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Abstract. We prove the Marchenko-Pastur law for the eigenvalues of p×p sample covariance
matrices in two new situations where the data does not have independent coordinates. In the
first scenario – the block-independent model – the p coordinates of the data are partitioned
into blocks in such a way that the entries in different blocks are independent but the entries
from the same block may be dependent. In the second scenario – the random tensor model –
the data is the homogeneous random tensor of order d, i.e. the coordinates of the data are all(
n
d

)
different products of d variables chosen from a set of n independent random variables. We

show that Marchenko-Pastur law holds for the block-independent model as long as the size of
the largest block is o(p), and for the random tensor model as long as d = o(n1/3). Our main
technical tools are new concentration inequalities for quadratic forms in random variables with
block-independent coordinates, and for random tensors.

1. Introduction

1.1. Marchenko-Pastur law. Consider a p×m random matrix X with independent entries
that have zero mean and unit variance. The limiting distribution of eigenvalues λi(W ) of the
sample covariance matrix W = 1

m
XXT is determined by the celebrated Marchenko-Pastur law

[41]. This result is valid in the regime where the dimensions of X increase to infinity but
the aspect ratio converges to a constant, i.e. p → ∞ and p/m → λ ∈ (0,∞). Then, with
probability 1, the empirical spectral distribution of the p × p matrix W converges weakly to
a deterministic distribution that is now called the Marchenko-Pastur law with parameter λ.
More specifically, if λ ∈ (0, 1), then with probability 1 the following holds for each x ∈ R:

FW (x) :=
1

p
#{1 ≤ i ≤ p : λi(W ) ≤ x} →

∫ x

∞
fλ(t) dt

where fλ is the Marchenko-Pastur density

(1.1) fλ(x) =
1

2πλx

√[
(λ+ − x)(x− λ−)

]
+
, with λ± = (1±

√
λ)2.

A similar result also holds for λ > 1, but in that case the the limiting distribution has an
additional point mass of 1−1/λ at the origin. A straightforward proof of the Marchenko-Pastur
law using the Stieltjes transform is given in Chapter 3 of [18]. More extensive expositions of the
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2 MARCHENKO-PASTUR LAW WITH RELAXED INDEPENDENCE CONDITIONS

Marchenko-Pastur law with proofs using both the moment method and the Stieltjes transform
are given in [11, Chapter 3] and [9]. Furthermore, [9] includes a review of many existing works
prior to 1999.

1.2. Relaxing independence. In many data sets it is natural to have independent columns,
but not independent entries in the same column. For example, data collected from people, such
as patient health information or personal movie ratings, will have independent columns since
it is reasonable to assume each person’s responses are independent of everyone else’s responses.
However, entries within a column are most likely not independent.

Several papers relaxing the independence within the columns already exist. Yin and Kr-
ishnaiah [59] required the independent columns Xk, to come from a spherically symmetric
distribution; specifically, they require the distribution of Xk to be the same as that of PXk

where P is an orthogonal matrix. Aubrun [7] allowed Xk to be distributed uniformly on the lmp
ball. That result was extended by Pajor and Pastur [45] for all isotropic log-concave measures.
Hui and Pan [30] and Wei, Yang and Ying [55] considered independent columns Xk with m(k)-
dependent stationary entries as long as the length of Xk is O([m(k)]4). Hofmann-Credner and
Stolz [29] and Friesen, Löwe and M. Stolz [20] assumed that the entries of X can be partitioned
into independent subsets, while allowing the entries from the same subset to be dependent.
Götze and Tikhomirov in [23] and [24] replace the independence assumptions entirely with
certain martinale-type conditions. In a similar manner, Adamczak [2] showed that Marchenko-
Pastur law holds if the Euclidean norms of the rows and columns of X concentrate around their
means and the expectation of each entry of X conditioned on all other entries equals zero. Bai
and Zhou [12] gave a sufficient condition in terms of concentration of quadratic forms, and Yao
[58] used their condition to allow a time series dependence structure in X. Yaskov [56] gave
a short proof with a slightly weaker condition on the concentration of quadratic forms than
Bai and Zhou’s result. O’Rourke [44] considered a class of random matrices with dependent
entries where even the columns are not necessarily independent, but are uncorrelated; although
columns that are far enough apart must be independent. Lastly, the papers [16], [14], and [39]
consider structured matrices such as block Toeplitz, Hankel, and Markov matrices.

In this paper, we study two random matrix models with relaxed independence requirement. In
our first model, we consider matrices with independent columns and each column is partitioned
into blocks of the same size, and we only require the entries in different blocks to be independent.

Definition 1.1 (Block-independent model). Consider a mean zero, isotropic1 random vector
x ∈ Rp. Assume that the entries of x can be partitioned into blocks each of length dk, in such
a way that the entries in different blocks are independent. (The entries from the same block
may be dependent.) Then we say that x follows the block-independent model.

The block-independent data structures arise naturally in many situations. For example Net-
flix’s movie recommendation data set contains ratings of movies by many people. A single
person’s movie ratings are likely to have a block structure coming from different movie genres,
i.e. someone who dislikes documentary movies will have a block of poor ratings, etc. Another
example of such a block structure is the stock market. The Marchenko-Pastur law assuming

1Isotropy means that the covariance matrix of x is identity, i.e. ExxT = I. The isotropy assumption is
convenient but not essential, and we show how to remove it in Section 1.6.
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independence among all entries has been used as a comparison to the empirical spectral distri-
bution of daily stock prices, see [34, 46]. However, a block structure is more realistic, since for
each day the performance of stocks in the same sector of the market are likely to be correlated
and stocks in different sectors can be considered to be independent.

In the second model we study, the independent columns of a random matrix are formed by
vectorized independent symmetric random tensors.

Definition 1.2 (Random tensor model). Consider an isotropic random vector x ∈ Rn with

independent entries. Let the random vector x ∈ R(n
d) be obtained by vectorizing the symmetric

tensor x⊗d. Thus, the entries of x are indexed by d-element subsets i ⊂ [n] and are defined as
products of the entries of x over i:

xi =
∏
i∈i

xi = xi1xi2 · · · xid , i = {i1, . . . , id}.

Then we say that x follows the random tensor model.

Although random tensors appear frequently in data science problems [6, 21, 31, 42, 54, 43,
47, 17, 15, 33, 26, 8, 5, 40, 52, 13, 61], a systematic theory of random tensors is still in its
infancy.

1.3. New results. In this paper, we generalize Marchenko-Pastur law to the two models of
random matrices described above. The following is our main result for the block-independence
model (described in Definition 1.1 above).

Theorem 1.3 (Marchenko-Pastur law for the block-independent model). Let X = X(p), p =∑
k dk, be a sequence of p × m random matrices, whose columns are independent and follow

the block-independent model with blocks of sizes dk = dk(p), the aspect ratio p/m converging to
a number λ ∈ (0,∞) and maxk dk = o(p) as p → ∞. Assume that all entries of the random
matrix X have uniformly bounded fourth moments. Then with probability 1 the empirical spectral
distribution of the sample covariance matrix W = 1

m
XXT converges weakly in distribution to

the Marchenko-Pastur distribution with parameter λ.

Remark 1.4. The requirement maxk dk = o(p) in Theorem 1.3 implies that the number of
independent blocks grows to infinity. We will show that this condition is necessary in Section 1.7.

Our second main result is the Marchenko-Pastur law for the random tensor model (described
in Definition 1.2).

Theorem 1.5 (Marchenko-Pastur law for the random tensor model). Let X = X(p), p =
(
n
d

)
,

n = 1, 2, . . ., be a sequence of p × m random matrices, whose columns are independent and
follow the random tensor model with d = o(n1/3), and the aspect ratio p/m converging to a
number λ ∈ (0,∞) as p→∞. Assume that the entries of the random vector x have uniformly
bounded fourth moments.2 Then with probability 1 the empirical spectral distribution of the
sample covariance matrix W = 1

m
XXT converges weakly in distribution to the Marchenko-

Pastur distribution with parameter λ.

2Note that for the random tensor model, the fourth moment assumption only concerns the entries of the
random vector x. The fourth moments of the entries of the random tensor x, and thus of the entries of the
random matrix X, can be very large. Indeed, if Ex4i = K for all i, then Ex4

i = Kd by independence.



4 MARCHENKO-PASTUR LAW WITH RELAXED INDEPENDENCE CONDITIONS

Remark 1.6. Better understood is the non-symmetric version of the random tensor model.
Instead of considering the d-fold product x⊗d of a random vector x ∈ Rn, consider d i.i.d.
random vectors x1, . . . , xd ∈ Rn and consider their inner product x1⊗· · ·⊗xd. Vectorizing this
random tensor, we obtain a random vector in Rnd

. Spectral properties of the non-symmetric
random tensor model were studied in [5] in connection with physics and quantum information
theory. Marchenko-Pastur law was proved for this model by Lytova [40] under the assumption3

d = o(n). The non-symmetric random tensor model is even more challenging as it is generated
by fewer independent random variables.

1.4. Marchenko-Pastur law via concentration of quadratic forms. Our approach to
both main results is based on concentration of quadratic forms. Starting with the original
proof of Marchenko-Pastur law [41] via Stieltjes transform, many arguments in random matrix
theory (e.g. [45, 25]), make crucial use of concentration of quadratic forms. Specifically, at the
core of the proof of Marchenko-Pastur law lies the bound

(1.2) Var(xTAx) = o(p2)

where x ∈ Rp is any column of the random matrix X and A is any deterministic p× p matrix
with ‖A‖ ≤ 1. If the entires of x have uniformly bounded fourth moments, one always has

Var(xTAx) = E(xTAx)2 ≤ E ‖x‖4
2 = O(p2).

Thus, the requirement (1.2) is just a little stronger than the trivial bound.
Suppose the columns of the random matrix X are independent, but the entries of each

columns may be dependent. Then for Marchenko-Pastur to hold for X, it is sufficient (but not
necessary) to verify the concentration inequality (1.2). The sufficiency is given in the following
result; the absence of necessity is noted in [2, Section 2.1, Example 3].

Theorem 1.7 (Bai-Zhou [12]). Let X = X(p), p = 1, 2, . . ., be a sequence of mean zero p×m
random matrices with independent columns. Assume the following as p→∞.

1. The aspect ratio p/m converges to a number λ ∈ (0,∞) as p→∞.
2. For each p, all columns Xk of X(p) have the same covariance matrix Σ = Σ(p) = EXkX

T
k .

The spectral norm of the covariance matrix Σ(p) is uniformly bounded, and the empirical
spectral distribution of Σ(p) converges to a deterministic distribution H.

3. For any deterministic p× p matrices A = A(p) with uniformly bounded spectral norm and
for every column Xk, we have

max
k

Var(XT
k AXk) = o(p2).

Then, with probability 1 the empirical spectral distribution of the sample covariance matrix
W = 1

m
XXT converges weakly to a deterministic distribution whose Stieltjes transform satisfies

(1.3) s(z) =

∫ ∞
0

1

t(1− λ− λzs)− z
dH(t), z ∈ C+.

In the case where the entries of the columns are uncorrelated and have unit variance, we have
Σ = I and Theorem 1.7 yields that the limiting distribution is the original Marchenko-Pastur
law (1.1).

3Although the main result in [40] is stated for fixed degree d, it can be allowed to grow as fast as d = o(n):
see Lemma 3.3, Theorem 1.2, Definition 1.1, and Remark 4.1 in [40].
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1.5. Concentration of quadratic forms: new results. Theorem 1.7 reduces proving Marchenko-
Pastur law for our new models to the concentration of a quadratic form xTAx. If the random
vector x has all independent entries, bounding the variance of this quadratic form is elementary.
Moreover, in this case Hanson-Wright inequality (see e.g. [51, 48]) gives good probability tail
bounds for the quadratic form.

But in our new models, the coordinates of the random vector are not independent. There
seem to be no sufficiently powerful concentration inequalities available for such models. Known
concentration inequalities for random chaoses [35, 37, 36, 3, 4, 22, 1] exhibit an unspecified
(possibly exponential) dependence on the degree d, which is too bad for our purposes. An
exception is the recent work [52] on concentration of random tensors with an optimal dependence
on d. However, the results of [52] only apply for non-symmetric tensors and positive-semidefinite
matrices A.

The following are new concentration inequalities for the block-independent model (Theo-
rem 1.8) and the random tensor model (Theorem 1.9), which we will prove in Section 2 and
Section 3 respectively.

Theorem 1.8 (Variance of quadratic forms for block-independent model). Let x ∈ Rp be a
random vector that follows the block-independent model with blocks of sizes dk. Then, for any
fixed matrix A ∈ Rp×p, we have

Var(xTAx) ≤ ‖A‖2
(
K
∑
k

d2
k + 2p

)
.

Here K is the largest fourth moment of the entries of x.

This result combined with Theorem 1.7 immediately establishes Marchenko-Pastur law for
the block-independence model:

Proof of Theorem 1.3. Apply Theorem 1.8 and simplify the conclusion using the bound
∑

k d
2
k ≤

(maxk dk)
∑

k dk = (maxk dk) p. We get

Var(xTAx) ≤ p‖A‖2
(
K max

k
dk + 2

)
= o(p2),

if ‖A‖ = O(1), K = O(1), and maxk dk = o(p) as p → ∞. This justifies condition 3 of
Theorem 1.7. Applying this theorem with Σ = I we conclude Theorem 1.3. �

Theorem 1.9 (Variance of quadratic forms for random tensor model). There exist positive
absolute constants C, c > 0 such that the following holds. Let x ∈ Rp, p =

(
n
d

)
, be a random

vector that follows the random tensor model. Then, for any fixed matrix A ∈ Rp×p, we have

Var(xTAx) ≤ C‖A‖2p2

(
K1/2d

n1/3

)3/2

,

if K1/2d/n1/3 < c. Here K is the largest fourth moment of the entries of x.

This result combined with Theorem 1.7 immediately establishes Marchenko-Pastur law for
the random tensor model:

Proof of Theorem 1.5. Theorem 1.9 yields

Var(xTAx) = o(p2)
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whenever ‖A‖ = O(1), K = O(1), and d = o(n1/3). This justifies condition 3 of Theorem 1.7.
Applying this theorem with Σ = I we conclude Theorem 1.5. �

1.6. Anisotropic block-independent model. In Definition 1.1 of the block-independent
model we assumed for simplicity that the blocks are isotropic. Let us show how to remove this
assumption and still obtain a version of Theorem 1.3; the limiting spectral distribution will
then be the anisotropic Marchenko-Pastur law (1.3).

To see this, suppose all columns of our random matrix X = X(p) have the same covariance
matrix Σ = Σ(p). Assume that, as p → ∞, we have ‖Σ(p)‖ = O(1) and the empirical spectral
distribution4 of Σ(p) converges to a deterministic distribution H.

Denoting as before by Xk the k-th column of X, we can represent it as Xk = Σ1/2xk where xk
is some isotropic random vector, i.e. one whose entries are uncorrelated and have unit variance.
Then

Var(XT
k AXk) = Var

(
xTk Σ1/2AΣ1/2 xk

)
.

Applying Theorem 1.8 for x = xk and Σ1/2AΣ1/2 instead of A, we conclude that Var(XT
k AXk) =

o(p2) if ‖Σ‖ = O(1), ‖A‖ = O(1), K = O(1), and maxk dk = o(p).
This justifies condition 3 of Theorem 1.7. Applying this theorem, we conclude that the

limiting spectral distribution of W = 1
m
XXT converges to the anisotropic Marchenko-Pastur

distribution (1.3).

1.7. Optimality. Here we show that the number of blocks in the block-independent model has
to go ∞. Indeed, let X(p) be a sequence of p×m random matrices such that p/m→ λ > 0 as
p → ∞, and whose columns are independent copies of an isotropic random vector x(p) ∈ Rp.
According to a result of P. Yaskov [57, Theorem 2.1], a necessary condition for Marchenko-
Pastur law is that

(1.4)
1

p
‖x(p)‖2

2 → 1 in probability.

This condition may fail if the number of independent blocks is O(1). To see this, take a random
vector from the block-independent model with n equal length blocks (p = nd), and replace each
block with a zero vector independently with probability 1/2. Multiply the result by

√
2. The

resulting random vector x(p) still follows the bock-independent model, but it equals zero with
probability 2−n, a quantity that is bounded below by a positive constant if n = O(1). This
violates the condition (1.4) and demonstrates that Marchenko-Pastur law fails in this case.

It is less clear whether our requirement on the degree d = o(n1/3) in Theorem 1.5 is optimal.
In the light of (1.4), it seems that the optimal condition might be

d = o(n1/2).

Indeed, consider a random vector x(p) ∈ Rp, p =
(
n
d

)
obtained from a random vector x ∈ Rn

with i.i.d. coordinates. that follows the random tensor model. Then

Up :=
1

p
‖x(p)‖2

2 =
1(
n
d

) ∑
1≤i1<···<id≤n

x2
i1
x2
i2
· · · x2

id

4Since the blocks are independent, the covariance matrix Σ is block-diagonal. If Σj is the covariance matrix
of the block j, then the spectral norm of Σ is the maximal spectral norm of Σj , and the empirical spectral
distribution of Σ is the mixture of the empirical spectral distributions of all Σj .
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is a U-statistic. According to a result of W. Hoeffding [28],

Var(Up) ≥
d2

n
Var(x2

1).

Assume the variance of x2
1 is nonzero. If d & n1/2 then Var(Up) does not converge to zero. This

makes it plausible that the necessary condition (1.4) for Marchenko-Pastur law may be violated
in this regime.

2. Quadratic forms in block-independent random vectors: Proof of
Theorem 1.8

2.1. Reductions. Rearranging the entries of x, we can assume that the indices of the blocks

are successive intervals, i.e. the kth block index set is Ik =
{∑k−1

l=1 dl + 1, . . . ,
∑k

l=1 dl

}
. Since

xTAx =
(
xTAx

)T
= xTATx, the symmetric matrix Ã := (A+ AT)/2 satisfies

xTAx = xTÃx and ‖Ã‖ ≤ 1

2

(
‖A‖+ ‖AT‖

)
= ‖A‖.

Therefore, it suffices to prove Theorem 1.8 for symmetric matrices A.
We will control the contribution of the diagonal and off-diagonal blocks of A separately. The

diagonal blocks of A form the block-diagonal matrix D = (Dij)
nd
i,j=1 defined as

Dij = Aij if i, j lie in the same block

and Dij = 0 otherwise. Now, decomposing xTAx = xTDx+ xT(A−D)x, we have

(2.1) Var(xTAx) ≤ 2Var(xTDx) + 2Var(xT(A−D)x).

Let us bound each of the two terms on the right hand side.

2.2. Diagonal contribution. The vector x can be decomposed into blocks x̄k := (xi)i∈Ik ,
and the matrix D consists of corresponding diagonal blocks D̄k := (Dij)i,j∈Ik . Then xTDx =∑

k x̄
T
k D̄kx̄k, and since x̄k are independent, this yields

Var(xTDx) =
∑
k

Var
(
x̄Tk D̄kx̄k

)
.

Now,

Var
(
x̄Tk D̄kx̄k

)
≤ E

(
x̄Tk D̄kx̄k

)2 ≤ E
(
‖D̄k‖ ‖x̄k‖2

2

)2 ≤ ‖A‖2 E ‖x̄k‖4
2.

Furthermore,

E ‖x̄k‖4
2 =

∑
i,j∈Ik

E x2
ix

2
j ≤ Kd2

k.

We conclude that

(2.2) Var(xTDx) ≤ K‖A‖2
∑
k

d2
k.
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2.3. Off-diagonal contribution. By definition,

(2.3) Var(xT(A−D)x) = E
(
xT(A−D)x

)2 −
(
E xT(A−D)x

)2
.

Denote by R the set of all index pairs (i, j) such that i and j do not lie in the same block.
Then

E
(
xT(A−D)x

)2
= E

( ∑
(i,j)∈R

Aijxixj

)2

=
∑

(i,j),(k,l)∈R

AijAkl E xixjxkxl

Consider any term E xixjxkxl that is nonzero. By the mean zero assumption and block-
independence, none of the indices i, j, k or l may lie in their own block. This means that
a pair of these indices lies in one block and another pair lies in a different block. By definition
of R, there there are only two ways to form such pairs: (i, k) in one block and (j, l) in another,
or (i, l) in one block and (j, k) in another.

In the first scenario, block-independence yields

E xixjxkxl = E xixk E xjxl.

By isotropy, this term equals 1 if i = k and j = l, and zero otherwise. In the second scenario,
arguing similarly we get one if i = l and j = k, and zero otherwise. Therefore, breaking the
sum according to the scenario and then using the symmetry of A, we obtain∑

(i,j),(k,l)∈R

AijAkl E xixjxkxl =
∑

(i,j)∈R

AijAij +
∑

(i,j)∈R

AijAji = 2
∑

(i,j)∈R

A2
ij

≤ 2
∑
i,j

A2
ij ≤ 2

p∑
i=1

m∑
j=1

A2
ij ≤ 2p‖A‖2.

We just bounded the first term in the right hand side of (2.3). The second term vanishes.
Indeed,

E xT(A−D)x =
∑

(i,j)∈R

Aij E xixj = 0

since E xixj = 0 for all i 6= j by assumption. Summarizing, we bounded the off-diagonal
contribution as follows:

Var(xT(A−D)x) ≤ 2p‖A‖2.

Combining this with the bound (2.2) on the diagonal contribution and substituting into (2.1),
we conclude that

Var(xTAx) ≤ ‖A‖2
(
K
∑
k

d2
k + 2p

)
.

�

3. Quadratic forms in random tensors: Proof of Theorem 1.9

3.1. Reductions. Without loss of generality, we may assume that ‖A‖ = 1 by rescaling.
Expanding xTAx as a double sum of terms Aijxixj, and distinguishing the diagonal terms
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(i = j) and the off-diagonal terms (i 6= j), we have:

Var(xTAx) = E

[
|xTAx− trA|2

]
≤ 2E

[(∑
i

Aii(x
2
i − 1)

)2
]

+ 2E

[(∑
i6=j

Aijxixj

)2
]

=: 2Sdiag + 2Soff.(3.1)

Here we used the inequality (a+ b)2 ≤ 2a2 + 2b2.

3.2. Diagonal contribution. Expanding the square, we can express the diagonal contribution
as

(3.2) Sdiag =
∑
i,k

AiiAkk E(x2
i − 1)(x2

k − 1).

Both meta-indices i and k range in all
(
n
d

)
subsets of [n] of cardinality d. Let v denote the

overlap between these two subsets, i.e.

v := |i ∩ k|.

If v = 0, the subsets are disjoint, the random variables x2
i − 1 and x2

k − 1 are independent
and have mean zero, and thus

E(x2
i − 1)(x2

k − 1) = 0.

Such terms do not contribute anything to the sum in (3.2).
If v ≥ 1, the monomial x2

ix
2
k consists of v terms raised to the fourth power (coming from the

indices that are both in i and k) and 2(d− v) terms raised to the second power (coming from
the symmetric difference of i and k). Thus,∣∣E(x2

i − 1)(x2
k − 1)

∣∣ ≤ Ex2
ix

2
k ≤ max

α

(
E x4

α

)v ·max
β

(
E x2

β

)2(d−v) ≤ Kv,

where we used the unit variance assumption.
There are

(
n
d

)
ways to choose i. Once we fix i and v ∈ {1, . . . , d}, there are

(
d
v

)(
n−d
d−v

)
ways to

choose k, since v indices must come from i and the remaining d − v indices must come from
[n] \ i. Therefore,

(3.3) Sdiag ≤
(
n

d

) d∑
v=1

(
d

v

)(
n− d
d− v

)
Kv.

To bound this sum, we can assume without loss of generality that K is a positive integer.
Then the following elementary inequality holds:(

d

v

)
Kv ≤

(
Kd

v

)
,

and it can be quickly checked by writing the binomial coefficients in terms of factorials. Now,
if we were summing v from zero as opposed from 1 in (3.3), we can use Vandermonde’s identity
and get

d∑
v=0

(
d

v

)(
n− d
d− v

)
Kv ≤

d∑
v=0

(
Kd

v

)(
n− d
d− v

)
=

(
n− d+Kd

d

)
.
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Subtracting the zeroth term, we obtain

d∑
v=1

(
d

v

)(
n− d
d− v

)
Kv ≤

(
n− d+Kd

d

)
−
(
n− d
d

)
.

Now use a stability property of binomial coefficients (Lemma 3.7), which tells us that(
n− d+Kd

d

)
−
(
n− d
d

)
≤ δ

(
n− d
d

)
where δ :=

2Kd2

n− 2d+ 1
,

as long as δ ≤ 1/2. According to our assumptions on the degree d, we do have δ ≤ 1/2 when
n is sufficiently large.

Summarizing, we have shown that

(3.4) Sdiag ≤
(
n

d

)
· δ
(
n− d
d

)
.

(
n

d

)2

· Kd
2

n
.

3.3. Off-diagonal contribution: the cross moments. Expanding the square, we can ex-
press the off-diagonal contribution in (3.1) as

(3.5) Soff =
∑
i6=j

∑
k 6=l

AijAkl Exixjxkxl.

Let us first bound the expectation of

xixjxkxl =
∏
i∈i

xi
∏
i∈i

xj
∏
k∈k

xk
∏
l∈l

xl.

Without loss of generality, we can assume that this monomial of degree 4d has no linear factors,
i.e. each of the factors xα of this monomial has degree at least 2, otherwise the expectation of
the monomial is zero. Rearranging the factors, we can express the monomial as

(3.6) xixjxkxl =
∏
α∈Λ2

x2
α

∏
β∈Λ3

x3
β

∏
γ∈Λ4

x4
γ

for some disjoint sets Λ2,Λ3,Λ4 ⊂ [n]. Thus, Λ2 consists of the indices that are covered by
exactly two of the sets i, j,k, l, and similarly for Λ3 and Λ4. Since each of the four sets i, j,k, l
contains d indices, counting the indices with multiplicities gives

(3.7) 4d = 2|Λ2|+ 3|Λ3|+ 4|Λ4|.
Since each index is covered at least by two of the four sets i, j,k, l, the cardinality of the set

(3.8) i ∪ j ∪ k ∪ l = Λ2 t Λ3 t Λ4

is at most 4d/2 = 2d. Let w ≥ 0 be the “defect” defined by

(3.9)
∣∣i ∪ j ∪ k ∪ l

∣∣ = 2d− w.
Thus, w would be zero if every index is covered by exactly two sets, and w would be positive
if there are triple or quadruple covered indices. From (3.8) and (3.9) we see that

2d− w = |Λ2|+ |Λ3|+ |Λ4|.
Multiplying both sides of this equation by 2 and subtracting from (3.7), we get

(3.10) 2w = |Λ3|+ 2|Λ4|,
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a relation that will be useful in a moment.
Take expectation on both sides of (3.6). Using independence and the assumptions that

E x2
α = 1 and Ex4

α ≤ K for each α, we get

E |xixjxkxl| =
∏
β∈Λ3

E |xβ|3 ·
∏
γ∈Λ4

E x4
γ =

∏
β∈Λ3

(
E |xβ|4

)3/4

·
∏
γ∈Λ4

E x4
γ ≤ K

3
4
|Λ3|+|Λ4|.

Due to (3.10),
3

4
|Λ3|+ |Λ4| =

3

2
w − 1

2
|Λ4| ≤

3

2
w.

Thus we have shown that

E |xixjxkxl| ≤ K3w/2.

3.4. Sizes of intersections of meta-indices. Due to the last step, the off-diagonal contri-
bution (3.5) can be bounded as follows:

(3.11) Soff ≤
∑
i6=j

∑
k 6=l

|Aij||Akl|K3w/2,

where the sum only includes the sets i, j,k, l that provide at least a double cover, i.e. such that
every index from i ∪ j ∪ k ∪ l must belong to at least two of these four sets. We quantified this
property by the defect w ≥ 0, which we defined by

|i ∪ j ∪ k ∪ l| = |i ∪ j ∪ k| = 2d− w.

In preparation to bounding the double sum in (3.11), let us consider

|i ∩ j| =: v, |i ∩ j ∩ k| =: r,

and observe a few useful bounds involving w, v, and r.

Lemma 3.1. We have w ≤ v ≤ d− 1.

Proof. By definition, v = |i ∩ j| ≤ |i| = d. Moreover, v may not equal d, for this would mean
that i = j, a possibility that is excluded in the double sum (3.11). This means that v ≤ d− 1.
Next, we have

(3.12) |i ∪ j| = |i|+ |j| − |i ∩ j| = 2d− v.

On the other hand, |i ∪ j| ≤ |i ∪ j ∪ k| = 2d− w. Combining these two facts yields w ≤ v. �

Lemma 3.2. We have r ≤ v and r ≤ 2w.

Proof. The first statement follows from definition. To prove the second statement, recall that
the sets i, j,k, l form at least a double cover of i∪ j∪k∪ l and at least a triple cover of i∩ j∩k
(trivially). Since each of the four sets has d indices, counting the indices with multiplicities
gives

4d ≥ 2|i ∪ j ∪ k ∪ l|+ |i ∩ j ∩ k| = 2(2d− w) + r

by the definition of w and r. This yields r ≤ 2w. �

Lemma 3.3. We have r ≤ d− v + w.
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Proof. The sets i, j, k obviously form at least a double cover of i∩j and a triple cover of i∩j∩k.
Since each of the three sets has d indices, counting the indices with multiplicities gives

3d ≥ |i ∪ j ∪ k|+ |i ∩ j|+ |i ∩ j ∩ k| = (2d− w) + v + r

by definition of w, v and r. Rearranging the terms completes the proof. �

3.5. Number of choices of meta-indices. Let us fix w, v, and r, and estimate the number
of possible choices for the sets i, j, k, l that conform to these w, v, and r. This would help us
determining the number of terms in the double sum (3.11). Thus, we would like to know how
many ways are there to choose four d-element sets i, j,k, l ⊂ [n] that provide at least a double
cover of i ∪ j ∪ k ∪ l, and so that

(3.13) |i ∪ j ∪ k| = |i ∪ j ∪ k ∪ l| = 2d− w, |i ∩ j| = v, and |i ∩ j ∩ k| = r.

Choosing i. This is easy: there are
(
n
d

)
ways to choose the d-element subset i from [n].

Choosing j. Recall that we need to obey |i∩ j| = v. Thus, for a fixed i, we have
(
d
v

)(
n−d
d−v

)
choices

for j, which is seen by first picking the v overlapping indices from i and then the remaining
d− v indices from ic.

Choosing k. Let us fix i and j. The set of all available indices [n], from which the indices of k
can be chosen, can be partitioned into the three disjoint sets:

(3.14) [n] = (i ∩ j) t (i ∪ j)c t (i4j).

Let us see how many indices for k should come from each of these three sets.
As we see from (3.13), the v-element set i ∩ j must contain exactly r indices of k, and these

can be selected in
(
v
r

)
ways.

Next, we know from (3.12) that |(i ∪ j)c| = n− (2d− v), and

(3.15) |(i ∪ j)c ∩ k| = |i ∪ j ∪ k| − |i ∪ j| = (2d− w)− (2d− v) = v − w,

where we used (3.13) and (3.12). So, the set (i ∪ j)c must contain exactly v − w indices of k,

and these can be selected in
(
n−(2d−v)
v−w

)
ways.5

Finally, by (3.12) and (3.13) we have

(3.16) |i4j| = |i ∪ j| − |i ∩ j| = (2d− v)− v = 2(d− v).

We already allocated r + (v − w) indices of k to the first two sets on the right-hand side of
(3.14). Thus, the number of indices for k that come from the third set, i4j, must be

(3.17) |(i4j) ∩ k| = d− r − (v − w).

These indices can be selected in
(

2(d−v)
d−r−(v−w)

)
ways.6

Summarizing, for fixed i and j, we have
(
v
r

)(
n−(2d−v)
v−w

)(
2(d−v)

d−r−(v−w)

)
choices for k.

5Since the cardinality of any set is nonnegative, equation (3.15) provides an alternative proof of the bound
w ≤ v in Lemma 3.1.

6Since the cardinality of any set is nonnegative, equation (3.17) provides an alternative proof of Lemma 3.3.



MARCHENKO-PASTUR LAW WITH RELAXED INDEPENDENCE CONDITIONS 13

Choosing l. Fix i, j and k. Recall that the sets i, j, k, l must form at least a double cover of
i ∪ j ∪ k ∪ l. This has two consequences. First, we must have

(3.18) l ⊂ i ∪ j ∪ k

to avoid any single-covered indices in l. Second, l must contain all the single indices, i.e. those
that belong to exactly one of the sets i, j, or k. The set of single indices, denoted s, can be
represented as

s = (ic ∩ jc ∩ k) t
[
(i ∩ jc ∩ kc) t (ic ∩ j ∩ kc)

]
=
[
(i ∪ j)c ∩ k

]
t
[
(i4j) ∩ kc

]
.

At this stage, the sets i, j and k are all fixed, and so is s.
To compute the cardinality of s, recall from (3.15) that |(i ∪ j)c ∩ k| = v − w. Furthermore,

using (3.16) and (3.17), we see that

|(i4j) ∩ kc| = |(i4j)| − |(i4j) ∩ k| = 2(d− v)− (d− r − (v − w)) = d− w − v + r.

Thus, the number of single indices is

|s| = (v − w) + (d− w − v + r) = d− 2w + r.

Since l must contain the set s of single indices, which is fixed, the only freedom in choosing
l comes from selecting non-single indices. There are d − (d − 2w + r) = 2w − r of them,7 and
they must come from the set (i ∪ j ∪ k) \ s, due to (3.18). Now, recalling (3.13), we have

|(i ∪ j ∪ k) \ s| = |i ∪ j ∪ k| − |s| = (2d− w)− (d− 2w + r) = d+ w − r.

Hence, for fixed i, j and k, we have
(
d+w−r
2w−r

)
choices for l.

3.6. Bounding the off-diagonal contribution by a binomial sum. We can now return to
our bound (3.11) on the off-diagonal contribution. We can rewrite it as follows:

(3.19) Soff ≤
∑
w,v,r

K3w/2
∑
i∈I

∑
j∈J(i)

∑
k∈K(i,j)

∑
l∈L(i,j,k)

|Aij||Akl|.

The first sum is over all realizable v, w, and r, and the rest of the sums are over all possible
choices for i, j, k and l that conform to the given v, w and r per (3.13). Thus, for instance,
L(i, j,k) consists of all possible choices for l given i,j and k. We observed various bounds on
realizable v, w and r in Section 3.4, and we computed the cardinalities of the sets I, J(i), K(i, j)
and L(i, j,k) in Section 3.5. This knowledge will help us to bound the five-fold sum in (3.19).

In order to do this, rewrite (3.19) as follows:

Soff ≤
∑
w,v,r

K3w/2
∑
i∈I

∑
j∈J(i)

|Aij|
∑

k∈K(i,j)

∑
l∈L(i,j,k)

|Akl|.

Note that |Akl| ≤ ‖A‖ = 1 for all k and l, and∑
j∈J(i)

|Aij| ≤ |J(i)|1/2
( ∑

j∈J(i)

A2
ij

)1/2

≤ |J(i)|1/2‖A‖ = |J(i)|1/2.

7Since the number of indices is non-negative, this provides an alternative proof of the bound r ≤ 2w in
Lemma 3.2.
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Thus

Soff ≤
∑
w,v,r

K3w/2|I| ·max
i
|J(i)|1/2 ·max

i,j
|K(i, j)| ·max

i,j,k
|L(i, j,k)|.

Now we can use the bounds we proved in Section 3.5 on the cardinalities of sets I, J(i), K(i, j)
and L(i, j,k), which are the number of choices for i, for j given i, for k given i, j, and for l given
i, j,k. We obtain

Soff ≤
∑
w,v,r

K3w/2

(
n

d

)(
d

v

)1/2(
n− d
d− v

)1/2(
v

r

)(
n− (2d− v)

v − w

)(
2(d− v)

d− r − (v − w)

)(
d+ w − r

2w − r

)
≤
(
n

d

)∑
w,v,r

K3w/2B1B2B3B4B5B6,(3.20)

where Bm = Bm(n, d, w, v, r) denote the corresponding factors in this expression; for example

B2 =
(
n−d
d−v

)1/2
.

3.7. The terms of the binomial sum. Let us observe a few bounds on the factors Bm. First,

(3.21) B5 ≤ 22(d−v)

due to the inequality
(
m
k

)
≤ 2m.

Next, since v ≤ d+w− r by Lemma 3.3, we have B3 =
(
v
r

)
≤
(
d+w−r

r

)
. Combining this with

B6 =
(
d+w−r
2w−r

)
, we get

B3B6 ≤
(
d+ w − r

r

)(
d+ w − r

2w − r

)
≤
(
d+ w − r

w

)2

.

Here we used the log-concavity property of binomial coefficients, see Lemma 3.5 in the appendix.
Furthermore, we have w ≤ d by Lemma 3.1 and r ≥ 0, so

(3.22) B3B6 ≤
(

2d

w

)2

≤ (2ed)2w,

where we used an elementary bound from Lemma 3.4 in the last step.
Next, using the decay of the binomial coefficients (Lemma 3.6), we get

B4 ≤
(
n− (2d− v)

v − w

)
≤
(

v

n− 2d+ 1

)w(
n− (2d− v)

v

)
.

Now recall that v ≤ d (Lemma 3.1) and note that our assumption on d with a sufficiently small
constant c implies d ≤ n/4. Thus

B4 ≤
(

2d

n

)w(
n− (2d− v)

v

)
.

This expression can be conveniently combined with B2
2 =

(
n−d
d−v

)
, since

B2
2B4 ≤

(
2d

n

)w(
n− d
d− v

)(
n− (2d− v)

v

)
=

(
2d

n

)w(
d

v

)(
n− d
d

)
,
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The last identity can be easily checked by expressing the binomial coefficients in terms of

factorials. This expression in turn can be conveniently combined with B1 =
(
d
v

)1/2
, and we get

(3.23) B1B2B4 = B1 ·
B2

2B4

B2

=

(
2d

n

)w(
n− d
d

)
·
(
d
v

)3/2(
n−d
d−v

)1/2
.

Now, using the elementary binomial bounds (Lemma 3.4), we obtain(
d
v

)3/2(
n−d
d−v

)1/2
=

(
d
d−v

)3/2(
n−d
d−v

)1/2
≤
(

e3/2d3/2

(d− v)(n− d)1/2

)d−v
≤
(
C1d

3/2

n1/2

)d−v
.

In the last step we used that d − v ≥ 1 by Lemma 3.1 and that d ≤ n/2, which follows from
our assumption on d if the constant c is chosen sufficiently small. Recall that by C1, C2, etc.
we denote suitable absolute constants. Returning to (3.23), we have shown that

(3.24) B1B2B4 ≤
(

2d

n

)w(
n

d

)(
C1d

3/2

n1/2

)d−v
.

3.8. The final bound on the off-diagonal contribution. We can now combine our bounds
(3.21), (3.22) and (3.24) on Bi and put them into (3.20). We obtain

Soff ≤
(
n

d

)∑
w,v,r

K3w/2B5 · B3B6 · B1B2B4 ≤
(
n

d

)2 ∑
w,v,r

(
C2d

3K3/2

n

)w(
C3d

3/2

n1/2

)d−v
.

Recall from Lemma 3.2 that 0 ≤ r ≤ 2w, thus the sum over r includes at most 2w + 1 terms.
Similarly, Lemma 3.1 determines the ranges for the other two sums, namely 0 ≤ w, v ≤ d− 1.
Hence

(3.25) Soff ≤
(
n

d

)2 d−1∑
w=0

(2w + 1)

(
C2d

3K3/2

n

)w
·
d−1∑
v=0

(
C3d

3/2

n1/2

)d−v
.

The sums over w and v in the right hand side of (3.25) can be easily estimated. To handle
the sum over w, we can use the identity

∑∞
k=0 kz

k = z/(1− z)2, which is valid for all z ∈ (0, 1).
Thus, the sum over w is bounded by an absolute constant, as long as C2d

3K3/2/n ≤ 1/2. The
latter restriction holds by our assumption on d with a sufficiently small constant c.

Similarly, the sum over v in the right hand side of (3.25) is a partial sum of a geometric
series. It is dominated by the leading term, i.e. the term where v = d − 1. Hence this sum
is bounded by C4d

3/2/n1/2, as long as C3d
3/2/n1/2 ≤ 1/2. The latter restriction holds by our

assumption on d with a sufficiently small constant c.
Summarizing, we obtained the following bound on the off-diagonal contribution (3.5):

Soff .

(
n

d

)2
d3/2

n1/2
.

Combining this with the bound (3.4) on the diagonal contribution and plugging into (3.2),
we conclude that

E
[
|xTAx− trA|2

]
.

(
n

d

)2

· Kd
2

n
+

(
n

d

)2
d3/2

n1/2
.

(
n

d

)2

· K
3/4d3/2

n1/2
.
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In the last step, we used the assumption that d . K−1/2n1/3. The proof of Theorem 1.9 is
complete. �

Appendix. Elementary bounds on binomial coefficients

Here we record some bounds on binomial coefficients used throughout the paper.

Lemma 3.4 (see e.g. Exercise 0.0.5 in [51]). For any integers 1 ≤ d ≤ n, we have:(n
d

)d
≤
(
n

d

)
≤

d∑
k=0

(
n

k

)
≤
(en
d

)d
.

Lemma 3.5 (Log-concavity of binomial coefficients). We have(
a

b− c

)(
a

b+ c

)
≤
(
a

b

)2

.

for all positive integers a, b and c for which the binomial coefficients are defined.

Proof. Expressing the binomial coefficients in terms of factorials, we have(
a
b−c

)(
a
b+c

)(
a
b

)2 =
b!/(b− c)!
(b+ c)!/b!

· (a− b)!/(a− b− c)!
(a− b+ c)!/(a− b)!

Examining the first fraction in the right hand side, we find that both the numerator and
denominator consist of c terms. Each term in the numerator is bounded by the corresponding
terms in the denominator. Thus the fraction is bounded by 1. We argue similarly for the second
fraction, and thus the entire quantity is bounded by 1. �

Lemma 3.6 (Decay of binomial coefficients). For any positive integers s ≤ t ≤ m, we have(
m

t− s

)
≤
(

t

m− t+ 1

)s(
m

t

)
.

Proof. The definition of binomial coefficients gives(
m
t−s

)(
m
t

) =
t(t− 1) · · · (t− s+ 1)

(m− t+ s)(m− t+ s− 1) · · · (m− t+ 1)
≤ ts

(m− t+ 1)s
.

�

Lemma 3.7 (Stability of binomial coefficients). For any positive integers m, p and t ≤ m, we
have (

m+ p

t

)
≤ (1 + δ)

(
m

t

)
where δ :=

2tp

m+ 1− t
,

as long as δ ≤ 1/2.

Proof. The definition of binomial coefficients gives(
m+p
t

)(
m
t

) =

p∏
k=1

(
1 +

t

m− t+ k

)
≤
(

1 +
t

m− t+ 1

)p
.

Now use the bound (1 + ε)p ≤ eεp ≤ 1 + 2εp, which holds as long as εp ∈ [0, 1]. �
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4. Numerical Experiments

We present a few numerical experiments to verify that the empirical spectral densities for the
block-independent model and the random tensor model tend to the Marchenko-Pastur laws. In
all of our tests, the numerical results are computed from a single realization, i.e. we did not
average over multiple trials.

Block-independent model experiments: In Figure 1 we show the empirical spectral
densities for four experiments of block-independent matrices; in each case, they align very well
with the corresponding Marchenko-Pastur density. In Figure 1a, the columns of X ∈ R4000×16000

consist of n = 2000 blocks, each of length d = 2 where the first entry of the block is z ∼ N(0, 1)
and the second entry is 1√

2
(z2 − 1). Thus the second entry is completely determined via a

formula of the first entry. While this matrix has half the amount of randomness as an i.i.d.
matrix of the same size, it still follows the same limiting distribution as the i.i.d. matrix. We
see the densities match up very well even for these relatively small sized matrices. In Figure 1b,
the columns of X ∈ R1800×12600 consist of n = 600 blocks each of length d = 3 where the first
and second entry of the block are ±1

2
each with probability 1

2
and the third entry is a shifted

XOR of the first and second (i.e. the third entry is 1
2

if the first and second entries have opposite

signs and it is −1
2

if the first and second entries have the same sign). In this case the variance

of the entries is 1
4
, so it matches up with Marchenko-Pastur density with covariance matrix

Σ = 1
4
I and λ = 1

7
. In Figure 1c, the columns of matrix X ∈ R7000×21000 have n = 10 blocks,

where each block is length d = 700 and is of the form ±
√
dei for i selected uniformly from [d],

where {ei}di=1 ∈ Rd are the standard basis vectors in Rd. This example shows that with the
exchangeability criteria, it is possible for n � d. Additionally, we see the two densities agree
very well, despite only having n = 10 blocks. Similar to Figure 1c, in Figure 1d the columns
of matrix X ∈ R6400×12800 have n = 80 blocks, where each block is length d = 80 and is of the
form ±

√
dei for i selected uniformly from [d]. These figures and other experiments together

suggest that having n ≥ 10 and dimensions in the low thousands is enough for the empirical
spectral density of a block-independent model matrix to align quite well with the corresponding
Marchenko-Pastur density.

Random tensor model experiments: In Figures 2 and 3, we look at vectorized 2-tensors
and 3-tensors (d = 2 and d = 3 respectively). We see that the fourth moment of the entries
appears to be important for the speed of convergence as n → ∞. For both the 2-tensors and
3-tensors we consider three types of entries in the vector that we will tensor with itself: 1) the
entries are Bernoulli ±1 each with probability half - these entries have fourth moment of 1; 2)
the entries are Uniform on [−

√
3,
√

3] - these entries have fourth moment of 9
5
; 3) the entries

are standard normal - these entries have fourth moment of 3. In Figure 2 we compare the
the empirical spectral density for 2-tensors with the corresponding Marchenko-Pastur density
using n = 145. We see that the two densities match up quite well, and match up better when
the entries had smaller fourth moments. We do the same experiments for 3-tensors in Figure
3 except now using n = 45, since n = 145 is too computationally costly as it would have(

145
3

)
≈ 500, 000 rows. We see that the two densities match up quite well for the Bernoulli entry

case, not very well for the uniform entry case, and very poorly for the standard normal case.
These figures suggest there may even be a different limiting law for small values of n. Testing
n = 100 does show (Figure 4) that the empirical densities are getting closer to the Marchenko-
Pastur density as n increases. These experiments show that while the limiting density does
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tend to the the Marchenko-Pastur density, they do not align very well for small values of n and
the rate of convergence likely depends upon the largest fourth moment of the random vector.

(a) (b)

(c) (d)

Figure 1. The Marchenko-Pastur density (red curve) vs. empirical spectral
density for block-independent matrices described in Section 4.
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