" [20].
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FIG. 1. Efz z" invariant-mass distribution for the decay
E.(2970)" - E.(2645)°zt — Ef 7z~ Black points with error
bars are data. The fit result (solid blue curve) is also presented
along with the background (dashed blue curve).

The second one is the helicity angle of Z.(2645)°, defined
as the angle between the direction of the secondary pion 75
and the opposite direction of the =.(2970)", both calcu-
lated in the rest frame of the Z.(2645)°. This angle, referred
to as 6., represents angular correlations of the two pions,
because 7} and E,(2645)° are emitted back to back in the
rest frame of E.(2970)*.

The angular distributions are obtained by dividing the
data into ten equal bins for cos#, and cos@., each
extending for intervals of 0.2. For each cos@, or cos®,
bin, the yield of Z,(2970)* — Z.(2645)°z™ is obtained by
fitting the invariant-mass distribution of M(Efz~z") for
the Z.(2645)° signal region and sidebands defined by
15 MeV/c? < |M(Efn7) — m[E,.(2645)%]| < 25 MeV/c?.
To consider the nonresonant contribution, which is the
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FIG. 2. E%~ mvarlant -mass distribution for the decay
2.(2970)" — 297+ — Elx*. Black points with error bars
are data. The fit result (solid blue curve) is also presented along

with the background (dashed blue curve).
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TABLE I Summary of the yield of ZE.(2970)" —
2.(2645)°z7 for each cos @), and cos 6., bin. Quoted uncertainties
are statistical.

cos 0, Yield [events] cos 0, Yield [events]
(-1.0,-0.8) 15.6 £9.7 (-1.0,-0.8) 75.1 £12.3
(—0.8,-0.6) 639+ 11.3 (—0.8,—0.6) 682+ 11.6
(—0.6,-0.4) 689+ 11.7 (=0.6,-0.4) 61.0+10.8
(—0.4,-0.2) 553+ 10.6 (=0.4,-0.2) 33.94+9.0
(=0.2,0.0) 575+ 11.1 (=0.2,0.0) 37.0+9.6
(0.0,0.2) 90.2 £ 12.0 (0.0,0.2) 33.9+8.0
(0.2,0.4) 72.6 £11.6 (0.2,0.4) 37.7+9.8
(0.4,0.6) 53.34+10.1 (0.4,0.6) 48.24+10.1
(0.6,0.8) 50.6 +=9.8 (0.6,0.8) 86.3+13.2
(0.8,1.0) 51.34+95 (0.8,1.0) 949 +12.6

direct three-body decay into Zf 7z~ 7", a sideband subtrac-
tion is performed. Here, an averaged yield (1.0 +0.6
events) is used for all bins as the statistics is too small
to obtain a reliable yield for each bin. The E.(2970)* signal
is parametrized by a Breit-Wigner function convolved with
a double-Gaussian resolution function and the background
by a first-order polynomial. Parameters for the Breit-
Wigner are fixed to the values from the previous Belle
measurement [8] while those for the resolution function are
determined from an MC simulation. The raw yields and
efficiencies determined from signal MC events are listed in
Tables I and II, respectively.

The following systematic uncertainties are considered
for each cos @, and cos @, bin. The resultant systematic
uncertainties in the yield of each bin are presented in
parentheses. The uncertainty due to the resolution function
is checked by changing the width of the core Gaussian
component by 10% to consider a possible data-MC differ-
ence in resolution (0.2% at most). Also, each resolution
parameter is varied within its statistical uncertainty deter-
mined from signal MC events (0.1% at most). The
statistical uncertainty in the efficiency is negligible. The
uncertainty due to the background model is determined by

TABLE II. Summary of the reconstruction efficiency of the
decay chain Z.(2970)" — E.(2645)°z" — Efz~z* for each
cos @), and cos 6, bin. Quoted uncertainties are statistical.

cos 0, Efficiency [%] cos @, Efficiency [%]
(-1.0,-0.8) 1.616+0.001 (-1.0,-0.8) 2.537 +0.001
(-0.8,-0.6) 2.275+0.001 (-0.8,-0.6) 2.529 +0.001
(-0.6,-0.4) 2.522+0.001 (-0.6,—-0.4) 2.486+ 0.001
(-0.4,-0.2) 2.636+0.001 (-0.4,-0.2) 2.467+0.001
(=0.2,0.0) 2.679 £ 0.001 (=0.2,0.0) 2.451 £ 0.001
(0.0,0.2) 2.694 £ 0.001 (0.0,0.2) 2.446 £ 0.001
(0.2,0.4) 2.660 + 0.001 (0.2,0.4) 2.439 + 0.001
(0.4,0.6) 2.613 £0.001 (0.4,0.6) 2.436 £ 0.001
(0.6,0.8) 2.546 £ 0.001 (0.6,0.8) 2.441 £ 0.001
(0.8,1.0) 2.447 £ 0.001 (0.8,1.0) 2.456 £+ 0.001
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FIG. 3. (a) Yields of the 5,(2970)" — E,(2645)°z* decay as a

function of cos @), after the sideband subtraction and efficiency
correction. Points with error bars are data that include the
quadrature sum of statistical and systematic uncertainties. The
fit results with W, (solid black curve), W3, (dashed red curve),
and W5, (dotted blue curve) are overlaid. (b) Yields of the same
decay as a function of the angle ¢, whose definition is given in
the text. The error bars are statistical only. The result of a fit to a
constant function is shown by the black solid line. The resulting
% /n.d.f. value is 9.02/9.

redoing the fit with a second-order polynomial or constant
function instead of the first-order polynomial (0.7%—47%).
The uncertainty coming from the mass and width of
E.(2970)" is determined by changing their values within
uncertainties [8] (6.7%—12%). All of these uncertainties are
added in quadrature (6.7%—47%).

Yields of the decay E.(2970)" — E.(2645)°z* after the
E.(2645)° sideband subtraction and efficiency correction
are shown as a function of cos 8, in Fig. 3(a). Although the
quantum numbers of the E.(2645) have not yet been
measured, in the quark model the natural assumption for
its spin-parity is J = 3/2*. Then the expected decay-
angle distributions W, for spin hypotheses of J =1/2,
3/2, and 5/2 for E.(2970)" are as follows [21]:
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1
W1/2=ﬂ11=§, (1)

3 1
WsHn = 1+ T =cos?9, ——
3/2 P33{ + (2 cosb), 2) }
3
+p11 14T —ECOS eh +§ s (2)

and

3
W5/2 = 3—2 [p555{(—cos46’h - 2C0526h + 3)

+ T(=5co0s*0), + 6¢c0s20, — 1)}

+ p33{(15cos*@, — 10cos?9;, + 11)

+ T(75¢c0s*0);, — 66¢c0s20, +7)}

+ p112{(=5c0s*@;,, + 10cos?0);, + 3)

+ T(=25c0s*0), + 18cos?0, — 1)}]. (3)

T(p3.0)-|T (pl0))?
Here, T = {04 cirir o
element of a two-body decay with the momentum p of the
daughters in the mother’s rest frame and the helicities of
daughters being A, for Z.(2645)° and 4, for z". The
parameter p;; is the diagonal element of the spin-density
matrix of £,(2970)" with helicity i/2. The sum of p;; for
positive odd integer i is normalized to 1/2.

The fit results are summarized in Table III. Though the
best fit is obtained for the spin 1/2 hypothesis, the
exclusion level of the spin 3/2 (5/2) hypothesis is as
small as 0.8 (0.5) standard deviations. Indeed, a flat
distribution could be reproduced by any spin in case the
initial state is unpolarized. Therefore, the result is incon-
clusive. This fact is also supported by the ¢, dependence
shown in Fig. 3(b), which is consistent with being flat. Here
¢, is the angle between the et e™ — E.(2970)* X reaction
plane and the plane defined by the pion momentum and the
E.(2970)" boost direction in the E.(2970)" rest frame.

In order to draw a more decisive conclusion, we further
analyze the angular correlations of the two pions in the

and 7 (p, Ay, 4,) is the matrix

TABLE III. Result of the angular analysis of the decay
E.(2970)" —» E.(2645)°z*. Here, n.d.f. denotes the number
of degrees of freedom.

5000

4000

3000

Events /0.2

2000

1000

FIG. 4. The yields of 2.(2970)" — E.(2645)°z" —» Ef 2=+
decay as a function of cosé.. The fit results with spin-parity
hypotheses 4+ (solid black curve), 3~ (dashed red line), and 5"
(dotted blue curve) are also presented.

E.(2970)" = E.(2645)°zt — Efz~zt decay. In this
case, the expected angular distribution is [21]

3 : 1
W(0) =3 |pisio. + i, (34000, ) |

where p7; is the diagonal element of the spin-density matrix
of E,(2645)° with the normalization condition p}, + p}; =
1/2. Figure 4 shows the yields of =.(2970)" as a function
of cos@, after the Z.(2645)° sideband subtraction and
efficiency correction. A fit to Eq. (4) gives a good
7*/ndf.=56/8 with pi, =0.46+0.04 and pi; =
0.5 — pj; = 0.04 £0.04, which indicates that the popula-
tion of helicity 3/2 state is consistent with zero. This result
is most consistent with the spin 1/2 hypothesis of
E.(2970)*, as only the helicity 1/2 state of E.(2645)°
can survive due to helicity conservation. Indeed, assuming
that the lowest partial wave dominates for the
E.(2970)" - E.(2645)°z" decay, the expected angular
correlations can be calculated as summarized in Table IV
[22]. Fitting the data to the cases J© = 1/2%, 3/27, and

TABLE 1IV. Expected angular distribution for spin-parity hy-
potheses of E.(2970)" with an assumption that the lowest partial
wave dominates.

Spin hypothesis 1/2 3/2 5/2
22/nd.f. 9.3/9 7.1)7 7.5/6
Probability 41% 36% 28%

T -05+1.1 0.7+ 1.6
o1 0.5 0.13+026  0.08+0.27
33 - 0374026  0.12+0.09
Dss . - 030 + 0.28

JP Partial wave w(0,)
1/2* P 1 + 3cos?0,
1/2- D 1 + 3cos?6,
3/2°F P 1 + 65sin? 0,
3/2- S I

5/2*% P 1+ (1/3) cos? 0.
5/2" D 1+ (15/4)sin0,
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TABLE V. Results of the angular analysis of the decay
E.(2970)" — E.(2645)z" with an assumption that the lowest
partial wave dominates.

JP 1/2% 3/2° 5/2+
y*/n.df. 6.4/9 32.2/9 22.3/9
Exclusion level (s.d.) e 5.5 4.8

5/2%, we obtain the fit results as summarized in Table V. In
order to obtain the exclusion level of 3/2~ and 5/2%, we
perform pseudoexperiments for each of the two scenarios.
Angular distributions with the same uncertainties as the real
data are generated with the 3/2~ (5/2") assumption and
fitted with the 1/2* and 3/2~ (5/2%) distribution. From
this test we find the probability to have a y? difference
between the 1/2* and 3/2 (5/2%) hypotheses greater than
25.8 (15.9) which is the value for the real data. The 1/2*
scenario is thus preferred over 3/2~ (5/2%) by 5.5 (4.8)
standard deviations. The exclusion level is even higher for
the other hypotheses for which the expected angular
distributions are upwardly convex. We note that this result
also excludes the E.(2645) spin of 1/2 in which the
distribution should be flat and that the present discussion
still holds even if there are two resonances, E.(2970) and
E.(2965) [16].

The ratio of branching fractions R = B[E.(2970)" —
E.(2645)°27]/B[E.(2970)" — EXz*] is sensitive to the
parity of £.(2970)" [20,23]. In principle, the R value can
be determined as

N* N’
R:5*><6+/zi5;xs?’ ©)

where N* (N') is the yield of E.(2970)" in the
E.(2645)72" (EPz") decay mode. & (&) is the
reconstruction efficiency of E.(2970)" for the decay
E.(2645)°zF (BPzt with i = E~zt or Q"K™ mode of
29%) determined from signal MC events, as shown in
Table VI. Bt (B?) is the measured branching fraction of
Ef - E-atat (B — ith subdecay mode) [24-26]. In this
case, however, the uncertainty will be dominated by the
branching fractions of the ground-state Z. baryons. Such
uncertainties are avoided by calculating the ratio in a

TABLE VI. Summary of the reconstruction efficiencies of
Z.(2970)" with all phase space integrated for the Z.(2645)°
and E9 signal regions. Quoted uncertainties are statistical.

Decay channel Efficiency [%]

E.(2970)" —» 2.(2645)7 " 2.460 =+ 0.002
E.(2970)" - E 0z
with 20 — 2~z 2.136 £ 0.002
with 20 — Q- K+ 2.263 + 0.002

different way, with inclusive measurements of Z7 and
2% and an assumption of isospin symmetry in their
inclusive cross sections. We note that this assumption is
confirmed within 15% in the =\ case [27].

The branching fraction of Ej 9in a certain subdecay
mode is given as

NE),
—Jr(o) ’ (6)

i

B —
l Lxoz xe€

where N(Z,%(0), and e:r(()) are the yield and reconstruction

efficiency, respectively, of the =0 ground states for the
ith subdecay mode, L is the integrated luminosity, and oz
is the inclusive production cross section of E. which is
assumed to be the same for Z0 and Z. By replacing the

ground-state E. branching fractions in Eq. (5) with the
values in Eq. (6), R can be rewritten as

R N* / N _ 7)

EF x N(ﬁu) Zlgi X N(;c)i

Here, N* and N’ are obtained by fitting the =.(2645)%z+
and Ez invariant-mass distributions (Figs. 1 and 2) to be
577 +£34 and 201 £33 events, respectively. For the
E.(2645)%z* channel, a sideband subtraction is performed.
Similarly, N (Ej/ 0) are obtained by fitting the invariant-
mass distributions of Z. candidates. Ground-state E. baryons
are reconstructed in a similar way as E.(2970)*, the only
difference being that x), is calculated with the mass of =, and
required to be greater than 0.6. The fit is performed with a
double-Gaussian function as signal and a first-order poly-
nomial as background. The yields and reconstruction effi-
ciencies of the E. ground states are listed in Table VII.
The following systematic uncertainties are considered
for the R measurement. The uncertainty coming from the
resolution function is checked by changing the width of the
core Gaussian component by 10% to consider possible
data-MC difference in resolution ('33%). Also, each
parameter is varied within its statistical uncertainty deter-
mined from signal MC events (0.4%). The statistical
uncertainty in the efficiency is negligible. The mass and
width of E,(2970)" are changed within their uncertainties
[8] (1{:1%). The uncertainty due to the background shape
is determined by changing it from a first-order polynomial

TABLE VII. Summary of the yields and reconstruction effi-
ciencies of E. ground states. Quoted uncertainties are statistical.

Decay channel Yield [events] Efficiency [%]

Ef > Erxtnt 49627 + 268 10.52 +£0.01
B) - 3t 36220 £ 231 13.22 +£0.01
2 - QK+ 5307 £78 11.32 £ 0.01
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to a constant function and second-order polynomial
(*889%). The uncertainty due to the tracking efficiency
is 0.35% per track. The systematic uncertainty due to the
pion-identification efficiency (y reconstruction efficiency)
is 1.2% (3.2%). All of these uncertainties are added in
quadrature (33%).

The R value is obtained as 1.67 & 0.29(stat) ") x
(syst) + 0.25(IS), where the last uncertainty is due to
possible isospin-symmetry-breaking effects (15%). As a
cross-check, we have also calculated the same quantity by
using the measured branching fractions of Ej/ O as
R =2.05 + 0.36(stat) T0:8 (syst) ") 43 (BF), where the last
uncertainty is due to uncertainties in the branching fractions
of the ground-state = baryons. The two values are consistent
within uncertainties. We note that the mass spectra of
E.(2970)7 in this study can be well described by a single
resonance with the mass and width from the previous Belle
measurement [8].

Heavy-quark spin symmetry (HQSS) predicts R = 1.06
(0.26) for a 1/27 state with the spin of the light-quark
degrees of freedom s; =0 (1), as calculated using
Eq. (3.17) of Ref. [23]. For the case of J© =1/27, we
expect R < 1 because the decay to Z0z+ is in S wave
while that to E.(2645)°z7" is in D wave. Therefore, our
result favors a positive-parity assignment with s, = 0. We
note that HQSS predictions could be larger than the quoted
value by a factor of ~2 with higher-order terms in (1/m,.)
[28], so the result is consistent with the HQSS prediction
for J¥(s;) = 1/27(0).

The obtained spin-parity assignment is consistent with
most quark-model-based calculations [1,2,9,11-13].
However, some of them [1,12] predict J* = 1/2% with
s; = 1 which is inconsistent with our result. We note that
JP =1/2% are the same as those of the Roper resonance
[N(1440)] [29], A(1600), and Z(1660); and interestingly,
their excitation energy levels are the same as that of
E.(2970) (~500 MeV) even though the quark masses
are different. This fact may give a hint at the structure
of the Roper resonance. Therefore, it would be interesting
to see if there are further analogous states at the same
excitation energy in systems with different flavors such as
2. A, Q. Ay, and E, baryons.

In summary, we have determined the spin and parity of
the E.(2970)" for the first time using the decay-angle
distributions in E.(2970)* — £.(2645)'z" - Efz
and the ratio of E.(2970)" branching fractions of the
two decays, Z.(2970)* — E.(2645)°z"/Z%z. The
decay-angle distributions strongly favor J = 1/2 assign-
ment over 3/2 or 5/2 under an assumption that the lowest

partial wave dominates in the decay, and the ratio R =
1.67 4 0.29(stat) 7003 (syst) & 0.25(1S)  favors JP(s;) =
1/27(0) over the other possibilities.
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