MARCHENKO-PASTUR LAW WITH RELAXED INDEPENDENCE
CONDITIONS
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ABSTRACT. We prove the Marchenko-Pastur law for the eigenvalues of p X p sample covariance
matrices in two new situations where the data does not have independent coordinates. In the
first scenario — the block-independent model — the p coordinates of the data are partitioned
into blocks in such a way that the entries in different blocks are independent but the entries
from the same block may be dependent. In the second scenario — the random tensor model —
the data is the homogeneous random tensor of order d, i.e. the coordinates of the data are all
(Z) different products of d variables chosen from a set of n independent random variables. We
show that Marchenko-Pastur law holds for the block-independent model as long as the size of
the largest block is o(p), and for the random tensor model as long as d = o(n'/?). Our main
technical tools are new concentration inequalities for quadratic forms in random variables with
block-independent coordinates, and for random tensors.

1. INTRODUCTION

1.1. Marchenko-Pastur law. Consider a p x m random matrix X with independent entries
that have zero mean and unit variance. The limiting distribution of eigenvalues \;(WW) of the
sample covariance matrix W = %X XT is determined by the celebrated Marchenko-Pastur law
[41]. This result is valid in the regime where the dimensions of X increase to infinity but
the aspect ratio converges to a constant, i.e. p — oo and p/m — A € (0,00). Then, with
probability 1, the empirical spectral distribution of the p x p matrix W converges weakly to
a deterministic distribution that is now called the Marchenko-Pastur law with parameter .
More specifically, if A € (0,1), then with probability 1 the following holds for each = € R:

FY () ::%#{1 <i<p: NW) §x}—>/xf,\(t) dt

where f) is the Marchenko-Pastur density
1 . 2

A similar result also holds for A > 1, but in that case the the limiting distribution has an

additional point mass of 1 —1/\ at the origin. A straightforward proof of the Marchenko-Pastur

law using the Stieltjes transform is given in Chapter 3 of [18]. More extensive expositions of the
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2 MARCHENKO-PASTUR LAW WITH RELAXED INDEPENDENCE CONDITIONS

Marchenko-Pastur law with proofs using both the moment method and the Stieltjes transform
are given in [11, Chapter 3] and [9]. Furthermore, [9] includes a review of many existing works
prior to 1999.

1.2. Relaxing independence. In many data sets it is natural to have independent columns,
but not independent entries in the same column. For example, data collected from people, such
as patient health information or personal movie ratings, will have independent columns since
it is reasonable to assume each person’s responses are independent of everyone else’s responses.
However, entries within a column are most likely not independent.

Several papers relaxing the independence within the columns already exist. Yin and Kr-
ishnaiah [59] required the independent columns Xj, to come from a spherically symmetric
distribution; specifically, they require the distribution of X to be the same as that of PX,
where P is an orthogonal matrix. Aubrun [7] allowed X}, to be distributed uniformly on the I
ball. That result was extended by Pajor and Pastur [45] for all isotropic log-concave measures.
Hui and Pan [30] and Wei, Yang and Ying [55] considered independent columns X with m(k)-
dependent stationary entries as long as the length of X} is O([m(k)]*). Hofmann-Credner and
Stolz [29] and Friesen, Lowe and M. Stolz [20] assumed that the entries of X can be partitioned
into independent subsets, while allowing the entries from the same subset to be dependent.
Gotze and Tikhomirov in [23] and [24] replace the independence assumptions entirely with
certain martinale-type conditions. In a similar manner, Adamczak [2] showed that Marchenko-
Pastur law holds if the Fuclidean norms of the rows and columns of X concentrate around their
means and the expectation of each entry of X conditioned on all other entries equals zero. Bai
and Zhou [12] gave a sufficient condition in terms of concentration of quadratic forms, and Yao
[58] used their condition to allow a time series dependence structure in X. Yaskov [56] gave
a short proof with a slightly weaker condition on the concentration of quadratic forms than
Bai and Zhou's result. O’Rourke [44] considered a class of random matrices with dependent
entries where even the columns are not necessarily independent, but are uncorrelated; although
columns that are far enough apart must be independent. Lastly, the papers [16], [14], and [39]
consider structured matrices such as block Toeplitz, Hankel, and Markov matrices.

In this paper, we study two random matrix models with relaxed independence requirement. In
our first model, we consider matrices with independent columns and each column is partitioned
into blocks of the same size, and we only require the entries in different blocks to be independent.

Definition 1.1 (Block-independent model). Consider a mean zero, isotropic' random vector
x € RP. Assume that the entries of x can be partitioned into blocks each of length dj, in such
a way that the entries in different blocks are independent. (The entries from the same block
may be dependent.) Then we say that z follows the block-independent model.

The block-independent data structures arise naturally in many situations. For example Net-
flix’s movie recommendation data set contains ratings of movies by many people. A single
person’s movie ratings are likely to have a block structure coming from different movie genres,
i.e. someone who dislikes documentary movies will have a block of poor ratings, etc. Another
example of such a block structure is the stock market. The Marchenko-Pastur law assuming

1Isotropy means that the covariance matrix of z is identity, i.e. Exzaz" = I. The isotropy assumption is
convenient but not essential, and we show how to remove it in Section 1.6.
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independence among all entries has been used as a comparison to the empirical spectral distri-
bution of daily stock prices, see [34, 46]. However, a block structure is more realistic, since for
each day the performance of stocks in the same sector of the market are likely to be correlated
and stocks in different sectors can be considered to be independent.

In the second model we study, the independent columns of a random matrix are formed by
vectorized independent symmetric random tensors.

Definition 1.2 (Random tensor model). Consider an isotropic random vector x € R™ with

independent entries. Let the random vector « € R(3) be obtained by vectorizing the symmetric
tensor 2%, Thus, the entries of = are indexed by d-element subsets i C [n] and are defined as
products of the entries of x over i:

T; = | |xi:xi1xi2--~xid, i={iy,... 04}
i€l

Then we say that @ follows the random tensor model.

Although random tensors appear frequently in data science problems [6, 21, 31, 42, 54, 43,
47, 17, 15, 33, 26, 8, 5, 40, 52, 13, 61|, a systematic theory of random tensors is still in its
infancy:.

1.3. New results. In this paper, we generalize Marchenko-Pastur law to the two models of
random matrices described above. The following is our main result for the block-independence
model (described in Definition 1.1 above).

Theorem 1.3 (Marchenko-Pastur law for the block-independent model). Let X = X®) p =
> v di, be a sequence of p x m random matrices, whose columns are independent and follow
the block-independent model with blocks of sizes dy, = di(p), the aspect ratio p/m converging to
a number A € (0,00) and maxyd; = o(p) as p — oo. Assume that all entries of the random
matrix X have uniformly bounded fourth moments. Then with probability 1 the empirical spectral
distribution of the sample covariance matric W = %X XT converges weakly in distribution to
the Marchenko-Pastur distribution with parameter \.

Remark 1.4. The requirement maxyd; = o(p) in Theorem 1.3 implies that the number of
independent blocks grows to infinity. We will show that this condition is necessary in Section 1.7.

Our second main result is the Marchenko-Pastur law for the random tensor model (described
in Definition 1.2).

Theorem 1.5 (Marchenko-Pastur law for the random tensor model). Let X = X®) p = (g),
n = 1,2,..., be a sequence of p X m random matrices, whose columns are independent and
follow the random tensor model with d = o(n'/3), and the aspect ratio p/m converging to a
number \ € (0,00) as p — 0o. Assume that the entries of the random vector x have uniformly
bounded fourth moments.> Then with probability 1 the empirical spectral distribution of the
sample covariance matrix W = %XXT converges weakly in distribution to the Marchenko-
Pastur distribution with parameter X.

ZNote that for the random tensor model, the fourth moment assumption only concerns the entries of the
random wvector x. The fourth moments of the entries of the random tensor x, and thus of the entries of the
random matrix X, can be very large. Indeed, if Ex} = K for all i, then Ex{ = K? by independence.
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Remark 1.6. Better understood is the non-symmetric version of the random tensor model.
Instead of considering the d-fold product z®? of a random vector x € R", consider d i.i.d.
random vectors 1, ..., x4y € R™ and consider their inner product 1 ® - - - ® 4. Vectorizing this
random tensor, we obtain a random vector in R™. Spectral properties of the non-symmetric
random tensor model were studied in [5] in connection with physics and quantum information
theory. Marchenko-Pastur law was proved for this model by Lytova [40] under the assumption®
d = o(n). The non-symmetric random tensor model is even more challenging as it is generated
by fewer independent random variables.

1.4. Marchenko-Pastur law via concentration of quadratic forms. Our approach to
both main results is based on concentration of quadratic forms. Starting with the original
proof of Marchenko-Pastur law [41] via Stieltjes transform, many arguments in random matrix
theory (e.g. [45, 25]), make crucial use of concentration of quadratic forms. Specifically, at the
core of the proof of Marchenko-Pastur law lies the bound

(1.2) Var(z" Az) = o(p?)

where z € RP is any column of the random matrix X and A is any deterministic p X p matrix
with ||A]| < 1. If the entires of x have uniformly bounded fourth moments, one always has

Var(z? Ar) = E(z" Az)? < E||z||3 = O(p?).

Thus, the requirement (1.2) is just a little stronger than the trivial bound.

Suppose the columns of the random matrix X are independent, but the entries of each
columns may be dependent. Then for Marchenko-Pastur to hold for X it is sufficient (but not
necessary) to verify the concentration inequality (1.2). The sufficiency is given in the following
result; the absence of necessity is noted in [2, Section 2.1, Example 3].

Theorem 1.7 (Bai-Zhou [12]). Let X = X®) p=1,2,..., be a sequence of mean zero p X m
random matrices with independent columns. Assume the following as p — oc.

1. The aspect ratio p/m converges to a number A € (0,00) as p — 00.

2. For each p, all columns X, of X®) have the same covariance matriz ¥ = X®) = EX, X[
The spectral norm of the covariance matriz £P) is uniformly bounded, and the empirical
spectral distribution of ©®) converges to a deterministic distribution H.

3. For any deterministic p X p matrices A = A®) with uniformly bounded spectral norm and
for every column X}, we have

max Var(X] AX}) = o(p?).

Then, with probability 1 the empirical spectral distribution of the sample covariance matriz
W = %X XT converges weakly to a deterministic distribution whose Stieltjes transform satisfies

(1.3) s(z) = /OOO = _1AZS) —dH(p), eCt.

In the case where the entries of the columns are uncorrelated and have unit variance, we have
>} = I and Theorem 1.7 yields that the limiting distribution is the original Marchenko-Pastur
law (1.1).

3Although the main result in [40] is stated for fixed degree d, it can be allowed to grow as fast as d = o(n):
see Lemma 3.3, Theorem 1.2, Definition 1.1, and Remark 4.1 in [40].
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1.5. Concentration of quadratic forms: new results. Theorem 1.7 reduces proving Marchenko-
Pastur law for our new models to the concentration of a quadratic form 2T Az. If the random
vector x has all independent entries, bounding the variance of this quadratic form is elementary.
Moreover, in this case Hanson-Wright inequality (see e.g. [51, 48]) gives good probability tail
bounds for the quadratic form.

But in our new models, the coordinates of the random vector are not independent. There
seem to be no sufficiently powerful concentration inequalities available for such models. Known
concentration inequalities for random chaoses [35, 37, 36, 3, 4, 22, 1] exhibit an unspecified
(possibly exponential) dependence on the degree d, which is too bad for our purposes. An
exception is the recent work [52] on concentration of random tensors with an optimal dependence
on d. However, the results of [52] only apply for non-symmetric tensors and positive-semidefinite
matrices A.

The following are new concentration inequalities for the block-independent model (Theo-
rem 1.8) and the random tensor model (Theorem 1.9), which we will prove in Section 2 and
Section 3 respectively.

Theorem 1.8 (Variance of quadratic forms for block-independent model). Let x € RP be a
random vector that follows the block-independent model with blocks of sizes dy. Then, for any
fized matriz A € RP*P| we have

Var(zT Az) < HA\P(KZdz + 2p>.
k

Here K s the largest fourth moment of the entries of x.

This result combined with Theorem 1.7 immediately establishes Marchenko-Pastur law for
the block-independence model:

Proof of Theorem 1.3. Apply Theorem 1.8 and simplify the conclusion using the bound Y~, di <
(maxy di) >, di, = (maxy, di,) p. We get

Var(z" Az) < p||A||? <K max di + 2) = o(p?),

if |A] = O(1), K = O(1), and max,d; = o(p) as p — oo. This justifies condition 3 of
Theorem 1.7. Applying this theorem with ¥ = I we conclude Theorem 1.3. U

Theorem 1.9 (Variance of quadratic forms for random tensor model). There exist positive
absolute constants C,c > 0 such that the following holds. Let x € RP, p = (Z), be a random
vector that follows the random tensor model. Then, for any fired matrix A € RP*P we have

K1/2d 3/2
Var(2" Az) < 0||A||2p2(w) ,
if KY2d/n'3 < c. Here K is the largest fourth moment of the entries of x.

This result combined with Theorem 1.7 immediately establishes Marchenko-Pastur law for
the random tensor model:

Proof of Theorem 1.5. Theorem 1.9 yields
Var(z" Az) = o(p?)
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whenever ||A|| = O(1), K = O(1), and d = o(n'/?). This justifies condition 3 of Theorem 1.7.
Applying this theorem with ¥ = I we conclude Theorem 1.5. U

1.6. Anisotropic block-independent model. In Definition 1.1 of the block-independent
model we assumed for simplicity that the blocks are isotropic. Let us show how to remove this
assumption and still obtain a version of Theorem 1.3; the limiting spectral distribution will
then be the anisotropic Marchenko-Pastur law (1.3).

To see this, suppose all columns of our random matrix X = X® have the same covariance
matrix ¥ = Y. Assume that, as p — oo, we have ||[X®|| = O(1) and the empirical spectral
distribution® of ©® converges to a deterministic distribution H.

Denoting as before by X}, the k-th column of X, we can represent it as X = Y122, where
is some isotropic random vector, i.e. one whose entries are uncorrelated and have unit variance.
Then

Var(X]AX},) = Var (z] SY2ASY? ).

Applying Theorem 1.8 for x = z;, and XY/2A%1/2 instead of A, we conclude that Var(X] AX}) =
o(p?) if | 2] = O(1), ||A|| = O(1), K = O(1), and maxy, di, = o(p).

This justifies condition 3 of Theorem 1.7. Applying this theorem, we conclude that the
limiting spectral distribution of W = %X XT converges to the anisotropic Marchenko-Pastur
distribution (1.3).

1.7. Optimality. Here we show that the number of blocks in the block-independent model has
to go co. Indeed, let X be a sequence of p x m random matrices such that p/m — A > 0 as
p — oo, and whose columns are independent copies of an isotropic random vector ) € RP.
According to a result of P. Yaskov [57, Theorem 2.1], a necessary condition for Marchenko-
Pastur law is that

1
(1.4) ~|z®|2 = 1 in probability.
p

This condition may fail if the number of independent blocks is O(1). To see this, take a random
vector from the block-independent model with n equal length blocks (p = nd), and replace each
block with a zero vector independently with probability 1/2. Multiply the result by /2. The
resulting random vector z(® still follows the bock-independent model, but it equals zero with
probability 27", a quantity that is bounded below by a positive constant if n = O(1). This
violates the condition (1.4) and demonstrates that Marchenko-Pastur law fails in this case.

It is less clear whether our requirement on the degree d = o(n'/?) in Theorem 1.5 is optimal.
In the light of (1.4), it seems that the optimal condition might be

d = o(n*/?).

Indeed, consider a random vector z?) € RP, p = (Z) obtained from a random vector x € R"

with i.i.d. coordinates. that follows the random tensor model. Then

1 1
U, ::5\|az(”)\|§:— Z x} i s

(n) 1172 id
d/) 1<ip<-<ig<n

4Since the blocks are independent, the covariance matrix ¥ is block-diagonal. If ; is the covariance matrix
of the block j, then the spectral norm of X is the maximal spectral norm of ¥;, and the empirical spectral
distribution of ¥ is the mixture of the empirical spectral distributions of all 3J;.
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is a U-statistic. According to a result of W. Hoeffding [28],

d2
Var(U,) > gVar(ﬁ).

Assume the variance of 22 is nonzero. If d > n'/2 then Var(U,) does not converge to zero. This
makes it plausible that the necessary condition (1.4) for Marchenko-Pastur law may be violated
in this regime.

2. QUADRATIC FORMS IN BLOCK-INDEPENDENT RANDOM VECTORS: PROOF OF
THEOREM 1.8

2.1. Reductions. Rearranging the entries of x, we can assume that the indices of the blocks
are successive intervals, i.e. the kth block index set is I, = { ;:11 d+1,..., Zle dl}. Since

2T Ax = (:L‘TAx)T = T ATz, the symmetric matrix A := (A + AT)/2 satisfies
~ ~ 1
pT Az =T Ar and A < S (Al +[1AT]) =[]

Therefore, it suffices to prove Theorem 1.8 for symmetric matrices A.
We will control the contribution of the diagonal and off-diagonal blocks of A separately. The
diagonal blocks of A form the block-diagonal matrix D = (Dij)zd defined as

j=1
D;; = A;; if ¢,7 lie in the same block

and D;; = 0 otherwise. Now, decomposing 2TAr = 2" Dx + 27 (A — D)z, we have

(2.1) Var(zT Az) < 2Var(x" Dz) + 2Var(z" (A — D)x).

Let us bound each of the two terms on the right hand side.

2.2. Diagonal contribution. The vector x can be decomposed into blocks Zy = (%;)icr,,

and the matrix D consists of corresponding diagonal blocks Dy := (Dyj)ijer,- Then 2" Dx =
>k 71 Dy}, and since T, are independent, this yields

Var(z"Dz) = ZVar (z D) -
k

Now,
Var (#] Dyr) < E (2] Dyy)” < E (| Dell [24]3)" < I1AII* E [lz]l3
Furthermore,
Ellzxlls = ) Eafa? < Kdj.
ijely

We conclude that
(2.2) Var(z"Dz) < K[| A _ d;.
k
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2.3. Off-diagonal contribution. By definition,
(2.3) Var(zT(A — D)) =E (z7(A— D))" — (EzT(A— D)z)”.

Denote by R the set of all index pairs (4, j) such that ¢ and j do not lie in the same block.
Then

E( (A D < Z AZJZC .I’j) = Z AijAklEl’iijCkIl
()R (i.4).(kDER

Consider any term Ex;xjzia; that is nonzero. By the mean zero assumption and block-
independence, none of the indices i, j, k or [ may lie in their own block. This means that
a pair of these indices lies in one block and another pair lies in a different block. By definition
of R, there there are only two ways to form such pairs: (i, k) in one block and (j,1) in another,
or (i,1) in one block and (j, k) in another.

In the first scenario, block-independence yields

Ex,z;zpe = Bz Exjay.

By isotropy, this term equals 1 if ¢ = k£ and j = [, and zero otherwise. In the second scenario,
arguing similarly we get one if ¢ = [ and j = k, and zero otherwise. Therefore, breaking the
sum according to the scenario and then using the symmetry of A, we obtain

Z AijAklExia:ja:ka:l Z A”Azj—i— Z A”A]l—z Z A

(3,5),(k,1)ER (1,J)ER (1,J)eER (4,J)ER
<2y A%< 2ZZA;. < 2p||Al?.
i,j i=1 j=1

We just bounded the first term in the right hand side of (2.3). The second term vanishes.
Indeed,

(4,5)ER

since Ex;z; = 0 for all ¢ # j by assumption. Summarizing, we bounded the off-diagonal
contribution as follows:

Var(z" (A — D)x) < 2p||A|>.

Combining this with the bound (2.2) on the diagonal contribution and substituting into (2.1),
we conclude that

Var(zT Az) < HA\;?(KZdz + 2p>.
k

3. QUADRATIC FORMS IN RANDOM TENSORS: PROOF OF THEOREM 1.9

3.1. Reductions. Without loss of generality, we may assume that ||A|| = 1 by rescaling.
Expanding " Az as a double sum of terms Ajx;x;, and distinguishing the diagonal terms
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(i =j) and the off-diagonal terms (i # j), we have:

Var(z"Azx) = E [|a:TAaz —tr A|2] <2E {(ZAH(SBIQ — 1))2] +2E {(ZAija:iwj)Z}
i i#j
(31) =: 2Sdiag + 2S.¢.

Here we used the inequality (a + b)* < 2a? + 2b%.

3.2. Diagonal contribution. Expanding the square, we can express the diagonal contribution
as

(32) Sdiag = Z AiiAkk E(w? - 1)(58% - 1)
ik

Both meta-indices i and k range in all (7)) subsets of [n] of cardinality d. Let v denote the
overlap between these two subsets, i.e.

v:=[iNnk|.
If v = 0, the subsets are disjoint, the random variables 7 — 1 and x} — 1 are independent
and have mean zero, and thus
E(xf — 1)(zy — 1) = 0.
Such terms do not contribute anything to the sum in (3.2).
If v > 1, the monomial xxi consists of v terms raised to the fourth power (coming from the

indices that are both in i and k) and 2(d — v) terms raised to the second power (coming from
the symmetric difference of i and k). Thus,

|E(@} - 1)(} - 1)| < Eafa} < max (Exj)" - mgx(Ex%)Q(d_v) < K",

where we used the unit variance assumption.
n . . d\ (n—d
There arg (d) W.ays‘ to choose i. Once We'ﬁx iand v € {1, ., d}, thgre 'are (v) (dfv) ways to
choose k, since v indices must come from i and the remaining d — v indices must come from

[n] \ i. Therefore,

e s (L

To bound this sum, we can assume without loss of generality that K is a positive integer.
Then the following elementary inequality holds:

()= ()

and it can be quickly checked by writing the binomial coefficients in terms of factorials. Now,
if we were summing v from zero as opposed from 1 in (3.3), we can use Vandermonde’s identity

and get
o0 P o G TR B G
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Subtracting the zeroth term, we obtain
d
Z (d) (n—d)KU < (n—d+Kd) B (n—d)
—~\v d—wv d d

Now use a stability property of binomial coefficients (Lemma 3.7), which tells us that

n—d+ Kd n—d n—d 2K d?
- < h =
( p > ( p )_(5( p ) where 9§ T d 1

as long as 0 < 1/2. According to our assumptions on the degree d, we do have § < 1/2 when
n is sufficiently large.
Summarizing, we have shown that

s () () <)

3.3. Off-diagonal contribution: the cross moments. Expanding the square, we can ex-
press the off-diagonal contribution in (3.1) as

(35) Soﬁ‘ = Z Z AijAkl E LiLjTkI.
i£] k#l
Let us first bound the expectation of
LiLjLk L1 ::]?I:ri]i[ag:[]:xk:[]:xl
i€i  iei  kek  lel
Without loss of generality, we can assume that this monomial of degree 4d has no linear factors,

i.e. each of the factors x, of this monomial has degree at least 2, otherwise the expectation of
the monomial is zero. Rearranging the factors, we can express the monomial as

(3.6) Ti T = H z? H ) H xi
aEAg BeEAs YEN,

for some disjoint sets A, A3, Ay C [n]. Thus, Ay consists of the indices that are covered by
exactly two of the sets i, j, k, 1, and similarly for A3 and A4. Since each of the four sets i, j, k, 1
contains d indices, counting the indices with multiplicities gives

(3.7) 4d = 2|As| + 3|As| + 4]A4].
Since each index is covered at least by two of the four sets i, j, k, 1, the cardinality of the set
(3.8) iUjUkUL=A UA3 LA
is at most 4d/2 = 2d. Let w > 0 be the “defect” defined by
(3.9) iUjukul] =2d—w.

Thus, w would be zero if every index is covered by exactly two sets, and w would be positive
if there are triple or quadruple covered indices. From (3.8) and (3.9) we see that

Multiplying both sides of this equation by 2 and subtracting from (3.7), we get
(3.10) 2w = |Ag| + 2|A4],
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a relation that will be useful in a moment.
Take expectation on both sides of (3.6). Using independence and the assumptions that
Ez?2 =1 and Ex} < K for each «, we get

3/4
E|wia:jmkx1| = H E|l‘,3|3 . H El’i = H (E|$5|4> . H El’i S K%‘ASH‘AM.

BeAs YEA, BEA3 YEA,
Due to (3.10),
3 3 1 3
—IA Ayl = —w — =|A4] < =w.
4| 3| + | Ayl W 2| 4]_2w

Thus we have shown that
E ’.’Biijkw” S K3w/2.

3.4. Sizes of intersections of meta-indices. Due to the last step, the off-diagonal contri-
bution (3.5) can be bounded as follows:

(3.11) Sot < ) > | Ayl| A | K72,
i£j k£l
where the sum only includes the sets i, j, k,1 that provide at least a double cover, i.e. such that

every index from iU jUk Ul must belong to at least two of these four sets. We quantified this
property by the defect w > 0, which we defined by

iUjukull=iujuk| =2d—w.
In preparation to bounding the double sum in (3.11), let us consider
injl=:v, |[injnk|=:r
and observe a few useful bounds involving w, v, and r.

Lemma 3.1. We have w <ov <d—1.

Proof. By definition, v = [iNj| < |i| = d. Moreover, v may not equal d, for this would mean
that i = j, a possibility that is excluded in the double sum (3.11). This means that v < d — 1.
Next, we have

(3.12) U =i+ il —inj] =2d —wv.
On the other hand, [iUj| <|iUjUk| = 2d —w. Combining these two facts yields w <wv. O
Lemma 3.2. We haver < v and r < 2w.

Proof. The first statement follows from definition. To prove the second statement, recall that
the sets i, j, k,1 form at least a double cover of iUjUk U] and at least a triple cover of iNjNk
(trivially). Since each of the four sets has d indices, counting the indices with multiplicities
gives

4d >2iUjukul|+|injnk|=2(2d —w)+r
by the definition of w and r. This yields r < 2w. O

Lemma 3.3. We haver <d — v+ w.
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Proof. The sets i, j, k obviously form at least a double cover of iNj and a triple cover of iNjNk.
Since each of the three sets has d indices, counting the indices with multiplicities gives

3d>iUjuk|+injl+injnk|=(2d—w)+v+r

by definition of w, v and r. Rearranging the terms completes the proof. 0J

3.5. Number of choices of meta-indices. Let us fix w, v, and r, and estimate the number
of possible choices for the sets i, j, k, 1 that conform to these w, v, and r. This would help us
determining the number of terms in the double sum (3.11). Thus, we would like to know how
many ways are there to choose four d-element sets i, j,k,1 C [n] that provide at least a double
cover of iUjUk U1, and so that

(3.13) iUjUk|=[iUjukul|=2d—w, [iNj|=v, and |injNnk|=r

n

") ways to choose the d-element subset i from [n].

Choosing i. This is easy: there are (

n

Choosing j. Recall that we need to obey |[iNj| = v. Thus, for a fixed i, we have (f) ( d:g) choices
for j, which is seen by first picking the v overlapping indices from i and then the remaining
d — v indices from i°.

Choosing k. Let us fix i and j. The set of all available indices [n], from which the indices of k
can be chosen, can be partitioned into the three disjoint sets:

(3.14) ] = (iNj)U (UL (D))

Let us see how many indices for k should come from each of these three sets.

As we see from (3.13), the v-element set i N j must contain exactly r indices of k, and these
can be selected in (;’) ways.

Next, we know from (3.12) that [(1Uj)°| =n — (2d — v), and

(3.15) (GUj)Nkl=l1Ujuk|—]iuj| = (2d —w) — (2d —v) = v — w,
where we used (3.13) and (3.12). So, the set (iU j)° must contain exactly v — w indices of k,
and these can be selected in ("_ﬁiu_v)) ways.”
Finally, by (3.12) and (3.13) we have
(3.16) liAj| = [iujl—1]inj|=(2d —v) —v=2(d —v).

We already allocated r + (v — w) indices of k to the first two sets on the right-hand side of
(3.14). Thus, the number of indices for k that come from the third set, i/Aj, must be

(3.17) |iA) Nkl =d—1r— (v—w).
These indices can be selected in ( d_i(il(:)”_)w)) ways.’
Summarizing, for fixed i and j, we have (:) ("7”(2_{;”)) ( d_i(fl(;”_)w)) choices for k.

SSince the cardinality of any set is nonnegative, equation (3.15) provides an alternative proof of the bound
w < v in Lemma 3.1.
6Since the cardinality of any set is nonnegative, equation (3.17) provides an alternative proof of Lemma 3.3.
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Choosing 1. Fix i, j and k. Recall that the sets i, j, k, 1 must form at least a double cover of
iUjukuUl This has two consequences. First, we must have

(3.18) 1ciujuk

to avoid any single-covered indices in 1. Second, 1 must contain all the single indices, i.e. those
that belong to exactly one of the sets i, j, or k. The set of single indices, denoted s, can be
represented as

s= ("N Nk)U[injNk)UEnjnk)] = [1U))°Nk] U [(1A)) Nke].

At this stage, the sets i, j and k are all fixed, and so is s.
To compute the cardinality of s, recall from (3.15) that |(iUj)°Nk| = v — w. Furthermore,
using (3.16) and (3.17), we see that

|1A)) Nke| = |(iA))] — |(A) Nkl =2(d—v) —(d—r—(v—w))=d—w—v+T.
Thus, the number of single indices is
sl=v—-—w)+(d—w—-v+7r)=d—2w+T.

Since 1 must contain the set s of single indices, which is fixed, the only freedom in choosing
1 comes from selecting non-single indices. There are d — (d — 2w + r) = 2w — r of them,” and
they must come from the set (iUjUk) \ s, due to (3.18). Now, recalling (3.13), we have

(1UjUK) \s| = fUjUK| —|s| = (2d —w) — (d — 2w +7) = d +w — 1.

d+w—r

Y ) choices for 1.

Hence, for fixed i, j and k, we have (

3.6. Bounding the off-diagonal contribution by a binomial sum. We can now return to
our bound (3.11) on the off-diagonal contribution. We can rewrite it as follows:

(3.19) St < D K™Y NN Ayl Awl.

w,v,r iel jeJ(i) keK(i,j) 1€eL(i,j,k)

The first sum is over all realizable v, w, and r, and the rest of the sums are over all possible

choices for i, j, k and 1 that conform to the given v, w and r per (3.13). Thus, for instance,

L(i, j, k) consists of all possible choices for 1 given i,j and k. We observed various bounds on

realizable v, w and r in Section 3.4, and we computed the cardinalities of the sets I, J(i), K(i, j)

and L(i, j, k) in Section 3.5. This knowledge will help us to bound the five-fold sum in (3.19).
In order to do this, rewrite (3.19) as follows:

Sor < DKM > 1Al DL 3 Al
w,v,r iel jeJ(i) keK(i,j) 1eL(i,j k)

Note that |Aw| < ||A]| =1 for all k and 1, and

/2

S 1Ayl < 13() W(ZA) < [IOI)A] = 136>

JedJ() jed@)

"Since the number of indices is non-negative, this provides an alternative proof of the bound r < 2w in
Lemma 3.2.
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Thus
Sor < Y K21 - max [J(i)['/? - max [K(i, j)| - max L, j, k)|.
— i i i3,k
Now we can use the bounds we proved in Section 3.5 on the cardinalities of sets I, J(i), K(i, j)

and L(i, j, k), which are the number of choices for i, for j given i, for k given i, j, and for 1 given
i,j, k. We obtain

e (0 () O

(3.20) < (Z) > K*/2BByB3 By Bs B,

where B,,, = B,,(n,d,w,v,r) denote the corresponding factors in this expression; for example
—a\1/2

By=(20)

3.7. The terms of the binomial sum. Let us observe a few bounds on the factors B,,. First,
(3.21) Bs < 22(d=v)

due to the inequality (Tg) <2m,
Next, since v < d+ w — r by Lemma 3.3, we have B3 = (:) < (d“:_r). Combining this with
B = (d+w7), we get

2w—
BuB, < (d—i—w—r) <d+w—r) < (d+w—r>2.
r 20 —r w
Here we used the log-concavity property of binomial coefficients, see Lemma 3.5 in the appendix.
Furthermore, we have w < d by Lemma 3.1 and r > 0, so

2d\ >
(3.22) B3B6§< ) < (2ed)*”,
w

where we used an elementary bound from Lemma 3.4 in the last step.
Next, using the decay of the binomial coefficients (Lemma 3.6), we get

By < (n S U)) < (m)(n e U))'

Now recall that v < d (Lemma 3.1) and note that our assumption on d with a sufficiently small
constant ¢ implies d < n/4. Thus

e (2)(72)

n—d
d—v

o= () (20 () - () ()

This expression can be conveniently combined with B2 = ( ), since
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The last identity can be easily checked by expressing the binomial coefficients in terms of

. . . . : . 1/2
factorials. This expression in turn can be conveniently combined with By = (f) / , and we get

/2
BB, [(2d\"(n—d\ (%’
(3.23) B1ByBy = By - By (ﬁ) ( d ) ' (Z_d)l/T

Now, using the elementary binomial bounds (Lemma 3.4), we obtain

OF (AT (e N oy
(nfd>1/2 o (Z,d)1/2 “\[d=v)(n—d)? S\ .

d—v

In the last step we used that d — v > 1 by Lemma 3.1 and that d < n/2, which follows from
our assumption on d if the constant c¢ is chosen sufficiently small. Recall that by C;, Cs, etc.
we denote suitable absolute constants. Returning to (3.23), we have shown that

2d\" (n\ [ CLd¥?\ "

3.8. The final bound on the off-diagonal contribution. We can now combine our bounds
(3.21), (3.22) and (3.24) on B; and put them into (3.20). We obtain

2 3773/2\ W 3/2\ d-v
n 3w/2 n ng K ng
Sog < (d) Z K3/ Bs; - B3Bg - BiByB, < (d) Z ( n ) ( ni/2 .

w,v,r w,v,r

Recall from Lemma 3.2 that 0 < r < 2w, thus the sum over r includes at most 2w + 1 terms.
Similarly, Lemma 3.1 determines the ranges for the other two sums, namely 0 < w,v < d — 1.
Hence

2 d-1 w d—1 d—v
n CzdgKS/Q 03d3/2
s s (1) S G S (G

w=0 v=0

The sums over w and v in the right hand side of (3.25) can be easily estimated. To handle
the sum over w, we can use the identity Y ;- k2" = z/(1 — z)?, which is valid for all z € (0, 1).
Thus, the sum over w is bounded by an absolute constant, as long as Cod>K3/2/n < 1/2. The
latter restriction holds by our assumption on d with a sufficiently small constant c.

Similarly, the sum over v in the right hand side of (3.25) is a partial sum of a geometric
series. It is dominated by the leading term, i.e. the term where v = d — 1. Hence this sum
is bounded by C4d*?/n'/?  as long as C3d®?/n'/? < 1/2. The latter restriction holds by our
assumption on d with a sufficiently small constant c.

Summarizing, we obtained the following bound on the off-diagonal contribution (3.5):

2
n d3/2
Soft S ( d) YR
Combining this with the bound (3.4) on the diagonal contribution and plugging into (3.2),
we conclude that

2 2 2
Kd? n\° d*/? n\° K3/4q3/?

T _ 2] <« n Lo - < -
E[|z" Az trA|]N(d> - —|—(d) n1/2N<d> Yo
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In the last step, we used the assumption that d < K~'/2n'/3. The proof of Theorem 1.9 is
complete. 0

APPENDIX. ELEMENTARY BOUNDS ON BINOMIAL COEFFICIENTS
Here we record some bounds on binomial coefficients used throughout the paper.

Lemma 3.4 (see e.g. Exercise 0.0.5 in [51]). For any integers 1 < d < n, we have:

B'= ()= () =)'

Lemma 3.5 (Log-concavity of binomial coefficients). We have

a a a\’
< .
6265 = ()
for all positive integers a, b and c for which the binomial coefficients are defined.

Proof. Expressing the binomial coefficients in terms of factorials, we have

(7)) B/ (b= (a=b)!/(a—b—c)

(9)? T (b+0)l/b (a—b+c)/(a—D)

Examining the first fraction in the right hand side, we find that both the numerator and
denominator consist of ¢ terms. Each term in the numerator is bounded by the corresponding
terms in the denominator. Thus the fraction is bounded by 1. We argue similarly for the second
fraction, and thus the entire quantity is bounded by 1. 0

Lemma 3.6 (Decay of binomial coefficients). For any positive integers s <t < m, we have

()= =) ()

Proof. The definition of binomial coefficients gives

(") Wt —1)-(t—s+1) .

(M (m—t+s)m—t+s—1)---(m—t+1) " (m—t+1)°
OJ
Lemma 3.7 (Stability of binomial coefficients). For any positive integers m, p and t < m, we
have
2t
m+Pp < (1+9) m whereé::—p,
t t m+1—t

as long as § < 1/2.
Proof. The definition of binomial coefficients gives

0 = ()

t k=1
Now use the bound (1 + €)? < e®? < 1 + 2ep, which holds as long as ep € [0, 1]. O
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4. NUMERICAL EXPERIMENTS

We present a few numerical experiments to verify that the empirical spectral densities for the
block-independent model and the random tensor model tend to the Marchenko-Pastur laws. In
all of our tests, the numerical results are computed from a single realization, i.e. we did not
average over multiple trials.

Block-independent model experiments: In Figure 1 we show the empirical spectral
densities for four experiments of block-independent matrices; in each case, they align very well
with the corresponding Marchenko-Pastur density. In Figure 1a, the columns of X € R4000x16000
consist of n = 2000 blocks, each of length d = 2 where the first entry of the block is z ~ N(0, 1)

and the second entry is %(22 — 1). Thus the second entry is completely determined via a

formula of the first entry. While this matrix has half the amount of randomness as an i.i.d.
matrix of the same size, it still follows the same limiting distribution as the i.i.d. matrix. We
see the densities match up very well even for these relatively small sized matrices. In Figure 1b,
the columns of X € RI800x12600 congist of n = 600 blocks each of length d = 3 where the first
and second entry of the block are j:% each with probability % and the third entry is a shifted
XOR of the first and second (i.e. the third entry is % if the first and second entries have opposite
signs and it is —% if the first and second entries have the same sign). In this case the variance
1

of the entries is 7, so it matches up with Marchenko-Pastur density with covariance matrix

¥ = 1l and A\ = £. In Figure lc, the columns of matrix X € R700%2100 haye n = 10 blocks,
where each block is length d = 700 and is of the form 4+/de; for i selected uniformly from [d],
where {e;}¢, € R? are the standard basis vectors in R?. This example shows that with the
exchangeability criteria, it is possible for n < d. Additionally, we see the two densities agree
very well, despite only having n = 10 blocks. Similar to Figure 1c, in Figure 1d the columns
of matrix X € R%400x12800 have n = 80 blocks, where each block is length d = 80 and is of the
form ++v/de; for i selected uniformly from [d]. These figures and other experiments together
suggest that having n > 10 and dimensions in the low thousands is enough for the empirical
spectral density of a block-independent model matrix to align quite well with the corresponding
Marchenko-Pastur density.

Random tensor model experiments: In Figures 2 and 3, we look at vectorized 2-tensors
and 3-tensors (d = 2 and d = 3 respectively). We see that the fourth moment of the entries
appears to be important for the speed of convergence as n — oo. For both the 2-tensors and
3-tensors we consider three types of entries in the vector that we will tensor with itself: 1) the
entries are Bernoulli £1 each with probability half - these entries have fourth moment of 1; 2)
the entries are Uniform on [—+/3, /3] - these entries have fourth moment of g; 3) the entries
are standard normal - these entries have fourth moment of 3. In Figure 2 we compare the
the empirical spectral density for 2-tensors with the corresponding Marchenko-Pastur density
using n = 145. We see that the two densities match up quite well, and match up better when
the entries had smaller fourth moments. We do the same experiments for 3-tensors in Figure
3 except now using n = 45, since n = 145 is too computationally costly as it would have
(1;15) ~ 500, 000 rows. We see that the two densities match up quite well for the Bernoulli entry
case, not very well for the uniform entry case, and very poorly for the standard normal case.
These figures suggest there may even be a different limiting law for small values of n. Testing
n = 100 does show (Figure 4) that the empirical densities are getting closer to the Marchenko-
Pastur density as n increases. These experiments show that while the limiting density does
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tend to the the Marchenko-Pastur density, they do not align very well for small values of n and
the rate of convergence likely depends upon the largest fourth moment of the random vector.
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FIGURE 1. The Marchenko-Pastur density (red curve) vs. empirical spectral
density for block-independent matrices described in Section 4.
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