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Abstract

Aptamers are small, functional nucleic acids that bind a variety of targets, often
with high specificity and affinity. Genomic aptamers constitute the ligand-binding
domains of riboswitches, whereas synthetic aptamers find applications as diagnostic
and therapeutic tools, and as ligand-binding domains of regulatory RNAs in synthetic
biology. Discovery and characterization of aptamers has been limited by a lack of high-
throughput approaches that uncover the target-binding domains and the biochemical
properties of individual sequences. With the advent of high-throughput sequencing,
large-scale analysis of in vitro selected populations of aptamers (and catalytic nucleic
acids, such as ribozymes and DNAzmes) became possible. In recent years the develop-
ment of new experimental approaches and software tools has led to significant
streamlining of the selection—pool analysis. This article provides an overview of post-
selection data analysis and describes high-throughput methods that facilitate rapid

discovery and biochemical characterization of aptamers.

Methods in Enzymology © 2019 Elsevier Inc.
ISSN 0076-6879 All rights reserved.
https://doi.org/10.1016/bs.mie.2019.02.009



2 Kyle H. Cole and Andrej Luptak

1. Introduction

Aptamers are nucleic acids that can recognize ligands ranging from
ions and small molecules, to more complex targets such as proteins and
whole cells (Wu & Kwon, 2016). Because of their versatility and relative
ease of isolation from high-diversity libraries, aptamers have found applica-
tions in diagnostics and drug development. A classic example of an FDA-
approved therapeutic aptamer is the anti-vascular endothelial growth factor
(anti-VEGF) aptamer used in the treatment of ocular vascular disease
(Ng et al., 2006). Aptamer-based therapeutics compete within the niche
currently filled by biologics such as monoclonal antibodies, but unlike
monoclonal antibodies, they do not suffer from batch-to-batch differentia-
tion (Shaughnessy, 2012). In vitro selection of nucleic-acid aptamers has
gained popularity due to these applications; however, aptamer discovery
is limited by the necessity of post-selection biochemical analysis (Jijakli
et al., 2016). High-throughput aptamer discovery methods aim to resolve
these issues through combinatorial approaches to identify ligand-targeting
sequences while simultaneously determining biochemical and structurally-
relevant information.

A traditional in vitro selection (SELEX) experiment used target molecules
conjugated to solid media to separate bound molecules from highly-diverse
pools of sequences. After successive rounds of selection, enriched pools
were collected and cloned into Escherichia coli (E. coli) plasmids. To identify
individual aptamers, the plasmids were sequenced by chain-termination
methods, such as Sanger sequencing (Griffin, Toole, & Leung, 1993;
Morris, Jensen, Julin, Weil, & Gold, 1998). This strategy proved laborious,
because a relatively high number of individual colonies had to be sequenced
to determine the distribution of selected motifs. If a specific sequence or
structural motif dominated the enriched pool, the likelihood of identifying
less-abundant motifs was low, due to the relatively low-throughput of this
sequencing approach.

As the cost of high-throughput sequencing (HTS) decreased, deep
sequencing was introduced to in vitro selection protocols, with the intent
of improving aptamer discovery and increasing data validation through
improved sequencing depth (Schutze et al., 2011). The first applications
of HT'S to in vitro selections aimed to identify new binding targets of tran-
scription factors (Jolma et al., 2010; Slattery et al., 2011; Zhao & Stormo,
2011; Zykovich, Korf, & Segal, 2009). At the same time, Zimmerman et al.
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developed a HTS method of identifying naturally-occurring RNA aptamers
encoded in E. coli genomic DNA (Zimmermann, Gesell, Chen, Lorenz, &
Schroeder, 2010), and other laboratories built methodology to select for
growth-factor-specific DNA aptamers (Cho et al., 2010) and RNA inhib-
itors for HIV reverse transcriptase (Ditzler et al., 2013). With increased
sequencing depth and computational methods, the fitness landscape of
an in vitro selection could be visualized (Pitt & Ferré-D’Amaré, 2010),
and evolutionary steps tracked between rounds of selection toward
functional RNAs (Jiménez, Xulvi-Brunet, Campbell, Turk-MacLeod, &
Chen, 2013; Neveu, Kim, & Benner, 2013). While these methods incorpo-
rated HTS for more expedient aptamer discovery or ribozyme sequence
analysis, recent high-throughput discovery methods have combined aptamer
discovery with determination of rate or equilibrium constants, as well as
probing of ligand-induced conformational changes, to streamline the
biochemical analysis necessary for aptamer motif definition and activity
validation (Fig. 1). The objective of the following sections is to provide an
overview of post-selection sequence analysis methods and high-throughput
aptamer discovery methods.

2. Post-selection sequence analysis

Post-selection analysis of deep-sequenced pools can become over-
whelming due to the sheer quantity of available sequences, presumably
enriched for functional molecules. Software development aimed at tackling
this issue has progressed significantly over the last decade, with tools
intended to reduce the burden of deep sequencing data manipulation by
providing analysis of sequence enrichment and sorting of aptamer sequences
based on genotypic familiarity. Early high-throughput sequencing adopters
used analysis packages designed for genomic sequencing data manipulation,
in addition to homebrewed UNIX scripts utilizing the sed, awk, and
grep commands (Hoon, Zhou, Janda, Brenner, & Scolnick, 2011). The
availability of these custom-built scripts was limited, and scripts were typ-
ically built to answer specific experimental questions and were not
intended for general enriched-pool workup. More recently, analysis of
sequencing data for functional aptamers has greatly improved and the benefits
of HTS have become realized; for example, for SELEX-specific constant
region trimming and determination of aptamer frequencies in enriched pools
(Hamada, 2018).
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Fig. 1 Generalized workflow of in vitro selection (SELEX) of RNA aptamers and post-
selection analysis. After several rounds of selection, the enriched pool is amplified
and submitted for high-throughput sequencing. After sequencing, the reads are
counted and clustered. Clustered sequences provide the basis for downstream analysis,

such as mutagenesis, alignment and sequence-motif discovery, and biochemistry.
(Continued)
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2.1 Clustering

In silico parsing of aptamer sequences provides the foundation of biochemical
analysis by identifying sequence families enriched through selective pressure.
The analysis typically begins by minimizing and sorting redundant sequenc-
ing data by identifying unique sequences and sorting them based on shared
sequence characteristics. One of the initial high-throughput sequencing
analysis packages specific for in vitro selection was Sequence Evolution With
Adaptive Landscape (SEWAL), which assesses the overall fitness landscape of
in vitro selection pools for the purpose of performing functional genotypic
analysis (Pitt, Rajapakse, & Ferré-D’Amaré, 2010). SEWAL produces 3D
frequency plots using a sorting algorithm to determine sequence patterns
and visualizes changes in the sequencing space due to selective pressure
across consecutive rounds. Identification of changes due to selective pressure
can be used to predict evolutionary paths that individual sequences follow
toward improved fitness.

Similarly, FAST Aptamer and AptaCluster compress pool data into non-
redundant sequence sets (count) and sort sequences based on similarities in
genotype (clustering) (Alam, Chang, & Burke, 2015; Hoinka, Berezhnoy,
Sauna, Gilboa, & Przytycka, 2014). The FAST Aptamer package of scripts
provides a simple, command-line data workup package that can be installed
on any system capable of running Perl binaries, whereas AptaCluster
requires a C++ compiler for installation, which can be difficult for inexpe-
rienced users. Both packages use counting to rank sequences based upon
frequency, aiding in the identification of sequences enriched throughout
the selection to assist in determining the complexity of the enriched pool.

As mentioned above, clustering sorts sequences into families of
sequences which share a similar genotype. Clustering begins by separating
abundant unique sequences into individual clusters. Less abundant
sequences that are similar to the seed sequence of a given cluster, but vary
by mutations (including insertions and deletions; indels), are then sorted.
Alignments of individual clusters, using tools such as MUSCLE or MAFFT,

Fig. T—Cont'd Mutagenesis of enriched pools, followed by reselection and next-
generation sequencing, reveals functionally critical (immutable) positions, as well as
structural information in the form of sequence covariation of base-paired positions.
Finally, enriched sequences identified through counting and clustering can be individ-
ually tested for target binding specificity, and determination of binding constants, such
as Kp and kon/kos. High-throughput analysis methods yield these kinetic and thermo-
dynamic constants for many sequences simultaneously, with some methods, such as
Apta-Seq (Abdelsayed et al., 2017), revealing structural information as well.



6 Kyle H. Cole and Andrej Luptak

provide visualization of allowed mutations and the output of these tools is
useful in determining sequence consensus in addition to potential evolution-
ary relationships among clustered sequences derived from different selection
rounds (Ameta, Winz, Previti, & Jaschke, 2014; Edgar, 2004; Katoh,
Misawa, Kuma, & Miyata, 2002). And while clustering leads to increased
understanding of the genotypic variation that exists within families of
aptamers, confirmation of aptamer activity relies on further biochemical
analysis.

2.2 Motif searching

Identification of motif sequences from enriched pools provides insight in
to functional binding targets of aptamers. Methods aimed at identifying
transcription factor binding sites, such as ChIP-seq, contributed to the
development of DINA motif analysis software packages, such as the MEME
family of tools, which identify reoccurring sequence motifs enriched
throughout genomic sequencing data (Bailey et al., 2009). However, iden-
tification of motifs based on sequence alone does not necessarily coincide
with target binding. BEEML, and similar methods, account for binding
by utilizing a position weight matrix (PWM) to determine motifs based
on energy models which determine the contribution of each base-pair to
transcription factor binding (Jolma et al., 2010; Zhao & Stormo, 2011).
These computational methods identify motifs based on the energetic
contributions of each nucleotide position, improving the likelihood of
identifying binding sequences.

RNA aptamers, on the other hand, maintain complex structures, requir-
ing motif identification software that incorporates secondary structure
prediction.

To address this issue, Backofen and coworkers developed MEME in
RNA:s Including secondary Structure (MEMERUIS), which built on MEME
by incorporating high throughput analysis capabilities in conjunction with
secondary structure prediction, but is restricted to motifs within predicted
single-stranded loop and bulge regions of RINA aptamer sequences
(Hiller, Pudimat, Busch, & Backofen, 2006). RINAcontext improved
upon the motif analysis landscape by including loops, bulges, and stems
into its predictions (Kazan, Ray, Chan, Hughes, & Morris, 2010). Because
RNAcontext distinguishes between these secondary structures, it can also
predict the preferred conformation of the identified motif within the
aptamer.
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Similarly, AptaMotif and APTANI, which use a minimum free energy
(MFE) approach for structure prediction in conjunction with iterative sam-
pling and sequence alignments, have been developed to determine potential
motifs across multiple input files (i.e., selection rounds) (Caroli, Taccioli,
De La Fuente, Serafini, & Bicciato, 2016; Hoinka, Zotenko, Friedman,
Sauna, & Przytycka, 2012). However, both of these methods are limited
to identification of dominant motifs—an outcome that may not be desirable
in selections for complex targets that are expected to yield multiple motifs, or
in genomic SELEX, in which an exhaustive mapping of all aptamers is often
preferred. AptaTrace overcomes this problem by tracing motifs through
multiple rounds of selection data and testing whether these regions undergo
selection toward secondary structure, such as hairpin loops or bulges (Dao
etal., 2016). More recently, AptaSuite was developed as an all-encompassing
software package, which includes AptaTrace and AptaCluster, and is the
first open-source package designed for selection schemes to feature a graph-
ical user interface (GUI) (Hoinka, Backofen, & Przytycka, 2018). AptaSuite
can be installed on any system that runs Java Runtime Environment (JRE),
providing ease-of-use to less-experienced users and removing the hassle of
installing packages for adapter trimming and motif prediction.

The above-mentioned high-throughput strategies predict motifs
based on the frequency of reoccurrence between rounds of selection.
Alternatively, covariance model (CM) based algorithms predict secondary-
structures and identify motifs based on the dependent variability of nucleotides
in a given sequence (covariance). One example is CMFinder, which applies
a covariance-probabilistic model to predict motifs from sequences that are
dissimilar and unaligned (Yao, Weinberg, & Ruzzo, 2006). CMFinder can
align and predict motifs from any input of sequences, whether in vitro evolved
or genomic, and the output is used in the identification of sequence homol-
ogy. Similarly, the Infernal package constructs a CM based on an alignment of
RNAs and searches for genomic RINA homologs based on primary sequence
and, most importantly, conserved-secondary structure (Nawrocki & Eddy,
2013). The output of Infernal can be applied to CMFinder for improved motif
prediction in the case of genomic aptamers. In contrast, RINArobo uses a
context-based motif searching algorithm for identification of novel motifs
when no known homology has been previously annotated (Rampasek,
Jimenez, Luptak, Vinar, & Brejova, 2016). RNArobo parses sequence
searches based upon an input descriptor that defines a simplified motif map
and individual structural elements; for example, a combination of secondary
structure and binding-loop sequence. The methods employed by RNArobo
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are expedient in determining sequences containing difficult-to-predict
structural elements, such as complex pseudoknots, adding to its effectiveness
in discovering genomic aptamers from in vitro selections.

In the case of genomic selections, sequence data require further manip-
ulation to identify conservation and homology, in addition to aptamer loci.
Initial sequence alignment to reference genomes can be accomplished
through multiple methods. For example, Bowtie2 is beneficial for align-
ments of short reads obtained from selections to a reference genome
(Langmead & Salzberg, 2012), while Integrated Genome Browser (IGB)
provides a user interface for alignments to annotated-reference genomes,
and provides additional tools including sequence pileups for visualization
of consensus sequences (Freese, Norris, & Loraine, 2016). These basic align-
ment methods are useful when comparing HTS data to single-reference
genomes but are less efficient when comparing multiple species. Packages
such as the Basic Local Alignment Search Tool (BLAST) or HMMER3,
allow users to query custom- or downloadable- sequence databases for more
advanced conservation and homology searches (Camacho etal., 2009; Eddy,
2011). BLAST provides a powerful webserver and command-line based
software package that delivers a well-rounded source for alignments, con-
servation, and homology, but can be nonintuitive to use. HMMERS3 is
an alternative homology identification package that uses a hidden Markov
model (HMM) to improve upon sequence identification, with improved
efficiency compared to BLAST. Information obtained from reference-
genome alignments, conservation, and homology provides a basis for down-
stream biological characterization of genomic aptamers, such as expression
analysis, in vivo target binding, and potential regulatory functions.

2.3 Mutagenesis

Candidate aptamer sequences that dominate a selected pool bias it toward
enriched genotypes and this genotypic bias restricts possible nucleotide var-
iation across the pool, which limits structurally-relevant information. Upon
initial selection, aptamer sequences may be constrained within their given
sequence space, because mutations introduced by the polymerase enzymes
during the in vitro selection process may not be frequent enough to thor-
oughly sample the permissive sequence variation around a founding
aptamers sequence. Mutagenesis of an enriched pool introduces such
sequence variation and subsequent selection provides alternative genotypic
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outcomes (Jiménez et al., 2013). Consequently, mutagenesis followed by
reselection, is a useful strategy to overcome the lack of sequence diversity,
allowing a more thorough characterization of the functional sequence space,
in addition to potentially revealing functionally superior variants of the
selected aptamers.

Mutagenesis of an enriched pool can be accomplished through mutagenic
PCR or error-prone PCR methods (EP-PCR). Mutagenic PCR is facili-
tated by nucleoside analogs, such as 8-oxo-dG and dPTP, to introduce
templated mismatches. 8-oxo-dG and dPTP can be utilized by Taq polymer-
ase allowing for introduction of the analogs into standard PCR reaction
mixtures in excess, and the rate at which mutations are introduced can be tuned
by the ratio of the analogs to standard dNTPs (Zaccolo, Williams, Brown, &
Gherardi, 1996). EP-PCR takes advantage of the low fidelity of Taq poly-
merase to introduce mutations through doubling of the pool (Wilson &
Keefe, 2001). PCR is inherently error-prone and contributes to the genotypic
variation of in vitro selection; however, by increasing the concentration of
Mg”" and introducing Mn®" metal ions, the error rate of Taq polymerase
increases from 0.02% to 0.066% per nucleotide position when coupled with
disproportionate dNTP concentrations (Cadwell & Joyce, 1992).

Sequence covariation is a sought-after outcome of mutagenic selection
and provides benefit to motif and secondary structure prediction. Due to the
lack of sequence diversity of selected pools, covariation of sequences that
form the secondary structure elements of functional nucleic acids tends be
low. As mentioned previously, software such as CMFinder and Infernal
utilize covariance models for motif and homology prediction (Nawrocki &
Eddy, 2013; Yao etal., 2006). Each tool utilizes covariance in secondary struc-
ture prediction strategies by identifying nucleotide positions which mutate
dependently. Compensatory evolution of nucleotide positions is most likely
the result of structural motifs which rely on the interaction of the two positions
to maintain functionality (Parsch, Braverman, & Stephan, 2000). Secondary-
structure prediction based on covariation data is accomplished with software
such as ViennaRINA’s RNAalifold, which can take several hundred aligned
sequences as input through the webserver and command-line versions
(Bernhart, Hofacker, Will, Gruber, & Stadler, 2008). Sequence covariation
can be also revealed through alignment of homologous sequences using
resources like the BLAST-like alignment tool (BLAT) (Kent, 2002), but
mutagenic selection has the potential to provide more diversity, which is ideal
for structural and motif prediction.
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3. High-throughput characterization methods

While deep sequencing has increased the diversity of potential
aptamers from selections by aiding in the identification of less abundant
sequences, validation relies on biochemical confirmation of ligand binding.
Given the potentially high number of functional sequences in an enriched
pool, binding assays of aptamers to immobilized ligands can prove tedious,
unless the pool is dominated by a small number of motifs (Sassanfar &
Szostak, 1993). Moreover, traditional binding assays do not provide insights
into conformational dynamics upon ligand binding or the location of bind-
ing domains. High-throughput methods of aptamer discovery aim to address
these issues through combinatorial measurements of binding kinetics or
thermodynamics, as well as structural probing, followed by HTS. These
methods intend to alleviate the strain of in vitro and in silico selection workup
by identifying ligand-associated motifs and determining binding or rate
constants.

Sequence enrichment does not necessarily equate to stronger or more
specific binding; therefore, identification of high-affinity binders in a pool
traditionally requires binding or rate constant measurements of individual
sequences. To increase the experimental throughput of these measurements,
one approach characterizes of functional RNAs by probing their dynamic
properties against a titration of ligand. The technique, Apta-Seq, utilizes a
combinatorial, multiplexed approach focused on RNA chemical modi-
fication and deep HTS to evaluate structural interaction of aptamers with
their target ligand (Abdelsayed et al., 2017). Apta-Seq utilizes selective
2'-hydroxyl acylation with primer extension (SHAPE) to determine
whether a 2/-hydroxyl is solvent-accessible to allow acylation by a SHAPE
reagent, such as 2-(azidomethyl)nicotinic acid acyl imidazole (NAI-N,),
under variable ligand concentrations (Merino, Wilkinson, Coughlan, &
Weeks, 2005; Spitale et al., 2015). Apta-Seq is based on an established
workflow known as SHAPE-seq to map HTS data of reverse transcriptase
(RT) stops caused by acylation of 2'-hydroxyls of pool RNAs, leading
to truncated cDNAs with heterogenous 3’ ends (Lucks et al., 2011). The
heterogenous 3’ ends of the cDNAs are resolved by introducing an RT
primer with a 5 overhang and self-ligating the cDNA by CircLigase
(Lucigen). Together with the RT primer sequence, the introduced 5’
overhang can be subsequently used for priming a PCR amplification reac-
tion, and submitted to HTS. RT stop sites are mapped using ShapeFinder,
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a package used to quantitatively map RT stops at nucleotide resolution
and when a ligand titration is used, the stops uncover RNA conforma-
tional changes due ligand binding (Vasa, Guex, Wilkinson, Weeks, &
Giddings, 2008). When this method was applied to a human-genomic
in vitro selection for ATP-binders, it revealed three novel human-
genome-derived ATP-binding RNA aptamers, and confirmed the exis-
tence of two previously identified aptamers (Abdelsayed et al., 2017;
Vu et al., 2012). These results demonstrated the robustness of the method
to perform structural analysis in a high-throughput pipeline and allowed
determination of dissociation rate constants, Kps, for selected pools
while eliminating single-clone biochemical assessment. This general
workflow provides a unique framework which can be modified for all
nucleic acids, including DNA and XNA aptamers, if base-specific modifica-
tions such as dimethyl sulfate (DMS), 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide (EDC), or nicotinoyl azide (NAz) probing are introduced
(Feng et al., 2018; Kwok, Ding, Tang, Assmann, & Bevilacqua, 2013;
Mitchell et al., 2018; Wang, Sexton, Culligan, & Simon, 2018; Zinshteyn
et al., 2018).

Identification of structural motifs is critical for the determination of
ligand binding domains, assisting in the minimization of aptamer sequences
derived from a given pool. Previously, natural RNNA aptamers, the ligand-
binding domains of riboswitches, have mostly been discovered via compu-
tational investigation for sequence and structural homology (Barrick &
Breaker, 2007). However, this approach limits the discovery of novel, nat-
urally occuring aptamers to those which share consensus with characterized
sequences or sequence models, such as those modeled with CMFinder. To
alleviate this limitation, Parallel Analysis of RNA Conformations Exposed
to Ligand Binding (PAR CEL) was developed as a high-throughput method
of identifying RNA-ligand interactions in whole transcriptomes (Tapsin
et al., 2018). The PARCEL workflow uses three methods of RNA-ligand
interaction assessment in parallel, followed by next-generation sequencing.
RNA-footprinting with double-strand specific RNase V1 and single-strand
specific S1 nuclease is performed in parallel in the presence or absence of a
target metabolite. Additionally, the protocol applies partial hydrolysis of
transcripts, in-line probing, to determine transcript flexibility (Regulski &
Breaker, 2008; Soukup & Breaker, 1999). The methodology relies on the
assumption that the target ligand provides protection to the RNA when
bound. Transcripts treated in the presence or absence of metabolite are
then sequenced and mapped to a reference genome. Reads are normalized
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to ligand conditions and while PARCEL utilizes nuclease cleavage and
in-line probing, both methods could be applied in parallel with acylation
in Apta-Seq to provide additional structural insight and Kps.

A different approach to determining the strength of aptamer-ligand
interactions is based on the measurement of binding rate constants. High-
throughput sequencing kinetics (HTSK), is a an efficient method for the
determination of k,, and k.g rate constants for pools of mRINA-peptide
fusions (Jalali-Yazdi, Lai, Takahashi, & Roberts, 2016; Roberts &
Szostak, 1997). HTSK provides k,,/k.g rates for the majority of sequences
in a given pool through a time-point analysis protocol. To determine the
association rate constants, k.,, an enriched pool is added to ligands
immobilized on magnetic beads and at various time points, bead fractions
are removed, washed, and the isolated sequences are amplified and prepared
for next-generation sequencing. The fractional composition of a given
sequence can be determined by measuring the frequency of that sequence
at a given time point, and the amount of bound aptamer can be determined
by multiplying the fractional composition by the total counts of the bound
pool at each time point. Dissociation rate constants, k.g, are determined
following the on-rate time points by washing the beads in the presence of
excess ligand and collecting fractions at various time-points. Fractional com-
position of sequences is determined similarly to the on-rates and Kpps can be
calculated from the rate constants, assuming a simple binding model.

RNA Bind-n-Seq is a similar approach to HTSK, used to identify
RNA-protein interactions by combining high-throughput in vitro selection
of RINA with rate constant measurements (Lambert et al., 2014).
A randomized pool of RNA is incubated with varying concentrations of
streptavidin-tagged RINA binding proteins (RBPs), which can be pulled
down using biotinylated beads, allowing the bound RNA to be eluted and
sequenced. Association and dissociation rate constants can be determined
from these sequenced data, assuming complete pull-down of the tagged
RBPs; however, this method is limited to proteins or target molecules that
can be tagged for affinity-binding assays.

3.1 On-chip analysis

The [lumina sequencing platform has been utilized for deep sequencing
of whole genomes, single-cell RNA-seq, and for understanding epige-
netics through bisulphite sequencing, among many other applications
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(Lippert et al., 2017; Raine, Manlig, Wahlberg, Syvanen, & Nordlund,
2017; Ziegenhain et al., 2017). After sequencing, the DNA-displayed
chips can be used for further experiments that utilize the strong fluorescent
signal, good physical separation, and known sequences of the DNA
polonies generated by the sequencing method. The Illumina platform’s
versatility for aptamer discovery was first illustrated with high-throughput
sequencing fluorescent ligand interaction profiling (HITS-FLIP) (Nutiu
et al.,, 2011). HITS-FLIP quantitatively measures DNA-protein affinity
through changes in fluorescent ligand associations of millions of DNA
clusters bound to the Illumina flowcell. On/off rates can be determined
by varying the protein concentrations introduced across the flowcell and
measuring subsequent changes in fluorescence.

Similarly, the chip-hybridized associated-mapping platform (CHAMP)
takes advantage of used MiSeq chips with linked DNA clusters to determine
DNA-protein interactions (Jung et al., 2017). The DNA clusters are
reamplified to remove associated fluorescent nucleotides and a fluorescent-
oligonucleotide probe is hybridized to the clusters and used as a reference
marker for the DNA sequences. Fluorescent proteins are incubated in varying
concentrations, imaged, and associations between the binding experiment
and the sequences of individual colonies are made to the DNA sequence
through imaging and software analysis. In another example of this approach,
two groups built on HITS-FLIP for high-throughput RINA aptamer
discovery (Buenrostro et al., 2014; Tome et al., 2014). Both methods use
diverse single-stranded DINA libraries which contain T7 promoters to initiate
transcription on the sequencer flow cell, and employ an approach to halt
transcription with the intent on maintaining the association of the transcript
with the DNA cluster. Fluorescently-labeled proteins that bind the halted
transcripts can be detected through fluorescent imaging of the flowcell. This
approach allows identification of RINA aptamers that bind the protein ligand
through the sequence of the associated DNA. Additionally, genotypic vari-
ations can be directly compared, decreasing the need for downstream muta-
genic analysis and thus providing covariation information for structure
prediction. These methods are currently limited to ligands which can be
fluorescently labeled, such as target proteins labeled with fluorescent dyes
or fused to fluorescent proteins. On the other hand, many targets of SELEX
are modified for bead-binding during in vitro selection experiments, and this
chemistry can often be exploited for flourescent labeling allowing for optical
detection of binding on HTS chips.
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4. Conclusions

Increased interest in nucleic-acid aptamers has, in recent years,
led to the development of improved high-throughput methods of aptamer
discovery. High-throughput methods that incorporate biochemical assess-
ment of individual sequences decrease the time requirement of aptamer
identification and increases the likelihood of uncovering larger diversity
of functional sequences. Current methods have been used to uncover
human ATP-binding RNA aptamers, analyze MS2 aptamers, and identify
CRISPR-Cas complex specificity (Abdelsayed et al., 2017; Buenrostro
etal., 2014; Jung et al., 2017). These techniques are valuable in the advance-
ment of in vitro selection and aid in understanding of the evolution of
functional RNAs from random sequence space. Continued improvement
to these methods will support the growth of aptamer-based drug develop-
ment and should fill the shortcomings in current therapeutic biologics.
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