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Abstract

Aptamers are small, functional nucleic acids that bind a variety of targets, often

with high specificity and affinity. Genomic aptamers constitute the ligand-binding

domains of riboswitches, whereas synthetic aptamers find applications as diagnostic

and therapeutic tools, and as ligand-binding domains of regulatory RNAs in synthetic

biology. Discovery and characterization of aptamers has been limited by a lack of high-

throughput approaches that uncover the target-binding domains and the biochemical

properties of individual sequences. With the advent of high-throughput sequencing,

large-scale analysis of in vitro selected populations of aptamers (and catalytic nucleic

acids, such as ribozymes and DNAzmes) became possible. In recent years the develop-

ment of new experimental approaches and software tools has led to significant

streamlining of the selection–pool analysis. This article provides an overview of post-

selection data analysis and describes high–throughput methods that facilitate rapid

discovery and biochemical characterization of aptamers.
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1. Introduction

Aptamers are nucleic acids that can recognize ligands ranging from

ions and small molecules, to more complex targets such as proteins and

whole cells (Wu & Kwon, 2016). Because of their versatility and relative

ease of isolation from high-diversity libraries, aptamers have found applica-

tions in diagnostics and drug development. A classic example of an FDA-

approved therapeutic aptamer is the anti-vascular endothelial growth factor

(anti-VEGF) aptamer used in the treatment of ocular vascular disease

(Ng et al., 2006). Aptamer-based therapeutics compete within the niche

currently filled by biologics such as monoclonal antibodies, but unlike

monoclonal antibodies, they do not suffer from batch-to-batch differentia-

tion (Shaughnessy, 2012). In vitro selection of nucleic-acid aptamers has

gained popularity due to these applications; however, aptamer discovery

is limited by the necessity of post-selection biochemical analysis ( Jijakli

et al., 2016). High-throughput aptamer discovery methods aim to resolve

these issues through combinatorial approaches to identify ligand-targeting

sequences while simultaneously determining biochemical and structurally-

relevant information.

A traditional in vitro selection (SELEX) experiment used target molecules

conjugated to solid media to separate bound molecules from highly-diverse

pools of sequences. After successive rounds of selection, enriched pools

were collected and cloned into Escherichia coli (E. coli) plasmids. To identify

individual aptamers, the plasmids were sequenced by chain-termination

methods, such as Sanger sequencing (Griffin, Toole, & Leung, 1993;

Morris, Jensen, Julin, Weil, & Gold, 1998). This strategy proved laborious,

because a relatively high number of individual colonies had to be sequenced

to determine the distribution of selected motifs. If a specific sequence or

structural motif dominated the enriched pool, the likelihood of identifying

less-abundant motifs was low, due to the relatively low-throughput of this

sequencing approach.

As the cost of high-throughput sequencing (HTS) decreased, deep

sequencing was introduced to in vitro selection protocols, with the intent

of improving aptamer discovery and increasing data validation through

improved sequencing depth (Sch€utze et al., 2011). The first applications

of HTS to in vitro selections aimed to identify new binding targets of tran-

scription factors ( Jolma et al., 2010; Slattery et al., 2011; Zhao & Stormo,

2011; Zykovich, Korf, & Segal, 2009). At the same time, Zimmerman et al.
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developed a HTSmethod of identifying naturally-occurring RNA aptamers

encoded in E. coli genomic DNA (Zimmermann, Gesell, Chen, Lorenz, &

Schroeder, 2010), and other laboratories built methodology to select for

growth-factor-specific DNA aptamers (Cho et al., 2010) and RNA inhib-

itors for HIV reverse transcriptase (Ditzler et al., 2013). With increased

sequencing depth and computational methods, the fitness landscape of

an in vitro selection could be visualized (Pitt & Ferr�e-D’Amar�e, 2010),

and evolutionary steps tracked between rounds of selection toward

functional RNAs ( Jim�enez, Xulvi-Brunet, Campbell, Turk-MacLeod, &

Chen, 2013; Neveu, Kim, & Benner, 2013). While these methods incorpo-

rated HTS for more expedient aptamer discovery or ribozyme sequence

analysis, recent high-throughput discovery methods have combined aptamer

discovery with determination of rate or equilibrium constants, as well as

probing of ligand-induced conformational changes, to streamline the

biochemical analysis necessary for aptamer motif definition and activity

validation (Fig. 1). The objective of the following sections is to provide an

overview of post-selection sequence analysis methods and high-throughput

aptamer discovery methods.

2. Post-selection sequence analysis

Post-selection analysis of deep-sequenced pools can become over-

whelming due to the sheer quantity of available sequences, presumably

enriched for functional molecules. Software development aimed at tackling

this issue has progressed significantly over the last decade, with tools

intended to reduce the burden of deep sequencing data manipulation by

providing analysis of sequence enrichment and sorting of aptamer sequences

based on genotypic familiarity. Early high-throughput sequencing adopters

used analysis packages designed for genomic sequencing data manipulation,

in addition to homebrewed UNIX scripts utilizing the sed, awk, and

grep commands (Hoon, Zhou, Janda, Brenner, & Scolnick, 2011). The

availability of these custom-built scripts was limited, and scripts were typ-

ically built to answer specific experimental questions and were not

intended for general enriched-pool workup. More recently, analysis of

sequencing data for functional aptamers has greatly improved and the benefits

of HTS have become realized; for example, for SELEX-specific constant

region trimming and determination of aptamer frequencies in enriched pools

(Hamada, 2018).
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Fig. 1 Generalized workflow of in vitro selection (SELEX) of RNA aptamers and post-

selection analysis. After several rounds of selection, the enriched pool is amplified

and submitted for high-throughput sequencing. After sequencing, the reads are

counted and clustered. Clustered sequences provide the basis for downstream analysis,

such as mutagenesis, alignment and sequence-motif discovery, and biochemistry.
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2.1 Clustering

In silico parsing of aptamer sequences provides the foundation of biochemical

analysis by identifying sequence families enriched through selective pressure.

The analysis typically begins by minimizing and sorting redundant sequenc-

ing data by identifying unique sequences and sorting them based on shared

sequence characteristics. One of the initial high-throughput sequencing

analysis packages specific for in vitro selection was Sequence Evolution With

Adaptive Landscape (SEWAL), which assesses the overall fitness landscape of

in vitro selection pools for the purpose of performing functional genotypic

analysis (Pitt, Rajapakse, & Ferr�e-D’Amar�e, 2010). SEWAL produces 3D

frequency plots using a sorting algorithm to determine sequence patterns

and visualizes changes in the sequencing space due to selective pressure

across consecutive rounds. Identification of changes due to selective pressure

can be used to predict evolutionary paths that individual sequences follow

toward improved fitness.

Similarly, FASTAptamer and AptaCluster compress pool data into non-

redundant sequence sets (count) and sort sequences based on similarities in

genotype (clustering) (Alam, Chang, & Burke, 2015; Hoinka, Berezhnoy,

Sauna, Gilboa, & Przytycka, 2014). The FASTAptamer package of scripts

provides a simple, command-line data workup package that can be installed

on any system capable of running Perl binaries, whereas AptaCluster

requires a C++ compiler for installation, which can be difficult for inexpe-

rienced users. Both packages use counting to rank sequences based upon

frequency, aiding in the identification of sequences enriched throughout

the selection to assist in determining the complexity of the enriched pool.

As mentioned above, clustering sorts sequences into families of

sequences which share a similar genotype. Clustering begins by separating

abundant unique sequences into individual clusters. Less abundant

sequences that are similar to the seed sequence of a given cluster, but vary

by mutations (including insertions and deletions; indels), are then sorted.

Alignments of individual clusters, using tools such as MUSCLE or MAFFT,

Fig. 1—Cont’d Mutagenesis of enriched pools, followed by reselection and next-

generation sequencing, reveals functionally critical (immutable) positions, as well as

structural information in the form of sequence covariation of base-paired positions.

Finally, enriched sequences identified through counting and clustering can be individ-

ually tested for target binding specificity, and determination of binding constants, such

as KD and kon/koff. High-throughput analysis methods yield these kinetic and thermo-

dynamic constants for many sequences simultaneously, with some methods, such as

Apta-Seq (Abdelsayed et al., 2017), revealing structural information as well.
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provide visualization of allowed mutations and the output of these tools is

useful in determining sequence consensus in addition to potential evolution-

ary relationships among clustered sequences derived from different selection

rounds (Ameta, Winz, Previti, & J€aschke, 2014; Edgar, 2004; Katoh,

Misawa, Kuma, & Miyata, 2002). And while clustering leads to increased

understanding of the genotypic variation that exists within families of

aptamers, confirmation of aptamer activity relies on further biochemical

analysis.

2.2 Motif searching

Identification of motif sequences from enriched pools provides insight in

to functional binding targets of aptamers. Methods aimed at identifying

transcription factor binding sites, such as ChIP-seq, contributed to the

development of DNA motif analysis software packages, such as the MEME

family of tools, which identify reoccurring sequence motifs enriched

throughout genomic sequencing data (Bailey et al., 2009). However, iden-

tification of motifs based on sequence alone does not necessarily coincide

with target binding. BEEML, and similar methods, account for binding

by utilizing a position weight matrix (PWM) to determine motifs based

on energy models which determine the contribution of each base-pair to

transcription factor binding ( Jolma et al., 2010; Zhao & Stormo, 2011).

These computational methods identify motifs based on the energetic

contributions of each nucleotide position, improving the likelihood of

identifying binding sequences.

RNA aptamers, on the other hand, maintain complex structures, requir-

ing motif identification software that incorporates secondary structure

prediction.

To address this issue, Backofen and coworkers developed MEME in

RNAs Including secondary Structure (MEMERIS), which built on MEME

by incorporating high throughput analysis capabilities in conjunction with

secondary structure prediction, but is restricted to motifs within predicted

single-stranded loop and bulge regions of RNA aptamer sequences

(Hiller, Pudimat, Busch, & Backofen, 2006). RNAcontext improved

upon the motif analysis landscape by including loops, bulges, and stems

into its predictions (Kazan, Ray, Chan, Hughes, & Morris, 2010). Because

RNAcontext distinguishes between these secondary structures, it can also

predict the preferred conformation of the identified motif within the

aptamer.
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Similarly, AptaMotif and APTANI, which use a minimum free energy

(MFE) approach for structure prediction in conjunction with iterative sam-

pling and sequence alignments, have been developed to determine potential

motifs across multiple input files (i.e., selection rounds) (Caroli, Taccioli,

De La Fuente, Serafini, & Bicciato, 2016; Hoinka, Zotenko, Friedman,

Sauna, & Przytycka, 2012). However, both of these methods are limited

to identification of dominant motifs—an outcome that may not be desirable

in selections for complex targets that are expected to yield multiple motifs, or

in genomic SELEX, in which an exhaustive mapping of all aptamers is often

preferred. AptaTrace overcomes this problem by tracing motifs through

multiple rounds of selection data and testing whether these regions undergo

selection toward secondary structure, such as hairpin loops or bulges (Dao

et al., 2016). More recently, AptaSuite was developed as an all-encompassing

software package, which includes AptaTrace and AptaCluster, and is the

first open-source package designed for selection schemes to feature a graph-

ical user interface (GUI) (Hoinka, Backofen, & Przytycka, 2018). AptaSuite

can be installed on any system that runs Java Runtime Environment (JRE),

providing ease-of-use to less-experienced users and removing the hassle of

installing packages for adapter trimming and motif prediction.

The above-mentioned high-throughput strategies predict motifs

based on the frequency of reoccurrence between rounds of selection.

Alternatively, covariance model (CM) based algorithms predict secondary-

structures and identifymotifs based on the dependent variability of nucleotides

in a given sequence (covariance). One example is CMFinder, which applies

a covariance-probabilistic model to predict motifs from sequences that are

dissimilar and unaligned (Yao, Weinberg, & Ruzzo, 2006). CMFinder can

align and predict motifs from any input of sequences, whether in vitro evolved

or genomic, and the output is used in the identification of sequence homol-

ogy. Similarly, the Infernal package constructs a CMbased on an alignment of

RNAs and searches for genomic RNA homologs based on primary sequence

and, most importantly, conserved-secondary structure (Nawrocki & Eddy,

2013). The output of Infernal can be applied to CMFinder for improvedmotif

prediction in the case of genomic aptamers. In contrast, RNArobo uses a

context-based motif searching algorithm for identification of novel motifs

when no known homology has been previously annotated (Rampášek,

Jimenez, Lupták, Vina�r, & Brejová, 2016). RNArobo parses sequence

searches based upon an input descriptor that defines a simplified motif map

and individual structural elements; for example, a combination of secondary

structure and binding-loop sequence. The methods employed by RNArobo
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are expedient in determining sequences containing difficult-to-predict

structural elements, such as complex pseudoknots, adding to its effectiveness

in discovering genomic aptamers from in vitro selections.

In the case of genomic selections, sequence data require further manip-

ulation to identify conservation and homology, in addition to aptamer loci.

Initial sequence alignment to reference genomes can be accomplished

through multiple methods. For example, Bowtie2 is beneficial for align-

ments of short reads obtained from selections to a reference genome

(Langmead & Salzberg, 2012), while Integrated Genome Browser (IGB)

provides a user interface for alignments to annotated-reference genomes,

and provides additional tools including sequence pileups for visualization

of consensus sequences (Freese, Norris, & Loraine, 2016). These basic align-

ment methods are useful when comparing HTS data to single-reference

genomes but are less efficient when comparing multiple species. Packages

such as the Basic Local Alignment Search Tool (BLAST) or HMMER3,

allow users to query custom- or downloadable- sequence databases for more

advanced conservation and homology searches (Camacho et al., 2009; Eddy,

2011). BLAST provides a powerful webserver and command-line based

software package that delivers a well-rounded source for alignments, con-

servation, and homology, but can be nonintuitive to use. HMMER3 is

an alternative homology identification package that uses a hidden Markov

model (HMM) to improve upon sequence identification, with improved

efficiency compared to BLAST. Information obtained from reference-

genome alignments, conservation, and homology provides a basis for down-

stream biological characterization of genomic aptamers, such as expression

analysis, in vivo target binding, and potential regulatory functions.

2.3 Mutagenesis

Candidate aptamer sequences that dominate a selected pool bias it toward

enriched genotypes and this genotypic bias restricts possible nucleotide var-

iation across the pool, which limits structurally-relevant information. Upon

initial selection, aptamer sequences may be constrained within their given

sequence space, because mutations introduced by the polymerase enzymes

during the in vitro selection process may not be frequent enough to thor-

oughly sample the permissive sequence variation around a founding

aptamers sequence. Mutagenesis of an enriched pool introduces such

sequence variation and subsequent selection provides alternative genotypic
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outcomes ( Jim�enez et al., 2013). Consequently, mutagenesis followed by

reselection, is a useful strategy to overcome the lack of sequence diversity,

allowing a more thorough characterization of the functional sequence space,

in addition to potentially revealing functionally superior variants of the

selected aptamers.

Mutagenesis of an enriched pool can be accomplished through mutagenic

PCR or error-prone PCR methods (EP-PCR). Mutagenic PCR is facili-

tated by nucleoside analogs, such as 8-oxo-dG and dPTP, to introduce

templated mismatches. 8-oxo-dG and dPTP can be utilized by Taq polymer-

ase allowing for introduction of the analogs into standard PCR reaction

mixtures in excess, and the rate atwhichmutations are introduced canbe tuned

by the ratio of the analogs to standard dNTPs (Zaccolo, Williams, Brown, &

Gherardi, 1996). EP-PCR takes advantage of the low fidelity of Taq poly-

merase to introduce mutations through doubling of the pool (Wilson &

Keefe, 2001). PCR is inherently error-prone and contributes to the genotypic

variation of in vitro selection; however, by increasing the concentration of

Mg2+ and introducing Mn2+ metal ions, the error rate of Taq polymerase

increases from 0.02% to 0.066% per nucleotide position when coupled with

disproportionate dNTP concentrations (Cadwell & Joyce, 1992).

Sequence covariation is a sought-after outcome of mutagenic selection

and provides benefit to motif and secondary structure prediction. Due to the

lack of sequence diversity of selected pools, covariation of sequences that

form the secondary structure elements of functional nucleic acids tends be

low. As mentioned previously, software such as CMFinder and Infernal

utilize covariance models for motif and homology prediction (Nawrocki &

Eddy, 2013;Yao et al., 2006). Each tool utilizes covariance in secondary struc-

ture prediction strategies by identifying nucleotide positions which mutate

dependently. Compensatory evolution of nucleotide positions is most likely

the result of structuralmotifswhich rely on the interaction of the twopositions

to maintain functionality (Parsch, Braverman, & Stephan, 2000). Secondary-

structure prediction based on covariation data is accomplished with software

such as ViennaRNA’s RNAalifold, which can take several hundred aligned

sequences as input through the webserver and command-line versions

(Bernhart, Hofacker, Will, Gruber, & Stadler, 2008). Sequence covariation

can be also revealed through alignment of homologous sequences using

resources like the BLAST-like alignment tool (BLAT) (Kent, 2002), but

mutagenic selection has the potential to providemore diversity, which is ideal

for structural and motif prediction.
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3. High-throughput characterization methods

While deep sequencing has increased the diversity of potential

aptamers from selections by aiding in the identification of less abundant

sequences, validation relies on biochemical confirmation of ligand binding.

Given the potentially high number of functional sequences in an enriched

pool, binding assays of aptamers to immobilized ligands can prove tedious,

unless the pool is dominated by a small number of motifs (Sassanfar &

Szostak, 1993). Moreover, traditional binding assays do not provide insights

into conformational dynamics upon ligand binding or the location of bind-

ing domains. High-throughput methods of aptamer discovery aim to address

these issues through combinatorial measurements of binding kinetics or

thermodynamics, as well as structural probing, followed by HTS. These

methods intend to alleviate the strain of in vitro and in silico selection workup

by identifying ligand-associated motifs and determining binding or rate

constants.

Sequence enrichment does not necessarily equate to stronger or more

specific binding; therefore, identification of high-affinity binders in a pool

traditionally requires binding or rate constant measurements of individual

sequences. To increase the experimental throughput of these measurements,

one approach characterizes of functional RNAs by probing their dynamic

properties against a titration of ligand. The technique, Apta-Seq, utilizes a

combinatorial, multiplexed approach focused on RNA chemical modi-

fication and deep HTS to evaluate structural interaction of aptamers with

their target ligand (Abdelsayed et al., 2017). Apta-Seq utilizes selective

20-hydroxyl acylation with primer extension (SHAPE) to determine

whether a 20-hydroxyl is solvent-accessible to allow acylation by a SHAPE

reagent, such as 2-(azidomethyl)nicotinic acid acyl imidazole (NAI-N3),

under variable ligand concentrations (Merino, Wilkinson, Coughlan, &

Weeks, 2005; Spitale et al., 2015). Apta-Seq is based on an established

workflow known as SHAPE-seq to map HTS data of reverse transcriptase

(RT) stops caused by acylation of 20-hydroxyls of pool RNAs, leading

to truncated cDNAs with heterogenous 30 ends (Lucks et al., 2011). The

heterogenous 30 ends of the cDNAs are resolved by introducing an RT

primer with a 50 overhang and self-ligating the cDNA by CircLigase

(Lucigen). Together with the RT primer sequence, the introduced 50

overhang can be subsequently used for priming a PCR amplification reac-

tion, and submitted to HTS. RT stop sites are mapped using ShapeFinder,
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a package used to quantitatively map RT stops at nucleotide resolution

and when a ligand titration is used, the stops uncover RNA conforma-

tional changes due ligand binding (Vasa, Guex, Wilkinson, Weeks, &

Giddings, 2008). When this method was applied to a human-genomic

in vitro selection for ATP-binders, it revealed three novel human-

genome-derived ATP-binding RNA aptamers, and confirmed the exis-

tence of two previously identified aptamers (Abdelsayed et al., 2017;

Vu et al., 2012). These results demonstrated the robustness of the method

to perform structural analysis in a high-throughput pipeline and allowed

determination of dissociation rate constants, KDs, for selected pools

while eliminating single-clone biochemical assessment. This general

workflow provides a unique framework which can be modified for all

nucleic acids, including DNA and XNA aptamers, if base-specific modifica-

tions such as dimethyl sulfate (DMS), 1-ethyl-3-(3-dimethylaminopropyl)

carbodiimide (EDC), or nicotinoyl azide (NAz) probing are introduced

(Feng et al., 2018; Kwok, Ding, Tang, Assmann, & Bevilacqua, 2013;

Mitchell et al., 2018; Wang, Sexton, Culligan, & Simon, 2018; Zinshteyn

et al., 2018).

Identification of structural motifs is critical for the determination of

ligand binding domains, assisting in the minimization of aptamer sequences

derived from a given pool. Previously, natural RNA aptamers, the ligand-

binding domains of riboswitches, have mostly been discovered via compu-

tational investigation for sequence and structural homology (Barrick &

Breaker, 2007). However, this approach limits the discovery of novel, nat-

urally occuring aptamers to those which share consensus with characterized

sequences or sequence models, such as those modeled with CMFinder. To

alleviate this limitation, Parallel Analysis of RNA Conformations Exposed

to Ligand Binding (PARCEL) was developed as a high-throughput method

of identifying RNA-ligand interactions in whole transcriptomes (Tapsin

et al., 2018). The PARCEL workflow uses three methods of RNA-ligand

interaction assessment in parallel, followed by next-generation sequencing.

RNA-footprinting with double-strand specific RNase V1 and single-strand

specific S1 nuclease is performed in parallel in the presence or absence of a

target metabolite. Additionally, the protocol applies partial hydrolysis of

transcripts, in-line probing, to determine transcript flexibility (Regulski &

Breaker, 2008; Soukup & Breaker, 1999). The methodology relies on the

assumption that the target ligand provides protection to the RNA when

bound. Transcripts treated in the presence or absence of metabolite are

then sequenced and mapped to a reference genome. Reads are normalized
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to ligand conditions and while PARCEL utilizes nuclease cleavage and

in-line probing, both methods could be applied in parallel with acylation

in Apta-Seq to provide additional structural insight and KDs.

A different approach to determining the strength of aptamer-ligand

interactions is based on the measurement of binding rate constants. High-

throughput sequencing kinetics (HTSK), is a an efficient method for the

determination of kon and koff rate constants for pools of mRNA-peptide

fusions ( Jalali-Yazdi, Lai, Takahashi, & Roberts, 2016; Roberts &

Szostak, 1997). HTSK provides kon/koff rates for the majority of sequences

in a given pool through a time-point analysis protocol. To determine the

association rate constants, kon, an enriched pool is added to ligands

immobilized on magnetic beads and at various time points, bead fractions

are removed, washed, and the isolated sequences are amplified and prepared

for next-generation sequencing. The fractional composition of a given

sequence can be determined by measuring the frequency of that sequence

at a given time point, and the amount of bound aptamer can be determined

by multiplying the fractional composition by the total counts of the bound

pool at each time point. Dissociation rate constants, koff, are determined

following the on-rate time points by washing the beads in the presence of

excess ligand and collecting fractions at various time-points. Fractional com-

position of sequences is determined similarly to the on-rates and KDs can be

calculated from the rate constants, assuming a simple binding model.

RNA Bind-n-Seq is a similar approach to HTSK, used to identify

RNA-protein interactions by combining high-throughput in vitro selection

of RNA with rate constant measurements (Lambert et al., 2014).

A randomized pool of RNA is incubated with varying concentrations of

streptavidin-tagged RNA binding proteins (RBPs), which can be pulled

down using biotinylated beads, allowing the bound RNA to be eluted and

sequenced. Association and dissociation rate constants can be determined

from these sequenced data, assuming complete pull-down of the tagged

RBPs; however, this method is limited to proteins or target molecules that

can be tagged for affinity-binding assays.

3.1 On-chip analysis

The Illumina sequencing platform has been utilized for deep sequencing

of whole genomes, single-cell RNA-seq, and for understanding epige-

netics through bisulphite sequencing, among many other applications
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(Lippert et al., 2017; Raine, Manlig, Wahlberg, Syv€anen, & Nordlund,

2017; Ziegenhain et al., 2017). After sequencing, the DNA-displayed

chips can be used for further experiments that utilize the strong fluorescent

signal, good physical separation, and known sequences of the DNA

polonies generated by the sequencing method. The Illumina platform’s

versatility for aptamer discovery was first illustrated with high-throughput

sequencing fluorescent ligand interaction profiling (HITS-FLIP) (Nutiu

et al., 2011). HITS-FLIP quantitatively measures DNA-protein affinity

through changes in fluorescent ligand associations of millions of DNA

clusters bound to the Illumina flowcell. On/off rates can be determined

by varying the protein concentrations introduced across the flowcell and

measuring subsequent changes in fluorescence.

Similarly, the chip-hybridized associated-mapping platform (CHAMP)

takes advantage of used MiSeq chips with linked DNA clusters to determine

DNA-protein interactions ( Jung et al., 2017). The DNA clusters are

reamplified to remove associated fluorescent nucleotides and a fluorescent-

oligonucleotide probe is hybridized to the clusters and used as a reference

marker for the DNA sequences. Fluorescent proteins are incubated in varying

concentrations, imaged, and associations between the binding experiment

and the sequences of individual colonies are made to the DNA sequence

through imaging and software analysis. In another example of this approach,

two groups built on HITS-FLIP for high-throughput RNA aptamer

discovery (Buenrostro et al., 2014; Tome et al., 2014). Both methods use

diverse single-stranded DNA libraries which contain T7 promoters to initiate

transcription on the sequencer flow cell, and employ an approach to halt

transcription with the intent on maintaining the association of the transcript

with the DNA cluster. Fluorescently-labeled proteins that bind the halted

transcripts can be detected through fluorescent imaging of the flowcell. This

approach allows identification of RNA aptamers that bind the protein ligand

through the sequence of the associated DNA. Additionally, genotypic vari-

ations can be directly compared, decreasing the need for downstream muta-

genic analysis and thus providing covariation information for structure

prediction. These methods are currently limited to ligands which can be

fluorescently labeled, such as target proteins labeled with fluorescent dyes

or fused to fluorescent proteins. On the other hand, many targets of SELEX

are modified for bead-binding during in vitro selection experiments, and this

chemistry can often be exploited for flourescent labeling allowing for optical

detection of binding on HTS chips.
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4. Conclusions

Increased interest in nucleic-acid aptamers has, in recent years,

led to the development of improved high-throughput methods of aptamer

discovery. High-throughput methods that incorporate biochemical assess-

ment of individual sequences decrease the time requirement of aptamer

identification and increases the likelihood of uncovering larger diversity

of functional sequences. Current methods have been used to uncover

human ATP-binding RNA aptamers, analyze MS2 aptamers, and identify

CRISPR-Cas complex specificity (Abdelsayed et al., 2017; Buenrostro

et al., 2014; Jung et al., 2017). These techniques are valuable in the advance-

ment of in vitro selection and aid in understanding of the evolution of

functional RNAs from random sequence space. Continued improvement

to these methods will support the growth of aptamer-based drug develop-

ment and should fill the shortcomings in current therapeutic biologics.
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