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Abstract
We derive the macroscopic laws that govern the evolution of the density of parti-
cles in the exclusion process on the Sierpinski gasket in the presence of a variable
speed boundary. We obtain, at the hydrodynamics level, the heat equation evolv-
ing on the Sierpinski gasket with either Dirichlet or Neumann boundary conditions,
depending on whether the reservoirs are fast or slow. For a particular strength of
the boundary dynamics we obtain linear Robin boundary conditions. As for the
fluctuations, we prove that, when starting from the stationary measure, namely
the product Bernoulli measure in the equilibrium setting, they are governed by
Ornstein-Uhlenbeck processes with the respective boundary conditions.
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1 Introduction

The purpose of this article is to derive the macroscopic laws that govern the
space-time evolution of the thermodynamic quantities of a classical interacting
particle system (IPS)—namely, the exclusion process—evolving on a non-lattice,
non-translationally-invariant state space. The IPS were introduced in the mathematics
community by Spitzer in [34] (but were already known to physicists) as microscopic
stochastic systems, whose dynamics conserves a certain number of thermodynamic
quantities of interest. See the monographs [28, 30, 35] for detailed accounts. Depend-
ing on whether one is looking at the Law of Large Numbers (LLN) or the Central
Limit Theorem (CLT), the macroscopic laws are governed by either partial differ-
ential equations (PDEs) or stochastic PDEs. Over the past decades, there have been
many studies around microscopic models whose dynamics conserves one or more
quantities of interest, and the goal in the so-called hydrodynamic limit is to make
rigorous the derivation of these PDEs by means of a scaling argument procedure.

One of the intriguing questions in the field of IPS is to understand how a local
microscopic perturbation of the system has an impact at the level of its macroscopic
behavior. In recent years, many articles have been devoted to the study of 1D micro-
scopic symmetric systems in presence of a “slow/fast boundary,” see for example [1,
4, 5, 7] and references therein. The strength of the boundary Glauber dynamics does
not change the bulk properties of the PDE, as long as its impact is over a negligi-
ble set of points in the discrete space. Nevertheless it imposes additional boundary
conditions which depend on the strength of the boundary Glauber rates.

In this article, we analyze the same type of problem when the microscopic system
has symmetric rates, and evolves on a fractal which has spatial dimension > 1. Our
chosen fractal is the Sierpinski gasket, and the microscopic stochastic dynamics is
the classical exclusion process that we describe as follows. Consider the exclusion
process evolving on a discretization of the gasket, that is, on a level-N approximating
graph denoted by GN = (VN, EN), where VN is the set of vertices and EN denotes
the set of edges; see Fig. 1. The exclusion process on GN is a continuous-time Markov
process denoted by {ηN

t : t ≥ 0} with state space �N = {0, 1}VN . Its dynamics
is defined as follows: On every pair of vertices x, y ∈ VN which are connected by
an edge, we place an independent rate-1 exponential clock. If the clock on the edge
xy rings, we exchange occupation variables at vertices x and y. Observe that the
exchange between x and y is meaningful only when one of the vertices is empty and
the other one is occupied; otherwise nothing happens.

Fig. 1 The level-N approximating graph GN of the Sierpinski gasket, for N = 0, 1, 2, 3, 4 (from left to
right). The boundary set V0 is the set of three vertices of the outer triangle
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On the vertices of V0 = {a0, a1, a2}, we attach three extra vertices {Ai}2
i=0 whose

role is to mimic the action of particle reservoirs. This means that each one of these
extra vertices Ai can inject (resp. remove) particles into (resp. from) the correspond-
ing vertex ai at a rate λ+(ai) (resp. λ−(ai)). In other words, we add Glauber dynamics
to the vertices of V0; see Fig. 2. In order to have a nontrivial limit, we speed up the
process in the time scale 5N , the diffusive scale to obtain a Brownian motion on the
gasket [3]. Furthermore, to analyze the impact of changing the reservoirs’ dynamics,
we scale it by a factor 1/bN for some b > 0. The precise definition of the infinitesimal
generator of this Markov process is given in (2.1).

Remark 1.1 Since these scalings are not fully explained until Section 2, we
should mention here that the correponding model on the d-dimensional grid
{0, 1

N
, . . . , N−1

N
, 1}d has the exclusion process sped up by N2, which is consistent

with the diffusive scaling of symmetric random walks on the grid; and in the 1D case,
the boundary Glauber dynamics at the two endpoints {0, 1} is further scaled by N−θ

for some θ > 0.

1.1 Results at a Glance

Our aim is to analyze the hydrodynamic limit, the fluctuations of this process, and
their dependence on the parameter b which governs the strength of the reservoirs. As
we are working with an exclusion process whose jump rates are equal to 1 between
connected vertices, we expect to obtain the heat equation on the Sierpinski gasket,
but with certain types of boundary conditions.

1.1.1 Hydrodynamic Limit (LLN, Theorem 1)

In general terms, the goal in the hydrodynamic limit is to show that starting the pro-
cess from a collection of measures {μN }N for which the Law of Large Numbers

Fig. 2 A schematic of the boundary-driven exclusion process on the Sierpinski gasket (left); and the
scaling regimes determined by the inverse strength b of the reservoirs’ dynamics (right)
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holds—that is, the random measure πN
0 (ηN) = 1

|VN |
∑

x∈VN
ηN

0 (x)δ{x} converges,
in probability with respect to μN and as N → ∞, to the deterministic measure
�(x) dm(x), where �(·) is a function defined on the Sierpinski gasket, and m is
the standard self-similar measure on the gasket—then, the same holds at later times
t > 0—that is, the random measure πN

t (ηN) = 1
|VN |

∑
x∈VN

ηN
t5N (x)δ{x} converges,

in probability with respect to μN(t), the distribution of ηt5N , and as N → ∞, to
ρt (x) dm(x), where ρt (·) is the solution (in the weak sense) of the corresponding
hydrodynamic equation of the system.

For the model that we consider here, we obtain as hydrodynamic equations the
heat equation with Dirichlet, Robin, or Neumann boundary conditions, depending on
whether b < 5/3, b = 5/3, and b > 5/3, respectively; see again Fig. 2.

Remark 1.2 In the notation of Remark 1.1, the analogous Dirichlet, Robin, or
Neumann regimes in the 1D case are θ < 1, θ = 1, and θ > 1, respectively.

The emergence of the different scaling regimes comes from the competition
between the bulk exclusion dynamics (at rate 5N ) and the boundary Glauber dynam-
ics (at rate (5/(3b))N , where (5/3)N is the scaling factor needed to see a nontrivial
normal derivative at the boundary). When b = 5/3, the exclusion dynamics at the
boundary is in tune with the Glauber dynamics, and the Robin boundary condition
emerges. When b > 5/3, the Glauber dynamics become negligible in the limit, so we
obtain isolated boundaries corresponding to Neumann boundary condition. In con-
trast, when b < 5/3 we get fixed boundary densities, since in this case the Glauber
dynamics is faster than the exclusion dynamics.

Our method of proof (see Section 6) is the classical entropy method of [20], which
relies on showing tightness of the sequence {πN· }N and to characterize uniquely the
limit point π·. Once uniqueness is proved, the convergence follows. To prove unique-
ness of the limit point π·, we deduce from the particle system that at each time
t , the measure πt is absolutely continuous with respect to the standard self-similar
measure m on the gasket—a consequence of the dynamics of an exclusion process.
Then we characterize the density and show that it is the unique weak solution of the
hydrodynamic equation. Here we associate to the random measure πN

t a collection
of martingales MN

t which correspond to random discretizations of the weak solution
of the PDE, and then we prove that in the limit it solves the integral formulation of
the corresponding weak solution. A key part of the argument involves the density
replacement lemmas (Section 5.3) which replace occupation variables at the bound-
ary by suitable local averages. To conclude the proof of the LLN for the random
measure πN

t , we prove uniqueness of the weak solution to the heat equation with the
respective boundary condition.

1.1.2 Equilibrium Fluctuations (CLT, Theorem 2)

Another question we address in this article is related to the CLT. To wit, consider the
system starting from the stationary measure. We observe that when the reservoirs’
rates are all identical, i.e., λ+(ai) = λ+ and λ−(ai) = λ− for all i = 0, 1, 2, then the
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product Bernoulli measures νN
ρ with ρ := λ+/(λ+ +λ−) are reversible for {ηN

t : t ≥
0}. Without the identical rates condition νN

ρ are no longer invariant. Nevertheless,
since we work with an irreducible Markov process on a finite state space, we know
that the invariant measure is unique. The characterization of this measure is so far out
of reach, and we leave this issue for a future work. That being said, we observe that,
from our hydrodynamic limit result, we cannot say anything when the system starts
from the stationary measure (the so called hydrostatic limit) in the case λ−(a) �=
λ+(a), a ∈ V0. Nevertheless, in a forthcoming article [10], we will show, in the
case b = 1, that the stationary density correlations vanish as N → ∞, from where
we conclude that the empirical measure converges to ρ̄(x) dm(x), where ρ̄(·) is the
stationary solution of the hydrodynamic equation.

Given the outstanding technical obstacles, we decide for the moment to analyze
the CLT for πN

t only in the case when λ+(ai) = λ+ and λ−(ai) = λ− for all i =
0, 1, 2. Then we start from the product Bernoulli measure νN

ρ where ρ = λ+/(λ+ +
λ−). We define the density fluctuation field YN

� which acts on test functions F as

YN
� (F ) = |VN | 1

2 (πN
t (F ) − EνN

ρ
[πN

t (F )]), where πN
t (F ) denotes the integral of

F with respect to the random measure πN
t (η). We prove that for a suitable space

of test functions, the density fluctuation fields converge to the unique solution of a
generalized (distribution-valued) Ornstein-Uhlenbeck equation on the gasket.

The method of proof goes, as in the hydrodynamic limit, by showing tight-
ness of the sequence {YN· }N and to characterize uniquely the limit point Y· as the
solution of an Ornstein-Uhlenbeck equation with the respective boundary condi-
tions (Section 8). Part of the proof also calls for several replacement lemmas at the
boundary (Section 5.4).

1.1.3 Generalizations and Open Problems

Now we comment on our chosen fractal, the Sierpinski gasket. In Section 9 we
describe possible generalizations of our work to other fractals. More precisely, the
results that we have obtained here can be adapted to other post-critically finite
self-similar fractals as defined in [2, 24], and more generally, to resistance spaces
introduced by Kigami [23]. What is most important for our proof to work is to have
discrete analogues of the Laplacians and of energy forms on the underlying graph,
and good rates of convergence of discrete operators to their continuous versions.
Meanwhile, we also need a method to perform local averaging of the particle den-
sity on a graph which lacks translational invariance. This is made possible through
a functional inequality called the moving particle lemma, which holds on any graph
approximation of a resistance space [9].

Regarding our choice of the interacting particle system, the exclusion process, we
believe that our proof can be carried out to more general dynamics with symmetric
rates or long-range interactions. Due to the length of the present paper, we leave
the details of these generalizations to a future work. On a historical note, Jara [21]
had studied the boundary-driven zero-range process on the Sierpinski gasket, and
obtained the density hydrodynamic limit using the H−1-norm method [8, 19].
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We also point out that a natural extension of the fluctuations result to the non-
equilibrium setting is due to appear soon [10], and the main issue is to have
quantitative decay of the two-point space-time correlations in the exclusion process.
As a result we will prove the aforementioned hydrostatic limit.

Organization of the Paper In Section 2 we formally define the boundary-driven
exclusion process on the Sierpinski gasket. In Section 3 we state the hydrody-
namic limit theorem for the empirical density (Theorem 1), exhibiting the three limit
regimes: Neumann, Robin, and Dirichlet. In Section 4 we state the convergence of the
equilibrium density fluctuation field to the Ornstein-Uhlenbeck equation with appro-
priate boundary condition (Theorem 2). In Section 5 we establish several replacement
lemmas on the Sierpinski gasket, which form the technical core of the paper. We then
prove Theorem 1 in Sections 6 and 7, and Theorem 2 in Section 8. Generalizations
to mixed boundary conditions on SG, as well as to other state spaces, are described
in Section 9. Appendix A addresses the solution of Laplace’s equation on SG in the
Robin regime.

2 Model

2.1 Sierpinski Gasket

Consider the iterated function system (IFS) consisting of three contractive similitudes
Fi : R2 → R

2 given by Fi (x) = 1
2 (x − ai) + ai , i ∈ {0, 1, 2}, where {ai}2

i=0 are
the three vertices of an equilateral triangle of side 1. The Sierpinski gasket K is the
unique fixed point under this IFS: K = ⋃2

i=0 Fi (K). Set V0 = {a0, a1, a2}. Given
a word w = w1w2 . . . wj of length |w| = j drawn from the alphabet {0, 1, 2}, we
define Fw := Fw1 ◦ Fw2 ◦ · · · ◦ Fwj

. Set Kw := Fw(K), which we call a j -cell if
|w| = j . Also set VN := ⋃

|w|=N Fw(V0), and V∗ := ⋃
N≥0 VN . We then introduce

the approximating Sierpinski gasket graph of level N , GN = (VN, EN), where two
vertices x and y are connected by an edge (denoted xy ∈ EN or x ∼ y) iff there
exists a word w of length N such that x, y ∈ Fw(V0).

Let mN be the uniform measure on VN , charging each vertex x ∈ VN a mass
|VN |−1 = ( 3

2 (3N +1))−1: this explains the appearance of the prefactor 2
3 in the results

to follow. It is a standard argument that mN converges weakly to m, the self-similar
(finite) probability measure on K , which is a constant multiple of the dH -dimensional
Hausdorff measure with dH = log2 3 in the Euclidean metric. From now on we fix
our measure space (K, m).

To obtain a diffusion process on (K, m), we take the scaling limit of random walks
on GN accelerated by 5N . To be precise, the expected time for a random walk {XN

t :
t ≥ 0} started from a0 to hit {a1, a2} equals 5N on GN : this is a simple one-step
Markov chain calculation which can be found in e.g. [2, Lemma 2.16]. It is by now
a well-known result [3] that the sequence of rescaled random walks {XN

t5N : t ≥ 0}N
is tight in law and in resolvent, and converges to a unique (up to deterministic time
change) Markov process {Xt : t ≥ 0} on K .
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Remark 2.1 As a reminder and a comparison, if {XN
t : t ≥ 0} denotes the symmetric

simple random walk on the d-dimensional grid {0, 1
N

, . . . , N−1
N

, 1}d , then the family
of Markov processes {XN

N2t
: t ≥ 0}N∈N converges to the Brownian motion on the

unit cube [0, 1]d . Here the time scale is N2 and the mass scale is Nd .

In Section 3.1 below we will describe the corresponding analytic theory on the
Sierpinski gasket. The main reference is the monograph of Kigami [24], though
we should mention some of his earlier works [25, 26] which built up the analytic
framework.

2.2 Exclusion Process on the Sierpinski Gasket

The boundary-driven symmetric simple exclusion process (SSEP) on GN is a
continuous-time Markov process on �N := {0, 1}VN with generator

5NLN = 5N

(

Lbulk
N + 1

bN
Lboundary

N

)

, (2.1)

where for all functions f : �N → R,
(
Lbulk

N f
)

(η) =
∑

x∈VN

∑

y∈VN
y∼x

η(x)[1 − η(y)] [f (ηxy) − f (η)
]
, (2.2)

(
Lboundary

N f
)

(η) =
∑

a∈V0

[λ−(a)η(a) + λ+(a)(1 − η(a))] [f (ηa) − f (η)
]

. (2.3)

Here 5N is the aforementioned diffusive time scaling on SG; b > 0 is a scaling
parameter which indicates the inverse strength of the reservoirs’ dynamics relative to
the bulk dynamics; λ+(a) > 0 (resp. λ−(a) > 0) is the birth (resp. death) rate of
particles at the boundary vertex a ∈ V0, and is fixed for all N ;

ηxy(z) =
⎧
⎨

⎩

η(y), if z = x,

η(x), if z = y,

η(z), otherwise.
and ηa(z) =

{
1 − η(a), if z = a,

η(z), otherwise.
(2.4)

See Fig. 2 for a schematic. For convenience, we denote the sum of the boundary birth
and death rates at a ∈ V0 by λ�(a) := λ+(a) + λ−(a).

For the rest of the paper, we fix a time horizon T > 0, and denote by PμN
the

probability measure on the Skorokhod space D([0, T ], �N) induced by the Markov
process {ηN

t : t ≥ 0} with infinitesimal generator 5NLN and initial distribution μN .
Expectation with respect to PμN

is written EμN
.

3 Hydrodynamic Limits: Statement of Results

In this section we first summarize the analytic theory on the Sierpinski gasket
(Section 3.1), then introduce the partial differential equations which will be derived
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(Section 3.2), and finally state and explain the hydrodynamic limits for our exclusion
processes (Sections 3.3∼3.4).

3.1 Laplacian, Dirichlet forms, and Integration by parts

We introduce the following operators on functions f : K → R,

(discrete Laplacian) (�Nf )(x) = 5N
∑

y∈VN
y∼x

(f (y) − f (x)) for x ∈ VN \ V0, (3.1)

(outward normal derivative) (∂⊥
N f )(a) = 5N

3N

∑

y∈VN \V0
y∼a

(f (a) − f (y)) for a ∈ V0. (3.2)

Note the appearance of the diffusive time scale factor 5N in both expressions. We
also introduce the Dirichlet energy defined on f : K → R by

EN(f ) = 5N

3N

1

2

∑

x∈VN

∑

y∈VN
y∼x

(f (x) − f (y))2, (3.3)

and the symmetric quadratic form defined on f, g : K → R by EN(f, g) :=
1
4 [EN(f + g) − EN(f − g)]. It is direct to verify the following summation by parts
formula:

EN(f, g) = 1

|VN |
∑

x∈VN\V0

(

−3

2
�Nf

)

(x)g(x) +
∑

a∈V0

(∂⊥
N f )(a)g(a). (3.4)

From Kigami’s theory of analysis on fractals [24], it is known that the aforemen-
tioned identities have “continuum” analogs in the limit N → ∞. This relies upon the
fact that, for each fixed f : K → R, the sequence {EN(f )}N is monotone increasing,
so it either converges to a finite limit or diverges to +∞. We thus define

E(f ) = lim
N→∞ EN(f ) (3.5)

with natural domain

F := {f : K → R : E(f ) < +∞}. (3.6)

As before we use the polarization formular to define E(f, g) = 1
4 (E(f +g)−E(f −

g)). Based on the energy, we can give a weak formulation of the Laplacian.

Remark 3.1 As a reminder, the domain of the Laplacian on a bounded Euclidean
domain � ⊂ R

d with smooth boundary ∂� is defined in the same way as in Defini-

tion 3.2: We say that u ∈ dom� if there exists f ∈ C(�) such that
∫

�

∇u ·∇ϕ dx =
∫

�

f ϕ dx for all ϕ ∈ H 1
0 (�).
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Definition 3.2 (Laplacian) Let dom� denote the space of functions u ∈ F for which
there exists f ∈ C(K) such that

E(u, ϕ) =
∫

K

f ϕ dm for all ϕ ∈ F0 := {g ∈ F : g|V0 = 0}, (3.7)

We then write −�u = f , and call dom� the domain of the Laplacian.

Note that dom� � F . We also set dom�0 := {u ∈ dom� : u|V0 = 0}.
A pointwise formulation of the Laplacian is also available, and agrees with Def-

inition 3.2. The following Lemma will be used repeatedly in this paper. For more
details the reader is referred to [24, Section 3.7] or [36, Section 2.2].

Lemma 3.3 ([24, 36]) If u ∈ dom�, then:

(1) 3
2�Nu → �u uniformly on K \ V0.

(2) For every a ∈ V0, (∂⊥u)(a) := limN→∞(∂⊥
N u)(a) exists.

(3) (Integration by parts formula)

E(u, ϕ) =
∫

K

(−�u)ϕ dm +
∑

a∈V0

(∂⊥u)(a)ϕ(a) for all ϕ ∈ F . (3.8)

Compare (3.4) with f = u ∈ dom� and g = ϕ ∈ F and (3.8): Since the self-
similar measure m charges zero mass to points, when taking the limit of (3.4) as
N → ∞, the first term on the right-hand side converges to

∫
K\V0

(−�u)ϕ dm =
∫
K

(−�u)ϕ dm.
The domain on which the Laplacian is self-adjoint will vary with the boundary

conditions imposed on V0; see (4.11) below.
Finally, for f, g : K → R set

E1(f, g) := E(f, g) + 〈f, g〉L2(K,m). (3.9)

Then F endowed with the inner product E1(·, ·) is a Hilbert space. This allows us
to further define the space L2(0, T ,F), which is the space where our solutions will
live. For F,G : [0, T ] × K → R define

〈F,G〉L2(0,T ,F) :=
∫ T

0
E1(Fs, Gs) ds, ‖F‖L2(0,T ,F) :=

(∫ T

0
E1(Fs) ds

)1/2

.

(3.10)
Then L2(0, T ,F) with the inner product 〈·, ·〉L2(0,T ,F) is a Hilbert space.

3.2 Weak Formulation of the Heat Equations

In this section we state the relevant heat equations. Let us preface with two remarks:
First, the appearance of 2

3 in the Laplacian is due to the convergence �Nu → 2
3�u,

see Lemma 3.3-(1); and second, in the boundary conditions to follow, g and r are
given R-valued functions with domain V0.
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Definition 3.4 (Heat equation with Dirichlet boundary condition) We say that ρ is a
weak solution to the heat equation with Dirichlet boundary conditions started from a
measurable function � : K → [0, 1],

⎧
⎨

⎩

∂tρ(t, x) = 2
3�ρ(t, x), t ∈ [0, T ], x ∈ K \ V0,

ρ(t, a) = g(a), t ∈ (0, T ], a ∈ V0,

ρ(0, x) = �(x), x ∈ K,

(3.11)

if the following conditions are satisfied:

(1) ρ ∈ L2(0, T ,F).
(2) ρ satisfies the weak formulation of (3.11): for any t ∈ [0, T ] and F ∈

C([0, T ], dom�0) ∩ C1((0, T ), dom�0),

�Dir(t) :=
∫

K

ρt (x)Ft (x) dm(x) −
∫

K

�(x)F0(x) dm(x)

−
∫ t

0

∫

K

ρs(x)

(
2

3
� + ∂s

)

Fs(x) dm(x) ds

+ 2

3

∫ t

0

∑

a∈V0

g(a)(∂⊥Fs)(a) ds = 0.

(3.12)

(3) ρ(t, a) = g(a) for a.e. t ∈ (0, T ] and for all a ∈ V0.

Definition 3.5 (Heat equation with Robin boundary condition) We say that ρ is a
weak solution to the heat equation with Robin boundary condition started from a
measurable function � : K → [0, 1],

⎧
⎨

⎩

∂tρ(t, x) = 2
3�ρ(t, x), t ∈ [0, T ], x ∈ K \ V0,

∂⊥ρ(t, a) = −r(a)(ρ(t, a) − g(a)), t ∈ (0, T ], a ∈ V0,

ρ(0, x) = �(x), x ∈ K,

(3.13)

if the following conditions are satisfied:

(1) ρ ∈ L2(0, T ,F).
(2) ρ satisfies the weak formulation of (3.13): for any t ∈ [0, T ] and F ∈

C([0, T ], dom�) ∩ C1((0, T ), dom�),

�Rob(t) :=
∫

K

ρt (x)Ft (x) dm(x) −
∫

K

�(x)F0(x) dm(x)

−
∫ t

0

∫

K

ρs(x)

(
2

3
� + ∂s

)

Fs(x) dm(x) ds

+ 2

3

∫ t

0

∑

a∈V0

[
ρs(a)(∂⊥Fs)(a) + r(a)(ρs(a)

−g(a))Fs(a)] ds = 0.

(3.14)

Definition 3.6 (Heat equation with Neumann boundary condition) We say that ρ is
a weak solution to the heat equation with Neumann boundary condition started from
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a measurable function � : K → [0, 1] if ρ satisfies Definition 3.5 with r(a) = 0 for
all a ∈ V0.

Lemma 3.7 There exists a unique weak solution of (3.11) (resp. (3.13)) in the sense
of Definition 3.4 (resp. Definition 3.5).

Proof See Section 7.

3.3 Hydrodynamic Limits

Definition 3.8 We say that a sequence of probability measures {μN }N≥1 on �N is
associated with a measurable density profile � : K → [0, 1] if for any continuous
function F : K → R and any δ > 0,

lim
N→∞ μN

⎛

⎝η ∈ �N :
∣
∣
∣
∣
∣
∣

1

|VN |
∑

x∈VN

F (x)η(x) −
∫

K

F(x)�(x) dm(x)

∣
∣
∣
∣
∣
∣
> δ

⎞

⎠ = 0.

(3.15)

We now state our first main theorem, the law of large numbers for the particle
density. Given the process {ηN

t : t ≥ 0} generated by 5NLN , we define the empirical
density measure πN

t by

πN
t = 1

|VN |
∑

x∈VN

ηN
t (x)δ{x}. (3.16)

We then denote the pairing of πN
t with a continuous function F : K → R by

πN
t (F ) = 1

|VN |
∑

x∈VN

ηN
t (x)F (x). (3.17)

Recall the notation introduced in the final paragraph of Section 2.2. Let M+ be the
space of nonnegative measures on K with total mass bounded by 1. Then we denote
by QN the probability measure on the Skorokhod space D([0, T ],M+) induced by
{πN

t : t ≥ 0} and by PμN
. Lastly, the stationary density on the boundary is defined as

ρ̄(a) := λ+(a)
λ�(a)

for a ∈ V0. (3.18)

Theorem 1 (Hydrodynamic limits) Let � : K → [0, 1] be measurable, and {μN }N
be a sequence of probability measures on �N which is associated with �. Then for
any t ∈ [0, T ], any continuous function F : K → R, and any δ > 0, we have

lim
N→∞QN

(

πN· ∈ D([0, T ],M+) :
∣
∣
∣
∣π

N
t (F ) −

∫

K

F(x)ρ(t, x) dm(x)

∣
∣
∣
∣>δ

)

= 0,

(3.19)
where ρ is the unique weak solution of:

• the heat equation with Dirichlet boundary condition with g(a) = ρ̄(a) (Defini-
tion 3.4), if b < 5/3;
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• the heat equation with Robin boundary condition (Definition 3.5) with g(a) =
ρ̄(a) and r(a) = λ�(a), if b = 5/3;

• the heat equation with Neumann boundary condition (Definition 3.6), if b > 5/3.

In a nutshell, Theorem 1 states that the empirical measures πN
t concentrate on

trajectories which are absolutely continuous with respect to the self-similar probabil-
ity measure m, and whose density ρt follows the unique weak solution of the heat
equation with appropriate boundary conditions.

3.4 Heuristics for Hydrodynamic Equations

In the introduction Section 1, we explained the rationale behind the emergence of the
three scaling regimes, and briefly mentioned the stationary measure of the process.
To emphasize: If ρ̄(a) is not identical for all a ∈ V0, then the stationary measure
μN

ss is not product Bernoulli. At best we can characterize the k-point correlations of
μN

ss : for k = 1, we have the one-site martingals ρN
ss (x) := EμN

ss
[ηN

t (x)], x ∈ VN ;

and for k = 2, we have the two-point correlations ϕN
ss (x, y) := EμN

ss
[(ηN

t (x) −
ρN

ss (x))(ηN
t (y) − ρN

ss (y))], x, y ∈ VN . These are addressed in the upcoming work
[10].

Now we would like to explain heuristically why the values of the boundary den-
sities are g(a) = ρ̄(a) in the Dirichlet case, per Theorem 1. Consider the particle
current of the system. In the bulk, the measure on the gasket is uniform, and the
exclusion process has symmetric rates, so these translate into a current of zero inten-
sity. At each boundary vertex a ∈ V0, due to the difference between the injection
rate λ+(a)(1 − η(a)) and the ejection rate λ−(a)η(a), a nonzero current ja(η) =
λ−(a)η(a) − λ+(a)(1 − η(a)) emerges. Nevertheless, we expect that at stationar-
ity this current should be 0. If we denote the average with respect to the stationary
measure by 〈·〉, then in the N → ∞ limit we expect

0 = 〈ja(η)〉 = 〈λ−(a)η(a) − λ+(1 − η(a)〉 ≈ λ−(a)ρ(a) − λ+(a)(1 − ρ(a)),

and this gives ρ(a) = ρ̄(a).
With the above results in mind, we turn to the proof method for deriving the afore-

mentioned weak solutions to the heat equations. This is based on the analysis of
martingales associated with the empirical density measure. In order to simplify the
exposition, let us fix a time-independent function F : K → R. By Dynkin’s formula,
cf. [28, Appendix A, Lemma 1.5.1], the process

MN
t (F ) = πN

t (F ) − πN
0 (F ) −

∫ t

0
5NLNπN

s (F ) ds (3.20)

is a martingale with respect to the filtration generated by {πN
s (F ) : s ≤ t}, and has

quadratic variation

〈MN(F)〉t =
∫ t

0
5N

[

LN

(
πN

s (F )
)2 − 2πN

s (F )LNπN
s (F )

]

ds. (3.21)
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An elementary calculation shows that

5NLNπN
t (F ) = 1

|VN |
∑

x∈VN\V0

ηN
t (x)(�NF)(x) (3.22)

− 3N

|VN |
∑

a∈V0

[

ηN
t (a)(∂⊥

N F)(a) + 5N

3NbN
λ�(a)(ηN

t (a)−ρ̄(a))F (a)

]

.

Another simple computation shows that the quadratic variation writes as

〈MN(F)〉t =
∫ t

0

5N

|VN |2
∑

x∈VN

∑

y∈VN
y∼x

(ηN
s (x) − ηN

s (y))2(F (x) − F(y))2ds (3.23)

+
∫ t

0

∑

a∈V0

5N

bN |VN |2 {λ−(a)ηN
s (a) + λ+(a)(1 − ηN

s (a))}F 2(a)ds.

Let us take a moment to discuss the boundary term in (3.22). If b ≥ 5/3, the
second term in the square bracket is at most of order unity, regardless of the value of
F(a). On the other hand, if b < 5/3, the scaling parameter 5N/(3NbN) diverges as
N → ∞. The only way to get around this is to impose F(a) = 0 for all a ∈ V0. This
analysis will inform us of the function space from which F is drawn.

With Lemma 3.3 in mind, we will now insist that the test function F belong to
dom�. By Part (1) of the lemma, �F := limN→∞ 3

2�NF is uniformly continuous
on K \V0, a precompact set. Therefore we can extend �F continuously from K \V0
to K , and we denote the continuous extension by �F still. As a consequence, we can
rewrite the first term on the right-hand side of (3.22) as

1

|VN |
∑

x∈VN\V0

ηN
t (x)(�NF)(x) = 1

|VN |
∑

x∈VN\V0

ηN
t (x)

(
2

3
�F

)

(x)

+ 1

|VN |
∑

x∈VN\V0

ηN
t (x)

(

�NF − 2

3
�F

)

(x)

=
⎛

⎝ 1

|VN |
∑

x∈VN

ηN
t (x)

(
2

3
�F

)

(x)

− 1

|VN |
∑

a∈V0

ηN
t (a)

(
2

3
�F

)

(a)

⎞

⎠

+oN(1) = πN
t

(
2

3
�F

)

+ oN(1) (3.24)

as N → ∞. Above and in what follows, we use the notation oN(1) to represent a
function which vanishes in L1(PμN

) as N → ∞.
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Now suppose the test function is time-dependent: take F ∈ C([0, T ], dom�) ∩
C1((0, T ), dom�), and denote Ft = F(t, ·). Then by Dynkin’s formula and the
aforementioned arguments, we obtain that

MN
t (F ) := πN

t (Ft ) − πN
0 (F0) −

∫ t

0
πN

s

((
2

3
� + ∂s

)

Fs

)

ds

+
∫ t

0

3N

|VN |
∑

a∈V0

[

ηN
s (a)(∂⊥Fs)(a) + 5N

3NbN
λ�(a)(ηN

s (a)

−ρ̄(a))Fs(a)] ds + oN(1)

(3.25)

is a martingale with quadratic variation

〈MN(F)〉t =
∫ t

0

5N

|VN |2
∑

x∈VN

∑

y∈VN
y∼x

(ηN
s (x)−ηN

s (y))2(Fs(x) − Fs(y))2 ds

+
∫ t

0

∑

a∈V0

5N

bN |VN |2
(
λ−(a)ηN

s (a)+λ+(a)(1−ηN
s (a))

)
F 2

s (a) ds.

(3.26)

To deduce heuristically from the previous decompositions the notion of weak solu-
tions that appear in (3.12) and (3.14) for the corresponding regime of b, we argue as
follows. From the computations of Section 6.1, we will see that the martingale that
appears in (3.25) vanishes in L2(PμN

) as N → ∞. The third term on the right-hand
side of (3.25) will correspond to the third term on the right-hand side of both �Dir(t)

and �Rob(t). Now we argue for boundary terms for each regime of b. In the case
b < 5/3, F(a) = 0 for all a ∈ V0, so from Lemma 5.6 we easily obtain the remain-
ing term in the definition of �Dir(t). In the case b > 5/3, we easily see that the
term on the right-hand side inside the square brackets vanishes as N → ∞. To treat
the remaining term it is enough to recall the replacement Lemma 5.5. Finally, in the
Robin case b = 5/3, one repeats exactly the same procedure as in the two previous
cases. All the details can be found in Section 6.

4 EquilibriumDensity Fluctuations: Statement of Results

4.1 Equilibrium Density Fluctuations and Heuristics

To study the exclusion process at equilibrium, we set λ+(a) = λ+ > 0 and λ−(a) =
λ− > 0 for all a ∈ V0, and λ� = λ+ + λ−. Then it is easy to check that the product
Bernoulli measure νN

ρ with constant density ρ = λ+/λ� , i.e., νN
ρ {η ∈ �N : η(x) =

1} = ρ for every x ∈ VN , is reversible for the process {ηN
t : t ≥ 0}. In particular,

EνN
ρ
[ηN

t (x)] = ρ for all x ∈ VN and all t ≥ 0. Therefore the interesting problem is
to study fluctuations about this equilibrium density profile ρ.

We define the equilibrium density fluctuation field (DFF) YN· given by

YN
t (F ) = 1√|VN |

∑

x∈VN

η̄N
t (x)F (x), η̄N

t (x) := ηN
t (x) − ρ, (4.1)
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where the space of test functions F will be specified shortly. Note that the prefac-
tor 1/

√|VN | is consistent with the Central Limit Theorem scaling. Our goal now
is to show that the DFF converges, in a proper topology to be defined later on, to
an Ornstein-Uhlenbeck process Yt on K , with suitable boundary conditions which
depend on the regime of b.

Before formally stating our results, we give a heuristic explanation for the choice
of the space of test functions. To do that, we fix a time-independent function F , and
apply Dynkin’s formula to find that

MN
t (F ) := YN

t (F ) − YN
0 (F ) −

∫ t

0
5NLNYN

s (F ) ds (4.2)

is a martingale with respect to the filtration generated by {YN
s (F ) : s ≤ t}, and has

quadratic variation

〈MN(F )〉t =
∫ t

0
5N
(
LN [YN

s (F )]2 − 2YN
s (F )LNYN

s (F )
)

ds. (4.3)

We directly compute the generator term which gives

5NLNYN
t (F ) = 5N

√|VN |
∑

x∈VN

∑

y∈VN
y∼x

(ηN
t (y) − ηN

t (x))F (x)

+ 5N

bN
√|VN |

∑

a∈V0

(
−λ+ηN

t (a) + λ−(1 − ηN
t (a))F (a)

)
.

(4.4)

By making a change of variables and centering with respect to νN
ρ , we obtain

5NLNYN
t (F ) = 5N

√|VN |
∑

x∈VN\V0

∑

y∈VN
y∼x

(F (y) − F(x))η̄N
t (x)

+ 5N

√|VN |
∑

a∈V0

∑

y∈VN
y∼a

(F (y) − F(a))η̄N
t (a)

− 5N

bN
√|VN |λ�

∑

a∈V0

η̄N
t (a)F (a)

= YN
t (�NF) + oN(1) − 3N

√|VN |
×
∑

a∈V0

η̄N
t (a)

[

(∂⊥
N F)(a) + 5N

bN 3N
λ�F(a)

]

.

(4.5)
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This gives

MN
t (F ) = YN

t (F ) − YN
0 (F ) −

∫ t

0
YN

s (�NF) ds + oN(1)

+ 3N

√|VN |
∫ t

0

∑

a∈V0

η̄N
s (a)

[

(∂⊥
N F)(a) + 5N

bN 3N
λ�F(a)

]

ds.
(4.6)

Looking back at the previous display, we need to show that the last integral van-
ishes in some topology. Observe that, as in the hydrodynamics setting, for b < 5/3,
the test functions satisfy F(a) = 0 for all a ∈ V0. With this condition we still need
to control the term with the normal derivative in the last integral. At this point we use
the replacement Lemma 5.9, thereby closing the equation for the DFF as

MN
t (F ) =YN

t (F ) − YN
0 (F ) −

∫ t

0
YN

s (�NF) ds + oN(1). (4.7)

In all regimes of b, our goal is to choose suitable boundary conditions for the test
functions so that the previous equality holds. In the case b > 5/3, the test functions
satisfy (∂⊥F)(a) = 0 for all a ∈ V0. Therefore, by Lemma 3.3 and by control-
ling the rate of convergence of the discrete normal derivative to the continous normal
derivative, we can just bound the variables η(x) by 1, and to achieve our goal we
just need to control the term with F(a). This last term can be estimated from the
replacement Lemma 5.8. Finally, in the Robin case b = 5/3, the test function must
satisfy (∂⊥F)(a) = −λ�F(a) for all a ∈ V0. In this case the term inside the time
integral in Dynkin’s martingale vanishes as a consequence of Lemma 3.3, the con-
vergence of the discrete normal derivative to the continuous normal derivative, and
the replacement Lemma 5.10.

Remark 4.1 In order to prove tightness and uniqueness of the sequence {YN· }N , we
have to impose extra boundary conditions on the test functions; see (4.17) below.
But for the purpose of closing the equation for Dynkin’s martingale, the boundary
conditions mentioned in the last paragraph are sufficient.

Next we analyze the quadratic variation of Dynkin’s martingale. Another straight-
forward calculation yields that the martingale’s quadratic variation is given by

〈MN(F )〉t = 5N

|VN |
∫ t

0

∑

x∈VN

∑

y∈VN
y∼x

ηN
s (x)(1 − ηN

s (y))(F (x) − F(y))2 ds

+ 5N

bN |VN |
∫ t

0

∑

a∈V0

(
λ−ηN

s (a) + λ+(1 − ηN
s (a))

)
F 2(a) ds.

(4.8)

We note in passing that (4.8) is |VN |−1 times (3.26).
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As in the last section, let PμN
be the probability measure on D([0, T ], �N)

induced by the process {ηN
t : t ∈ [0, T ]} geneated by 5NLN and started from the ini-

tial measure μN . In the current setting, we take μN = νN
ρ and write P

N
ρ := PνN

ρ
, and

denote the corresponding expectation by E
N
ρ . It follows from a direct computation of

(4.8) that

E
N
ρ

[
|MN

t (F )|2
]

= 3N

|VN |2χ(ρ)t

⎡

⎣EN(F ) + 5N

3NbN
λ�

∑

a∈V0

F 2(a)

⎤

⎦ , (4.9)

where χ(ρ) = ρ(1 − ρ) is the conductivity in the exclusion process. The martingale
(4.7) together with (4.9) suggests that the density fluctuation field YN· satisfies a
discrete Ornstein-Uhlenbeck equation. Indeed, as mentioned previously, the second
goal of our work is to show that {YN· }N converges to an Ornstein-Uhlenbeck process
on K with suitable boundary condition.

4.2 Laplacian, Dirichlet Forms, and Heat Semigroups

Having provided the heuristics, we now set up the definitions and the analytic back-
ground. Recall the definition and the properties of the Laplacian �, Definition 3.2
and Lemma 3.3. According to our classification of the scaling regimes, we set, for
each b > 0,

�b =
⎧
⎨

⎩

�Dir, if b < 5/3,

�Rob, if b = 5/3,

�Neu, if b > 5/3.
(4.10)

These are the Laplacians with Dirichlet, Robin, and Neumann conditions on V0, with
respective domains

dom�Dir := {F ∈ dom� : F |V0 = 0} (= dom�0),

dom�Rob := {F ∈ dom� : (∂⊥F)|V0 = −λ�F |V0},
dom�Neu := {F ∈ dom� : (∂⊥F)|V0 = 0}.

(4.11)

Define the quadratic form

Eb(F, G) = E(F, G) + 1{b=5/3}
∑

a∈V0

λ�F(a)G(a), ∀F,G ∈ Fb (4.12)

where

Fb =
{
F, if b ≥ 5/3,

F0 (:= {F ∈ F : F |V0 = 0}), if b < 5/3.
(4.13)

In Lemmas 4.2 and 4.5 below, the results come directly from [24] in the cases
b < 5/3 and b > 5/3. The corresponding results for b = 5/3 can be obtained readily
by modifying the proofs.

Lemma 4.2 [24, Theorems 3.4.6 and 3.7.9]
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(1) (Eb,Fb) is a local regular Dirichlet form on L2(K, m), and the corresponding
non-negative self-adjoint operator Hb on L2(K, m) has compact resolvent.

(2) The operator Hb and the Laplacian −� agree on dom�b: Hb|dom�b
=

−�|dom�b
=: −�b. In fact, Hb is the Friedrichs extension of −� on

dom�b.

See [24, Appendix B] for a quick set of definitions on Dirichlet forms, and [15]
for more information about Dirichlet forms. The distinction between Hb and −�b

lies in their respective domains: the former has a larger domain than the latter. That
Hb has compact resolvent implies that Hb has pure point spectrum: let us denote the
eigenvalues of Hb in increasing order

0 ≤ λb
1 < λb

2 ≤ λb
3 ≤ · · · ≤ λb

n ≤ · · · ↑ +∞
and the corresponding eigenfunctions by {ϕb

n}n, with Hbϕ
b
n = λb

nϕ
b
n and ‖ϕb

n‖L2(m) =
1. Note that λb

1 = 0 iff b > 5/3, in which case ϕb
1 = 1.

We will invoke the eigenfunctions in Section 7 only. The eigenvalues do not play
an active role in this paper, though we briefly mention the Weyl asymptotics [14, 27]:
if #b(s) := #{j : λb

j ≤ s} denotes the eigenvalue counting function, and d = log 3
log(5/3)

,
then there exists a nonconstant periodic function G, bounded away from 0 and ∞
and independent of the boundary parameter b, such that

#b(s) = s
d

d+1 (G(log s) + o(1)) as s → ∞. (4.14)

This result along with Nash’s inequality underlies Lemma 4.5 below, which is needed
in Sections 7 and 8.2.

From standard arguments in functional analysis, Hb is associated with a unique
strongly continuous heat semigroup {Tb

t : t > 0} on L2(K, m), satisfying Tb
t Tb

s =
Tb

t+s for any t, s > 0, which is given by

HbF = lim
t↓0

Tb
t F − F

t
, ∀F ∈ dom(Hb).

In this sense Hb is the infinitesimal generator of the semigroup {Tb
t : t > 0}. In

particular,

Tb
t Hbf = HbTb

t f = lim
h↓0

Tb
t+hf − Tb

t f

h
, ∀f ∈ dom(Hb), (4.15)

where the limit is the strong limit in the Hilbert space L2(K, m). To summarize, we
have the following 1-to-1 correspondence:

(Eb,Fb) ←→ Hb ←→ {Tb
t : t > 0}. (4.16)

We now introduce the space of test functions Sb that is needed to prove Theorem
2. In what follows N0 := N ∪ {0}. Recall from Definition 3.2 that F ∈ dom� if
and only if �F ∈ C(K). For k ≥ 2, define inductively F ∈ dom(�k) if and only
if �kF ∈ C(K). We then set dom(�∞) = ∩kdom(�k). (This notion of smoothness
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has been introduced in e. g. [32, p1767], and can be regarded as the fractal analog of
C∞ ([0,1]).) Now set

Sb :=
⎧
⎨

⎩
F ∈ dom(�∞) : ∀k ∈ N0

⎧
⎨

⎩

(�kF )|V0 = 0 b < 5/3
∂⊥�kF |V0 = −λ∑(�kF )|V0 , b = 5/3
∂⊥�kF |V0 = 0 b > 5/3

⎫
⎬

⎭

⎫
⎬

⎭
. (4.17)

(Above the normal derivative (∂⊥�kF)|V0 is well defined by Lemma 3.3-(2).)
Endow Sb with the family of seminorms.

||F ||j := sup
{
|(�kF )(x)| : x ∈ K, 0 ≤ k ≤ j

}
, j ∈ N0. (4.18)

Lemma 4.3 Under the topology generated by {|| · ||j : j ∈ N0}, Sb is a closed
subspace of dom(�∞).

Proof Let {Fn}n∈N be a sequence in Sb converging to F with respect to {|| · ||j : j ∈
N0}. Set un = Fn−F . Then for every k ∈ N0, �kun → 0 uniformly on K . Moreover
we claim that the normal derivatives (∂⊥�kun)|V0 → 0 pointwise. This is because
by (3.7), E(�kun) = ∫

K
(−�k+1un)(�

kun)dm → 0 as N → ∞; and by (3.8),

E(�kun, ϕ) =
∫

K

(−�k+1un)ϕdm +
∑

a∈V0

(∂⊥�kun)(a)ϕ(a)

for every ϕ ∈ F . By Cauchy-Schwarz and the preceding argument, |E(�kun, ϕ)| ≤
[E(�kun)]1/2[E(ϕ)]1/2 → 0; and we also have

∫
K

(−�k+1un)ϕdm → 0. Thus
∑

a∈V0
(∂⊥�kun)(a)ϕ(a) → 0 for every ϕ ∈ F . Taking ϕ which assumes boundary

values ϕ(a0) = 1, ϕ(a1) = ϕ(a2) = 0 yields (∂⊥�kun)(a0) → 0, and likewise we
have (∂⊥�kun)(ai) → 0 for i ∈ {1, 2}. This shows that F ∈ Sb.

Proposition 4.4 Sb endowed with the topology generated by {|| · ||j : j ∈ N0} is a
nuclear Fréchet space.

Proof By adapting the arguments in Example 3 of III.8 and IV.9.7 in [33], we obtain
that dom(�∞) endowed with the topology generated by {|| · ||j : j ∈ N0} is a nuclear
Fréchet space. Since Sb is a closed subspace of dom(�∞) by Lemma 4.3, it is a
nuclear Fréchet space by III.7.4 in [33].

The following properties of the heat semigroup will be useful.

Lemma 4.5 [24, Theorem 5.1.7] The following hold for {Tb
t : t > 0}:

(1) Tb
t (L

1(K, m)) ⊂ dom�b for any t > 0.
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(2) Let u ∈ L1(K, m), and set u(t, x) = (Tb
t u)(x). Then u(·, x) ∈ C∞((0, ∞)) for

any x ∈ K . Moreover, ∂tu(t, x) = �bu(t, x) for any (t, x) ∈ (0, ∞) × K .

The next result says that Sb is left invariant by the action of �b and Tb
t for any

t > 0. This will be invoked in the proof of Lemma 8.5 in Section 8.2.

Corollary 4.6 If F ∈ Sb, then for any t > 0, Tb
t F ∈ Sb and �bTb

t F ∈ Sb.

Proof Suppose F ∈ Sb. By (4.17), �kF ∈ Sb for all k ∈ N. By Lemma 4.2-(2)
and (4.15) �k(Tb

t F ) = Tb
t (�

kF ) for all k ∈ N. Since Sb ⊂ L1(K, m), we deduce
from Lemma 4.5-(1) that Tb

t F ∈ dom�b. Combining these three observations, we
conclude that �k(Tb

t F ) = Tb
t (�

kF ) ∈ dom(�b) for all k ∈ N, i.e., Tb
t F ∈ Sb and

�Tb
t F ∈ Sb.

Lastly, we should mention that due to our scaling convention, we will use 2
3Hb to

generate the heat semigroup, which we denote as T̃b
t . All the above results still hold

modulo the substitution of Hb (resp. �) by 2
3Hb (resp. 2

3�).

4.3 Ornstein-Uhlenbeck Equations

Let S ′
b be the topological dual of Sb with respect to the topology generated by the

seminorms {‖ · ‖j : j ∈ N0}.

Definition 4.7 (Ornstein-Uhlenbeck equation) We say that a random element Y tak-
ing values in C([0, T ],S ′

b) is a solution to the Ornstein-Uhlenbeck equation on K

with parameter b if:

1. For every F ∈ Sb,

Mt (F ) = Yt (F ) − Y0(F ) − ∫ t

0 Ys

(
2
3�F

)
ds (4.19)

and Nt (F ) = (Mt (F ))2 − 2
3 2χ(ρ)tEb(F ) (4.20)

are Ft -martingales, where Ft := σ {Ys(F ) : s ≤ t} for each t ∈ [0, T ], and Eb

was defined in (4.12).
2. Y0 is a centered Gaussian S ′

b-valued random variable with covariance

E
b
ρ [Y0(F )Y0(G)] = χ(ρ)

∫

K

F(x)G(x) dm(x), ∀F,G ∈ Sb. (4.21)

Moreover, for every F ∈ Sb, the process {Yt (F ) : t ≥ 0} is Gaussian: the distri-
bution of Yt (F ) conditional upon Fs , s < t , is Gaussian with mean Ys(T̃

b
t−sF )

and variance
∫ t−s

0
2
3 2χ(ρ)Eb(T̃b

r F ) dr , where {T̃b
t : t > 0} is the heat semigroup

generated by 2
3Hb.

For notational simplicity, we have suppressed the dependence of Y on b.
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4.4 Convergence of Density Fluctuations to the Ornstein-Uhlenbeck Equations

For a fixed value of b, let QN,b
ρ be the probability measure on D([0, T ],S ′

b) induced
by the density fluctuation field YN· and by P

N
ρ (see bottom of p11). We are ready to

state the second main theorem of this paper.

Theorem 2 (Ornstein-Uhlenbeck limit of density fluctuations) The sequence {QN,b
ρ }N

converges in distribution, asN → ∞, to a unique solution of the Ornstein-Uhlenbeck
equation with boundary parameter b, in the sense of Definition 4.7.

Let us note that the existence of solutions to the Ornstein-Uhlenbeck equation fol-
lows from the tightness of the density fluctuation fields {YN· }N (Section 8.1), while
uniqueness of the solution is proved separately (Section 8.2).

Remark 4.8 (Comparison to 1D OU limit) In the case of the symmetric simple exclu-
sion process on the discrete interval {0, 1

N
, . . . , N−1

N
, 1} with boundary reservoirs

at {0, 1}, the following fluctuation results hold. Consider the Markov process gen-

erated by N2
(
Lbulk

N + N−θLboundary
N

)
where Lbulk

N and Lboundary
N are the analogs of

(2.2) and (2.3) on the discrete interval, and θ ∈ R. Suppose the reservoir rates are
λ+(0) = λ+(1) = λ+ > 0 and λ−(0) = λ−(1) = λ− > 0, so that the pro-
cess is reversible with respect to the product Bernoulli measure νN

ρ with constant

density ρ = λ+
λ++λ− . Then as N → ∞, the density fluctuation fields converge

in distribution to the unique solution of the 1D Ornstein-Uhlenbeck equation—
the analog of Definition 4.7 with: K = [0, 1]; 2

3 replaced by 1
2 ; �b replaced by

the second derivative operator �θ with Dirichlet (resp. Robin, Neumann) bound-
ary condition if θ < 1 (resp. θ = 1, θ > 1); and the energy Eb(F ) replaced by
Eθ (F ) = ∫

K
|F ′|2 dx + 1{θ=1}

∑
a∈{0,1}(λ+ + λ−)[F(a)]2. These results are sub-

sumed under the non-equilibrium fluctuation theorems of [29] (for θ = 0), [17] (for
θ > 0), and [6] (for θ < 0).

Remark 4.9 (Choice of the test function space Sb—follow up to Remark 4.1)

(1) In the analysis of exclusion processes on the 1D interval [0, 1] [13, 18] (resp.
the real line R [12]), the nuclear Fréchet space of choice is the completion of
C∞([0, 1]) (resp. C∞

c (R)) with respect to the seminorms

‖f ‖k := sup
x∈[0,1]

∣
∣
∣f (k)(x)

∣
∣
∣

(

resp. ‖f ‖k := sup
x∈R

∣
∣
∣f (k)(x)

∣
∣
∣

)

, k ∈ N0.

The nuclear Fréchet space structure is needed to prove tightness of YN· via
Mitoma’s theorem (Lemma 8.2).

(2) Our choice Sb for the space of test functions is dictated by the martingale prob-
lem arising from the particle system. First, the test function F must satisfy the
right boundary condition in order that the boundary term in MN

t (F ) vanishes as
N → ∞. Then, in order to prove tightness of {YN· }N , the integral term involv-
ing YN· (�F) should carry the same boundary condition as YN· (F ). Lastly, in
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the proof of uniqueness of the OU limit (Section 8.2), Lemma 8.5 requires
Corollary 4.6 that the action of the semigroup Tb

t leaves invariant the space of
test functions.

If the particle system does not involve boundary reservoirs, then the afore-
mentioned issue of the boundary condition does not exist, and one can
prove the convergence of YN· to the Ornstein-Uhlenbeck limit in the space
C([0, T ], H−k(K, m)), where H−k(K, m) is the negative-indexed Sobolev
space with a sufficiently large k > 0. See [28, Chapter 11] for details. The
boundary conditions and the convergence to OU are what forced us to choose
Sb as the test function space.

5 Replacement Lemmas

In this section we prove all the replacement lemmas that we need in this article. We
divide it into four subsections. Section 5.1 deals with some inequalities that will be
used in subsequent proofs. Section 5.2 is concerned with the relation between the
Dirichlet form and the carré du champ operator in the exclusion process, to be defined
ahead. In Sections 5.3 and 5.4 we present the replacement lemmas needed for the
hydrodynamics and density fluctuations, respectively.

5.1 Functional Inequalities

Given a finite set � and a function g : � → R, we denote the average of g over � by

Av�[g] = |�|−1
∑

x∈�

g(x).

An essential functional inequality we will need is the moving particle lemma,
stated and proved in [9, Theorem 1.1]. On SG this replaces the telescoping sum and
Cauchy-Schwarz arguments in the 1D case. For a discussion of the rationale behind
the moving particle lemma, see [9, Section 1.1].

Lemma 5.1 (Moving particle lemma) Let G = (V , E) be a finite connected graph
endowed with positive edge weights {cxy}xy∈E . Then for any f : {0, 1}V → R and
any product Bernoulli measure νρ with constant density ρ ∈ [0, 1] on {0, 1}V ,

1

2

∫

(f (ηxy)−f (η))2 dνρ(η) ≤ Reff(x, y)
1

2

∫ ∑

zw∈E

czw(f (ηzw) − f (η))2 dνρ(η), (5.1)

where

Reff(x, y) := sup

{
(h(x) − h(y))2

∑
zw∈E czw(h(z) − h(w))2

∣
∣
∣
∣ h : V → R

}

(5.2)

is the effective resistance between x and y.
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We will employ Lemma 5.1 in the special case where G = GN and the edge
weights cxy = 1 for all xy ∈ EN . Recall the product Bernoulli measure on {0, 1}VN

is written νN
ρ with a superscript N .

The other tools are known to practitioners of 1D exclusion processes. For the
density replacement lemmas (Section 5.3) and the density fluctuation replacement
lemmas (Section 5.4), the main inequalities used are the Feynman-Kac formula—see
[28, Appendix 1, Proposition 7.1] in the case of an invariant reference measure, and
[1, Lemma A.1] in the case of a non-invariant reference measure—and the Kipnis-
Varadhan inequality [28, Appendix 1, Proposition 6.1], respectively.

Last but not least, we will use the following estimate which is stated and proved
in [5, Lemma 5.1].

Lemma 5.2 Let T : �N → �N be a transformation, ω : �N → R+ be a positive
local function, and f be a density with respect to a probability measure μ on �N .
Then

〈
ω(η)

(√
f (T (η))−√f (η)

)
,
√

f (η)
〉

μ
≤−1

4

∫

ω(η)
(√

f (T (η))−√f (η)
)2

dμ

+ 1

16

∫
1

ω(η)

(

ω(η)−ω(T (η))
dμ(T (η))

dμ(η)

)2 (√
f (T (η))+√f (η)

)2
dμ.

(5.3)

5.2 Exclusion Process Dirichlet Form Estimates

Given a function f : �N → R and a measure μ on �N , we define the carré du
champ operator by

�N(f, μ) :=
∫

1

2

∑

xy∈EN

(f (ηxy) − f (η))2 dμ(η) (5.4)

and the Dirichlet form by

〈√f , − LN

√
f 〉μ := 〈√f , −Lbulk

N

√
f 〉μ + 1

bN
〈√f , −Lboundary

N

√
f 〉μ.

The goal of this subsection is to obtain a quantitative comparison between the
Dirichlet form 〈√f ,−LN

√
f 〉μN

and the carré du champ �N(
√

f , μN) for specific
choices of the measure {μN }N .

Let us first take μN = νN
ρ , the product Bernoulli measure on �N with constant

density ρ.

Lemma 5.3 There exists a positive constant C = C
(
ρ, {λ±(a)}a∈V0

)
such that for

all N ∈ N,

〈√f ,−LN

√
f 〉νN

ρ
≥ �N(

√
f , νN

ρ ) − C

bN
. (5.5)

Proof A simple computation shows that
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〈√f ,−LN

√
f 〉νN

ρ
=
∫ ∑

x∈VN

∑

y∈VN
y∼x

η(x)(1 − η(y))
√

f (η)(
√

f (η)

−√f (ηxy)) dνN
ρ (η)

+ 1

bN

∫ ∑

a∈V0

[λ−(a)η(a) + λ+(a)(1 − η(a))]√f (η)×

×
(√

f (η) −√f (ηa)
)

dνN
ρ (η).

(5.6)

It is direct to verify that the first (bulk) term on the right-hand side equals the carré
du champ �N(

√
f , νN

ρ ). Then we use Lemma 5.2 to bound the second (boundary)
term from below by

1

bN

∑

a∈V0

⎛

⎝1

4

∫

ωa(η)
(√

f (ηa) −√f (η)
)2

dνN
ρ (η)

− 1

16

∫
1

ωa(η)

(

ωa(η)−ωa(η
a)

dνN
ρ (ηa)

dνN
ρ (η)

)2 (√
f (ηa)+√f (η)

)2
dνN

ρ (η)

⎞

⎠

(5.7)

with ωa(η) = λ−(a)η(a) + λ+(a)(1 − η(a)). The second term in the last expression
represents the error of replacing the boundary Dirichlet form by the boundary carré
du champ (the first term). We estimate it as follows. For each a ∈ V0, denote η =
(η(a); η̃) where η̃ represents the configuration except at a. Then

1

16

∫
1

ωa(η)

(

ωa(η) − ωa(η
a)

dνN
ρ (ηa)

dνN
ρ (η)

)2 (√
f (ηa) +√f (η)

)2
dνN

ρ (η)

≤ 1

8

∫
1

ωa(η)

(

ωa(η) − ωa(η
a)

dνN
ρ (ηa)

dνN
ρ (η)

)2
(
f (ηa) + f (η)

)
dνN

ρ (η)

= 1

8

∫
1

λ−(a)

(
λ�(a)(ρ − ρ̄(a))

ρ

)2

(f (0; η̃) + f (1; η̃)) ρ dνN
ρ (η̃)

+ 1

8

∫
1

λ+(a)

(
λ�(a)(ρ̄(a) − ρ)

1 − ρ

)2

(f (1; η̃) + f (0; η̃))(1−ρ) dνN
ρ (η̃)

= 1

8
(λ�(a))2

(
1

λ−(a)ρ
+ 1

λ+(a)(1 − ρ)

)

(ρ − ρ̄(a))2
∫

(f (0; η̃)

+ f (1; η̃)) dνN
ρ (η̃)

≤ C′(ρ, λ±(a))(ρ − ρ̄(a))2

(5.8)

Above we used the fact that f is a probability density with respect to νN
ρ to con-

clude that the integral in the penultimate display equals 1, so that we can choose the

positive constant C′(ρ, λ±(a)) := 1
8 (λ�(a))2

(
1

λ−(a)ρ
+ 1

λ+(a)(1−ρ)

)
in the last bound.

Putting these altogether, and using the fact that V0 is a finite set, yields (5.5).

Lemma 5.3 will be used to prove the boundary density replacement lemma
(Lemma 5.5) in the regime b ≥ 5/3. Unfortunately, this does not suffice to prove
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the analogous replacement lemma (Lemma 5.6) in the regime b < 5/3, because the
error term blows up as N → ∞. To address this issue, we have to take μN = νN

ρ(·),
where ρ(·) is a suitably chosen non-constant density profile such that the error term
vanishes as N → ∞. More precisely, we insist that the profile ρ(·) ∈ F satisfy
ρ(a) = ρ̄(a) for all a ∈ V0, and also

min
a∈V0

ρ̄(a) ≤ ρ(x) ≤ max
a∈V0

ρ̄(a). (5.9)

Corollary 5.4 With the choice of the profile ρ(·) stated above, there exists a positive
constant C′ = C′ (ρ(·), {λ±(a)}a∈V0

)
such that for all N ∈ N,

〈√f ,−LN

√
f 〉νN

ρ(·)
≥�N(

√
f , νN

ρ(·)) − C′(ρ)
∑

xy∈EN

(ρ(x) − ρ(y))2

+ 1

bN

1

2

∫ ∑

a∈V0

ωa(η)(
√

f (ηa)−√f (η))2 dνN
ρ(·)(η),

(5.10)

where ωa(η) = λ−(a)η(a) + λ+(a)(1 − η(a)).

Proof The proof proceeds in the same fashion as in Lemma 5.3 above. Note that with
our choice of ρ(·), the boundary part of the Dirichlet form equals a carré du champ:

| 1

bN
〈√f ,−Lboundary

N

√
f 〉νN

ρ(·)
= 1

bN

1

2

∫ ∑

a∈V0

ωa(η)
(√

f (ηa) −√f (η)
)2

dνN
ρ(·)(η) (5.11)

For the bulk part of the Dirichlet form, we apply Lemma 5.2 to find

〈√f ,−Lbulk
N

√
f 〉νN

ρ(·)
=2
∫ ∑

xy∈EN

(η(x) − η(y))2
√

f (η)
(√

f (η) −√f (ηxy)
)

dνN
ρ(·)(η)

≥ 1

2

∫ ∑

xy∈EN

(η(x) − η(y))2
(√

f (ηxy) −√f (η)
)2

dνN
ρ(·)(η)

− 1

8

∫ ∑

xy∈EN

(η(x) − η(y))2
(

1 − ρ(y)(1 − ρ(x))

ρ(x)(1 − ρ(y))
1{η(x)=1,η(y)=0}

−ρ(x)(1 − ρ(y))

ρ(y)(1 − ρ(x))
1{η(x)=0,η(y)=1}

)2

×
(√

f (ηxy) +√f (η)
)2

dνN
ρ(·)(η).

(5.12)
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The first term in the right-hand side of (5.12) equals �N(
√

f , νN
ρ(·)). For the second

term, or the error, in the right-hand side of (5.12), observe that for each xy ∈ EN , the
integrand is nonzero if and only if η(x) �= η(y), and that

1 − ρ(y)(1 − ρ(x))

ρ(x)(1 − ρ(y))
= ρ(x) − ρ(y)

ρ(x)(1 − ρ(y))
. (5.13)

Since ρ(·) satisfies (5.9), we can bound the second term in the right-hand side of
(5.12) from below by

− 1

8

∫ ∑

xy∈EN

(η(x) − η(y))2 (ρ(x) − ρ(y))2

(min (ρ(x)(1 − ρ(y)), ρ(y)(1 − ρ(x))))2

×
(√

f (ηxy) +√f (η)
)2

dνN
ρ(·)(η)

≥ −C(ρ)

4

∫ ∑

xy∈EN

(η(x) − η(y))2(ρ(x) − ρ(y))2(f (ηxy) + f (η)) dνN
ρ(·)(η)

≥ −C′(ρ)
∑

xy∈EN

(ρ(x) − ρ(y))2.

(5.14)
for a bounded positive constant C′(ρ). Putting all the estimates together, we obtain
(5.10).

5.3 Density Replacement Lemmas

In this subsection the initial measure μN is arbitrary. We also recall the definition of
a j -cell from Section 2.1.

Lemma 5.5 (Boundary replacement for the empirical density, b ≥ 5/3) For every
a ∈ V0, let Kj(a) denote the unique j -cell Kw, |w| = j , which contains a. Then

lim
j→∞ lim

N→∞EμN

[∣
∣
∣
∣

∫ t

0

(
ηN

s (a) − AvKj (a)∩VN
[ηN

s ]
)

ds

∣
∣
∣
∣

]

= 0. (5.15)

Proof Consider a bounded function g : �N → R. From the computations developed
in the proof of Lemma 5.3, and that b ≥ 5/3, we can use the entropy inequality,
and transfer the initial measure from μN to the product Bernoulli measure νN

ρ with
constant density profile ρ:

EμN

[∣
∣
∣
∣

∫ t

0
g(ηN

s ) ds

∣
∣
∣
∣

]

≤ Ent(μN |νN
ρ )

κ|VN | + 1
κ|VN | logEνN

ρ

×
[
exp

(
κ|VN |

∣
∣
∣
∫ t

0 g(ηN
s ) ds

∣
∣
∣
)]

(5.16)

for every κ > 0. For the first term on the right-hand side, we use an easy estimate
for the relative entropy that there exists C > 0 such that Ent(μN |νN

ρ ) ≤ C|VN |
for all N . Then we use the inequality e|z| ≤ max(ez, e−z) and the Feynman-Kac
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formula [1, Lemma A.1] to bound the logarithm in the second term on the right-hand
side by

max
{

largest eigenvalue of − 5NLN + κ|VN |g, largest eigenvalue of

−5NLN − κ|VN |g
}

,

where the operator g : �N → R is defined by gη = g(η). Thus

right-hand side(5.16) ≤ C
κ

+ supf

{∫ ±g(η)f (η) dνN
ρ (η)

− 5N

κ|VN | 〈
√

f ,−LN

√
f 〉νN

ρ

}
, (5.17)

where the supremum is taken over all probability densities f with respect to νN
ρ .

Without loss of generality we estimate the + case.
Let us now specialize to

g(η) = η(a) − AvB [η] = 1

|B|
∑

z∈B

(η(a) − η(z)), (5.18)

with B = Kj(a) ∩ VN , and ρ(·) = ρ ∈ (0, 1). Using a change of variables, followed
by the identity α2−β2 = (α+β)(α−β) and Young’s inequality 2xy ≤ Ax2+A−1y2

for any A > 0, we obtain
∫

g(η)f (η) dνρ(η) = 1

|B|
∑

z∈B

∫

(η(a) − η(z))f (η) dνN
ρ (η)

= 1

|B|
∑

z∈B

∫

(η(z) − η(a))f (ηza) dνN
ρ (η)

= 1

|B|
∑

z∈B

1

2

∫

(η(z) − η(a))(f (ηza) − f (η)) dνN
ρ (η)

= 1

2|B|
∑

z∈B

∫

(η(z) − η(a))(
√

f (ηza) +√f (η))(
√

f (ηza)

−√f (η)) dνN
ρ (η)

≤ 1

2|B|
∑

z∈B

(
Az

2

∫

(η(z) − η(a))2(
√

f (ηza) +√f (η))2

× dνN
ρ (η) + 1

2Az

∫

(
√

f (ηza) −√f (η))2 dνN
ρ (η)

)

(5.19)

for any family of positive numbers {Az}z∈B .
For the first term in the bracket in (5.19), we obtain an upper bound by using

(α + β)2 ≤ 2(α2 + β2) and the fact that f is a probability density:

1

2

∫ ∫

(η(z) − η(a))2(
√

f (ηza) +√f (η))2 dνN
ρ (η) ≤

∫

(η(z)

−η(a))2(f (ηza) + f (η)) dνN
ρ (η) ≤ 2. (5.20)
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For the second term in the bracket in (5.19), we use the moving particle Lemma 5.1
to get

1

2

∫

(
√

f (ηza) −√f (η))2 dνN
ρ (η) ≤ RN

eff(z, a)�N(
√

f , νN
ρ ), (5.21)

where RN
eff(x, y) denotes the effective resistance between x and y in the graph GN .

Since z, a ∈ B, we may bound RN
eff(z, a) from above by the diameter of B in the

effective resistance metric, diamRN
eff

(B). Altogether the expression (5.19) is bounded
above by

1

2|B|
∑

z∈B

(

AzC(ρ) + 1

Az

diamRN
eff

(B)�N(
√

f , νN
ρ )

)

. (5.22)

We then set 2Az = κ|VN |
5N diamRN

eff
(B) for all z ∈ B to bound the last expression from

above by

κ|VN |
5N

diamRN
eff

(B)C(ρ) + 5N

κ|VN |�N(
√

f , νN
ρ ). (5.23)

It is known (cf. [36, Lemma 1.6.1]) that there exists C > 0 such that diamRN
eff

(B) =
diamRN

eff
(Kj (a) ∩ VN) ≤ C(5/3)N−j for all N and j , so the first term tends to 0 in

the limit N → ∞ followed by j → ∞.
Recalling (5.5) and harkening to (5.17) and (5.23), we have that the left-hand side

of (5.16) is bounded above by

C

κ
+ sup

f

{
κ|VN |

5N
diamRN

eff
(Kj (a) ∩ VN)C(ρ) + 5N

κ|VN |�N(
√

f , νN
ρ )

− 5N

κ|VN |
(

�N(
√

f , νN
ρ ) − C′′(ρ)

bN

)}

≤ C

κ
+ κ|VN |

5N
diamRN

eff
(Kj (a) ∩ VN)C(ρ) + 1

κ

5N

|VN |bN
C′′(ρ).

(5.24)

When b > 5/3, the final term goes to 0 as N → ∞. When b = 5/3, the final term
tends to κ−1 times a constant as N → ∞. In any case, taking the limit N → ∞, then
j → ∞, and finally κ → ∞, the right-hand side of (5.24) tends to 0. This proves the
lemma.

Lemma 5.6 (Boundary replacement for the empirical density, b < 5/3) For every
a ∈ V0,

lim
N→∞EμN

[∣
∣
∣
∣

∫ t

0

(
ηN

s (a) − ρ̄(a)
)

ds

∣
∣
∣
∣

]

= 0. (5.25)

Proof As in the proof of Lemma 5.5, we use the entropy inequality to transfer the
initial measure from μN to νN

ρ(·), where not only ρ(·) ∈ F but also ρ(a) = ρ̄(a)

for all a ∈ V0. (As mentioned previously, we cannot use a constant density profile ρ

here because the bounds obtained in Lemma 5.3 will not be good enough to control
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the error term as N → ∞.) By the Feynman-Kac formula [1, Lemma A.1] and the
variational characterization of the largest eigenvalue, we obtain the estimate

EμN

[∣
∣
∣
∣

∫ t

0
(ηN

s (a) − ρ̄(a)) ds

∣
∣
∣
∣

]

≤ C

κ
+ sup

f

{∫

±(η(a) − ρ̄(a))f (η) dνN
ρ(·)(η)

− 5N

κ|VN | 〈
√

f ,−LN

√
f 〉νN

ρ (·)
}

, (5.26)

where the supremum is taken over all probability densities with respect to νN
ρ(·).

The first term in the variational functional reads
∫

(η(a) − ρ̄(a))f (η) dνN
ρ(·)(η)

=
∫

(1 − η(a) − ρ̄(a))f (ηa)
dνN

ρ(·)(ηa)

dνN
ρ(·)(η)

dνN
ρ(·)(η)

=
∫ (

−ρ̄(a)
1 − ρ̄(a)

ρ̄(a)
1{η(a)=1} + (1 − ρ̄(a))

ρ̄(a)

1 − ρ̄(a)
1{η(a)=0}

)

f (ηa) dνN
ρ(·)(η)

= −
∫

(η(a) − ρ̄(a))f (ηa) dνN
ρ(·)(η) =

∫

(η(a) − ρ̄(a))(f (η)

− f (ηa)) dνN
ρ(·)(η)

=
∫

(η(a) − ρ̄(a))(
√

f (η) +√f (ηa))(
√

f (η) −√f (ηa)) dνN
ρ(·)(η)

≤A

2

∫

(η(a) − ρ̄(a))2(
√

f (η) +√f (ηa))2 dνN
ρ(·)(η)

+ 1

2A

∫

(
√

f (η) −√f (ηa))2 dνN
ρ(·)(η)

(5.27)

for any A > 0, using Young’s inequality at the end. The first term on the last
expression can be bounded above by AC(ρ̄(a)), using the inequality (α + β)2 ≤
2(α2 + β2) and that f is a density with respect to νN

ρ(·). Indeed, let us write η =
(η(a); η̃) where η̃ denotes the configuration except at a. Then

A

2

∫

(η(a) − ρ̄(a))2(
√

f (η) +√f (ηa))2 dνN
ρ(·)(η)

≤A

∫

(η(a) − ρ̄(a))2(f (η) + f (ηa)) dνN
ρ(·)(η)

=A

(∫

(1 − ρ̄(a))2(f (0; η̃) + f (1; η̃))ρ̄(a) dνN
ρ(·)(η̃)

+
∫

ρ̄(a)2(f (1; η̃) + f (0; η̃))(1 − ρ̄(a)) dνN
ρ(·)(η̃)

)

=Aχ(ρ̄(a))

∫

(f (0; η̃) + f (1; η̃)) dνN
ρ(·)(η̃) ≤ AC(ρ̃(a)).

(5.28)
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Recalling Corollary 5.4, we can estimate (5.26) from above by

C

κ
+ sup

f

{

AC(ρ̄(a)) + 1

2A

∫

(
√

f (η) −√f (ηa))2 dνN
ρ(·)(η)

− 5N

κ|VN |

⎛

⎝�N(
√

f , νN
ρ(·)) − C′(ρ)

∑

xy∈EN

(ρ(x) − ρ(y))2

+ 1

bN

1

2

∫

ωa(η)
(√

f (ηa) −√f (η)
)2

dνN
ρ(·)(η)

)}

.

(5.29)

To obtain a further upper bound on (5.29), set A = 1
min(λ+(a),λ−(a))

κ|VN |bN

5N to

eliminate the boundary carré du champ, and replace �N(
√

f , νN
ρ(·)) with the crude

lower bound 0; that is, (5.29) is bounded above by

C

κ
+ 1

min(λ+(a), λ−(a))

κ|VN |bN

5N
C(ρ̄(a)) + 1

κ

5N

|VN |
∑

xy∈EN

(ρ(x) − ρ(y))2.(5.30)

Since b < 5/3, the second term tends to 0 as N → ∞. On the other hand, ρ ∈ F

implies that sup
N

5N

3N

∑

xy∈EN

(ρ(x) − ρ(y))2 < ∞, so the final term is bounded above

by κ−1 times a constant as N → ∞. Therefore (5.30) tends to 0 in the limit N → ∞
followed by κ → ∞. This proves the lemma.

Remark 5.7 In the proof of the replacement lemma for the 1D interval analogous to
our Lemma 5.6, cf. [16, Lemma 9 in Appendix A.4], it is assumed that the profile
ρ(·) is Lipschitz. Here we point out that it is enough to assume the weaker condition
that ρ(·) ∈ F . Indeed, on a compact resistance space (K, R) equipped with the effec-
tive resistance metric R, we have the inequality |g(x) − g(y)|2 ≤ R(x, y)E(g) ≤
diamR(K)E(g) for all g ∈ F . So any function in F is 1

2 -Hölder continuous with
respect to R. When K is the closed unit interval, R agrees with the Euclidean met-
ric, so we recover the well-known result that functions in H 1([0, 1]) have 1

2 -Hölder
regularity with respect to the Euclidean distance.

5.4 Density Fluctuation Replacement Lemmas

In this subsection we prove the replacement lemmas for the density fluctuation field
in the equilibrium setting, ρ̄(a) = ρ for all a ∈ V0. Thus the invariant measure is the
product Bernoulli measure νN

ρ , which is reversible for both the bulk generator Lbulk
N

and the boundary generator Lboundary
N .

Lemma 5.8 (Boundary replacement for the DFF, b > 5/3) For every a ∈ V0,

lim
N→∞E

N,b
ρ

[(∫ t

0

5N

bN
√|VN | η̄

N
s (a) ds

)2
]

= 0. (5.31)
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Proof By the Kipnis-Varadhan inequality [28, Appendix 1, Proposition 6.1], the
expectation on the left-hand side can be bounded above by

Ct sup
f ∈L2(νN

ρ )

{

2
∫

5N

bN
√|VN | η̄(a)f (η) dνN

ρ (η) − 5N 〈f, −LNf 〉νN
ρ

}

. (5.32)

Thanks to reversibility, we may rewrite the second term in the variational functional
in terms of carrés du champ with no error:

〈f, −LNf 〉νN
ρ

= �N(f, νN
ρ ) + 1

bN

∑

a′∈V0

1

2

∫

ωa′(η)(f (ηa′
)

−f (η))2 dνN
ρ (η) (5.33)

where ωa′(η) = λ−η(a′) + λ+(1 − η(a′)). For the ensuing estimate we discard the
bulk carré du champ and the boundary carré du champ except at a, that is:

〈f, −LNf 〉νN
ρ

≥ 1

bN

1

2

∫

ωa(η)(f (ηa) − f (η))2 dνN
ρ (η). (5.34)

On the other hand, we may write the first term in the variational functional as 5N

bN
√|VN |

times

2
∫

(η(a) − ρ)f (η) dνN
ρ (η) = 2

∫

(1 − η(a) − ρ)f (ηa)
dνN

ρ (ηa)

dνN
ρ (η)

dνN
ρ (η)

= 2
∫ (

−ρ
1 − ρ

ρ
1{η(a)=1} + (1 − ρ)

ρ

1 − ρ
1{η(a)=0}

)

f (ηa) dνN
ρ (η)

= −2
∫

(η(a) − ρ)f (ηa) dνN
ρ (η) =

∫

(η(a) − ρ)(f (η) − f (ηa)) dνN
ρ (η)

≤ A

2

∫

(η(a) − ρ)2 dνN
ρ (η) + 1

2A

∫

(f (η) − f (ηa))2 dνN
ρ (η)

(5.35)
for any A > 0. Now implement the estimates (5.34) and (5.35) into the varia-
tional functional in (5.32). To eliminate the boundary carré du champ at a, we set
A = 1

min(λ+,λ−)
1√|VN | , and this yields an upper bound on the variational functional in

(5.32):

1

min(λ+, λ−)

5N

2bN |VN |χ(ρ) + min(λ+, λ−)
5N

bN

1

2

∫

(f (η) − f (ηa))2 dνN
ρ (η)

− 5N

bN

1

2

∫

ωa(η)(f (ηa) − f (η))2 dνN
ρ (η)

≤ 1

min(λ+, λ−)

5N

2bN |VN |χ(ρ).

(5.36)
Since b > 5/3, the right-hand side goes to 0 as N → ∞. This proves the lemma.
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Lemma 5.9 (Boundary replacement for the DFF, b < 5/3) For every a ∈ V0,

lim
N→∞E

N,b
ρ

[(∫ t

0

3N

√|VN | η̄
N
s (a) ds

)2
]

= 0. (5.37)

Proof The proof is virtually identical to that of Lemma 5.8. The only difference is

in the scaling parameter, which is 3N√|VN | instead of 5N

bN
√|VN | . We follow the proof up

to (5.35), and then set A = 1
min(λ+,λ−)

3NbN

5N
√|VN | to eliminate the boundary carré du

champ at a. This yields

1

min(λ+, λ−)

32NbN

2|VN |5N
χ(ρ), (5.38)

as an upper bound on the variational functional. Since b < 5/3, the last expression
goes to 0 as N → ∞.

Lemma 5.10 (Boundary replacement for the DFF, b = 5/3) Let {βN }N be a
sequence of numbers tending to 0 as N → ∞. For every a ∈ V0,

lim
N→∞E

N,b
ρ

[(∫ t

0

3N

√|VN | η̄
N
s (a)βN ds

)2
]

= 0. (5.39)

Proof Follow the proof of Lemma 5.9 and set the same A. Then we obtain on the
variational functional an upper bound

1

min(λ+, λ−)

3N

2|VN |β2
Nχ(ρ), (5.40)

which tends to 0 as N → ∞.

6 Hydrodynamic Limits of the Empirical Density

In this section we rigorously prove Theorem 1. Throughout the proof, we fix a time
horizon T > 0, the boundary scaling parameter b, the initial density profile �,
and a sequence of probability measures {μN }N on �N associated with � (cf. Def-
inition 3.8). Recall that PμN

is the probability measure on the Skorokhod space
D([0, T ], �N) induced by the Markov process {ηN

t : t ≥ 0} with infinitesimal
generator 5NLN . Expectation with respect to PμN

is written EμN
.

Let M+ be the space of nonnegative measures on K with total mass bounded
by 1. Then we denote by QN the probability measure on the Skorokhod space
D([0, T ],M+) induced by {πN

t : t ≥ 0} and by PμN
. The proof proceeds as fol-

lows: we show tightness of the sequence {QN }N , and then we characterize uniquely
the limit point, by showing that it is a Dirac measure on the trajectory of mea-
sures dπt (x) = ρ(t, x) dm(x), where ρ(t, x) is the unique weak solution of the
corresponding hydrodynamic equation.
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6.1 Tightness

In this subsection we show that {QN }N is tight via the application of Aldous’
criterion.

Lemma 6.1 (Aldous’ criterion) Let (E, d) be a complete separable metric space.
A sequence {PN }N of probability measures on D([0, T ], E) is tight if the following
hold:

(A1) For every t ∈ [0, T ] and every ε > 0, there exists compact Kt
ε ⊂ E such that

sup
N

PN

(
Xt /∈ Kt

ε

) ≤ ε.

(A2) For every ε > 0,

lim
γ→0

lim
N→∞ sup

τ∈TT
θ≤γ

PN

(
d(X(τ+θ)∧T , Xτ ) > ε

) = 0,

where TT denotes the family of stopping times (with respect to the canonical
filtration) bounded by T .

By [28, Proposition 4.1.7], it suffices to show that for every F in a dense sub-
set of C(K), with respect to the uniform topology, the sequence of measures on
D([0, T ],R) that correspond to the R-valued processes πN

t (F ) is tight. Part (A1) of
Aldous’ criterion says that

lim
M→∞ sup

N

PμN

(
ηN· : |πN

t (F )| > M
)

= 0. (6.1)

This is directly verified using Chebyshev’s inequality and the exclusion dynamics
fact that the total mass of πN· is bounded above by 1. As for Part (A2) of Aldous’
criterion, we need to verify that for every ε > 0,

lim
γ→0

lim
N→∞ sup

τ∈TT
θ≤γ

PμN

(
ηN· :

∣
∣
∣πN

(τ+θ)∧T (F ) − πN
τ (F )

∣
∣
∣ > ε

)
= 0 (6.2)

To avoid an overcharged notation we shall write τ +θ for (τ +θ)∧T in what follows.
By (3.25) we have

πN
τ+θ (F ) − πN

τ (F ) =
(
MN

τ+θ (F ) − MN
τ (F )

)
+
∫ τ+θ

τ

πN
s

(
2

3
�F

)

ds

−
∫ τ+θ

τ

3N

|VN |
∑

a∈V0

[

ηN
s (a)(∂⊥F)(a) + 5N

3NbN
λ�(a)(ηN

s (a)

−ρ̄(a))F (a)] ds + oN(1)

(6.3)
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Denoting the last integral term as BN
τ,τ+θ (F ), it follows that

PμN

(∣
∣
∣πN

τ+θ (F ) − πN
τ (F )

∣
∣
∣ > ε

)
≤ PμN

(∣
∣
∣MN

τ+θ (F ) − MN
τ (F )

∣
∣
∣ >

ε

3

)

+ PμN

(∣
∣
∣
∣

∫ τ+θ

τ

πN
s

(
2

3
�F

)

ds

∣
∣
∣
∣ >

ε

3

)

+ PμN

(∣
∣
∣BN

τ,τ+θ (F )

∣
∣
∣ >

ε

3

)

≤ 9

ε2

(

EμN

[∣
∣
∣MN

τ+θ (F ) − MN
τ (F )

∣
∣
∣
2
]

+ EμN

[∣
∣
∣
∣

∫ τ+θ

τ

πN
s

(
2

3
�F

)

ds

∣
∣
∣
∣

2
]

+EμN

[∣
∣
∣BN

τ,τ+θ (F )

∣
∣
∣
2
])

(6.4)

where we used Chebyshev’s inequality at the end. Our goal is to show that all three
terms on the right-hand side of last display —the martingale term, the Laplacian term,
and the boundary term—vanish in the limit stated in (6.2).

Before carrying out the estimates, we comment on the space of test functions F .
When b ≥ 5/3, we take F from dom�, which is dense in C(K). When b < 5/3, we
take F from dom�0, which however is not dense in C(K). This will be addressed at
the end of the subsection.

6.1.1 The Martingale Term

We have

EμN

[∣
∣
∣MN

τ+θ (F ) − MN
τ (F )

∣
∣
∣
2
]

=EμN

[
〈MN(F)〉τ+θ − 〈MN(F)〉τ

]

=
(3.23)

EμN

⎡

⎢
⎢
⎣

∫ τ+θ

τ

5N

|VN |2
∑

x∈VN

∑

y∈VN
y∼x

(ηN
s (x) − ηN

s (y))2(F (x) − F(y))2 ds

⎤

⎥
⎥
⎦

+ EμN

⎡

⎣
∫ τ+θ

τ

∑

a∈V0

5N

bN |VN |2 {λ−(a)ηN
s (a) + λ+(a)(1 − ηN

s (a))}F 2(a) ds

⎤

⎦

≤Cθ

⎛

⎜
⎜
⎝

1

3N

5N

3N

∑

x,y∈VN
x∼y

(F (x) − F(y))2 + 5N

bN 32N

∑

a∈V0

max(λ+(a), λ−(a))F 2(a)

⎞

⎟
⎟
⎠

≤Cθ

⎛

⎝ 1

3N
EN(F ) + 5N

bN 32N

∑

a∈V0

F 2(a)

⎞

⎠ .

(6.5)

Since supN EN(F ) < ∞, the first term is oN(1). As for the second term, it is
oN(1) when b > 5/9. When b ≤ 5/9, we are in the Dirichlet regime and F(a) = 0
for all a ∈ V0, so the term vanishes anyway.
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6.1.2 The Laplacian Term

By Cauchy-Schwarz, that πN· has total mass bounded by 1, and that F ∈ dom�, we
obtain

EμN

[∣
∣
∣
∣

∫ τ+θ

τ

πN
s

(
2

3
�F

)

ds

∣
∣
∣
∣

2
]

≤ EμN

[

θ

∫ τ+θ

τ

∣
∣
∣
∣π

N
s

(
2

3
�F

)∣
∣
∣
∣

2

ds

]

≤ Cθ2
(

sup
x∈K

|�F(x)|
)2

≤ Cθ2. (6.6)

The right-hand side vanishes as θ → 0, so tightness of the Laplacian term follows.

6.1.3 The Boundary Term

When b > 5/3, the second term of the integrand of BN
τ,τ+θ (F ) is oN(1), and

EμN

[∣
∣
∣BN

τ,τ+θ (F )

∣
∣
∣
2
]

≤ Cθ2

⎛

⎝
∑

a∈V0

(∂⊥F)(a)

⎞

⎠

2

+ oN(1). (6.7)

When b = 5/3, both terms in the integrand of BN
τ,τ+θ (F ) contribute equally:

EμN

[∣
∣
∣BN

τ,τ+θ (F )

∣
∣
∣
2
]

≤ Cθ2

⎛

⎝
∑

a∈V0

(
(∂⊥F)(a) + F(a)

)
⎞

⎠

2

. (6.8)

When b < 5/3, the second term vanishes since F(a) = 0 for all a ∈ V0, and we have
the same estimate as (6.7) without the additive oN(1). In all cases the right-hand side
estimate vanishes as θ → 0, from which we obtain tightness of the boundary term.

We have thus far proved tightness of {QN }N for b ≥ 5/3. That said, there remains
a loose end in the case b < 5/3, since our test function space dom�0 is not uniformly
dense in C(K). To tackle this issue, we follow the L1-approximation scheme given
in [16, Section 2.9]. Note that dom�0 ⊂ F ⊂ L2(K, m) ⊂ L1(K, m), and that F is
dense in C(K). So it suffices to show that for any F ∈ F and any ε > 0,

lim
γ→0

lim
N→∞ sup

τ∈TT
θ≤γ

PμN

(
ηN· :

∣
∣
∣πN

τ+θ (F ) − πN
τ (F )

∣
∣
∣ > ε

)
= 0. (6.9)

Given F ∈ F , let Fk be a sequence in dom�0 which converges to F in L1(K, m).
Then

PμN

(
ηN· :

∣
∣
∣πN

τ+θ (F ) − πN
τ (F )

∣
∣
∣ > ε

)

≤ PμN

(
ηN· :

∣
∣
∣πN

τ+θ (F − Fk) − πN
τ (F − Fk)

∣
∣
∣ >

ε

2

)

+ PμN

(
ηN· :

∣
∣
∣πN

τ+θ (Fk) − πN
τ (Fk)

∣
∣
∣ >

ε

2

)
.

(6.10)

We have already shown that the second term on the right-hand side goes to 0 in the
stated limit. As for the first term, we use the triangle inequality, that πN· is bounded
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above by the uniform probability measure on VN , and the weak convergence of the
latter measure to the self-similar measure m on K , to get

∣
∣
∣πN

τ+θ (F − Fk) − πN
τ (F − Fk)

∣
∣
∣ ≤ 2

|VN |
∑

x∈VN

|F − Fk |(x) ≤ 2‖F − Fk‖L1(K,m) + oN(1).

(6.11)

The right-hand side vanishes in the limit N → ∞ followed by k → ∞. This
proves (6.9) and hence completes the proof of tightness.

6.2 Identification of Limit Points

Now that we have proved tightness of {QN }N , let Q denote a limit point of this
sequence. The goal of this subsection is to prove:

Proposition 6.2 For any limit point Q,

Q(π· : πt (dx) = ρt (x) dm(x), ∀t ∈ [0, T ]) = 1, (6.12)

where ρ ∈ L2(0, T ,F) is a weak solution of the heat equation with the appropriate
boundary condition.

In what follows we will fix one such limit point Q. For ease of notation, we will
suppress the subsequence subscript k from the notation. Alternatively one can assume
without loss of generality that QN converges to Q.

6.2.1 Characterization of Absolute Continuity

We first show that Q is concentrated on trajectories which are absolutely continuous
with respect to the self-similar measure m on K:

Q(π· : πt (dx) = π(t, x) dm(x), ∀t ∈ [0, T ]) = 1. (6.13)

To see this, fix a F ∈ C(K). Since there is at most one particle per site, we have that

sup
t∈[0,T ]

|πN
t (F )| ≤ 1

|VN |
∑

x∈VN

|F(x)|.

It follows that the map π· �→ supt∈[0,T ] |πt (F )| is continuous. Consequently, all limit
points are concentrated on trajectories π· such that

|πt (F )| ≤
∫

K

|F(x)| dm(x). (6.14)

To see that πt is absolutely continuous with respect to m, we will show that for any
set A ⊂ K , m(A) = 0 implies πt (A) = 0. Indeed, let {Fj }j be a sequence in
C(K) which converges to the indicator function 1A. Then the estimate (6.14) gives
|πt (A)| ≤ m(A), which is what we need to deduce (6.13).
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6.2.2 Characterization of the Initial Measure

Next we show that Q is concentrated on a Dirac measure equal to �(x) dm(x) at
time 0. Fix ε > 0 and F ∈ C(K). By the tightness result in the previous subsection
Section 6.1 and Portmanteau’s lemma, we have

Q

(∣
∣
∣
∣π0(F ) −

∫

K

F(x)�(x) dm(x)

∣
∣
∣
∣ > ε

)

≤ lim
N→∞QN

(∣
∣
∣
∣π

N
0 (F ) −

∫

K

F(x)�(x) dm(x)

∣
∣
∣
∣ > ε

)

= lim
N→∞ μN

⎛

⎝η ∈ �N :
∣
∣
∣
∣
∣
∣

1

|VN |
∑

x∈VN

F (x)η(x) −
∫

K

F(x)�(x) dm(x)

∣
∣
∣
∣
∣
∣
> ε

⎞

⎠ = 0,

(6.15)
since we assumed that {μN }N is associated with �, cf. Definition 3.8. This holds for
any ε > 0 and F ∈ C(K), so we obtain the desired claim.

6.2.3 Characterization of the Limit Density in L2(0, T ,F )

Next, we show that Q is concentrated on trajectories π· whose density ρ is in
L2(0, T ,F). This is a technical step, but is crucial to our mission of showing that ρ·
is a weak solution of the heat equation (as defined in Definitions 3.4 through 3.6).

Proposition 6.3 Q(π· : ρ ∈ L2(0, T ,F)) = 1.

To prove Proposition 6.3, we use a variational approach which is reminiscent of
the quadratic minimization principle in PDE theory.

Lemma 6.4 There exists κ > 0 such that

EQ

[

sup
F

{∫ T

0

∫

K

(−�Fs)(x)ρs(x) dm(x) ds − κ

∫ T

0
E(Fs) ds

}]

< ∞, (6.16)

where the supremum is taken over all F ∈ C([0, T ], dom�) with compact support in
[0, T ] × (K \ V0).

Remark 6.5 We invite the reader to compare the linear functional in (6.16) to the one
used in the 1D setting, e.g. [1, Lemma 5.11]. A key difference is that on SG we do not
have an easy notion of a 1st derivative (gradient); instead we appeal to the Laplacian.

Before proving Lemma 6.4, let us observe how Proposition 6.3 follows from the
lemma and the Riesz representation theorem.
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Proof of Proposition 6.3 assuming Lemma 6.4 Given a density ρ : [0, T ] × K →
[0, 1], define the linear functional �ρ : C([0, T ], dom�) → R by

�ρ(F ) =
∫ T

0

∫

K

(−�Fs)(x)ρs(x) dm(x) ds +
∫ T

0

∑

a∈V0

(∂⊥Fs)(a)ρs(a) ds. (6.17)

Observe that if we had known in advance that ρ ∈ L2(0, T ,F), then �ρ(F ) =
∫ T

0 E(Fs, ρs) ds by the integration by parts formula (Lemma 3.3-(3)). In fact we will
prove the reverse implication. For the rest of the proof all statements hold Q-a.s.

Let us assume that F has compact support in [0, T ] × (K \ V0), so the boundary
term in �ρ(F ) vanishes. On the one hand, Lemma 6.4 implies that there exists a
constant C = C(ρ) independent of F such that

�ρ(F ) − κ

∫ T

0
E(Fs) ds ≤ C. (6.18)

On the other hand, by (6.14) we have ‖ρt‖L2(K,m) ≤ 1 for every t ∈ [0, T ]. So by
Cauchy-Schwarz, for any κ > 0,

∫ T

0
〈Fs, ρs〉L2(K,m) ds − κ

∫ T

0
‖Fs‖2

L2(K,m)
ds

≤ −κ

∫ T

0

(

‖Fs‖L2(K,m) − 1

2κ

)2

ds + T

4κ
≤ T

4κ
. (6.19)

Adding (6.18) and (6.19) together, we see that
(

�ρ(F ) +
∫ T

0
〈Fs, ρs〉L2 ds

)

− κ‖F‖2
L2(0,T ,F)

≤ C′ := C + T

4κ
, (6.20)

the right-hand side being independent of F . Let us denote �1
ρ(F ) := �ρ(F ) +

∫ T

0 〈Fs, ρs〉L2(K,m) ds. Observe that we can apply the transformation F → αF for
any number α to get

α�1
ρ(F ) − α2κ‖F‖2

L2(0,T ,F)
≤ C′. (6.21)

Making the square on the left-hand side we obtain that

− κ‖F‖2
L2(0,T ,F)

(

α − �1
ρ(F )

2κ‖F‖2
L2(0,T ,F)

)2

+ (�1
ρ(F ))2

4κ‖F‖2
L2(0,T ,F)

≤ C′. (6.22)

Minimizing the left-hand side we find

�1
ρ(F ) ≤ (4κC′)1/2‖F‖L2(0,T ,F), (6.23)

which shows that �1
ρ is a bounded linear functional on all f ∈ C([0, T ], dom�) with

compact support in [0, T ] × (K \ V0).
Since dom� is E1-dense in F , and C([0, T ]) is dense in L2(0, T ), we can extend

�1
ρ via density to a bounded linear functional on the Hilbert space L2(0, T ,F). By
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the Riesz representation theorem, there exists R ∈ L2(0, T ,F) such that

�1
ρ(F ) = 〈F,R〉L2(0,T ,F) =

∫ T

0
E1(Fs,Rs) ds, ∀F ∈ L2(0, T ,F). (6.24)

By (6.17) and the integration by parts formula, deduce that for all F ∈
C([0, T ], dom�)

∫ T

0

∫

K

[(−�Fs)(x) + Fs(x)]ρs(x) dm(x) ds +
∫ T

0

∑

a∈V0

(∂⊥Fs)(a)ρs(a) ds

=
∫ T

0

∫

K

[(−�Fs)(x) + Fs(x)]Rs (x) dm(x) ds +
∫ T

0

∑

a∈V0

(∂⊥Fs)(a)Rs (a) ds.

(6.25)

Infer that ρ = R (m × dt)-a.e. on K × [0, T ], and also on V0 for a.e. t ∈ [0, T ].
This implies in particular that ρ = R in L2(0, T ,F).

Proof of Lemma 6.4 We focus on the case b ≥ 5/3. Given F ∈ C([0, T ], dom�)

with compact support in [0, T ]×(K \V0), construct a sequence {F i}i∈N, each having
compact support in [0, T ] × (K \ V0), that converges to F in the C([0, T ], dom�)-
norm. It then suffices to verify that there exists a constant C such that for every
n ∈ N,

EQ

[

max
1≤i≤n

{∫ T

0

∫

K

(−�Fi
s )(x)ρs(x) dm(x) ds − κ

∫ T

0
E(F i

s ) ds

}]

≤ C. (6.26)

Applying Portmanteau’s Lemma, we rewrite the left-hand side of (6.26) as

lim
N→∞EQN

[

max
1≤i≤n

{∫ T

0
πN

s (−�Fi
s ) ds − κ

∫ T

0
E(F i

s ) ds

}]

≤ lim
N→∞EμN

⎡

⎣ max
1≤i≤n

⎧
⎨

⎩

∫ T

0
− 3

2

1

|VN |
∑

x∈VN

ηN
s (x)(�NF i

s )(x) ds − κ

∫ T

0
E(F i

s ) ds

⎫
⎬

⎭

⎤

⎦

+ lim
N→∞EμN

⎡

⎣ max
1≤i≤n

∣
∣
∣
∣
∣
∣

∫ T

0

⎛

⎝3

2

1

|VN |
∑

x∈VN

ηN
s (x)(�NF i

s )(x) − πN
s (�F i

s )

⎞

⎠ ds

∣
∣
∣
∣
∣
∣

⎤

⎦ .

(6.27)

On the right-hand side, the second term vanishes by the convergence 3
2�NF i →

�Fi in C([0, T ] × (K \ V0)) and the argument in (3.24). So the main estimate is on
the first term on the right-hand side of (6.27). Upon applying the entropy inequality,
Jensen’s inequality, and the inequality exp (maxi ai) ≤ ∑

i eai , we can bound this
term from above by

Ent(μN |νN
ρ(·))

|VN | + 1

|VN | log

⎛

⎜
⎜
⎝

∑

1≤i≤j

EνN
ρ(·)

⎡

⎢
⎢
⎣exp

⎛

⎜
⎜
⎝|VN |

∫ T

0

5N

3N

∑

x∈VN

∑

y∈VN
y∼x

(F i
s (x)

−F i
s (y))ηN

s (x) ds + |VN |oN(1) − κ|VN |
∫ T

0
E(F i

s ) ds

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠ ,

(6.28)
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where the density ρ(·) is taken to be constant ρ. On the one hand, the first term
of (6.28) is bounded by a constant C independent of N . On the other hand, we also
need to bound the second term by a constant independent of N and F , which will be
proved in Lemma 6.6 below. The claim thus follows.

For the case b < 5/3 the arguments are identical except for the choice of the
density profile ρ(·) to derive (6.28). See again Lemma 6.6 below.

Lemma 6.6 Choose ρ(·) = ρ constant (resp. ρ(·) ∈ F such that it is bounded away
from 0 and from 1, and ρ(a) = ρ̄(a) for all a ∈ V0) if b ≥ 5/3 (resp. if b < 5/3).
Then there exists a positive constant C such that for all F ∈ C([0, T ], dom�) with
compact support in [0, T ] × (K \ V0),

lim
N→∞

1

|VN | logEνN
ρ(·)

⎡

⎢
⎢
⎣exp

⎛

⎜
⎜
⎝|VN |

⎛

⎜
⎜
⎝

∫ T

0

5N

3N

∑

x∈VN

∑

y∈VN
y∼x

(Fs(x) − Fs(y))ηN
s (x) ds

− κ

∫ T

0
E(Fs) ds

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦ ≤ C. (6.29)

Proof By the Feynman-Kac formula with respect to a non-invariant measure
[1, Lemma A.1], the expression under the limit in the left-hand side of (6.29) is
bounded above by

∫ T

0
sup
f

⎧
⎪⎪⎨

⎪⎪⎩

∫
5N

3N

∑

x∈VN

∑

y∈VN
y∼x

(Fs(x) − Fs(y))η(x)f (η) dνN
ρ(·)(η)

− κE(Fs) − 5N

|VN |
〈√

f ,−LN

√
f
〉

νN
ρ(·)

⎫
⎪⎪⎬

⎪⎪⎭
ds, (6.30)

where the supremum is taken over all probability densities f with respect to νN
ρ(·).

Observe that

∫
5N

3N

∑

x∈VN

∑

y∈VN
y∼x

(Fs(x) − Fs(y))η(x)f (η) dνN
ρ(·)(η)

=
∫

5N

3N

1

2

∑

x∈VN

∑

y∈VN
y∼x

(Fs(x) − Fs(y))(η(x) − η(y))f (η) dνN
ρ(·)(η)

= 5N

3N

1

2

∑

x∈VN

∑

y∈VN
y∼x

(Fs(x) − Fs(y))

(∫

η(x)f (η) dνN
ρ(·)(η) −

∫

η(x)f (ηxy) dνN
ρ(·)(η

xy)

)

,

(6.31)
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where we apply a change of variable η → ηxy in the last line.
Suppose b ≥ 5/3, so we choose ρ(·) = ρ constant. Then νN

ρ (ηxy) = νN
ρ (η), and

(6.31) rewrites as

5N

3N

1

2

∑

x∈VN

∑

y∈VN
y∼x

(Fs(x) − Fs(y))

∫

η(x)(f (η) − f (ηxy)) dνN
ρ (η)

=5N

3N

1

2

∑

x∈VN

∑

y∈VN
y∼x

(Fs(x) − Fs(y))

∫

η(x)(
√

f (η)

+√f (ηxy))(
√

f (η) −√f (ηxy)) dνN
ρ (η),

(6.32)

which, by Young’s inequality and (α + β)2 ≤ 2(α2 + β2), can be bounded above by

5N

3N

⎛

⎝
∑

xy∈EN

∫

A(η(x))2(Fs(x) − Fs(y))2(f (η) + f (ηxy)) dνN
ρ (η)

+
∑

xy∈EN

∫
1

2A
(
√

f (η) −√f (ηxy))2 dνN
ρ (η)

⎞

⎠

≤ 5N

3N

⎛

⎝2A
∑

xy∈EN

(Fs(x) − Fs(y))2 + 1

A
�N(

√
f , νN

ρ )

⎞

⎠

=2AEN(Fs) + 5N

3NA
�N(

√
f , νN

ρ )

(6.33)

for any A > 0. Combine with the lower estimate (5.5) of the Dirichlet form
〈√f ,−LN

√
f 〉νN

ρ
, and we find that (6.30) is bounded above by

∫ T

0
sup
f

{

2AEN(Fs) + 5N

3NA
�N(

√
f , νN

ρ ) − κE(Fs)

− 5N

|VN |�N(
√

f , νN
ρ ) + 5N

bN |VN |C
′′(ρ)

}

ds. (6.34)

To eliminate the dependence on f and F of the variational functional, we choose
A = limN→∞ 3−N |VN | = 3

2 and κ = 2A (recall that EN(F ) ↑ E(F )). This allows
us to further bound from above by the time integral of the last term, which is at most
of order unity.

Now suppose b < 5/3, so we choose ρ(·) ∈ F such that ρ(·) ∈ [δ, 1 − δ] for
some δ > 0, and that ρ(a) = ρ̄(a) for all a ∈ V0. Due to the nonconstancy of
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ρ(·), the argument following the change of variables performed in (6.31) has to be
modified:

∫

η(x)f (η) dνN
ρ(·)(η) −

∫

η(x)f (ηxy) dνN
ρ(·)(η

xy)

=
∫

η(x)

[

f (η) − f (ηxy)
dνN

ρ(·)(ηxy)

dνN
ρ(·)(η)

]

dνN
ρ(·)(η)

=
∫

η(x)

[

f (η) − f (ηxy)
ρ(y)(1 − ρ(x))

ρ(x)(1 − ρ(y))

]

dνN
ρ(·)(η)

=
∫

η(x)(f (η) − f (ηxy)) dνN
ρ(·)(η)

+ ρ(x) − ρ(y)

ρ(x)(1 − ρ(y))

∫

η(x)f (ηxy) dνN
ρ(·)(η).

(6.35)

We implement (6.35) into (6.31) and rewrite the latter as

5N

3N

1

2

∑

x∈VN

∑

y∈VN
y∼x

(Fs(x) − Fs(y))

∫

η(x)(
√

f (η) +√f (ηxy))(
√

f (η)

−√f (ηxy)) dνN
ρ(·)(η) (6.36)

+5N

3N

1

2

∑

x∈VN

∑

y∈VN
y∼x

(Fs(x)−Fs(y))
ρ(x) − ρ(y)

ρ(x)(1−ρ(y))

∫

η(x)f (ηxy) dνN
ρ(·)(η). (6.37)

The first term (6.36) is treated as in (6.32) through the first line of (6.33). Then we
will come across an integral which admits the estimate

∫

(η(x))2f (ηxy) dνN
ρ(·)(η) =

∫

(η(y))2 f (η)
dνN

ρ(·)(ηxy)

dνN
ρ(·)(η)

dνN
ρ(·)(η)

= ρ(x)(1 − ρ(y))

ρ(y)(1 − ρ(x))

∫

η(y)f (η) dνN
ρ(·)(η) ≤ δ−2.

(6.38)

In the above inequality we bound the numerator ρ(x)(1 − ρ(y)) from above by 1,
the denominator ρ(y)(1 − ρ(x)) from below by δ2, and the integral from above by∫

f (η) dνN
ρ(·)(η) = 1. Consequently (6.36) is bounded above by

A(1 + δ−2)EN(Fs) + 5N

3NA
�N(

√
f , νN

ρ(·)). (6.39)
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As for the second term (6.37), we use again that ρ(·) ∈ [δ, 1 − δ], that the integral∫
η(x)f (ηxy) dνN

ρ(·)(η) is bounded above by δ−2, and Young’s inequality to obtain
the upper bound

δ−4 5N

3N

1

2

∑

x∈VN

∑

y∈VN
y∼x

|Fs(x) − Fs(y)||ρ(x) − ρ(y)|

≤δ−4

2

5N

3N

⎛

⎜
⎜
⎝

1

2

∑

x∈VN

∑

y∈VN
y∼x

|Fs(x) − Fs(y)|2 + 1

2

∑

x∈VN

∑

y∈VN
y∼x

|ρ(x) − ρ(y)|2
⎞

⎟
⎟
⎠

=δ−4

2
(EN(Fs) + EN(ρ)) .

(6.40)

Finally recall the lower estimate (5.10) of the Dirichlet form 〈√f ,−LN

√
f 〉νN

ρ(·)
,

except that we will discard the final boundary contribution. Putting everything
together, we bound (6.30) from above by

∫ T

0
sup
f

{

A(1 + δ−2)EN(Fs) + 5N

3NA
�N(

√
f , νN

ρ(·))

+ δ−4

2
(EN(Fs) + EN(ρ)) − κE(Fs)

− 5N

|VN |�N(
√

f , νN
ρ(·)) + C′(ρ)

5N

|VN |
∑

xy∈EN

(ρ(x) − ρ(y))2

⎫
⎬

⎭
ds.

(6.41)

To eliminate the dependence on f and F of the variational functional, we choose

A = limN→∞ 3−N |VN | = 3
2 and κ = A(1 + δ−2) + δ−4

2 . This gives a further upper
bound in the form of the time integral of a constant multiple of E(ρ), which is finite
because ρ(·) ∈ F .

6.2.4 Characterization of the Limit Density

Having shown that Q is concentrated on trajectories whose m-density, ρ·, belongs
to L2(0, T ,F), we proceed to show that ρ· is a weak solution of the heat equa-
tion. Recall the definitions of �Dir(t) and �Rob(t) from (3.12) and (3.14), and the
statement of Theorem 1.

Proposition 6.7 Q (π· : �b(t) = 0, ∀t ∈ [0, T ], ∀F ∈ Db) = 1, where

�b(t)=
⎧
⎨

⎩

�Dir(t) with g(a) = ρ̄(a), ∀a ∈ V0, if b < 5/3,

�Rob(t) with g(a) = ρ̄(a), r(a) = λ�(a), ∀a ∈ V0, if b = 5/3,

�Rob(t) with r(a) = 0, ∀a ∈ V0, if b > 5/3,

(6.42)
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and

Db =
{

C([0, T ], dom�0) ∩ C1((0, T ), dom�0), if b < 5/3,

C([0, T ], dom�) ∩ C1((0, T ), dom�), if b ≥ 5/3.
(6.43)

Proof We present the full proof for the case b ≥ 5/3, which consists of several
approximation and replacement steps. The proof for the case b < 5/3 is simpler and
will be sketched at the end.

We want to show that for every δ > 0,

Q

(

π ∈ D([0, T ],M+) : sup
t∈[0,T ]

|�b(t)| > δ

)

= 0, (6.44)

where ρ in �b(t) should be understood as the m-density of π . There is however a
problem: the boundary terms involving ρ·(a) are not direct functions of π , so the
event in question is not an open set in the Skorokhod space. Therefore we cannot
apply Portmanteau’s lemma right away.

To address the issue we use two ideas from analysis. The first idea is local aver-
aging, that is, to replace ρ·(a) by π·(ιaj ), the pairing of the limit measure π· with the
approximate identity ιaj : K → R+ given by

ιaj (x) = 1

m(Kj (a))
1Kj (a)(x) (6.45)

where Kj(a) is the unique j -cell containing a. This is where we invoke Proposition
6.3, which implies that for a.e. t ∈ [0, T ], ρt is a (uniformly) continuous function on
K , and thus we have the trivial case of Lebesgue’s differentiation theorem

lim
j→∞ πt (ι

a
j ) = lim

j→∞
1

m(Kj (a))

∫

Kj (a)

ρt (y) dm(y)

= ρt (a) ∀a ∈ V0 and for a.e. t ∈ [0, T ]. (6.46)

This almost achieves what we want, except that ιaj is not a continuous function.
Thus comes the second idea, which is to approximate ιaj by a sequence of continuous

bump functions in L1(K, m). Here is an explicit construction. Denote the two other
corner vertices of Kj(a) by a

j

1 and a
j

2 . For each i = 1, 2, let Kk(a
j
i ) be the k-cell

which contains ai and intersects Kj(a) only at a
j
i , and label the two other corner

vertices of Kk(a
j
i ) by b

j,k

i,1 and b
j,k

i,2 . We then define ι̃aj,k : K → R+ by

ι̃aj,k(x) = 1

m(Kj (a))
×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, x ∈ Kj(a),

0, x /∈ Kj(a) ∪ Kk(a
j

1 ) ∪ Kk(a
j

2 ),

0, x ∈ {bj,k

1,1, b
j,k

1,2, b
j,k

2,1, b
j,k

2,2},
harmonic interpolation, x ∈ Kk(a

j

1 ) ∪ Kk(a
j

2 ).
(6.47)
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The harmonic interpolation from the boundary data {1, 0, 0} on {aj
i , b

j,k

i,1 , b
j,k

i,2 } to

Kk(a
j
i ) is based on the “ 1

5 - 2
5 ” algorithm [36, Section 1.3], and ensures that ι̃aj,k is

continuous. Moreover, for every j ∈ N we have

‖ι̃aj,k − ιaj‖L1(K,m) ≤ m(Kk(a
j

1 )) + m(Kk(a
j

2 ))

m(Kj (a))
= 2 · 3j−k −−−→

k→∞ 0.

It follows that for any nonnegative measure π on K with bounded density with
respect to m,

|π(ι̃aj,k) − π(ιaj )| �
∫

K

|ι̃aj,k − ιaj | dm −−−→
k→∞ 0. (6.48)

With these two ideas we can use Portmanteau’s Lemma to pass from π· to the
discrete empirical measure πN· . Note that

πN· (ιaj ) = 1

|VN |
1

m(Kj (a))

∑

x∈Kj (a)∩VN

ηN· (x)

= 1

|Kj(a) ∩ VN |
∑

x∈Kj (a)∩VN

ηN· (x) = AvKj (a)∩VN
[ηN· ]. (6.49)

The density replacement Lemma 5.5 states that (6.49) replaces ηN· (a) in L1(PμN
) as

N → ∞ then j → ∞.
In what follows, the order in which we will perform the replacements is

ρ·(a) −→ π·(ιaj ) −→ π·(ι̃aj,k)
in D([0,T ],M+)−−−−−−−−−→

Portmanteau
πN· (ι̃aj,k) −→ πN· (ιaj )

=AvKj (a)∩VN
[ηN· ] in L1(PμN

)−−−−−−−→
Replacement
Lemma 5.5

ηN· (a).
(6.50)

Starting with the first two steps in the replacement diagram (6.50), we subtract
and add πs(ι̃

a
j,k) to each ρs(a) in �Rob(t), and rewrite the probability in (6.44) as

Q

(

sup
t∈[0,T ]

∣
∣
∣
∣

∫

K

ρt (x)Ft (x) dm(x) −
∫

K

ρ0(x)F0(x) dm(x)

−
∫ t

0

∫

K

ρs(x)

(
2

3
� + ∂s

)

Fs(x) dm(x) ds

+2

3

∫ t

0

∑

a∈V0

[
πs(ι̃

a
j,k)(∂

⊥Fs)(a) + λ�(a)(πs(ι̃
a
j,k) − ρ̄(a))Fs(a)

]
ds

+
∫

K

(ρ0(x) − �(x))F0(x) dm(x)

+
∑

a∈V0

2

3

∫ t

0
(ρs(a) − πs(ι̃

a
j,k))

(
(∂⊥Fs)(a) + λ�(a)Fs(a)

)
ds

∣
∣
∣
∣
∣
∣
> δ

⎞

⎠ .

(6.51)
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By the triangle inequality it suffices to prove that

lim
j→∞ lim

k→∞Q

(

sup
t∈[0,T ]

∣
∣
∣
∣

∫

K

ρt (x)Ft (x) dm(x) −
∫

K

ρ0(x)F0(x) dm(x)

−
∫ t

0

∫

K

ρs(x)

(
2

3
� + ∂s

)

Fs(x) dm(x) ds (6.52)

+2

3

∫ t

0

∑

a∈V0

[
πs(ι̃

a
j,k)(∂

⊥Fs)(a) + λ�(a)(πs(ι̃
a
j,k) − ρ̄(a))Fs(a)

]
ds

∣
∣
∣
∣
∣
∣
>

δ

5

⎞

⎠ = 0;

Q

(∣
∣
∣
∣

∫

K

(ρ0(x) − �(x))F0(x) dm(x)

∣
∣
∣
∣ >

δ

5

)

= 0; and (6.53)

lim
j→∞ lim

k→∞Q

(

sup
t∈[0,T ]

∣
∣
∣
∣
2

3

∫ t

0
(ρs(a) − πs(ι̃

a
j,k))

×
(
(∂⊥Fs)(a) + λ�(a)Fs(a)

)
ds

∣
∣
∣ >

δ

5

)

= 0 for every a ∈ V0. (6.54)

Equation (6.53) follows from (6.15). For (6.54) we use, in this order, Chebyshev’s
and Cauchy-Schwarz inequalities and (6.43) to bound the Q-probability by

(
5

δ

)2

EQ

⎡

⎣

∣
∣
∣
∣
∣

sup
t∈[0,T ]

2

3

∫ t

0
(ρs(a) − πs(ι̃

a
j,k))

(
(∂⊥Fs)(a) + λ�(a)Fs(a)

)
ds

∣
∣
∣
∣
∣

2
⎤

⎦

� δ−2
EQ

[(∫ T

0
(ρs(a)−πs(ι̃

a
j,k))

2 ds

)(∫ T

0

(
(∂⊥Fs)(a) + λ�(a)Fs(a)

)2
ds

)]

� δ−2
EQ

[∫ T

0
(ρs(a) − πs(ι̃

a
j,k))

2 ds

]

.

(6.55)

On the one hand, Q-a.s., πs(ι̃
a
j,k) → πs(ι

a
j ) as k → ∞ for a.e. s ∈ [0, T ] by

Proposition 6.2 and (6.48). On the other hand, πs(ι
a
j ), being the average density

over Kj(a), converges to ρs(a) as j → ∞ for a.e. s ∈ [0, T ] by (6.46). So Q-
a.s., limj→∞ limk→∞(ρs(a) − πs(ι̃

a
j,k))

2 = 0 for a.e. s ∈ [0, T ]. Now apply the
dominated convergence theorem to deduce that

lim
j→∞ lim

k→∞EQ

[∫ T

0
(ρs(a) − πs(ι̃

a
j,k))

2 ds

]

= 0, (6.56)

which then justifies (6.54).
That leaves us with (6.52): we note that the supremum of the long expression is

a continuous function of π ∈ D([0, T ],M+), so the event is an open set in the
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Skorokhod space. Therefore by Portmanteau’s Lemma, the probability in (6.52) is
bounded above by

lim
j→∞ lim

k→∞ lim
N→∞QN

(

sup
t∈[0,T ]

∣
∣
∣
∣π

N
t (Ft ) − πN

0 (F0) −
∫ t

0
πN

s

((
2

3
� + ∂s

)

Fs

)

ds

+2

3

∫ t

0

∑

a∈V0

[
πN

s (ι̃aj,k)(∂
⊥Fs)(a)+λ�(a)(πN

s (ι̃aj,k)−ρ̄(a))Fs(a)
]

ds

∣
∣
∣
∣
∣
∣
>

δ

5

⎞

⎠ .

(6.57)
We apply the last two steps of the replacement diagram (6.50) by writing

πN· (ι̃aj,k) = ηN· (a) + (πN· (ιaj ) − ηN· (a)) + (πN· (ι̃aj,k) − πN· (ιaj )),

and thus rewriting (6.57) as

lim
j→∞ lim

k→∞ lim
N→∞QN

(

sup
t∈[0,T ]

∣
∣
∣
∣π

N
t (Ft ) − πN

0 (F0) −
∫ t

0
πN

s

((
2

3
� + ∂s

)

Fs

)

ds

+2

3

∫ t

0

∑

a∈V0

[
ηN

s (a)(∂⊥Fs)(a) + λ�(a)(ηN
s (a) − ρ̄(a))Fs(a)

]
ds

+ 2

3

∫ t

0

∑

a∈V0

(πN
s (ιaj ) − ηN

s (a))
(
(∂⊥Fs)(a) + λ�(a)Fs(a)

)
ds

+ 2

3

∫ t

0

∑

a∈V0

(πN
s (ι̃aj,k) − πN

s (ιaj ))
(
(∂⊥Fs)(a) + λ�(a)Fs(a)

)
ds

∣
∣
∣
∣
∣
∣
>

δ

5

⎞

⎠ .

(6.58)
Again by the triangle inequality it suffices to prove that

lim
N→∞QN

(

sup
t∈[0,T ]

∣
∣
∣
∣π

N
t (Ft ) − πN

0 (F0) −
∫ t

0
πN

s

((
2

3
� + ∂s

)

Fs

)

ds (6.59)

+2

3

∫ t

0

∑

a∈V0

[
ηN

s (a)(∂⊥Fs)(a)+λ�(a)(ηN
s (a)−ρ̄(a))Fs(a)

]
ds

∣
∣
∣
∣
∣
∣
>

δ

35

⎞

⎠=0;

lim
j→∞ lim

N→∞QN

(

sup
t∈[0,T ]

∣
∣
∣
∣
2

3

∫ t

0
(πN

s (ιaj ) − ηN
s (a))

(
(∂⊥Fs)(a) + λ�(a)Fs(a)

)
ds

∣
∣
∣ >

δ

35

)

= 0 for every a ∈ V0; (6.60)

lim
j→∞ lim

k→∞ lim
N→∞QN

(

sup
t∈[0,T ]

∣
∣
∣
∣
2

3

∫ t

0
(πN

s (ι̃aj,k) − πN
s (ιaj ))

(
(∂⊥Fs)(a) + λ�(a)Fs(a)

)
ds

∣
∣
∣ >

δ

35

)

= 0 for every a ∈ V0. (6.61)
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The second term (6.60) follows from Lemma 5.5. To prove the last term (6.61),
we need to justify the following replacement: for every N ∈ N, QN -a.s., for every
j ∈ N, s ∈ [0, T ], and a ∈ V0,

lim
k→∞(πN

s (ι̃aj,k) − πN
s (ιaj ))

2 = 0. (6.62)

Then we can apply the same argument as was done for (6.54). The proof of (6.62)
follows from a discrete computation and a recall of (6.47):

∣
∣
∣πN

s (ι̃aj,k) − πN
s (ιaj )

∣
∣
∣ = 1

|VN |

∣
∣
∣
∣
∣
∣

∑

x∈VN

ηN
s (x)

[
ι̃aj,k(x) − ιaj (x)

]
∣
∣
∣
∣
∣
∣

≤ 1

|VN |
∑

x∈VN

∣
∣
∣ι̃aj,k(x) − ιaj (x)

∣
∣
∣

≤|VN ∩ (Kk(a
j

1 ) ∪ Kk(a
j

2 ))|
|VN | � 3N−k

3N
= 3−k −−−→

k→∞ 0.

(6.63)

As for the first term (6.59), observe that the expression inside the absolute value
matches MN

t (F ) (3.25) up to an additional oN(1) function. Thus it remains to show
that

lim
N→∞QN

(

sup
t∈[0,T ]

|MN
t (F )| >

δ

70

)

= 0. (6.64)

By Doob’s inequality,

QN

(

sup
t∈[0,T ]

|MN
t (F )|>δ

)

≤ 1

δ2
EμN

[
|MN

T (F )|2
]
= 1

δ2
EμN

[
〈MN(F)〉T

]
. (6.65)

By a similar computation as in (6.5) we find that the last term goes to 0 as N → ∞.
This proves (6.44).

For the case b < 5/3, observe that �Dir(t) does not have the boundary term
issue of �Rob(t), and is already a continuous function of π ∈ D([0, T ],M+).
Therefore the proof goes through provided that we can replace ρ̄(a) by ηN· (a) in
PμN

-probability as N → ∞, which follows from the replacement Lemma 5.6.

This completes the characterization of the limit density in the case b ≥ 5/3. In the
case b < 5/3, we need to verify Condition (3) of Definition 3.4. Showing that the
profile has the value ρ̄(a) at a is now standard (for the 1D case see e.g. Section 5.3
of [5]) and follows from Lemma 6.8 below.

Lemma 6.8 (Fixing the profile at the boundary) For every a ∈ V0, let Kj(a) denote
the unique j -cell Kw, |w| = j , which contains a. Then

lim
j→∞ lim

N→∞EμN

[∣
∣
∣
∣

∫ t

0

(
ρ̄(a) − AvKj (a)∩VN

[ηN
s ]
)

ds

∣
∣
∣
∣

]

= 0.

The proof of this lemma follows from both Lemmas 5.6 and 5.5. We also remark
that Lemma 5.5 is proved in the regime b ≥ 5/3, but in fact it holds for any b. The
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only difference in the proof is that one has to use the reference measure νN
ρ(·) with a

suitable profile ρ(·) as the one in the proof of Lemma 5.6. We leave the details of the
adaptation of the arguments to the reader.

7 Existence & Uniqueness of Weak Solutions to the Heat Equation

To conclude the proof of Theorem 1 it remains to establish Lemma 3.7 (where, for
the sake of better notation, we use ρ̄(a) in place of g(a)).

Proposition 7.1 The unique weak solution of the heat equation with boundary
parameter b is

ρb(t, ·) = ρb
ss + T̃b

t

(
� − ρb

ss

)
, (7.1)

where ρb
ss is the steady-state solution satisfying Laplace’s equation �bρ

b
ss = 0 on

K \ V0, and boundary condition (for all a ∈ V0)

⎧
⎨

⎩

ρb
ss(a) = ρ̄(a), if b < 5/3,

∂⊥ρb
ss(a) = 0, if b > 5/3,

∂⊥ρb
ss(a) = −r(a)(ρb

ss(a) − ρ̄(a)), if b = 5/3.
(7.2)

In particular, we have the following long-time limit:

lim
t→∞ ρb(t, ·) =

{
ρb
ss, if b ≤ 5/3,∫
K

� dm, if b > 5/3.
(7.3)

Actually (7.1) is a strong solution of the heat equation. Upon multiplying (7.1) by
a test function F(t, x) and integrating over [0, T ] × K , and performing integration
by parts, one can verify that a strong solution is a weak solution. It thus remains to
show that weak solutions are unique, which we verify in the next subsection.

The underlying ideas of this section are standard from the PDE perspective, and
are well known to analysts on fractals; see e.g. [22, Chapter 4] for an exposition in the
Dirichlet case. Nevertheless, we decide to spell out the arguments for completeness,
especially for the Robin case.

7.1 Strong Solution

It is readily verified that ρb = ρb
ss +ub is a strong solution of (7.1), where ub satisfies

{
∂tu

b = 2
3�ub, t ∈ [0, T ], x ∈ K \ V0

ub(0, x) = �(x) − ρb
ss(x), x ∈ K

(7.4)

along with boundary condition (for all a ∈ V0)
⎧
⎨

⎩

ub(a) = 0, if b < 5/3,

∂⊥ub(a) = 0, if b > 5/3,

∂⊥ub(a) = −r(a)ub(a), if b = 5/3.
(7.5)
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7.1.1 Solution to the Homogeneous Heat Equation, ub .

By the functional calculus, the solution to (7.4) is uniquely given by

ub(t, x) = T̃b
t (� − ρb

ss) =
∞∑

n=1

αb
n[� − ρb

ss]e−(2/3)λb
ntϕb

n(x), (7.6)

where the eigenvalues λb
n and eigenfunctions ϕb

n were defined in Section 4.2,
and αb

n[f ] = ∫
K

f ϕb
n dm are the Fourier coefficients. By Lemma 4.5-(1), ub ∈

L2(0, T ,F).

7.1.2 Steady-State Solution, ρb
ss.

If b < 5/3, we have
{

�ρb
ss(x) = 0, x ∈ K \ V0,

ρb
ss(a) = ρ̄(a), a ∈ V0,

(7.7)

namely, ρb
ss is the unique harmonic extension of the boundary data ρ̄ from V0 to K .

We remind the reader the explicit harmonic extension algorithm known as the “ 1
5 - 2

5
rule” [36, Section 1.3]. In particular, the algorithm implies that the space of harmonic
functions on K is 3-dimensional.

If b > 5/3, we have
{

�ρb
ss(x) = 0, x ∈ K \ V0,

∂⊥ρb
ss(a) = 0, a ∈ V0.

(7.8)

Note that ρNeu
ss is non-unique: any constant function is a solution.

Finally, if b = 5/3, we have
{

�ρb
ss(x) = 0, x ∈ K \ V0,

∂⊥ρb
ss(a) = −r(a)(ρb

ss(a) − ρ̄(a)), a ∈ V0.
(7.9)

We can convert this to a Dirichlet problem and solve for the unique solution using
the Dirichlet-to-Neumann map. The outcome is that ρb

ss is the harmonic extension of
ρ̄R from V0 to K , where

⎡

⎣
ρ̄R(a0)

ρ̄R(a1)

ρ̄R(a2)

⎤

⎦= 1

�

⎡

⎣
3 + 2(κ1+κ2) + κ1κ2 3 + κ2 3 + κ1

3 + κ2 3 + 2(κ2+κ0) + κ2κ0 3 + κ0
3 + κ1 3 + κ0 3 + 2(κ0+κ1) + κ0κ1

⎤

⎦

⎡

⎣
γ0
γ1
γ2

⎤

⎦ ,

(7.10)

� := 3(κ0 + κ1 + κ2) + 2(κ0κ1 + κ1κ2 + κ2κ0) + κ0κ1κ2, (7.11)

κi = r(ai), and γi = r(ai)ρ̄(ai), i ∈ {0, 1, 2}. Note that � �= 0 if not all of the
boundary rates λ�(ai) are zero, and that ρ̄R �= ρ̄. The interested reader is referred to
Appendix A for the computations.

At this point we have addressed all but the uniqueness question when b > 5/3.
Since ρb

ss = c for any constant c, we write ρb(t, ·) = c+T̃b
t (�−c). But by the fact that
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�c = 0 and functional calculus, we find that c + T̃Neu
t (� − c) = c + T̃b

t � − c = T̃b
t �.

So ρb is uniquely determined by �. The verification of (7.3) is left for the reader.

7.1.3 Strong Solution is a Weak Solution

We now verify for b < 5/3 that ρb is a weak solution in the sense of Definition 3.4,
the other regimes being similar. From the representation (7.1) and known regularity
results on the heat semigroup, it follows that ρb· = ρb

ss + T̃b·
(
� − ρb

ss

) ∈ L2(0, T ,F),
which verifies Condition (1). To check the weak formulation, Condition (2), we use
the integration by parts formula (3.8), and that Fs and � − ρb

ss vanish on V0, to find

�Dir(t) =
∫

K

ρb
ss(x)Ft (x) dm(x) −

∫ t

0

∫

K

ρb
ss(x)

(
2

3
� + ∂s

)

Fs(x) dm(x)

+ 2

3

∫ t

0

∑

a∈V0

ρ̄(a)(∂⊥Fs)(a) ds

+
∫

K

T̃b
t

(
� − ρb

ss

)
(x)Ft (x) dm(x)

−
∫ t

0

∫

K

T̃b
s

(
� − ρb

ss

)
(x)

(
2

3
� + ∂s

)

Fs(x) dm(x) ds = 0.

Finally, Condition (3) is clear from (7.1).

7.2 Uniqueness of Weak Solutions

In this subsection we prove uniqueness of the weak solution. For this purpose, let
ρ1, ρ2 ∈ L2(0, T ,F) be two weak solutions of the heat equation. Set u := ρ1 −ρ2 ∈
L2(0, T ,F). From the initial condition we have u(0, ·) ≡ 0. We want to show that
u ≡ 0.

If b < 5/3: Recall (3) of Definition 3.4. Then, for a.e. t ∈ (0, T ] and all a ∈ V0,
ρ1(t, a) = ρ2(t, a) = ρ̄(a), so that u(t, a) = 0, i.e., u ∈ L2(0, T ,F0). Using (3.12)
we find that
∫

K

uT (x)FT (x) dm(x) −
∫ T

0

∫

K

us(x)

(
2

3
� + ∂s

)

Fs(x) dm(x) ds = 0 (7.12)

for all F ∈ C([0, T ], dom�0)∩C1((0, T ), dom�0). Furthermore, the integration by
parts formula (Definition 3.2) we may rewrite this as
∫

K

uT (x)FT (x) dm(x) −
∫ t

0

∫

K

us(x)(∂sFs)(x) dm(x) ds + 2

3

∫ T

0
E(us, Fs) ds = 0 (7.13)

Since dom�0 is E1-dense in F0, and C([0, T ]) ∩ C1((0, T )) is dense in L2(0, T ),
we can find a sequence {uj }j∈N in C([0, T ], dom�0) ∩ C1((0, T ), dom�0) which
converges to u in L2(0, T ,F0). Let

vj (t, x) =
∫ T

t

uj (s, x) ds ∀j ∈ N, ∀t ∈ [0, T ], ∀x ∈ K . (7.14)
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By plugging vj into F in (7.13), and taking the limit j → ∞ using Lemma 7.2
below, we obtain

∫ T

0

∫

K

|us(x)|2 dm(x) ds + 1

3
E
(∫ T

0
us ds

)

= 0. (7.15)

Both terms on the left-hand side being nonnegative, we deduce that u ≡ 0 in
L2([0, T ] × K, ds × m), and hence also in L2(0, T ,F0).

It remains to prove:

Lemma 7.2 Let {vj }j∈N be defined as in (7.14). Then:

1. lim
j→∞

∫ T

0

∫

K

us(x)(∂svj )(s, x) dm(x) ds = −
∫ T

0

∫

K

|us(x)|2 dm(x) ds.

2. lim
j→∞

∫ T

0
E(us, vj (s, ·)) ds = 1

2
E
(∫ T

0
us ds

)

.

Proof For Item (1), we use that (∂svj )(s, x) = −uj (s, x) to write

∫ T

0

∫

K

us(x)(∂svj )(s, x) dm(x) ds = −
∫ T

0

∫

K

us(x)uj (s, x) dm(x) ds

= −
∫ T

0

∫

K

|us(x)|2 dm(x) ds +
∫ T

0

∫

K

us(x)(us(x) − uj (s, x)) dm(x) ds.

(7.16)
We then use Cauchy-Schwarz to argue that the second term vanishes as j → ∞:

∣
∣
∣
∣

∫ T

0

∫

K

us(x)(us(x) − uj (s, x)) dm(x) ds

∣
∣
∣
∣

≤
(∫ T

0

∫

K

|us(x)|2 dm(x) ds

)1/2

×
(∫ T

0

∫

K

|us(x) − uj (s, x)|2 dm(x) ds

)1/2

−−−→
j→∞ 0

(7.17)

since uj → u in L2(0, T ,F0).
For Item (2), we use the bilinearity of the Dirichlet form to write

∫ T

0
E(us, vj (s, ·)) ds

=
∫ T

0
E
(

us,

∫ T

s

ur dr

)

ds +
∫ T

0
E
(

us, vj (s, ·) −
∫ T

s

ur dr

)

ds

=
∫ T

0

∫ T

s

E(us, ur) dr ds +
∫ T

0
E
(

us,

∫ T

s

(
uj (r, ·) − ur

)
dr

)

ds.

(7.18)
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We further exploit the bilinearity and symmetry of the Dirichlet from to rewrite the
first term of (7.18):

∫ T

0

∫ T

s

E(us, ur) dr ds =
∫

0≤s≤r≤T

E(us, ur) dr ds

= 1

2

∫

[0,T ]2
E(us, ur) dr ds = 1

2
E
(∫ T

0
us ds,

∫ T

0
ur dr

)

.

(7.19)

Meanwhile, for the second term of (7.18), we apply Cauchy-Schwarz and Hölder’s
inequalities in succession to show that it vanishes as j → ∞:

∣
∣
∣
∣

∫ T

0
E
(

us,

∫ T

s

(
uj (r, ·) − ur

)
dr

)

ds

∣
∣
∣
∣ ≤

∫ T

0

√
E(us)

√

E
(∫ T

s

(
uj (r, ·) − ur

)
dr

)

ds

≤
(7.21)

∫ T

0

√
E(us)

(∫ T

s

√
E
(
uj (r, ·) − ur

)
dr

)

ds

≤
(∫ T

0

√
E(us) ds

)

· sup
s∈[0,T ]

(∫ T

s

√
E
(
uj (r, ·) − ur

)
dr

)

(Hölder’s inequality)

≤
(∫ T

0

√
E(us) ds

)(∫ T

0

√
E
(
uj (r, ·) − ur

)
dr

)

≤ T

(∫ T

0
E(us) ds

)1/2 (∫ T

0
E
(
uj (r, ·) − ur

)
dr

)1/2

−−−→
j→∞ 0

(7.20)

since uj → u in L2(0, T ,F0). In the second inequality above we used

E
(∫ T

s

f (r) dr,

∫ T

s

f (r ′) dr ′
)

=
∫ T

s

∫ T

s

E(f (r), f (r ′)) dr ′ dr

≤
∫ T

s

∫ T

s

√
E(f (r))

√
E(f (r ′)) dr ′ dr =

(∫ T

s

√
E(f (r)) dr

)2

.

(7.21)

for any f ∈ L2(0, T ,F).

If b ≥ 5/3: Using (3.14) we have
∫

K

uT (x)FT (x) dm(x) −
∫ T

0

∫

K

us(x)

(
2

3
� + ∂s

)

Fs(x) dm(x) ds

+ 2

3

∫ T

0

∑

a∈V0

[
us(a)(∂⊥Fs)(a) + r(a)us(a)Fs(a)

]
ds = 0

(7.22)

for all F ∈ C([0, T ], dom�) ∩ C1((0, T ), dom�). Again using integration by parts
(Lemma 3.2-(3)), we can rewrite this as

∫

K

uT (x)FT (x) dm(x)−
∫ T

0

∫

K

us(x)(∂sFs)(x) dm(x) ds+ 2

3

∫ T

0
Eb(us, Fs) ds =0, (7.23)
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where Eb was defined in (4.12). Now we follow the same strategy as in the
Dirichlet case. Let L2(0, T ,Fb) be the Hilbert space with norm

‖f ‖L2(0,T ,Fb)
:=
(∫ T

0

(
Eb(fs) + ‖fs‖2

L2(K,m)

)
ds

)1/2

. (7.24)

On the one hand, L2(0, T ,Fb) contains C([0, T ], dom�) ∩ C1((0, T ), dom�). On
the other hand, any function f ∈ L2(0, T ,F) also belongs to L2(0, T ,Fb), with
‖f ‖L2(0,T ,Fb)

≥ ‖f ‖L2(0,T ,F). Since C([0, T ], dom�)∩C1((0, T ), dom�) is dense
in L2(0, T ,F), it follows that C([0, T ], dom�) ∩ C1((0, T ), dom�) is dense in
L2(0, T ,Fb). Let {uj }j∈N ⊂ C([0, T ], dom�) ∩ C1((0, T ), dom�) be a sequence
converging to u in L2(0, T ,Fb). Define vj exactly as in (7.14). Then we plug vj into
F in (7.23), and note that we have the exact analogs of Lemma 7.2, except that E is
replaced by Eb in Item (2). Applying the analogs and taking the limit j → ∞, we
obtain

∫ T

0

∫

K

|us(x)|2 dm(x) ds + 1

3
Eb

(∫ T

0
us ds

)

= 0. (7.25)

Each term on the left-hand side being nonnegative, we infer that u ≡ 0 in
L2(0, T ,Fb) (whence in L2(0, T ,F)).

8 Ornstein-Uhlenbeck Limits of EquilibriumDensity Fluctuations

In this section we prove Theorem 2. Recall the definition of the function space Sb and
its topological dual S ′

b from Section 4.2, as well as the heat semigroup {T̃b
t : t > 0}

from Section 4.2.

8.1 Tightness and Identification of Limit Points

The main result of this subsection is

Proposition 8.1 The sequence {QN,b
ρ }N is tight with respect to the uniform topology

on C([0, T ],S ′
b). Under any limit pointQ

b
ρ of the sequence, the process {Yt (F ) : t ∈

[0, T ], F ∈ Sb} satisfies 1 of Definition 4.7.

First of all, we invoke Mitoma’s criterion in order to establish tightness of the
S ′

b-valued processes {YN
t : t ∈ [0, T ]}N from tightness of the R-valued processes

{YN
t (F ) : t ∈ [0, T ]}N for F ∈ Sb.

Lemma 8.2 Mitoma’s criterion [31, Theorems 3.1 & 4.1] Let S be a nuclear Fréchet
space and S ′ be its topological dual. A sequence of processes {XN

t : t ∈ [0, T ]}N
is tight with respect to the Skorokhod topology on D([0, T ],S ′) (resp. the uniform
topology on C([0, T ],S ′)) if and only if the sequence {XN

t (F ) : t ∈ [0, T ]}N of
R-valued processes is tight with respect to the Skorokhod topology on D([0, T ],R)

(resp. the uniform topology on C([0, T ],R)) for any F ∈ S.
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To check for tightness of {YN
t (F ) : t ∈ [0, T ]}N in C([0, T ],R), we verify

(A1) of Aldous’ criterion, and the following condition on the uniform modulus of
continuity, cf. [28, Lemma 11.3.2]:

(AC2) For every ε > 0,

lim
δ↓0

lim
N→∞ PN

⎛

⎜
⎝ sup

|s−t |≤δ
s,t∈[0,T ]

|Xt − Xs | > ε

⎞

⎟
⎠ = 0. (8.1)

Recall from (4.6) that for any F ∈ Sb,

YN
t (F ) = YN

0 (F ) +
∫ t

0
YN

s (�NF) ds − BN
t (F ) + MN

t (F ) + oN(1), (8.2)

where BN
t (F ) = 3N

√|VN |
∫ t

0

∑

a∈V0

η̄N
s (a)

[

(∂⊥F)(a) + 5N

bN3N
λ�F(a)

+
(
(∂⊥

N F)(a) − (∂⊥F)(a)
)]

ds. (8.3)

To show tightness of {YN
t (F ) : t ∈ [0, T ]}N , it suffices to check, up to extraction of

a common subsequence, tightness of each of the four terms on the right-hand side of
(8.2)—the initial measure, the Laplacian term, the boundary term, and the martingale
term—using either Aldous’ criterion or a direct proof of convergence. To avoid an
overcharged notation, we suppress the subsequence index in what follows.

8.1.1 Convergence of the Initial Measure

We want to prove that YN
0

d−−−−→
N→∞ Y0, where Y0 is a centered S ′

b-valued Gaus-

sian random variable with covariance given by (4.21). This relies on computing the
characteristic function of YN

0 (F ), which is possible thanks to the product Bernoulli
measure P

N,b
ρ (below i = √−1):

logEN,b
ρ

[
exp

(
iλYN

0 (F )
)]

= logEN,b
ρ

⎡

⎣exp

⎛

⎝iλ
1√|VN |

∑

x∈VN

(ηN
0 (x) − ρ)F (x)

⎞

⎠

⎤

⎦

= log
∏

x∈VN

(

1 − λ2

2|VN |χ(ρ)F 2(x) + O
(

1

|VN |3/2

))

= − λ2

2
χ(ρ)

1

|VN |
∑

x∈VN

F 2(x)+O
(

1

|VN |1/2

)

−−−−→
N→∞ −λ2

2
χ(ρ)

∫

K

F 2(x) dm(x).

(8.4)
For the convergence in the last line we used that F ∈ C(K) to pass from the discrete
sum to the integral. To conclude the proof, we replace F by a linear combination of
functions and use the Crámer-Wold device.
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Remark 8.3 The above proof can be repeated to show that for each t ∈ [0, T ],
YN

t

d−−−−→
N→∞ Yt , where Yt is a centered S ′

b-valued Gaussian random variable. In par-

ticular, {Yt : t ∈ [0, T ]} is a stationary solution to the Ornstein-Uhlenbeck equation,
Definition 4.7, for any b > 0.

8.1.2 The Laplacian Term

We verify the tightness criterion. To check (A1), we estimate using Cauchy-Schwarz
and the stationarity of the product measure P

N,b
ρ to find that for any t ∈ [0, T ],

E
N,b
ρ

[(∫ t

0
YN

s (�NF) ds

)2
]

=E
N,b
ρ

⎡

⎢
⎣

⎛

⎝
∫ t

0

1√|VN |
∑

x∈VN

η̄N
s (x)(�NF)(a) ds

⎞

⎠

2
⎤

⎥
⎦

≤CT

∫ T

0
E

N,b
ρ

⎡

⎢
⎣

⎛

⎝ 1√|VN |
∑

x∈VN

η̄N (x)(�NF)(x)

⎞

⎠

2
⎤

⎥
⎦ ds

=CT 2χ(ρ)

⎛

⎝ 1

|VN |
∑

x∈VN

(�NF)2(x)

⎞

⎠ .

(8.5)

Since F ∈ Sb implies that �F ∈ C(K), we see that the last expression is bounded.
To check (AC2), we use Chebyshev’s inequality and (8.5) to find that for every pair
of times t − θ < t ∈ [0, T ] and every ε > 0,

Q
N,b
ρ

(∣
∣
∣
∣

∫ t

t−θ

Ys(�NF) ds

∣
∣
∣
∣>ε

)

≤ 1

ε2
E

N,b
ρ

[∣
∣
∣
∣

∫ t

t−θ

Ys(�NF) ds

∣
∣
∣
∣

2
]

≤ Cθ2

ε2
−−→
θ↓0

0.

(8.6)

We can perform one more substitution, by replacing �NF with 2
3�F . Apply an

estimate similar to (8.5), and we get

E
N,b
ρ

[(∫ t

0

(

YN
s

(
2

3
�F

)

− YN
s (�NF)

)

ds

)2
]

≤CT 2χ(ρ)

⎛

⎝ 1

|VN |
∑

x∈VN

((
2

3
�F

)

(x) − (�NF)(x)

)2
⎞

⎠ .

(8.7)

Since 3
2�NF → �F in C(K), cf. Lemma 3.3-(1) and the remark following Lemma

3.3, the right-hand side of (8.7) tends to 0 as N → ∞. So the left-hand side of (8.7)
tends to 0 as N → ∞, which implies that any limit point of the Laplacian term takes
on the form

∫ t

0 Ys(
2
3�F) ds.
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8.1.3 The Boundary Term

We claim that for any regime of b,

lim
N→∞E

N,b
ρ

[
|BN

t (F )|2
]

= 0, ∀F ∈ Sb, (8.8)

where BN
t (F ) was defined in (8.3). We verify this case by case.

The case b > 5/3: Then (∂⊥F)|V0 = 0 for any F ∈ Sb. There are two
contributions to BN

t (F ):
∫ t

0

∑

a∈V0

3N

√|VN | η̄
N
s (a)(∂⊥

N F)(a) ds +
∫ t

0

∑

a∈V0

5N

bN
√|VN | η̄

N
s (a)λ�F(a) ds (8.9)

We argue that both terms vanish as N → ∞, using different arguments.
For the first term of (8.9), we upper bound |η̄N

s (a)| by 1, and aim to show that
3N/2|(∂⊥

N F)(a)| → 0 for every a ∈ V0. By [36, Lemma 2.7.4(b)], if F ∈ dom� and
(∂⊥F)(a0) = 0, then there exists C > 0 such that for all N ,

sup
x∈FN

0 (K)

|F(x) − F(a0)| ≤ CN5−N . (8.10)

(In addition, if �F satisfies a Hölder condition—which holds for F ∈ SNeu—then
the right-hand side estimate can be improved to C5−N .) Therefore

3N/2|(∂⊥
N F)(a0)| = 3N/2

∣
∣
∣
∣

5N

3N

∑
y∈VN
y∼a0

(F (a0) − F(y))

∣
∣
∣
∣

≤ 5N

3N/2

∑
y∈VN
y∼a0

|F(a0) − F(y)| ≤
(8.10)

2C(N)

3N/2 −−−−→
N→∞ 0, (8.11)

proving the desired claim at a0. The same argument applies to the other boundary
points a1 and a2.

The second term of (8.9) vanishes as N → ∞ by virtue of the replacement Lemma
5.8.

The case b < 5/3: Then F |V0 = 0 for any F ∈ Sb. Thus BN
t (F ) equals

∫ t

0

∑

a∈V0

3N

√|VN | η̄
N
s (a)(∂⊥

N F)(a) ds,

which vanishes as N → ∞ by virtue of the replacement Lemma 5.9.

The case b = 5/3: Then (∂⊥F)|V0 = −λ�F |V0 for any F ∈ Sb. Thus BN
t (F )

equals

3N

√|VN |
∫ t

0

∑

a∈V0

η̄N
s (a)

(
(∂⊥

N F)(a) − (∂⊥F)(a)
)

ds.

This vanishes as N → ∞ by virtue of (∂⊥
N F)(a) − (∂⊥F)(a) = oN(1) and the

replacement Lemma 5.10.



FOR APPROVAL

_####_Page 58 of 65 Math Phys Anal Geom _#####################_

8.1.4 The Martingale Term

Recall the computation (4.9), and note that for any F ∈ Sb,

lim
N→∞E

N,b
ρ

[
|MN

t (F )|2
]

= 2

3
2χ(ρ)tEb(F ) < ∞, (8.12)

where Eb was defined in (4.12). This estimate is enough to verify tightness. In fact,
it shows that {MN

t (F ) : t ∈ [0, T ]}N is a uniformly integrable (UI) family of mar-
tingales, so by the martingale convergence theorem it converges in distribution to a
martingale {Mt (F ) : t ∈ [0, T ]}.

8.1.5 Identification of Limit Points

At this point we have shown that any limit point Y·(F ) ∈ C([0, T ],R) of {YN· (F )}N ,
whose law we denote by Q

ρ
b , satisfies that Yt (F ) is Gaussian for each t , and that

Mt (F ) = Yt (F ) − Y0(F ) −
∫ t

0
Ys

(
2

3
�F

)

ds (8.13)

is a martingale. It remains to show that the quadratic variation of Mt (F ) equals
2
3 2χ(ρ)tEb(F ).

Recall that each term of the sequence

{
(MN

t (F ))2 − 〈MN(F )〉t : t ∈ [0, T ]
}

N
(8.14)

is a martingale. Using tightness of {MN
t (F )}N and (8.12), we see that as N → ∞,

the limit in distribution of this sequence is

{

Nt (F ) := (Mt (F ))2 − 2

3
2χ(ρ)tEb(F ) : t ∈ [0, T ]

}

. (8.15)

The quadratic variation claim follows once we show that Nt (F ) is a martingale. This
is done by checking both {(MN

t (F ))2}N and {〈MN(F )〉t }N are UI families, and then
applying the martingale convergence theorem to the sequence (8.14).

By (4.9) (or (8.12)), EN,b
ρ

[〈MN(F )〉t
]

is bounded for all N , which is enough
to imply that {〈MN(F )〉t }N is UI. To show that {(MN

t (F ))2}N is UI, it suffices to
show that EN,b

ρ

[
(MN

t (F ))4
]

is uniformly bounded in N . By [11, Lemma 3], which
is a consequence of the Burkholder-Davis-Gundy inequality, there exists C > 0 such
that for all N ,

E
N,b
ρ

[
(MN

t (F ))4
]

≤ C

(

E
N,b
ρ [(MN

t (F ))2] + E
N,b
ρ

[

sup
t∈[0,T ]

|MN
t (F ) − MN

t−(F )|4
])

. (8.16)
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On the right-hand side we already showed that the first term is bounded in N . For
the second term, observe that

sup
t∈[0,T ]

|MN
t (F ) − MN

t−(F )|

= sup
t∈[0,T ]

|YN
t (F ) − YN

t−(F )|

≤ sup
t∈[0,T ]

1√|VN |
∑

x∈VN

∣
∣
∣(η̄N

t (x) − η̄N
t−(x))F (x)

∣
∣
∣ ≤ C(F)√|VN | ,

(8.17)

since in a single jump in the exclusion process, at most 2 points in VN change
configuration, and almost surely no two jumps occur at the same time.

We have thus proved Proposition 8.1, and in particular, verified condition 1 of Def-
inition 4.7. By Lévy’s characterization, Mt (F ) is a time-changed Brownian motion
B�(t) with time change �(t) = 2

3 2χ(ρ)Eb(F )t , and thus is a continuous local
martingale.

8.2 Uniqueness of the Limit Point

To prove uniqueness of Y·, we follow the strategy described in [28, Section 11.4],
which is based on the analysis of martingales. Throughout this subsection, i = √−1
and Fs := σ {Yt (F ) : t ∈ [0, s], F ∈ Sb}.

Lemma 8.4 Fix s ≥ 0 and F ∈ Sb. The process {X s
t (F ) : t ≥ s} under Qb

ρ given by

X s
t (F ) := exp

[

i

(

Yt (F ) − Ys (F ) −
∫ t

s

Yr

(
2

3
�F

)

dr

)

+ 1

2

(
2

3
2χ(ρ)Eb(F )

)

(t − s)

]

(8.18)

is a martingale with respect to Ft .

Proof Recall that using Itô’s formula one can show that for a continuous local mar-

tingale {Mt (F ) : t ≥ 0}, {exp
(
iMt (F ) + 1

2 〈M(F )〉t
)

: t ≥ 0} is a continuous

local martingale. Now apply (4.19) and (4.20).

Lemma 8.5 Fix S ≥ 0 and F ∈ Sb. The process {ZS
t (F ) : t ∈ [0, S]} under Qb

ρ

given by

ZS
t (F ) := exp

[

iYt (T̃
b
S−tF ) + 1

2

∫ t

0

2

3
2χ(ρ)Eb(T̃

b
S−rF ) dr

]

(8.19)

is a martingale with respect to Ft .

Proof Recall that for any F ∈ Sb, t �→ Yt (F ) is continuous (Proposition 8.1) and
t �→ T̃b

t F is continuous (Lemma 4.5-(2)) and δ T̃b
t F ∈ Sb for every t > 0 (Corollary

4.6). With these in mind, we fix 0 ≤ t1 < t2 ≤ S, and consider the partition of
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[t1, t2] into n equal subintervals, namely, t1 = s0 < s1 < · · · < sn = t2 with
sj = t1 + j

(
t2−t1

n

)
. A direct computation shows that

n−1∏

j=0

X sj
sj+1

(
T̃b

S−sj
F
)

= exp

⎡

⎣i

n−1∑

j=0

(
Ysj+1(T̃

b
S−sj

F ) − Ysj (T̃
b
S−sj

F )

−
∫ sj+1

sj

Yr

(
2

3
�T̃b

S−sj
F

)

dr

)

+1

2

2

3
2χ(ρ)

t2 − t1

n

n−1∑

j=0

Eb(T̃
b
S−sj

F )

⎤

⎦ .

(8.20)

Using the continuity of t �→ T̃b
t F and Riemann sum approximation, we see that

t2 − t1

n

n−1∑

j=0

Eb(T̃
b
S−sj

F ) −−−→
n→∞

∫ t2

t1

Eb(T̃
b
S−rF ) dr . (8.21)

Meanwhile, we can rewrite the sum in the first term on the right-hand side of (8.20)
as

Yt2(T̃
b

S−t2− t2−t1
n

F ) − Yt1(T̃
b
S−t1

F) +
n−1∑

j=1

Ysj (T̃
b
S−sj−1

F − T̃b
S−sj

F )

−
n−1∑

j=0

∫ sj+1

sj

Yr

(
2

3
�bT̃b

S−sj
F

)

dr . (8.22)

By Lemma 4.5-(2), T̃b
t+εF − T̃b

t F = ε 2
3�F + o(ε) as ε ↓ 0, so we get

!
n−1∑

j=1

Ysj (T̃
b
S−sj−1

F −T̃b
S−sj

F ) =
n−1∑

j=1

t2 − t1

n
Ysj

(
2

3
�T̃b

S−sj
F

)

+o

(
1

n

)

−−−→
n→∞

∫ t2

t1

Yr

(
2

3
�T̃b

S−rF

)

dr, (8.23)

which cancels with the n → ∞ limit of the last term of (8.22). Altogether we have

lim
n→∞

n−1∏

j=0

X sj
sj+1

(
T̃b

S−sj
F
)

= exp

[

i
(
Yt2(T̃

b
S−t2

F) − Yt1(T̃
b
S−t1

F)
)

+1

2

∫ t2

t1

2

3
2χ(ρ)Eb(T̃

b
S−rF ) dr

]

, (8.24)
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the right-hand side being equal to ZS
t2
(F )/Zs

t1
(F ), Qb

ρ-a.s. Moreover, since the com-
plex exponential is bounded, the dominated convergence theorem implies the limit
(8.24) also takes place in L1(Qb

ρ). So for any bounded random variable G,

E
b
ρ

[

G
ZS

t2
(F )

ZS
t1
(F )

]

= lim
n→∞E

b
ρ

⎡

⎣G

n−1∏

j=0

X sj
sj+1

(
T̃b

S−sj
F
)
⎤

⎦ . (8.25)

Suppose further that G is Ft1 -measurable. Since {X s
t (F ) : t ≥ s} is a martingale

by Lemma 8.4, we have

E
b
ρ

⎡

⎣G

n−1∏

j=0

X sj
sj+1

(
T̃b

S−sj
F
)
⎤

⎦

=E
b
ρ

⎡

⎣Eb
ρ

⎡

⎣G

n−1∏

j=0

X sj
sj+1

(
T̃b

S−sj
F
) ∣∣
∣
∣Fsn−1

⎤

⎦

⎤

⎦

=E
b
ρ

⎡

⎣G

n−2∏

j=0

X sj
sj+1

(
T̃b

S−sj
F
)
E

b
ρ

[

X sn−1
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(
T̃b

S−sn−1
F
) ∣∣
∣
∣Fsn−1

]
⎤

⎦

=E
b
ρ

⎡
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j=0

X sj
sj+1

(
T̃b

S−sj
F
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F
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⎤
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⎡
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n−2∏

j=0

X sj
sj+1

(
T̃b

S−sj
F
)
⎤

⎦ .

(8.26)
By induction we can boil the last expression down to E

b
ρ[G]. Combine this result

with (8.25) to obtain

E
b
ρ

[

G
ZS

t2
(F )

ZS
t1
(F )

]

= E
b
ρ[G] (8.27)

for any bounded Ft1 -measurable random variable G. This shows that {ZS
t (F ) : t ∈

[0, S]} is a martingale.

We can now finish the uniqueness proof. From the martingale identity E
b
ρ[ZS

t (F )

|Fs] = ZS
s (F ) for S ≥ t ≥ s, we get

E
b
ρ

[

exp

(

iYt (T̃
b
S−tF ) + 1

2

∫ t

0

2

3
2χ(ρ)Eb(T̃

b
S−rF ) dr

) ∣
∣
∣
∣Fs

]

= exp

(

iYt (T̃
b
S−sF ) + 1

2

∫ s

0

2

3
2χ(ρ)Eb(T̃

b
S−rF ) dr

)

. (8.28)

This can be rearranged to give

E
b
ρ

[

exp
(
iYt (T̃

b
S−tF )

) ∣∣
∣
∣Fs

]

= exp

(

iYt (T̃
b
S−sF ) − 1

2

∫ t

s

2

3
2χ(ρ)Eb(T̃

b
S−rF ) dr

)

. (8.29)
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By a change of variables and the semigroup definition T̃b
S−s = T̃b

t−s T̃b
S−t for S >

t > s, the last expression can be rewritten as

E
b
ρ

[

exp (iYt (F ))

∣
∣
∣
∣Fs

]

= exp

(

iYt (T̃
b
t−sF ) − 1

2

∫ t−s

0

2

3
2χ(ρ)Eb(T̃

b
r F ) dr

)

. (8.30)

Changing F to λF , λ ∈ R, we see that the distribution of Yt (F ) conditional upon
Fs is Gaussian with mean Yt (T̃

b
t−sF ) and variance

∫ t−s

0
2
3 2χ(ρ)Eb(T̃b

r F ) dr , match-
ing the Condition 2 in Definition 4.7. Successive conditioning at different times
implies uniqueness of the finite-dimensional distributions of the process {Yt (F ) : t ∈
[0, T ]}, which then implies uniqueness of the law of Y·. This completes the proof of
Theorem 2.

9 Generalizations

9.1 Mixed Boundary Conditions

With minor tweaks to the preceding proofs, it is straightforward to establish analogs
of Theorems 1 and 2 for the exclusion process with different boundary parameters
ba > 0 at each a ∈ V0. We leave the adaptation to the reader.

9.2 Other Post-Critically Finite Self-Similar Fractals and Resistance Spaces

In order to make the paper readable with minimal prerequisites, we have decided to
work on the Sierpinski gasket only. That said, the results in this paper can be gen-
eralized to other post-critically finite self-similar (p.c.f.s.s.) fractals as defined in [2,
24], and more generally, to resistance spaces introduced by Kigami [23], which also
include 1D random walks with long-range jumps; trees; and random graphs arising
from critical percolation. Note that resistance spaces have spectral dimension dS < 2
(dS/2 is defined as the growth exponent of the eigenvalue counting function #b(s),
cf. (4.14)), but can have geometric (e.g. Hausdorff) dimension ≥ 2. A case in point
is the d-dimensional Sierpinski simplex, d ≥ 3.

In some sense there is very little “fractal” involved in our proofs; rather, the most
important ingredient is a good notion of calculus, including: convergence of discrete
Laplacians and of the discrete energy forms (with respect to the reference measure),
and a robust theory of boundary-value elliptic and parabolic problems. It is also
important that that the space be bounded in the resistance metric. Otherwise the mov-
ing particle Lemma 5.1 becomes ineffective, and we would not have been able to
prove the replacement Lemma 5.5 in light of the lack of translational invariance.

It is an open problem to prove hydrodynamic limits of exclusion processes on
non-translationally-invariant spaces whose spectral dimension ≥ 2; see [37, 38] for
recent progress towards this goal. Due to the length of the present paper, we leave the
details of these generalizations to future work.
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Appendix A: Dirichlet-to-Neumannmap on SG

In this appendix we characterize the harmonic function which satisfies the Robin
boundary condition

{
�h(x) = 0, x ∈ K \ V0,

∂⊥h(a) + κ(a)h(a) = γ (a), a ∈ V0,
(A.1)

where {κ(a) : a ∈ V0} and {γ (a) : a ∈ V0} are given coefficients.
Let hi : K → R, i ∈ {0, 1, 2}, denote the harmonic function with Dirichlet

boundary condition hi(aj ) = δij , j ∈ {0, 1, 2}. By the harmonic extension algo-
rithm described in [36, Section 1.3], {hi}2

i=0 is a basis for the space of harmonic
functions on K , so we may express the solution h of (A.1) as a linear combina-
tion h = ∑2

i=0 cih
i , where the coefficients {ci}i are determined by the boundary

condition in (A.1):

2∑

i=0

ci (∂
⊥hi)(aj ) + κ(aj )cj = γ (aj ), j ∈ {0, 1, 2}. (A.2)

We can then conclude that h is a harmonic function satisfying the Dirichlet boundary
condition h(ai) = ci , i ∈ {0, 1, 2}.

So it suffices to find {ci}i . The harmonic extension algorithm [36, Section 1.3]
yields

(∂⊥hi)(aj ) =
{

2, if j = i,

−1, if j �= i.
(A.3)

Thus we arrive at the matrix problem
⎡

⎣
2 + κ0 −1 −1
−1 2 + κ1 −1
−1 −1 2 + κ2

⎤

⎦

⎡

⎣
c0
c1
c2

⎤

⎦ =
⎡

⎣
γ0
γ1
γ2

⎤

⎦ . (A.4)

where κj and γj are shorthands for κ(aj ) and γ (aj ). It can be checked that the
left-hand side matrix is invertible iff its determinant

� := 3(κ0 + κ1 + κ2) + 2(κ0κ1 + κ1κ2 + κ2κ0) + κ0κ1κ2 (A.5)

is nonzero. Assuming invertibility, we find

[
c0
c1
c2

]

= 1

�

[
3 + 2(κ1 + κ2) + κ1κ2 3 + κ2 3 + κ1
3 + κ2 3 + 2(κ2 + κ0) + κ2κ0 3 + κ0
3 + κ1 3 + κ0 3 + 2(κ0 + κ1) + κ0κ1

][
γ0
γ1
γ2

]

.

(A.6)
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12. Franco, T., Gonçalves, P., Neumann, A.: Phase transition in equilibrium fluctuations
of symmetric slowed exclusion. Stochastic Process. Appl. 123(12), 4156–4185 (2013).
https://doi.org/10.1016/j.spa.2013.06.016

13. Franco, T., Gonçalves, P., Neumann, A.: Equilibrium fluctuations for the slow boundary exclusion pro-
cess. In: From Particle Systems to Partial Differential Equations. Springer Proc. Math. Stat., vol. 209,
pp. 177–197. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66839-0 9

14. Fukushima, M., Shima, T.: On a spectral analysis for the Sierpiński gasket. Potential Anal. 1(1), 1–35
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