SentiLog: Anomaly Detecting on Parallel File Systems
via Log-based Sentiment Analysis

Di Zhang, Dong Dai

University of North Carolina at Charlotte
{dzhang16,ddai}@uncc.edu

ABSTRACT

As one core component of high-performance computing
(HPC) platforms, parallel file systems (PFSes) grow quickly
in scale and complexity, which makes them vulnerable to
various failures or anomalies. Identifying PFS anomalies in
runtime is thus critically helpful for HPC users and admin-
istrators. Analyzing runtime logs to detect the anomalies
of large-scale systems has been proven effective in many
recent studies. However, applying existing log analysis to
PFSes faces significant challenges due to the large volume
and irregularity of PFS logs. This study proposes SentiLog,
a new approach to analyzing PFS logs for detecting anom-
alies. Unlike existing solutions, SentiLog works by training
a general sentimental, natural language model based on the
logging-relevant source code collected from a set of PFSes.
In this way, SentiLog learns the implicit semantic informa-
tion embedded in PFS by developers. Our preliminary results
show that SentiLog can accurately predict anomalies and
perform better than state-of-the-art log analysis solutions
on two representative PFSes (i.e., Lustre and BeeGFS). To
the best of our knowledge, this is the first work demonstrat-
ing that sentiment analysis could be a promising method to
analyze complex and irregular system logs.

CCS CONCEPTS

« Software and its engineering — Software maintenance
tools; « Computing methodologies — Natural language
processing; « Computer systems organization — Depend-
able and fault-tolerant systems and networks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

HotStorage °21, July 27-28, 2021, Virtual, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8550-3/21/07...$15.00
https://doi.org/10.1145/3465332.3470873

Runzhou Han, Mai Zheng
Iowa State University
{hanrz,mai}@iastate.edu

KEYWORDS

Anomaly Detection, Parallel File System, Sentiment Analysis

ACM Reference Format:

Di Zhang, Dong Dai and Runzhou Han, Mai Zheng. 2021. SentiLog:
Anomaly Detecting on Parallel File Systems via Log-based Sen-
timent Analysis. In 13th ACM Workshop on Hot Topics in Storage
and File Systems (HotStorage °21), July 27-28, 2021, Virtual, USA.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3465332.
3470873

1 INTRODUCTION

Analyzing runtime logs to automatically detect the anom-
alies in large-scale systems has been proven effective. An
extensive number of methods have been proposed [15, 18, 19,
22,23, 27, 35-38, 40, 44, 49-51], which can be roughly classi-
fied into three categories: (a) rule-based methods that rely on
rules summarized by experts to detect the anomalies, such
as LogLens [22] and PerfAugur [44]; (b) supervised learning
methods that train models based on experts labeled abnormal
or normal logs, such as DeepLog [23] and LogAnomaly [38];
and (c) unsupervised learning methods that rely on checking
the system invariant or mining patterns of events sequences
to detect the anomalies, such as PCA [49, 50] and IM [37].

Parallel file systems (PFSes), as a critical part of high-
performance computing (HPC) platforms, are also subject to
various bugs, failures, and anomalies [13, 19, 26]. Applying
the previously mentioned methods to analyze their logs to
identify runtime anomalies would be greatly helpful to HPC
operators and administrators. However, PFS logs have their
own unique features which challenge the existing solutions.

First, the volume of PFS logs is typically large. For exam-
ple, Lustre file system generates logs on all MDS and OSS
servers in milliseconds [14]. Such a huge volume makes it ex-
pensive (if not impossible) to label every log entry as normal
or abnormal. Consequently, lacking of enough accurately la-
beled data may severely limit the effectiveness of rule-based
methods or supervised learning methods.

Second, PFS logs are often generated via in-house log-
ging mechanisms instead of standard logging libraries (e.g.,
Log4] [3] or SLF4] [5]), which makes them relatively irregu-
lar and arbitrary. In representative PFSes such as Lustre and
BeeGFS, most log entries do not share any common identi-
fier (ID) to denote their relevance. This is in sharp contrast

https://doi.org/10.1145/3465332.3470873
https://doi.org/10.1145/3465332.3470873
https://doi.org/10.1145/3465332.3470873

HotStorage ’21, July 27-28, 2021, Virtual, USA

to other systems where global IDs often exist to denote a
sequence of relevant operations. For instance, Hadoop HDFS
has block_id [1], Apache HTTP server has cache_key [2], and
Hadoop MapReduce has task_id [21]. Missing such global IDs
makes it difficult to identify the matching events or to build
sequences of operations. This limits the use of unsupervised
learning methods which heavily rely on such information.

In this study, we propose SentiLog, a new log analysis
method for detecting anomalies in PFSes. SentiLog consists
of three key ideas. First, due to the lack of labeled runtime
logs in PFSes, SentiLog directly analyzes the source code
statements that print these logs (named as logging statements
below). The logging statements are naturally labeled by their
logging levels based on the corresponding logging macros
used (e.g., CERROR or CDEBUG in Lustre). The logging state-
ments are also widely seen in modern systems, providing a
sufficient volume of training data [52]. These labeled logging
statements enables us to conduct supervised learning.

Second, SentiLog focuses on the natural language aspect
of the logging statements. The logging statements are writ-
ten by the developers and read by other developers or system
operators. Hence, they are close to human languages and
likely to be modeled well using natural language processing
(NLP) methods [17, 24]. In fact, SentiLog focuses on the sen-
timental context of log statements since developers describe
abnormal and normal system behaviors using different tones.
They typically use negative tones such as ‘error’ or ‘excep-
tion’ for anomalies, and use neutral or positive tones such as
‘connection successes’ for normal behaviors. Such sentimen-
tal difference is general across different systems and can be
captured via sentiment analysis.

Third, SentiLog trains the sentiment model using multi-
ple PFSes’ source code to avoid being impacted by a single
PFS. Developers might not always be rigorous about logging
statements. For instance, as we have observed, they may ac-
cidentally use Log_ERR in source code to log an event which
in fact is not related to any anomaly. Training the model
based on multiple PFSes (i.e., software of the similar type)
allows SentiLog to capture the developers’ consensus in the
community to avoid bias. Doing so also allows SentiLog to
train a generic model, which may be applied to various PFSes
including new or closed-source ones, as confirmed in our
evaluation results.

To summarize, we propose SentiLog, a new log-based
anomaly detection approach targeting HPC parallel file sys-
tems. SentiLog includes three main contributions. First, to
the best of our knowledge, this is the first work to apply sen-
timent analysis on PFSes logs to detect anomalies effectively.
Second, SentiLog uses the source code logging statements
instead of runtime logs to train the model, which avoids
human efforts in labeling logs. Third, SentiLog is designed
as a complete workflow integrating with an automatic fault

Di Zhang, Dong Dai and Runzhou Han, Mai Zheng

injection tool to conduct effective validation. We have imple-
mented a prototype of SentiLog, examined its performance
on two widely used parallel file systems (i.e., Lustre [4] and
BeeGFS [6]), and compared it with state-of-the-art log anal-
ysis solutions. The preliminary results show that on both
systems, SentiLog is able to accurately predict the anomalies:
it achieves over 99% accuracy on Lustre and 92% accuracy on
BeeGFS, performing better than existing solutions. These re-
sults show that SentiLog is promising for analyzing complex
and irregular system logs.

2 BACKGROUND AND MOTIVATIONS

2.1 Parallel File System Logs

PFSes typically deploy their own logging mechanisms to gen-
erate logs. For instance, Lustre uses a set of logging macros
(e.g., CDEBUG, CERROR) to log events in different severity lev-
els [4], while BeeGFS implements its own logging classes
(e.g., log) for the similar purpose [6]. Lack of using stan-
dard logging libraries (e.g., Log4]J [3] or SLF4J [5]) makes
PFSes logs highly irregular and diverse. To show this, we ran
Drain [28], a tool to parse possible patterns of system logs,
onto PFS (i.e., Lustre) and cloud file system (i.e., HDFS) logs.
Drain identified 174 patterns from Lustre and 30 patterns
from HDSF logs. Such diverse logs from PFSes challenge the
existing log analysis solutions.

Lustre

00000100 :00080000:0.0:1607448618.327577:0:2290:0: (recover.c:58:ptlrpc_initiate_recovery
() lustre-0ST0000_UUID: starting recovery

00000100 : 00080000:0.0:1607448618.327580:0:2290:0: (import.c:681:ptlrpc_connect_import())
ffffal39cab87800 lustre-05TO00O_UUID: changing import state from DISCONN to CONNECTING

00000100 : 00080000:0.0:1607448618.327589:0:2290:0: (import.c:524:import_select_connection
() lustre-0ST0000-0sc-MDTOOOO: connect to NID 10.0.0.8@tcp last attempt 4296114409

00000100: 00080000:0.0:1607448618.327593:0:2290:0: (import.c:568:import_select_connection
() lustre-0ST0000-0sc-MDTOO00: tried all connections, increasing latency to 1lls

HDFS

081109 203518 143 INFO dfs.DataNode$DataXceiver: Receiving block blk_-
1608999687919862906 src: /10.250.19.102:54106 dest: /10.250.19.102:50010

081109 203518 35 INFO dfs.FSNamesystem: BLOCK* NameSystem.allocateBlock:
/mnt/hadoop/mapred/system/job_200811092030_0001/job.jar. blk_-1608999687919862906
081109 203519 143 INFO dfs.DataNode$DataXceiver: Receiving block blk_-
1608999687919862906 src: /10.250.10.6:40524 dest: /10.250.10.6:50010

081109 203519 145 INFO dfs.DataNode$PacketResponder: PacketResponder 1 for block blk_-
1608999687919862906 terminating

Figure 1: Two log snippets of Lustre and HDFS.

We further show two snippets of logs produced by two
storage systems (Lustre and HDFS) in Figure 1. In HDFS logs,
we can easily observe a unique block Id across multiple HDFS
log entries (marked as red). Such a unique ID plays a critical
role in log analysis, as it allows to connect multiple log events
into a sequence of events for pattern detection. However, in
Lustre and many other PFSes, such unique IDs do not exist.
There are some Ids as marked in gray in the figure. But they
represent the storage server ID, whose granularity is too
coarse to be useful. Missing such global Ids challenges the
existing solutions and motivate SentiLog.

SentiLog: Anomaly Detecting on Parallel File Systems via Log-based Sentiment Analysis

2.2 NLP and Sentimental Analysis

Sentiment analysis is a classic NLP (natural language pro-
cessing) method and has been widely applied in real-world
problems [17, 24], such as product reviews or twitter analy-
sis [31, 48]. Sentiment analysis can be formulated as a clas-
sification problem on datasets with inputs as the texts and
outputs as one of three labels: positive, neutral, or negative.
Supervised learning methods, such as Naive Bayes [33], Maxi-
mum Entropy [12] and Support Vector Machines (SVM) [41],
are often used to build the classification model. Recently,
deep learning-based methods were proven to be more ac-
curate, including deep recurrent neural network (RNN)[32]
and deep convolutional neural network[43]. Although senti-
ment analysis itself has been widely used in many real world
problems, to the best of our knowledge, SentiLog is the first
to apply it to PFSes log analysis. To motivate sentimental
analysis on PFS logs, we show a log snippet of BeeGFS below.
Intuitively, there are strong sentiment words (highlighted in
red) which could be helpful for identifying the anomaly.

Dec14 22:54:24 Main [App] » Unable to create subdir: buddymir/inodes/C/60

Type: beegfs-meta; Error: Path does not exist

Dec16 15:39:34 Main [MgmtdTargetStateStore.cpp:446] » Could not read states. node-

SentiLog uses deep learning method, particularly, the Long
short-term memory network (LSTM) [30] to build the model.
To improve the accuracy, we actually used the bidirectional
LSTM (BiLSTM)[25, 45] which incorporates a hidden layer
to passe sequence information from backward to generate a
better hidden representation of the sequence. More details
about BiLSTM-based sentimental analysis can be seen at [11].

3 SENTILOG DESIGN

Figure 2 shows the workflow of SentiLog in three stages:
logging statements collecting, log pre-processing, and senti-
mental model training. The trained model can later be applied
to PFSes runtime logs to identify anomaly.

3.1 Logging Statements Collecting

SentiLog uses logging statements from multiple open-source
PFSes to train the sentimental model. Hence our first step is
to collect the needed statements from source code. SentiLog
needs two inputs from users to do this work. The first one is
a list of open-source PFSes and their git URLs. With these
URLs, SentiLog pulls their latest source code periodically.
The second input is a list of keywords for each PFS. We
follow the official instructions on the logging mechanism of
each PFS to identify the keywords first. If there is no such
instruction, we manually find them from the source code
(i-e., the logging macros). SentiLog uses these keywords to
parse necessary logging statements out of the source code.
Since different PFSes use different logging mechanisms, each

HotStorage ’21, July 27-28, 2021, Virtual, USA

PFS will have its own set of keywords. All the log statements
parsed based on the same keyword should be assigned to
one sentimental state (negative or neutral) accordingly. The
sentimental state is determined by the logging level that
the keyword indicates. For instance, the CERROR keyword in
Lustre will be assigned as negative; while CDEBUG keyword
will be assigned as neutral. Table 1 shows the keywords for
each PFS. The outputs of this stage are the raw training
datasets, each of which contains a logging statement and its
label. These raw datasets will go through data pre-processing
stage before being feed to the model trainer.

3.2 Log Pre-Processing

The raw logging statements may contain texts that are use-
less in sentiment analysis. For example, a logging statement
of Lustre may look like this: “Error %d invoking LNET
debug log upcall %s %s;”. The format strings (‘%s’)
are clearly not useful for the sentimental analysis as they
will be later substituted by the actual strings. In NLP, text
pre-processing is a necessary and important step to obtain
consistent training results. In SentiLog, we conduct similar
pre-processing on the log statements[16], which includes
the following steps: 1) lowercasing all the texts; 2) stemming
words to their root form (e.g., invoking — invoke); 3) remov-
ing the stopwords (e.g., 'this’,that’,and’;a’]we’); 4) normaliz-
ing a text into a standard form; 5) removing noises such as
the format strings (e.g., %) and punctuation. Figure 2 shows
the logging statements before and after the pre-processing.
The goal is to make the logging statements closer to natural
language, so that the sentimental analysis can be Girmore
accurate and stable.

3.3 Sentimental Model Trainer

The pre-processed logging statements will be fed to the sen-
timental model trainer to train the model. As mentioned
earlier, SentiLog used a bidirectional LSTM (BiLSTM) as the
deep neural network to conduct sentimental analysis. The
BiLSTM network contains two layers, 100 neurons in each
layer, and in total has 789K parameters. The model is trained
in batch size 64 and using Adam as optimizer with learn-
ing rate 0.01. Note that, since BILSTM network takes word
vectors as the inputs, we will need to tokenize each single
word of the logging statements. We did this based on the
pre-trained Glove Embedding [42]. The output of BiLSTM
network is simply a 2 dimension vector indicating negative
or neutral.

3.4 Anomaly Detection

The trained sentimental model can later be applied to the
runtime logs generated by other PFSes for anomaly detec-
tion. The procedure is straightforward. The runtime logs

HotStorage ’21, July 27-28, 2021, Virtual, USA

)|

CDEBUG(
CDEBUG(

CERROR(

".before Portals cleanup: kmem %Ud..
“..Invoked LNET debug log upcall %s ..

"..invoking LNET debug log upcall %s ..
id %x sleeping for %dms\n'.

(DAOS
D_DEBUG(DB_TRACE, "drain btree for %s, ..,
Collect nnERUCINR TN uieiri .
(BeeGFS)
Bee6FS Tog(Log_DEBUG, "Trying to lock
Lustre Yoallaa DBy °
Lustre

Pre-Process BeeGFS

Di Zhang, Dong Dai and Runzhou Han, Mai Zheng

.

neural: "drain btree ..

neural: "try to Lock"
1w da £

Lustre
neural: "before portal ..
neural: "invoke lnet debug ..

negative: "error invoke lnet ..
negative: "cfs fail timeout ..

CERROR("""...

- Train {ﬁ}

Anomaly Detection

PFS Cluster%%

Test (Sentiment Model
Trainer

Figure 2: The overall workflow of SentiLog.

generated by a particular PFS will be collected in runtime; go
through the data pre-processing stage described earlier; and

then be tokenized as inputs of the BiLSTM neural network.

The network will make a decision on whether the input log
entry indicates indicates an anomaly or not depends on its
sentimental prediction.

4 EVALUATIONS
4.1 Training Data Set

We selected a set of widely used open source PFSes to train
SentiLog. These PFSes, as listed in Table 1, cover the majority
HPC clusters in Top500 list [39]. We used the top four to train
SentiLog and bottom two (marked in gray) to test the trained
models (details about the testing data are in the next section).
We briefly list the logging mechanisms used by each PFS and
the total number of training samples collected from each PFS.
Note that, Debug logs are labeled as neural and Error logs
as negative to train SentiLog. Based on this data set, we train
the SentiLog model using a computer with 4-Core 2.2 GHz
Intel i7 CPU and 16 GB DRAM in 6 hours.

Table 1: Training Data Set

tool called PFault [13] to inject faults to PFSes and record the
generated logs. To label these logs, we simply consider logs
generated before the faults as normal. For logs generated
after fault injections, the domain experts will label each log
entry as normal or abnormal depending on whether it is
relevant with the injected faults. Specifically, our labelling
criteria leverage standard Linux error numbers (or equivalent
customized error numbers), since both Lustre and BeeGFS
utilize them extensively in logging. Logs with a standard or
equivalent error number are considered to be abnormal. In
addition, we prune the potential noise by examining the log
descriptions further. For example, logs related to transient
network issues are exempted from abnormal logs since such
transient issues are common in pre-fault logs as well.
PFault allows us to collect PFS logs under different faults
models as shown in Table 2. They represent a wide range of
failure scenarios that may occur to a PFS cluster in practice.
Currently, PFault supports only Lustre and BeeGFS. So, our
testing data is limited to these two PFSes. Our testing data
was collected while running similar workloads on both PF-
Ses. Based on our investigation on the underlying logging
mechanism, the logging frequency of the two PFSes are dif-
ferent, which leads to different numbers of log entries. For

Log S Log Level Loe Mechani -
0g vource Debug | Error 0g lviechanism Lustre, the numbers of normal and abnormal log entries are
OrangeFs [10] 1058 1202 | gossip_debug, gossip_err... 150,473 and 7,401 respectively. For BeeGFS, the numbers are
Ceph [7] 15459 2726 dout, derr,... 119 and 39.
DAOS [9] 1549 3444 D_DEBUG, D_ERROR,...
GlusterFS [8] | 2460 | 5260 gf_msg, gf_log,.. Table 2: Fault Models for Generating Failure Logs
];‘usél;is[‘té] - - CDE?UG’ EERROR"“ Fault Model | Description
ce [6] = = OF. 208y Whole Device Failure a storage device becomes inaccessible entirely;

4.2 Testing Data Set

To test a trained SentiLog model, we need labeled runtime
logs. However, to the best of our knowledge, there is no
publicly-available labeled runtime logs for PFSes yet. In this
study, we generated a small set of them for testing pur-
pose. Specifically, we used an open-source fault injection

(a-DevFail)
Global Inconsistency
(b-Inconsist)
Network Partitioning
(c-Network)

caused by RAID controller failures, firmware bugs, etc.

local file systems on individual nodes are consistent;

but the global PFS state across nodes is inconsistent

the PFS cluster splits into more than one “partitions”
which cannot communicate with each other

To measure SentiLog, we use four metrics: Accuracy, Preci-
sion, Recall, and F-Measure. Here, accuracy is the percentage
of correct predictions (both normal and abnormal) over all

SentiLog: Anomaly Detecting on Parallel File Systems via Log-based Sentiment Analysis

predictions; precision measures how many percentages of the
reported anomalies are actually anomalies; Recall measures
how many percentage of actual anomalies are reported; F-
measure is the harmonic mean of the precision and recall,
which often indicates the quality of the model.

4.3 Preliminary Results

We conducted three sets of experiments to evaluate SentiLog.
Although the results are still preliminary, we do observe the
promising performance of SentiLog.

4.3.1 Comparing with Existing Solutions. We first compared
SentiLog with DeepLog [23], a state-of-the-art log anomaly
detection solution. DeepLog uses the sequences of normal
log entries as input to train a LSTM model. It learns the
sequence patterns and uses them to detect anomalies. We
can not naively apply DeepLog to PFSes as PFSes logs do not
present global Ids (such as block_id in HDFS) to determine log
sequence. Similar to [29] and [20], we used a fixed window
to generate the sequence of log entries in order to make it
work on PFSes logs. Specifically, we sort logs based on their
timestamp, choose a fixed window of 12 continuous logs to
form a sequence, and move forward by one window each
time to form the next sequence. All hyper-parameters are
selected to be the same as DeepLog. We used the normal
logs collected from Lustre and BeeGFS to train the model
and applied it to the testing data collected in Section 4.2 to
compare with SentiLog.

I sentilog W Deeplog

1
099 099 087 099 10

-
=

=
e
=
Y

Accuracy
g a
Accuracy
R

02

=
i~

0.0

Accuracy Precision Recall F-measure

BeeGFS

Accuracy Precision Recall F-measure

Lustre

Figure 3: SentiLog vs. DeepLog.

Figure 3 reports the results. Here, we can observe that for
all these metrics (accuracy, precision, recall and F-measure),
SentiLog obtains better performance than DeepLog. As dis-
cussed in Section 2.1, lack of sequence info in PFSes logs
makes DeepLog not suitable. Specifically, DeepLog detected
51,420 anomalies while only 7,390 of them are real anom-
alies, out of the total 7,401 anomalies. These numbers ex-
plain DeepLog’s high recall but low precision performance,
which simply indicates there are too many false positives.

HotStorage ’21, July 27-28, 2021, Virtual, USA

The results do show that SentiLog adapts to the irregular
and diverse PFSes logs better, with an accuracy close to 99%
on Lustre and 92% on BeeGFS.

It is worth noting that, these SentiLog models were not
trained using Lustre nor BeeGFS source code, but still per-
formed extremely well on them. This confirms the basis of
SentiLog that sentimental context is general across similar
systems, and SentiLog model is generic for PFSes.

4.3.2 Generality Evaluation. Previous comparison shows
the generality of SentiLog. This experiment further evaluates
where does the generality come from. SentiLog uses a set
of different PFSes to train its model instead of using only
the target PFS. This strategy leverages our assumptions that
sentimental context is general and developers in the same
community share the similar context during writing logs.
To show this plays an important role in SentiLog, for each
target PFS (Lustre or BeeGFS), we further trained SentiLog
using only the target PFS (named as SentiLog-Self). We then
compared the performance of SentiLog and SentiLog-Self
models on the testing data. The results are shown in Figure 4.

I sentilog

088 LES g7 099 03

[sentiLog-Self

Accuracy
Accuracy

Accuracy Precision Recall F-measure

Accuracy Precision Recall F-measure

Lustre BeeGFS

Figure 4: SentiLog vs. SentiLog-Self.

The results show SentiLog performs significantly better
than SentiLog-Self on both Lustre and BeeGFS (F-measures of
0.99 vs 0.26 on Lustre and 0.85 vs 0.55 on BeeGFS). Although
SentiLog-Self has slightly higher recalls on Lustre, it is at
cost of low precision, which means more false alarms.

4.3.3 Comparing with Direct-Lookup. In this work, we con-
duct sentimental analysis on the logging-relevant source
code. In fact, with the source code in hand, one might argue
that there is a more straightforward way to determine the
anomalies: for each runtime log, we may simply look up
its corresponding logging statement in the source code and
use its logging level to decide whether it is anomaly or not.
We call this method Direct-Lookup. For comparison, we also
implemented the Direct-Lookup method and compared it
with SentiLog on Lustre and BeeGFS. As shown in Figure 5,
SentiLog performs similar to Direct-Lookup on Lustre, but
much better on BeeGFS (92% accuracy vs. 34%). We show a

HotStorage ’21, July 27-28, 2021, Virtual, USA

B sentilog

009 003 Qo9 0og 0o
097 005 10
001

Direct-Lookup

1)

005 005

©
&

08

©
&
)
&

Accuracy
Accuracy

]
¥}
=
¥}

00 00
Accuracy Precision Recall F-measure

Lustre

Accuracy Precision Recall F-measure

BeeGFS

Figure 5: Performance of SentiLog vs. Direct-Lookup.

log snippet of BeeGFS below to explain why Direct-Lookup
works poorly on BeeGFS:

Log_CRITICAL:Dec14 23:06:03 Main [App] » BeeGFS Helper Daemon Version: 7.2
Log_WARNING:Dec15 16:12:27 Main [App] » LocalNode: beegfs-mgmtd osboxes
[ID:1]

Log_WARNING:Dec15 15:58:37 Worker1 [Node registration] » New node: beegfs-
client 435-5FD9237D-osboxes [ID: 2]; Source: 10.0.0.121:59206

We can see that the three log entries above are simply re-
porting variable values, but they are labeled as “Warning’
or ‘Critical’ instead of normal by the developers. Previous
study [34] actually suggested that such variable printing
logs were reported as normal level in 95% of the time in
multiple open-source software. BeeGFS seems to use inap-
propriate logging levels for these log entries, which makes
Direct-Lookup ineffective.

In other words, the major drawback of Direct-Lookup is
that it depends on a single PFS and is thus more sensitive to
how developers write the logging statements. For example,
developers may use error-level logs to record a network
disconnection event, which actually does not indicate an
anomaly because a following re-connection will resolve it.
SentiLog, on the other hand, can tolerate such inexact logs
from certain developers by training on a mix of multiple
PFSes.

5 RELATED WORK

Using log analysis to detect system failures and anomalies
has been extensively studied recently. Generally, they can
be classified into following three categories.

Rule-based methods [18, 22, 27, 40, 44, 51] leverage expert-
defined rules to assign unmatched log entries as anomalies.
For example, LogLens [22] predefined a series of patterns
of normal logs, and considered logs that do not match such
patterns as anomalies. Rule-based methods rely on expert
knowledge and regularity in the logs, both of which are not
available in PFSes. SentiLog trains its model using PFSes
source code, is applicable to PFSes logs.

Supervised learning methods rely on labeled logs to train
the classification model. They can be further classified based

Di Zhang, Dong Dai and Runzhou Han, Mai Zheng

on their learning algorithms. Traditionally, decision tree and
SVM were used to train the classifier [15, 35]. Lately, deep
learning-based solutions emerged. They mostly use LSTM or
RNN networks such as DeepLog [23] and LogAnomaly [38].
The lack of enough labeled logs in PFSes basically rules out
these methods. This also motivates SentiLog to use source
code to train the model.

Unsupervised learning methods [36, 37, 49, 50] do not need
labeled data. But they heavily rely on certain invariant or
sequence across multiple log entries. For example, Invariant
Mining [37] tracks invariant across multiple log events to
detect system behaviors (e.g., the counts of open-file should
match the counts of close-file). PFSes logs are highly irregular,
typically do not present such sequences or invariant. Hence,
existing solutions can not be applied. SentiLog focuses on
single log entry and builds sentimental model to analyze it.

Some recent studies [46, 47] also apply sentiment analy-
sis in log-based anomaly detection. However, they perform
both training and testing directly on the runtime logs which
needs extensive efforts to label the logs. SentiLog avoids the
limitation by training the model directly using the source
code.

6 CONCLUSION AND FUTURE WORK

This study presents SentiLog, a new log-based anomaly de-
tection approach for parallel file systems. SentiLog works
by training a generic sentimental model using the logging-
relevant source code of multiple PFSes. Our preliminary re-
sults show that it works on two representative PFSes where
existing solutions cannot be applied. This work suggests
many promising directions for further improvements. For
example, we plan to a) compare SentiLog with more compli-
cated baseline, such as combining rule-based and supervised
learning methods; b) investigate the potential impact of PFS
versions on the results; c) explore the possibility to consider
more features besides the log statement description; d) con-
duct more experiments to validate and quantify the generic
sentiment across different software; e) extend SentiLog to
other systems with complex and irregular logs. We hope
to develop SentiLog into a fully-fledged framework to help
improve large-scale storage systems in general.

ACKNOWLEDGMENT

We thank the anonymous reviewers and Youyou Lu (our shep-
herd) for their insightful feedback. This work was supported
in part by NSF under grants CCF-1910727, CCF-1910747,
CNS-1852815, and CCF-1853714/1717630. Any opinions, find-
ings, and conclusions expressed in this material are those of
the authors and do not necessarily reflect the view of NSF.

SentiLog: Anomaly Detecting on Parallel File Systems via Log-based Sentiment Analysis

REFERENCES

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]
[10]
(11]

(12]
(13]
(14]

[15]

(16

[}

(17

—

(18

[t

(19]

[21]

[22]

[23

[t

[24

[l

[25]

Accessed: 03/2021.
Accessed: 03/2021.
Accessed: 03/2021.
Accessed: 03/2021.

Apache HDEFS. https://hadoop.apache.org.
Apache Http Server. https://httpd.apache.org.
Log4]. https://logging.apache.org/log4j/2.x/.
Lustre. https://www.lustre.org.

Accessed: 03/2021. SLF4]. http://www.slf4j.org.

Accessed: 04/2021. BeeGFS. http://beegfs.io.

Accessed: 04/2021. CephFS. https://ceph.io/ceph-storage/file-system/.
Accessed: 04/2021. GlusterFS. https://www.gluster.org.

Accessed: 04/2021. Intel DAOS. https://daos-stack.github.io.
Accessed: 04/2021. OrangeFS. http://www.orangefs.org.

Zhang Aston, C. Lipton Zack, Li Mu, and J. Smola Alex. 2021. Dive
into Deep Learning. https://d2Lai.

Adam Berger, Stephen A Della Pietra, and Vincent J Della Pietra. 1996.
A maximum entropy approach to natural language processing. Com-
putational linguistics 22, 1 (1996), 39-71.

Jinrui Cao, Om Rameshwar Gatla, Mai Zheng, Dong Dai, Vidya
Eswarappa, Yan Mu, and Yong Chen. 2018. PFault: A General Frame-
work for Analyzing the Reliability of High-Performance Parallel File
Systems (ICS ’18). Association for Computing Machinery, New York,
NY, USA, 1-11. https://doi.org/10.1145/3205289.3205302

Jinrui Cao, Simeng Wang, Dong Dai, Mai Zheng, and Yong Chen. 2016.
A generic framework for testing parallel file systems. In 2016 1st Joint
International Workshop on Parallel Data Storage and data Intensive
Scalable Computing Systems (PDSW-DISCS). IEEE, 49-54.

Mike Chen, Alice X Zheng, Jim Lloyd, Michael I Jordan, and Eric
Brewer. 2004. Failure diagnosis using decision trees. In International
Conference on Autonomic Computing, 2004. Proceedings. IEEE, 36-43.
Tse-Hsun Chen, Stephen W Thomas, and Ahmed E Hassan. 2016. A
survey on the use of topic models when mining software repositories.
Empirical Software Engineering 21, 5 (2016), 1843-1919.

Gobinda G Chowdhury. 2003. Natural language processing. Annual
review of information science and technology 37, 1 (2003), 51-89.
Marcello Cinque, Domenico Cotroneo, and Antonio Pecchia. 2012.
Event logs for the analysis of software failures: A rule-based approach.
IEEE Transactions on Software Engineering 39, 6 (2012), 806—-821.
Anwesha Das, Frank Mueller, Paul Hargrove, Eric Roman, and Scott
Baden. 2018. Doomsday: Predicting which node will fail when on
supercomputers. In SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 108-121.
Anwesha Das, Frank Mueller, Charles Siegel, and Abhinav Vishnu.
2018. Desh: deep learning for system health prediction of lead times
to failure in hpc. In Proceedings of the 27th International Symposium on
High-Performance Parallel and Distributed Computing. 40-51.

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data
processing on large clusters. Commun. ACM 51, 1 (2008), 107-113.
Biplob Debnath, Mohiuddin Solaimani, Muhammad Ali Gulzar Gulzar,
Nipun Arora, Cristian Lumezanu, Jianwu Xu, Bo Zong, Hui Zhang,
Guofei Jiang, and Latifur Khan. 2018. Loglens: A real-time log analy-
sis system. In 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 1052-1062.

Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog:
Anomaly detection and diagnosis from system logs through deep learn-
ing. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. 1285-1298.

Ronen Feldman. 2013. Techniques and applications for sentiment
analysis. Commun. ACM 56, 4 (2013), 82-89.

Alex Graves and Jirgen Schmidhuber. 2005. Framewise phoneme
classification with bidirectional LSTM and other neural network ar-
chitectures. Neural networks 18, 5-6 (2005), 602—610.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

HotStorage ’21, July 27-28, 2021, Virtual, USA

Saurabh Gupta, Tirthak Patel, Christian Engelmann, and Devesh Ti-
wari. 2017. Failures in large scale systems: long-term measurement,
analysis, and implications. In Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis.
1-12.

Stephen E Hansen and E Todd Atkins. 1993. Automated System Moni-
toring and Notification with Swatch.. In LISA, Vol. 93. 145-152.
Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. 2017. Drain:
An online log parsing approach with fixed depth tree. In 2017 IEEE
International Conference on Web Services (ICWS). IEEE, 33-40.

Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. 2016. Experience
report: System log analysis for anomaly detection. In 2016 IEEE 27th
International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 207-218.

Sepp Hochreiter and Jurgen Schmidhuber. 1997. Long short-term
memory. Neural computation 9, 8 (1997), 1735-1780.

Clayton Hutto and Eric Gilbert. 2014. Vader: A parsimonious rule-
based model for sentiment analysis of social media text. In Proceedings
of the International AAAI Conference on Web and Social Media, Vol. 8.
Ozan Irsoy and Claire Cardie. 2014. Opinion mining with deep recur-
rent neural networks. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP). 720-728.

David D Lewis. 1998. Naive (Bayes) at forty: The independence as-
sumption in information retrieval. In European conference on machine
learning. Springer, 4-15.

Zhenhao Li, Heng Li, Tse-Hsun Peter Chen, and Weiyi Shang. 2021.
DeepLV: Suggesting Log Levels Using Ordinal Based Neural Networks.
In 2021 IEEE/ACM 43rd International Conference on Software Engineer-
ing (ICSE). IEEE, 1461-1472.

Yinglung Liang, Yanyong Zhang, Hui Xiong, and Ramendra Sahoo.
2007. Failure prediction in ibm bluegene/l event logs. In Seventh IEEE
International Conference on Data Mining (ICDM 2007). IEEE, 583-588.
Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei
Chen. 2016. Log clustering based problem identification for online
service systems. In 2016 IEEE/ACM 38th International Conference on
Software Engineering Companion (ICSE-C). IEEE, 102-111.
Jian-Guang Lou, Qiang Fu, Shengqi Yang, Ye Xu, and Jiang Li. 2010.
Mining Invariants from Console Logs for System Problem Detection..
In USENIX Annual Technical Conference. 1-14.

Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing
Liu, Yihao Chen, Ruizhi Zhang, Shimin Tao, Pei Sun, et al. 2019.
LogAnomaly: Unsupervised Detection of Sequential and Quantita-
tive Anomalies in Unstructured Logs.. In I[JCAIL Vol. 7. 4739-4745.
Hans Meuer, Erich Strohmaier, Jack Dongarra, and Horst Simon. 2001.
Top500 supercomputer sites.

Alina Oprea, Zhou Li, Ting-Fang Yen, Sang H Chin, and Sumayah
Alrwais. 2015. Detection of early-stage enterprise infection by min-
ing large-scale log data. In 2015 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks. IEEE, 45-56.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs
up? Sentiment classification using machine learning techniques. arXiv
preprint ¢s/0205070 (2002).

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014.
Glove: Global vectors for word representation. In Proceedings of the
2014 conference on empirical methods in natural language processing
(EMNLP). 1532-1543.

Soujanya Poria, Erik Cambria, and Alexander Gelbukh. 2016. As-
pect extraction for opinion mining with a deep convolutional neural
network. Knowledge-Based Systems 108 (2016), 42—49.

Sudip Roy, Arnd Christian Kénig, Igor Dvorkin, and Manish Kumar.
2015. Perfaugur: Robust diagnostics for performance anomalies in
cloud services. In 2015 IEEE 31st International Conference on Data

https://doi.org/10.1145/3205289.3205302

HotStorage ’21, July 27-28, 2021, Virtual, USA

[45

[

[46

—

(47]

(48]

[49]

Engineering. IEEE, 1167-1178.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent
neural networks. IEEE transactions on Signal Processing 45, 11 (1997),
2673-2681.

Hudan Studiawan, Ferdous Sohel, and Christian Payne. 2020. Anomaly
detection in operating system logs with deep Learning-based senti-
ment analysis. IEEE Transactions on Dependable and Secure Computing
(2020).

Hudan Studiawan, Ferdous Sohel, and Christian Payne. 2020. Senti-
ment analysis in a forensic timeline with deep learning. IEEE Access 8
(2020), 60664-60675.

Ye Wu and Fuji Ren. 2011. Learning sentimental influence in twit-
ter. In 2011 International Conference on Future Computer Sciences and
Application. IEEE, 119-122.

Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael
Jordan. 2009. Online system problem detection by mining patterns

[50]

[51]

[52]

Di Zhang, Dong Dai and Runzhou Han, Mai Zheng

of console logs. In 2009 Ninth IEEE International Conference on Data
Mining. IEEE, 588-597.

Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I
Jordan. 2009. Detecting large-scale system problems by mining console
logs. In Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles. 117-132.

Kenji Yamanishi and Yuko Maruyama. 2005. Dynamic syslog mining
for network failure monitoring. In Proceedings of the eleventh ACM
SIGKDD international conference on Knowledge discovery in data mining.
499-508.

Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang, Michael R Lyu, and
Dongmei Zhang. 2015. Learning to log: Helping developers make
informed logging decisions. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Vol. 1. IEEE, 415-425.

	Abstract
	1 Introduction
	2 Background and Motivations
	2.1 Parallel File System Logs
	2.2 NLP and Sentimental Analysis

	3 SentiLog Design
	3.1 Logging Statements Collecting
	3.2 Log Pre-Processing
	3.3 Sentimental Model Trainer
	3.4 Anomaly Detection

	4 Evaluations
	4.1 Training Data Set
	4.2 Testing Data Set
	4.3 Preliminary Results

	5 Related Work
	6 Conclusion and Future Work
	References

