
The Annals of Probability
2021, Vol. 49, No. 3, 1286–1309
https://doi.org/10.1214/20-AOP1481
© Institute of Mathematical Statistics, 2021

THE SMALLEST SINGULAR VALUE OF INHOMOGENEOUS SQUARE
RANDOM MATRICES

BY GALYNA V. LIVSHYTS1,*, KONSTANTIN TIKHOMIROV1,† AND ROMAN VERSHYNIN2

1Department of Mathematics, Georgia Institute of Technology, *glivshyts6@math.gatech.edu;
†konstantin.tikhomirov@math.gatech.edu

2Department of Mathematics, University of California, Irvine, vershyn@uci.edu

We show that, for an n × n random matrix A with independent uni-
formly anticoncentrated entries such that E‖A‖2

HS ≤ Kn2, the smallest sin-
gular value σn(A) of A satisfies

P

{
σn(A) ≤ ε√

n

}
≤ Cε + 2e−cn, ε ≥ 0.

This extends earlier results (Adv. Math. 218 (2008) 600–633; Israel J. Math.
227 (2018) 507–544) by removing the assumption of mean zero and iden-
tical distribution of the entries across the matrix as well as the recent re-
sult (Livshyts (2018)) where the matrix was required to have i.i.d. rows. Our
model covers inhomogeneous matrices allowing different variances of the en-
tries as long as the sum of the second moments is of order O(n2).

In the past advances, the assumption of i.i.d. rows was required due to
lack of Littlewood–Offord-type inequalities for weighted sums of non-i.i.d.
random variables. Here, we overcome this problem by introducing the Ran-
domized Least Common Denominator (RLCD) which allows to study anti-
concentration properties of weighted sums of independent but not identically
distributed variables. We construct efficient nets on the sphere with lattice
structure and show that the lattice points typically have large RLCD. This al-
lows us to derive strong anticoncentration properties for the distance between
a fixed column of A and the linear span of the remaining columns and prove
the main result.

1. Introduction. Given a random matrix A, the question of fundamental interest is,
“How likely is A to be invertible and, more quantitatively, well conditioned?” These questions
can be expressed in terms of the singular values σ1(A) ≥ · · · ≥ σn(A) ≥ 0 which are defined
as the square roots of the eigenvalues of ATA. The extreme singular values are especially
interesting. They can be expressed as

(1) σ1(A) = max
x∈Sn−1

|Ax| and σn(A) = min
x∈Sn−1

|Ax|,

where S
n−1 is the unit Euclidean sphere in R

n. In this paper we will be concerned with the
smallest singular value σn(A). Its value is nonzero if and only if A is invertible, and the
magnitude of σn(A) provides us with a quantitative measure of invertibility.

The behavior of the smallest singular values of random matrices have been extensively
studied [2–4, 8, 12–15, 17–20, 25–34]. For Gaussian random matrices with i.i.d. N(0,1)

entries, the magnitude of σn(A) is of order 1/
√

n with high probability. This observation
goes back to von Neumann and Goldstine [35], and it was rigorously verified, with precise
tail bounds, by Edelman [5] and Szarek [24]. Extending this result beyond the Gaussian
distribution is nontrivial due to the absence of rotation invariance. After the initial progress
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by Tao and Vu [28] and Rudelson [18], the following lower bound on σn(A) was proved by
Rudelson and Vershynin [19] for matrices with sub-Gaussian, mean zero, unit variance and
i.i.d. entries:

(2) P

{
σn(A) ≤ ε√

n

}
≤ Cε + 2e−cn, ε ≥ 0.

This result is optimal up to positive constants C and c (depending only on the sub-Gaussian
moment). It has been further extended and sharpened in various ways [14, 17, 20, 29, 34]. In
particular, Rebrova and Tikhomirov [17] relaxed the sub-Gaussian assumption on the distri-
bution of the entries to just having unit variance.

It has remained unclear, however, if one can completely drop the assumption of the iden-
tical distribution of the entries of A. The identical distribution seemed to be crucial in the
existing versions of the Littlewood–Offord theory [11] which allowed to handle arithmetic
structures that arise in the invertibility problem for random matrices. A partial result was
obtained recently by Livshyts [14] who proved (2) under the assumption that the rows of A

are identically distributed (the entries must be still independent but not necessarily i.i.d.). In
the present paper we remove the latter requirement, as well, and thus prove (2) without any
identical distribution assumptions whatsoever.

We only assume the following about the entries of A: (a) they are independent; (b) the
sum of their second moments is O(n2) which is weaker than assuming that each entry has
unit second moment; (c) their distributions are uniformly anticoncentrated, that is, not con-
centrated around any single value. The latter assumption is convenient to state in terms of the
Lévy concentration function which for a random variable Z is defined as

L(Z, t) := sup
u∈R

P
{|Z − u| < t

}
, t ≥ 0.

The following is our main result.

THEOREM 1.1 (Main). Let A be an n × n random matrix whose entries Aij are inde-
pendent and satisfy

∑n
i,j=1 EA2

ij ≤ Kn2 for some K > 0 and maxi,j L(Aij ,1) ≤ b for some
b ∈ (0,1). Then,

P

{
σn(A) ≤ ε√

n

}
≤ Cε + 2e−cn, ε ≥ 0.

Here, C,c > 0 depend only on K and b.

We would like to emphasize that prior to this paper even the problem of singularity of
inhomogeneous random matrices was not resolved in the literature. In particular, it was not
known if, for an n × n random matrix B with independent discrete entries (say, uniformly
bounded and with variances separated from zero), the singularity probability is exponentially
small in dimension. (Theorem 1 of [14] only implied a polynomial bound on the singularity
probability without the assumption of i.i.d. rows.)

The following theorem is the primary tool in proving the main result of the paper.

THEOREM 1.2 (Distances). For any K > 0 and b ∈ (0,1), there are r,C, c > 0, depend-
ing only on K and b with the following property. Let A be a random n × n matrix as in
Theorem 1.1. Denote the columns of A by A1, . . . ,An, and define

Hj = span{Ai : i �= j, i = 1, . . . , n}, j ≤ n.

Take any j ≤ n such that E|Aj |2 ≤ rn2, and let vj be a random unit vector orthogonal to Hj

and measurable with respect to the sigma–field generated by Hj . Then,

L
(〈vj ,Aj 〉, ε) ≤ Cε + 2e−cn, ε ≥ 0.
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In particular, for every such j we have

P
{
dist(Aj ,Hj ) ≤ ε

} ≤ Cε + 2e−cn, ε ≥ 0.

Let us outline how Theorem 1.1 can be deduced from Theorem 1.2. The first step follows
the argument in [19] which is to decompose the sphere into compressible and incompressible
vectors. Fix some parameters ρ, δ ∈ (0,1) which, for simplicity, can be thought of as small
constants. The set of compressible vectors Comp(δ, ρ) consists of all vectors on the unit
sphere S

n−1 that are within Euclidean distance ρ to δn-sparse vectors (those that have at
most δn nonzero coordinates). The remaining unit vectors are called incompressible, and we
have the decomposition of the sphere,

S
n−1 = Comp(δ, ρ) ∪ Incomp(δ, ρ).

By the characterization (1) of the smallest singular value, the invertibility problem reduces to
finding a uniform lower bound over the sets of compressible and incompressible vectors,

(3) P

{
σn(A) ≤ ε√

n

}
≤ P

{
inf

x∈Comp(δ,ρ)
|Ax| ≤ ε√

n

}
+ P

{
inf

x∈Incomp(δ,ρ)
|Ax| ≤ ε√

n

}
.

For the compressible vectors, Lemma 5.3 from [14] gives the upper bound 2e−cn on the
corresponding probability in (3). For the incompressible vectors we use a version of the
“invertibility via distance” bound from [19], which holds, for any n × n random matrix A

(regardless of the distribution),

(4) P

{
inf

x∈Incomp(δ,ρ)
|Ax| ≤ ερ√

n

}
≤ 4

δn
inf
J

∑
j∈J

P
{
dist(Aj ,Hj ) ≤ ε

}
,

where the infimum is over all subsets J ⊂ [n] of cardinality at least n − δn/2. To handle
the distances, we apply Theorem 1.2. Due to our assumption

∑n
i,j=1 EA2

ij = ∑n
j=1 E|Aj |2 ≤

Kn2, all, except at most K/r terms, satisfy E|Aj |2 ≤ rn2. Denoting the set of these terms by
J and applying Theorem 1.2, we get

P
{
dist(Aj ,Hj ) ≤ ε

} ≤ Cε + 2e−cn for all j ∈ J.

Since the cardinality of J is, at least, n − K/r ≥ n − δn/2 for large n, we can substitute this
bound into (4) and conclude that the last term in (3) is bounded by � ε + e−cn (recall that δ

is a constant and we suppress it here). Putting all together, the probability in (3) gets bounded
by � ε + e−cn, as claimed in Theorem 1.1.

REMARK 1.3. Given Theorem 1.1, the second assertion of Theorem 1.2 can be for-
mally strengthened as follows. Since the matrix A is shown to be singular with probability
at most 2e−cn, we have that for any j ≤ n and any random unit vector vj orthogonal to Hj ,
|〈vj ,Aj 〉| = dist(Aj ,Hj ) with probability at least 1 − 2e−cn. Hence, the assertion of Theo-
rem 1.2 can be replaced with

L
(
dist(Aj ,Hj ), ε

) ≤ Cε + 2e−cn, ε ≥ 0, whenever E|Aj |2 ≤ rn2,

for some r, c,C > 0, depending only on K , b.

An earlier version of Theorem 1.2, under the assumption that the coordinates of Ai

are i.i.d., was obtained by Rudelson and Vershynin [19]. They discovered an arithmetic-
combinatorial invariant of a vector (in this case, a normal vector of Hi), which they called an
essential least common denominator (LCD). The authors of [19] proved a strong Littewood–
Offord-type inequality for linear combinations of i.i.d. random variables in terms of the LCD
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of the coefficient vector, and thus were able to estimate L(dist(Ai,Hi), ε). However, in the
case when Ai do not have i.i.d. coordinates, the essential LCD is no longer applicable. More-
over, none of the existing Littlewood–Offord-type results could be used even to show that the
distance dist(Ai,Hi) is zero with an exponentially small probability (which would allow to
conclude that the singularity probability for the inhomogeneous random matrix is exponen-
tially small in dimension).

In the present paper we develop a randomized version of the least common denominator
and show how it can handle the non-i.i.d. coordinates. Given a random vector X in R

n and
a (deterministic) vector v in R

n as well as parameters L > 0, u ∈ (0,1), the Randomized
Least Common Denominator of v = (v1, . . . , vn) (with respect to the distribution of X =
(X1, . . . ,Xn)) is

RLCDX
L,u(v) = inf

{
θ > 0 : Edist2

(
θ(v1X̄1, . . . , vnX̄n),Z

n)
< min

(
u|θv|2,L2)}

,

where X̄i denotes a symmetrization of Xi defined as X̄i := Xi − X′
i , with X′

i being an inde-
pendent copy of Xi , i = 1,2, . . . , n (for the sake of comparison, let us recall that the essential
least common denominator for random vectors with i.i.d. components was defined in [20] as
LCD(v) := inf{θ > 0 : dist(θ(v1, . . . , vn),Z

n) < min(u|θv|,L)}). In this paper we establish
a few key properties of the RLCD, in particular, its relation to anticoncentration as well as
stability under perturbations of a vector. Other essential elements of the proof of Theorem 1.2
are a discretization argument based on the concept of random rounding and a double-counting
procedure for estimating cardinalities of ε–nets. Those were, in a rather different form, used
in [14] and [32].

In Section 2 we discuss some preliminaries and introduce our main tool, the RLCD. In
Section 3 we outline the discretization procedure, based on the idea of random rounding. In
Section 4 we outline the key result which, informally, states that “lattice vectors are usually
nice,” and is based on the idea of double counting. In Section 5 we combine the results of
Sections 3 and 4 and prove Theorem 1.2. In Section 6 we conclude by formally deriving
Theorem 1.1 from Theorem 1.2.

REMARK 1.4. The main results of this paper are stated here for real random matrices
and can be extended to random matrices with complex entries. This was recently done in the
preprint [7] following the approach we presented in the present paper.

2. Preliminaries. The inner product in R
n is denoted 〈·, ·〉, the Euclidean norm is de-

noted | · | and the sup norm is denoted ‖x‖∞ = maxi |xi |. The Euclidean unit ball and sphere
in R

n are denoted Bn
2 and S

n−1, respectively. The unit cube and the cross-polytope in R
n are

denoted

Bn∞ = {
x ∈R

n : ‖x‖∞ ≤ 1
}
, Bn

1 =
{
x ∈ R

n :
n∑

i=1

|xi | ≤ 1

}
.

The integer part of a real number a (i.e., the largest integer which is smaller or equal to a) is
denoted by �a�, and the fractional part by {a} = a − �a�. The cardinality of a finite set I is
denoted by �I .

Columns of an N ×n matrix M will be denoted by Mj , for j = 1, . . . , n, and the rows will
be denoted Mi , with i = 1, . . . ,N .

For a random variable X we denote by X the symmetrization of X defined as X = X −X′,
where X′ is an independent copy of X. Note that

(5) E|X|2 = 2 Var(X),

where we defined the variance of a random vector X as the covariance of X with itself, that
is, Var(X) = Cov(X,X) = E|X −EX|2.
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2.1. Decomposition of the sphere. We shall follow the scheme developed by Rudelson
and Vershynin in [19], the first step of which is to decompose the sphere to the set of com-
pressible and incompressible vectors. Such decomposition in some form goes back to earlier
works, in particular, that of Litvak, Pajor, Rudelson and Tomczak-Jaegermann [12], and it
was used in many papers since then [17, 20, 29, 30].

Fix some parameters δ, ρ ∈ (0,1) whose values will be chosen later and define the sets of
sparse, compressible and incompressible vectors as follows:

Sparse(δ) := {
u ∈ S

n−1 : # supp(u) ≤ δn
}
,

Comp(δ, ρ) := {
u ∈ S

n−1 : dist
(
u,Sparse(δ)

) ≤ ρ
}
,

Incomp(δ, ρ) := S
n−1 \ Comp(δ, ρ).

We will use a result of [14] which gives a good uniform lower bound for |Ax| on the set of
compressible vectors.

LEMMA 2.1 (Lemma 5.3, [14]). Let A be an N × n random matrix with N ≥ n, whose
entries Aij are independent and satisfy

∑N
i=1

∑n
j=1 EA2

ij ≤ KNn for some K > 0 and
maxi,j L(Aij ,1) ≤ b for some b ∈ (0,1). Then,

P

{
inf

x∈Comp(δ,ρ)
|Ax| ≤ c

√
N

}
≤ 2e−cN .

Here, ρ, δ ∈ (0,1) and c > 0 depend only on K and b.

The rest of our argument will be about incompressible vectors.

2.2. Randomized least common denominator. We will need the following lemma due to
Esseen (see Esseen [6] or, e.g., Rudelson–Vershynin [19]):

LEMMA 2.2 (Esseen). Given a variable ξ with the characteristic function ϕ(·) =
E exp(2π iξ ·),

L(ξ, t) ≤ C

∫ 1

−1

∣∣∣∣ϕ(
s

t

)∣∣∣∣ds, t > 0,

where C > 0 is an absolute constant.

Rudelson and Vershynin [19, 20] specialized Esseen’s lemma for weighted sums of inde-
pendent random variables 〈X,v〉 = ∑n

i=1 viXi .

LEMMA 2.3. Let X = (X1, . . . ,Xn) be a random vector with independent coordinates.
Then, for every vector v ∈R

n and any t > 0, we have1

L
(〈X,v〉, t) ≤ C2.3

∫ 1

−1
exp

(
−c2.3E

(
n∑

i=1

[
1 − cos

(
2πsXivi

t

)]))
ds.

The constants C2.3, c2.3 > 0 are absolute.

1Recall that Xi denotes the symmetrization of Xi , which we defined in the beginning of Section 2.
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For completeness we outline the argument here.

PROOF. Let ϕ be the characteristic function of 〈X,v〉, and ϕi be the characteristic func-
tion of Xi . By independence we have

ϕ(s) =
n∏

i=1

ϕi(svi), s ∈ R.

By definition of Xi , we have, for each i ≤ n,∣∣ϕi(svi)
∣∣ =

√
E cos(2πsviXi) ≤ exp

(
−1

2

(
1 −E cos(2πsviXi)

))
, s ∈ R,

where the last step uses the inequality |a| ≤ exp(−1
2(1 − a2)) valid for all a ∈ R. To finish

the proof, it remains to use Lemma 2.2. �

In analogy with the notion of the essential least common denominator (LCD) developed
by Rudelson and Vershynin [19–21], we define a randomized version of LCD which will be
instrumental in controlling the sums nonidentically distributed random variables.

DEFINITION 2.4. For a random vector X in R
n, a (deterministic) vector v in R

n and
parameters L > 0, u ∈ (0,1), define

RLCDX
L,u(v) := inf

{
θ > 0 : Edist2

(
θv � X,Zn)

< min
(
u|θv|2,L2)}

.

Here, by � we denote the Schur product

v � X := (v1X1, . . . , vnXn).

The usefulness of RLCD is demonstrated in the following lemma which shows how RLCD
controls the concentration function of a sum of independent random variables.

LEMMA 2.5. Let X = (X1, . . . ,Xn) be a random vector with independent coordinates.
Let c0 > 0, L > 0 and u ∈ (0,1). Then, for any vector v ∈ R

n with |v| ≥ c0 and any ε ≥ 0,
we have

L
(〈X,v〉, ε) ≤ Cε + C exp

(−c̃L2) + C

RLCDX
L,u(v)

.

Here, C > 0, c̃ > 0 may only depend on c0, u.

PROOF. Take any ε ≥ 1/RLCDX
L,u(v). By Lemma 2.3 we have

L
(〈X,v〉, ε) ≤ C2.3

∫ 1

−1
exp

(
−c2.3E

(
n∑

i=1

[
1 − cos

(
2πsXivi

ε

)]))
ds.

For each s ∈ [−1,1] and i ≤ n, we have

E

[
1 − cos

(
2πsXivi

ε

)]
≥ c̃Edist2(sXivi/ε,Z)

for some universal constant c̃ > 0. Hence,

L
(〈X,v〉, ε) ≤ C2.3

∫ 1

−1
exp

(−c2.3c̃Edist2
(
sX � v/ε,Zn))

ds

= C2.3ε

∫ 1/ε

−1/ε
exp

(−c2.3c̃Edist2
(
sX � v,Zn))

ds

≤ C2.3ε

∫ 1/ε

−1/ε
exp

(−c2.3c̃ min
(
u|sv|2,L2))

ds,
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where at the last step we used the definition of RLCD and the assumption on ε. A simple
computation finishes the proof. �

We shall also need the notion of the randomized LCD for matrices.

DEFINITION 2.6. For an m × n matrix M with rows M1, . . . ,Mm and a vector v ∈ R
n,

define

RLCDM
L,u(v) := min

i=1,...,m
RLCDMi

L,u(v).

Recall the following “tensorization” lemma of Rudelson and Vershynin [19]:

LEMMA 2.7 (Tensorization lemma, Rudelson–Vershynin [19]). Suppose that ε0 ∈ (0,1),
K ≥ 1, and let Y1, . . . , Ym be independent random variables such that each Yi satisfies

P
{|Yi | ≤ ε

} ≤ Kε for all ε ≥ ε0.

Then,

P

{
m∑

i=1

Y 2
i ≤ ε2m

}
≤ (CKε)m, ε ≥ ε0,

where C > 0 is a universal constant.

The tensorization lemma is useful when one wants to control the anticoncentration of
|Mx|, where M is an m×n random matrix with independent rows Mi and x is a fixed vector.
Indeed, in this case |Mx|2 = ∑m

i=1〈Mi,x〉2, and one can use Lemma 2.7 for Yi := 〈Mi,x〉.
Furthermore, one can use Lemma 2.5 to control the concentration function of each Yi . This
gives

LEMMA 2.8. Let M be an m×n random matrix with independent entries Mij . Let L > 0,
c0 > 0 and u ∈ (0,1). Then, for any x ∈ R

n with |x| ≥ c0 and any ε ≥ C2.8 exp(−c̃2.8L
2) +

C2.8/RLCDM
L,u(x), we have

P
{|Mx| ≤ ε

√
m

} ≤ (C2.8ε)
m.

Here, C2.8, c̃2.8 > 0 may only depend on c0 and u.

A crucial property of the RLCD, which will enable us to discretize the range of possible
realizations of random unit normals, is stability of RLCD with respect to small perturbations.

LEMMA 2.9 (Stability of RLCD). Consider a random vector X in R
n with uncorrelated

coordinates, a (deterministic) vector x in R
n and parameters L,u > 0. Fix any tolerance

level r > 0 that satisfies

(6) r2 Var(X) ≤ 1

8
min

(
u|x|2, L2

D2

)
,

where D = RLCDX
L,u(x). Then, for any y ∈ R

n with ‖x − y‖∞ < r , we have

RLCDX
2L,4u(y) ≤ RLCDX

L,u(x) ≤ RLCDX
L/2,u/4(y).
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PROOF. Note that

E|x � X − y � X|2 = E

n∑
i=1

X
2
i (xi − yi)

2 < r2
E|X|2 = 2r2 Var(X),

where the last identity is (5). Since RLCDX
L,u(x) = D, the definition of RLCD yields

Edist2
(
Dx � X,Zn) = min

(
uD2|x|2,L2)

.

By the inequality (a + b)2 ≤ 2a2 + 2b2, we get

Edist2
(
Dy � X,Zn) ≤ 2Edist2

(
Dx � X,Zn) + 2E|Dx � X − Dy � X|2

< 2 min
(
uD2|x|2,L2) + 4D2r2 Var(X) ≤ 4 min

(
uD2|x|2,L2)

,

where the last step follows from our assumptions (6) on r . By definition of RLCD, this
immediately gives

RLCDX
2L,4u(y) ≤ D

which proves the first conclusion of the lemma.
The second conclusion can be derived similarly. For any θ < D, the definition of RLCD

yields

Edist2
(
θx � X,Zn) ≥ min

(
uθ2|x|2,L2)

.

By the inequality (a + b)2 ≥ a2/2 − b2, we get

Edist2
(
θy � X,Zn) ≥ 1

2
Edist2

(
θx � X,Zn) −E|θx � X − θy � X|2

≥ 1

2
min

(
uθ2|x|2,L2) − 2θ2r2 Var(X) ≥ 1

4
min

(
uθ2|x|2,L2)

,

where in the last step we used the bound θ < D and our assumptions (6) on r . Thus,

Edist2
(
θy � X,Zn) ≥ min

(
uθ2|x|2/4,L2/4

)
for all θ ∈ (0,D),

and, by the definition of RLCD, this immediately gives

RLCDX
L/2,u/4(y) ≥ D

which proves the second conclusion of the lemma. �

The following result is a version of [20], Lemma 3.6.

LEMMA 2.10 (Incompressible vectors have large RLCD). For any b, δ, ρ ∈ (0,1), there
are n0 = n0(b, δ, ρ), h2.10 = h2.10(b, δ, ρ) ∈ (0,1) and u2.10 = u2.10(b, δ, ρ) ∈ (0,1/4) with
the following property. Let n ≥ n0, let x ∈ Incompn(δ, ρ), and assume that a random vector
X = (X1, . . . ,Xn) with independent components satisfies L(Xi,1) ≤ b, i ≤ n, and Var |X| ≤
T , for some fixed parameter T ≥ n. Then, for any L > 0, we have RLCDX

L,u2.10
(x) ≥ h2.10 ·

n√
T

.

PROOF. For clarity of the argument, we shall often hide the parameters b, δ, ρ, h2.10 and
u2.10 in the notation such as �, �; the reader will find it easy to fill in the details.

By definition of RLCD and since x is a unit vector, it suffices to show that

Edist2
(
θx � X,Zn)

� θ2 ∀θ ∈
(

0, h2.10 · n√
T

)
.
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Suppose that

Edist2
(
θx � X,Zn) � θ2

for some θ > 0; we want to show that in this case θ � n√
T

. Let p ∈ Z
n denote a closest integer

vector to θx � X; note that p is a random vector. Then, E
∣∣∣θx � X − p

∣∣∣2 � θ2, and Markov’s

inequality yields that
∣∣∣θx � X − p

∣∣∣ � θ with high probability. Dividing both sides by θ gives∣∣∣x � X − p/θ
∣∣∣ � 1, so another application of Markov’s inequality shows that∣∣∣∣xiXi − pi

θ

∣∣∣∣ � 1√
n

for n − o(n) coordinates i.

Moreover, E
∣∣∣X∣∣∣2 = 2 Var |X| ≤ 2T by (5). So, a similar double application of Markov’s

inequality shows that, with high probability,

∣∣∣Xi

∣∣∣ �
√

T

n
for n − o(n) coordinates i.

Furthermore, incompressible vectors are “spread” in the sense that

I :=
{
i : |xi | � 1√

n

}
satisfies |I |� n.

This fact is easy to check; a formal proof can be found in [19], Lemma 3.4.
Finally, the assumption on the concentration function shows that P{

∣∣∣Xi

∣∣∣ ≥ 1} ≥ b. By the

independence of Xi ’s this implies that, with high probability,∣∣∣Xi

∣∣∣ ≥ 1 for b |I |/2 � n coordinates i ∈ I

(this conclusion follows by considering the sum of independent indicator variables 1{|Xi |≥1},
i ∈ I ).

Taking the intersection of these events and sets of coordinates, we see that, with high
probability, there must exist a coordinate i for which we have simultaneously the following
three bounds: ∣∣∣∣xiXi − pi

θ

∣∣∣∣ � 1√
n
, 1 ≤

∣∣∣Xi

∣∣∣ �
√

T

n
, |xi | � 1√

n
.

Then, using the triangle inequality, we get∣∣∣∣pi

θ

∣∣∣∣ ≥
∣∣∣xiXi

∣∣∣ − o

(
1√
n

)
≥ c√

n
· 1 − o

(
1√
n

)
> 0.

Thus, pi �= 0, and, since pi is an integer, we necessarily have |pi | ≥ 1.
On the other hand, a similar application of the triangle inequality gives

∣∣∣∣pi

θ

∣∣∣∣ ≤
∣∣∣xiXi

∣∣∣ + o

(
1√
n

)
� 1√

n
·
√

T

n
+ o

(
1√
n

)
�

√
T

n
.

This yields that θ � |pi | · n√
T

≥ n√
T

, as claimed. �
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3. Discretization. In this section we outline the required discretization results. They es-
sentially follow from the results in Section 3 of [14]; however, they are not stated there in the
form we need, and, thus, we repeat certain arguments here.

DEFINITION 3.1 (Discretization, part 1). Given a vector of weights α ∈ R
n and a reso-

lution parameter ε > 0, we consider the set of approximately unit vectors whose coordinates
are quantized at scales αiε/

√
n. Precisely, we define


α(ε) :=
(

3

2
Bn

2 \ 1

2
Bn

2

)
∩

(
α1ε√

n
Z× · · · × αnε√

n
Z

)
.

LEMMA 3.2 (Rounding). Fix any accuracy ε ∈ (0,1/2), a weight vector α ∈ [0,1]n and
any (deterministic) N × n matrix A whose columns we denote Ai . Then, for any x ∈ S

n−1,
one can find y ∈ 
α(ε) such that

‖x − y‖∞ ≤ ε√
n

and |A(x − y)| ≤ ε√
n

(
n∑

j=1

α2
j

∣∣Aj

∣∣2)1/2

.

PROOF. Our construction of y is probabilistic and amounts to random rounding of x.
The technique of random rounding has been used in computer science (see the survey by
Srinivasan [23], papers [1, 9]), asymptotic convex geometry [10] and random matrix theory
[14, 30].

A random rounding of x ∈ S
n−1 is a random vector y with independent coordinates that

takes values in the 
α(ε) and satisfies Ey = x and

(7)
∣∣xj − yj

∣∣ ≤ αjε√
n

, j = 1, . . . , n, for any realization of y.

One can construct such a distribution of y by rounding each coordinate of x up or down,
at random, to a neighboring point in the lattice (αj ε/

√
n)Z. The identity Ey = x can be

enforced by choosing the probabilities of rounding up and down accordingly.2

To check that y indeed takes values in 
α(ε), note that the bound in (7) and the assumption
that αi ∈ [0,1] imply

(8) ‖x − y‖∞ ≤ ε√
n

for any realization of y.

It follows that ‖x − y‖2 ≤ ε < 1/2, and, since ‖x‖2 = 1, this implies by triangle inequality
that 1/2 < ‖y‖2 < 3/2. This verifies that the random vector y takes values in 
α(ε), as we
claimed.

Finally, we have

E |A(x − y)|2 = E

∣∣∣∣∣∣
n∑

j=1

(xj − yj )Aj

∣∣∣∣∣∣
2

=
n∑

i=1

E(xj − yj )
2 · ∣∣Aj

∣∣2 (
since E(xj − yj ) = 0

)

≤ ε2

n

n∑
j=1

α2
j

∣∣Aj

∣∣2 (using the bound in (7)).

Combining this with (8), we conclude that there exists a realization of the random vector y

that satisfies the conclusion of the lemma. �

2Precisely, if xj = (αj ε/
√

n)(kj +pj ) for some kj ∈ Z and pj ∈ [0,1), we let yj take value (αj ε/
√

n)kj with
probability 1 − pj and value (αj ε/

√
n)(kj + 1) with probability pj . Clearly, this yields Ey = x.
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LEMMA 3.3. Let M ≥ 1. There exists a subset � ⊂ R
n+ of cardinality at most (CM)n

and such that the following holds. For every vector x ∈ R
n+ with ‖x‖1 ≤ Mn, there exists

y ∈ � such that ‖y‖1 ≤ (M + 1)n and y ≥ x coordinatewise.

PROOF. Define y := �x� where the ceiling function is applied coordinatewise. Then,
‖y‖1 ≤ ‖x‖1 + n ≤ (M + 1)n, as claimed. In particular, there are as many vectors y as there
are integer points in the �1-ball {z ∈ R

n : ‖z‖1 ≤ (M + 1)n}. According to classical results
(see [16], Exercise 29; [22]), the number of integer points in this ball is bounded by (CM)n

(see also [10] for a similar covering argument). The lemma is proved. �

Fix κ > e, and consider the set

(9) �κ :=
{
α ∈ [0,1]n :

n∏
j=1

αj ≥ κ−n

}
.

The following result is a corollary of [14], Lemma 3.11.

LEMMA 3.4. For any κ > e, there exists a subset F ⊂ �eκ of cardinality, at most,
(Clogκ)n and such that the following holds. For every vector β ∈ �κ , there exists α ∈ F
such that α ≤ β coordinatewise.

PROOF. Apply Lemma 3.3 for x = − logβ , y = − logα (defined coordinatewise) and
M = logκ . �

DEFINITION 3.5 (Discretization—part 2). Assuming the dimension n fixed, for the pa-
rameters κ > e and ε > 0, we shall use the notation

(10) 
κ(ε) := ⋃
α∈F


α(ε),

with F being the set whose existence is guaranteed by Lemma 3.4.

REMARK 3.6. It is immediate from the above definition that, for any κ > e, there is Cκ >

0 depending only on κ such that �
κ(ε) ≤ ∑
α∈F �
α(ε) ≤ (Cκ/ε)n for every ε ∈ (0,1].

The following notion from [14] will help us to control the norms of the columns Aj of an
N × n matrix A in the absence of any distributional assumptions on Aj :

Bκ(A) := min

{
n∑

j=1

α2
j |Aj |2 : α ∈ �κ

}
.

THEOREM 3.7. Fix ε ∈ (0,1/2), κ > e and any (deterministic) N × n matrix A. Then,
for every x ∈ S

n−1, one can find y ∈ 
κ(ε) so that

‖x − y‖∞ ≤ ε√
n

and |A(x − y)| ≤ ε√
n

√
Bκ(A).

PROOF. By Lemma 3.2, for any x ∈ S
n−1 we can find y ∈ 
κ(ε) that approximates x in

the �∞ norm, as required, and such that

|A(x − y)| ≤ ε√
n

(
min
α∈F

n∑
j=1

α2
j

∣∣Aj

∣∣2)1/2

≤ ε√
n

(
min
β∈�κ

n∑
j=1

β2
j

∣∣Aj

∣∣2)1/2

(by Lemma 3.4)

= ε√
n

√
Bκ(A).

The proof is complete. �
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Lastly, we recall the important property concerning the large deviation behavior of Bκ ;
here, Lemma 3.11 from [14] is quoted with a specific choice of parameters.

LEMMA 3.8 (Lemma 3.11 from [14]). Let A be a random matrix with independent
columns. Then, for any κ > e, we have

P
{
Bκ(A) ≥ 2E‖A‖2

HS
} ≤

(
κ√
2

)−2n

.

Finally, we are ready to state the main result of this section which will follow as a corol-
lary of Lemma 2.9, Theorem 3.7 and Lemma 3.8. Given γ > 0, ω ∈ (0,1), D > 0 and a
distribution of a random matrix M , we shall use the notation

SM
ω,γ (D) :=

{
x ∈ 3

2
Bn

2 \ 1

2
Bn

2 : RLCDM
γ
√

n,ω
(x) ∈ [D,2D]

}
,

S̃M
ω,γ (D) :=

{
x ∈ 3

2
Bn

2 \ 1

2
Bn

2 : RLCDM
2γ

√
n,4ω

(x) ≤ 2D,RLCDM
0.5γ

√
n,0.25ω

(x) ≥ D

}
for the level sets of the RLCD.

THEOREM 3.9 (Approximation). Fix any ε ∈ (0,0.1), κ > e, γ > 0, ω ∈ (0,1), K > 0.
Let M be an m × n random matrix with independent columns and whose rows Mi satisfy

(11) ε2 Var
(
Mi) ≤ 1

8
min

(
ωn,

γ 2n2

D2

)
, i = 1, . . . ,m.

Then, with probability, at least, 1 − (κ/
√

2)−2n, for every x ∈ S
n−1 ∩ SM

ω,γ (D), there exists

y ∈ 
κ(ε) ∩ S̃M
ω,γ (D) such that

(12) ‖x − y‖∞ ≤ ε√
n
, |M(x − y)| ≤

√
2ε√
n

(
E‖M‖2

HS
)1/2

.

PROOF. Lemma 3.8 says that the event

E := {
Bκ(M) ≤ 2E‖M‖2

HS
}

occurs with probability, at least, 1 − (κ/
√

2)−2n. Fix any realization of the random matrix M

for which this event happens.
Let y be the approximation of x given by Theorem 3.7. Then, (12) follows from the con-

clusion of Theorem 3.7 and the definition of our event. The fact that y ∈ S̃M
ω,L(D) follows

from Lemma 2.9 (applied with r = ε/
√

n) together with the assertion of Theorem 3.7 (ap-
plied with A = M): indeed, the assumption (11) allows us to appeal to Lemma 2.9. �

4. Anticoncentration on lattice points. The goal of this section is to study anticoncen-
tration properties of random sums with coefficients taken from sets of the form

(13) 
 :=
(

3

2
Bn

2 ∩
{
x ∈ R

n : �
{
i : |xi | ≥ ρ√

n

}
≥ δn

})
∩

(
λ1√
n
Z× · · · × λn√

n
Z

)
.

The main result of this section is the following.

THEOREM 4.1 (Most lattice points are unstructured). For any U ≥ 1, b ∈ (0,1)

and δ, ρ ∈ (0,1/2], there exist n0 = n0(U,b, δ, ρ), γ = γ (U,b, δ, ρ) ∈ (0,1) and u =
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u(b, δ, ρ) ∈ (0,1/4) such that the following holds. Let n ≥ n0. Consider a random vector
X in R

n with independent components Xi that satisfies

Var(X) ≤ 1

8
(1 − b)δγ 2n2 and max

i
L(Xi,1) ≤ b.

Fix numbers λ1, . . . , λn satisfying 6−n ≤ λi ≤ 0.01, and let W be a vector uniformly dis-
tributed on the set 
 defined in (13). Then,

PW

{
RLCDX

γ
√

n,u
(W) < min

i
1/λi

}
≤ U−n.

The above theorem will be used to control the cardinality of ε-nets on the set of “typical”
realizations of unit normal vectors to the spans of columns of our random matrix and forms a
crucial step in the proof of Theorem 1.2. The idea of using double counting to verify structural
properties of random normals was applied earlier in [32].

We start with an observation that will allow us to reduce the Euclidean ball 3
2Bn

2 by a
parallelotope in the definition of 
.

LEMMA 4.2. There is a universal constant C0 > 0 with the following property. For any
n ≥ 1, there is a collection of parallelotopes P = {Pi} in R

n of cardinality at most 2C0n, such
that:

• Each Pi is centered at the origin with the edges parallel to the coordinate axes;
• Each edge of Pi is of length at least 2/

√
n;

• 3
2Bn

2 ⊂ ⋃
i Pi ⊂ 3Bn

2 .

PROOF. First, standard volumetric estimates imply that there is a covering of 3
2Bn

2 by
parallel translates of the cube 1

2
√

n
Bn∞, of cardinality, at most, 2C0n for a universal constant

C0 > 0. Let {xi}i∈I be a collection of, at most, 2C0n points in 3
2Bn

2 such that each of the cubes
from the covering contains at least one point xi from the collection. Now, define P = {Pi}i∈I

by taking, for each i ∈ I , Pi := P̃i + 1√
n
Bn∞, where P̃i is the unique parallelotope centered at

the origin and with xi being one of its vertices. It is elementary to check that the collection
satisfies the required properties. �

LEMMA 4.3. For any b ∈ (0,1) and δ, ρ ∈ (0,1/2], there exists n0 = n0(b, δ, ρ) such
that the following holds. Let n ≥ n0 and γ ∈ (0,1). Fix any subset J ⊂ [n], and consider a
fixed (deterministic) vector x ∈ R

n satisfying

(14) |x|2 ≤ 1

4
(1 − b)δγ 2n2 and �

{
i ∈ J : |xi | ≥ 1

} ≥ 1

2
(1 − b)δn.

Furthermore, fix numbers λ1, . . . , λn satisfying 6−n ≤ λi ≤ 0.01 and a vector a = (a1, . . . ,

an) satisfying |a| ≤ 3 and minai ≥ 1/
√

n. Consider the parallelotope P := ∏n
i=1[−ai, ai],

and define


′ :=
{
w ∈ P : |wi | ≥ ρ√

n
∀i ∈ J

}
∩

(
λ1√
n
Z× · · · × λn√

n
Z

)
.

Let W be a random vector uniformly distributed on 
′. Then, for D := mini 1/λi , we have

(15) P

{
min

θ∈(0,D)
dist

(
θW � x,Zn)2

< min
(
c|θW |2/2,16γ 2n

)} ≤ (Cγ )cn,

where C,c > 0 depending only on b, δ, ρ.
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PROOF. Step 1. Halving the set I . The assumptions on x imply that the set

I := {
i ∈ J : 1 ≤ |xi | ≤ γ

√
n
}

satisfies �I ≥ 1

4
(1 − b)δn.

Next, let μ = μ(x) be a median of the set {ai |xi | : i ∈ I }. Thus, each of the subsets

I ′ := {i ∈ I : ai |xi | ≤ μ} and I ′′ := {i ∈ I : ai |xi | ≥ μ}
contains at least a half of the elements of I ,

(16) min
(
�I ′, �I ′′) ≥ 1

2
�I ≥ 1

8
(1 − b)δn ≥ cn,

where c > 0 depends only on b and δ. Take θ ∈ (0,D), and consider two cases.
Step 2. Ruling out small multipliers θ . We claim that the range for θ in (15) can automati-

cally be narrowed to ( 1
2μ

,D). To check this, it suffices to show that, for any θ ∈ (0, 1
2μ

], the
bound

(17) dist
(
θW � x,Zn)2 ≥ c|θW |2/2

holds deterministically, that is, for any realization of the random vector W .
By construction the coordinates Wi of W for i ∈ I are uniformly distributed in lattice

intervals, namely,

(18) Wi ∼ Unif
([

ρ√
n
,ai

]
∩ λi√

n
Z

)
, i ∈ I.

This means in particular that the coordinates of θW � x for i ∈ I ′ satisfy

θ |Wixi | ≤ θai |xi | ≤ θμ ≤ 1

2
,

where we used the definition of I ′ and the smallness of θ . This bound in turn yields

dist(θ |Wixi | ,Z) = θ |Wixi | ≥ θ · ρ√
n

· 1,

where in the last step we used the range of Wi from (18) and the definition of I . Square both
sides of this bound, and sum over i ∈ I ′ to get

dist
(
θW � x,Zn)2 ≥ θ2ρ2

n
�I ′ ≥ cθ2ρ2 ≥ c0θ

2 |W |2 /2,

where we used (16), suppressed ρ into c0 and noted that |W |2 ≤ |a|2 ≤ 9 by definition of W

and assumption on a. We have proved (17).
Step 3. Handling a fixed multiplier θ . Due to the previous step, our remaining task is to

show that

P

{
min

θ∈(1/2μ,D)
dist

(
θW � x,Zn)2

< 16γ 2n
}

≤ (Cγ )cn.

To do this, let us first estimate the probability that dist(θW � x,Zn)2 < 49γ 2n for a fixed
multiplier3 θ ∈ (1/2μ,D + 1).

Let i ∈ I ′′. Recall from (18) that the random variable |Wi | is uniformly distributed in a
lattice interval whose diameter is, at least,

ai − ρ√
n

− 2λi√
n

≥ ai

3
;

3Extending the range by one will be help us in the next step to unfix θ ; increasing the constant factor 16 to 49
will help us run a net approximation argument in Step 4.
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here, we used the assumptions ai ≥ 1/
√

n, ρ ≤ 1/2 and λi ≤ 0.01. Thus, the random variable
θ |Wixi |, that is, the absolute value of a coordinate of θW �x is distributed in a lattice interval
of diameter, at least,

ai

3
θ |xi | ≥ θμ

3
≥ 1

6
;

here, we used the definition of I ′′ and the largeness of θ . Moreover, the step of that lattice
interval (the distance between any adjacent points) is

λi√
n
θ |xi | ≤ λiθγ ≤ λi(D + 1)γ ≤ 2γ ;

here, we used the definition of I , the range of θ , the definition of D and the assumption that
λi ≤ 0.01.

The random variable θ |Wixi | that is uniformly distributed on a lattice interval of diameter,
at least, 1/6 and with step at most 2γ satisfies

P
{
dist(θ |Wixi | ,Z) < ε

} ≤ Cε for any ε ≥ 4γ,

where C is an absolute constant. Squaring the distances, summing them over i ∈ I ′′ and using
tensorization Lemma 2.7, we conclude that

P
{
dist

(
θW � x,Zn)2

< ε2�I ′′} ≤ (
C′ε

)�I ′′
for any ε ≥ 4γ.

Recall from (16) that �I ′′ ≥ cn. Hence, substituting ε = C0γ with sufficiently large C0 (de-
pending on c and thus, ultimately, on b and δ), we get

P
{
dist

(
θW � x,Zn)2

< 49γ 2n
} ≤ (

C′′γ
)cn

.

Step 4. Unfixing the multiplier θ . It remains to make the distance bound hold simultane-
ously for all θ in the range (1/2μ,D). To this end, we use a union bound combined with a
discretization argument. To discretize the range of θ , consider the lattice interval

� :=
(

1

2μ
,D

)
∩ 1√

n
Z.

For sufficiently large n, its cardinality can be bounded as follows:

�� ≤ (D + 1)
√

n + 1 ≤ (
6n + 1

)√
n + 1 ≤ 7n;

here, we used that D = mini (1/λi) by definition and λi ≥ 6−n by assumption. The construc-
tion of � shows that any θ ∈ (1/2μ,D) can be approximated by some θ0 ∈ � in the sense
that

θ ≤ θ0 ≤ θ + 1√
n
.

Note, in particular, that θ0 falls in the range (1/2μ,D + 1), which we handled in the previous
step of the proof.

Recall that we need to bound the probability of the event

E :=
{

min
θ∈(1/2μ,D)

dist
(
θW � x,Zn)

< 4γ
√

n
}
.

Suppose this event occurs. Let θ be the multiplier that realizes the minimum and consider an
approximation θ0 ∈ � as above. By triangle inequality it satisfies

dist
(
θ0W � x,Zn)

< 4γ
√

n + |θ0 − θ | |W � x| .
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By construction, we have |θ0 − θ | ≤ 1/
√

n and

|W � x| ≤ ‖W‖∞ |x| ≤ 3γ n;
here, we used that ‖W‖∞ ≤ ‖a‖∞ ≤ |a| ≤ 3 by definition of W and assumptions on a as
well as |x| ≤ γ n by assumption on x. Thus,

dist
(
θ0W � x,Zn) ≤ 7γ n.

For each fixed θ0, the result of the previous step of the proof shows that the probability of this
event is, at most, (C′′γ )cn.

As we know, the number of possible choices of θ is, at most, �� ≤ 7n. Thus, the union
bound gives

P(E) ≤ 7n(
C′′γ

)cn ≤ (Cγ )cn.

This completes the proof of the lemma. �

REMARK 4.4. Note that with our choice of parameters, 
′ is nonempty, and, therefore,
W is well defined in the lemma above.

From Lemma 4.3 we deduce the following.

LEMMA 4.5. For any U ≥ 1, b ∈ (0,1) and δ, ρ ∈ (0,1/2], there exist n0 = n0(U, b,

δ, ρ), γ = γ (U,b, δ, ρ) ∈ (0,1) and u = u(b, δ, ρ) ∈ (0,1/4) such that the following holds.
Let n ≥ n0, and let J be a fixed subset of [n] of cardinality at least δn. Further, consider a
random vector X in R

n with independent components Xi that satisfies

E|X|2 ≤ 1

8
(1 − b)δγ 2n2 and max

i
L(Xi,1) ≤ b.

Consider a set 
′ described in Lemma 4.3 and a random vector W uniformly distributed on

′. Then,

PW

{
RLCDX

γ
√

n,u
(W) < min

i
1/λi

}
≤ U−n.

PROOF. We apply a simple argument based on change of integration order or a “double-
counting” trick. Without any loss of generality, we can assume that the random vector X is
uniformly distributed on a finite set X := X1 × · · · ×Xn so that, for any x ∈X , we have

P{X = x} = 1

�X .

Indeed, this follows from a simple fact that any multidimensional distribution ζ = (ζ1, . . . , ζn)

with independent components can be approximated by a discrete distribution τ = (τ1, . . . , τn)

of the above form so that

sup
θ∈[0,6n]

sup
v∈Sn−1

∣∣Edist2
(
θ(v1ζ̄1, . . . , vnζ̄n),Z

n) −Edist2
(
θ(v1τ̄1, . . . , vnτ̄n),Z

n)∣∣
is arbitrarily small. Then, the definition of RLCD would imply that proving the required
assertion for τ implies corresponding assertion for ζ , perhaps with a different choice of γ , u,
n0.

Set X ′ := {x ∈ X : x satisfies (14)}. In view of our assumptions on X (and assuming that
n is sufficiently large), we have

P
{
X ∈X ′} ≥ 1/4,
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while, in view of the assertion of Lemma 4.3 and summing over x ∈ X ′, we get

�
{
(x,w) ∈ X ′ × 
′ : min

θ∈(0,D)
dist

(
θw � x,Zn)2 ≥ min

(
c|θw|2/2,16γ 2n

)}
≥ (

1 − (Cγ )cn
)
�X ′�
′,

(19)

where D = mini 1/λi . This implies

�
{
w ∈ 
′ : �

{
x ∈ X ′ : min

θ∈(0,D)
dist

(
θw � x,Zn)2 ≥ min

(
c|θw|2/2,16γ 2n

)} ≥ �X ′/4
}

≥ (
1 − 2(Cγ )cn

)
�
′

(indeed, if the last assertion were not true, we would get that the cardinality of the set
in (19) was bounded above by (1 − 2(Cγ )cn)�
′ · �X ′ + 2(Cγ )cn�
′ · �X ′/4 ≤ (1 −
3(Cγ )cn/2)�X ′�
′). Back from counting to probabilities, we get from the last bound and
the estimate �X ′/4 ≥ �X/16,

�
{
w ∈ 
′ : min

θ∈(0,D)
EX dist

(
θw � X,Zn)2 ≥ min

(
c|θw|2/32, γ 2n

)} ≥ (
1 − 2(Cγ )cn

)
�
′.

This can be equivalently rewritten with u := c/32 as

�
{
w ∈ 
′ : RLCDX

γ
√

n,u
(w) > D

} ≥ (
1 − 2(Cγ )cn

)
�
′,

and the result follows by taking any γ ∈ (0,1) satisfying 2(Cγ )cn ≤ U−n. �

PROOF OF THEOREM 4.1. Without loss of generality, EX = 0, so that Var(X) = E|X|2.
We obtain the results as a combination of Lemmas 4.2 and 4.5. To do so, note that 
 can be
covered by 2C1n sets of the type 
′ (one for each paralellotope and a support set J ). Then,
the probability measures on 
 and a given 
′ are within 2C1n from each other. Thus, the
probability in the conclusion of Theorem 4.1 is bounded by 2C1nU−n ≤ (cU)−n. It remains
to redefine U → cU to get the result. �

5. Proof of Theorem 1.2. In this section we split the Euclidean unit sphere Sn−1 into
level sets collecting (incompressible) unit vectors having comparable RLCD. To show that
with a high probability the normal vector does not belong to a level set with a small RLCD,
we consider a discrete approximating set whose cardinality is well controlled from above by
using a combination of Theorem 3.9 and Theorem 4.1. In view of the stability property of
RLCD, the event that the normal vector has a small RLCD is contained within the event that
one of the vectors in the approximating set has a small RLCD. We then apply the small ball
probability estimates for individual vectors, combined with the union bound, to show that the
latter event has probability close to zero.

For any D ≥ 1, γ,u ∈ (0,1) and an m × n random matrix M define, as before,

SD(M,γ,u) := {
v ∈ S

n−1 : RLCDM
γ
√

n,u
∈ [D,2D]}.

As the first step we combine the approximation Theorem 3.9 with Theorem 4.1 to obtain

PROPOSITION 5.1. For arbitrary b,ρ, δ ∈ (0,1), U ≥ 1 and K ≥ 1 there exist n5.1 =
n5.1(b, δ, ρ,U,K), u5.1 = u5.1(b, δ, ρ) ∈ (0, u2.10(b, δ, ρ)), γ5.1 = γ5.1(b, δ, ρ,U,K) ∈
(0,1/2) with the following property. Let D ≥ 1 and 0 < ε ≤ 1/D. Let n ≥ n5.1, m ≥ 1,
and let M be an m × n matrix with independent entries Mij such that L(Mij ,1) ≤ b, for all
i, j ,

Var
(
M�ei

) ≤ 1

8
min

(
(1 − b)δγ 2

5.1n
2, ε−2u5.1n

)
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for every i ≤ m and

E‖M‖2
HS ≤ Kn2.

Then, there is a nonrandom set 
 ⊂ R
n of cardinality at most (εU)−n having the following

properties:

• For any y ∈ 
, we have 3/2 ≥ |y| ≥ 1/2;
• For any y ∈ 
, RLCDM

γ5.1
√

n/2,u5.1/4(y) ≥ D and RLCDM
2γ5.1

√
n,4u5.1

(y) ≤ 2D;

• With probability at least 1 − e−n, for any x ∈ SD(M,γ5.1, u5.1) ∩ Incomp(δ, ρ), there is
y ∈ 
 with ‖x − y‖∞ ≤ ε/

√
n and |M(x − y)| ≤ ε

√
n.

PROOF. Set κ := 5, and let Cκ > 0 be the constant from Remark 3.6. Let U ≥ 1, U ′ :=
100

√
2KUCκ/ρ, and set

n5.1 := n0
(
U ′, b, δ, ρ/2

)
, γ = γ5.1 := γ

(
U ′, b, δ, ρ/2

)
,

u = u5.1 := u(b, δ, ρ/2) ∈
(

0,
1

4

)
,

where the functions n0(·), γ (·), u(·) are taken from Theorem 4.1. Finally, set

ε′ := ρε

100
√

2 max(K,1)
∈ (0,0.01),

and let 
κ(ε′) be as in Definition 3.5.
Let 
 be a subset of all vectors y ∈ 
κ(ε′) such that

RLCDM
γ
√

n/2,u/4(y) ≥ D and RLCDM
2γ

√
n,4u

(y) ≤ 2D,

and such that the �∞–distance of y to Incomp(δ, ρ) is, at most, ε′/
√

n. Note that the last
condition implies that for any y ∈ 
, �{i ≤ n : |yi | ≥ ρ/(2

√
n)} ≥ δn; see the argument in

Lemma 3.4 from [19].
By our choice of ε′ and the condition on the matrix, we have(

ε′)2 Var
(
M�ei

) ≤ 1

8

γ 2n2

D2 ; (
ε′)2 Var

(
M�ei

) ≤ 1

8
un.

Then, according to Theorem 3.9, with probability at least 1 − (5/
√

2)−2n for any incom-
pressible vector x ∈ SD(M,γ,u) there is a vector y ∈ 
 such that ‖x − y‖∞ ≤ ε′/

√
n and

|M(x − y)| ≤ √
2ε′√K

√
n ≤ ε

√
n.

It remains to estimate the cardinality of 
. We recall that


κ(
ε′) = ⋃

α∈F

α

(
ε′),

where the collection F of parameters (α1, . . . , αn) ∈ (0,1]n is given by Lemma 3.4. Fix for
a moment any (α1, . . . , αn) ∈ F , and set λi := αiε

′ ∈ (0,0.01], i ≤ n. Observe that 1/λi ≥
1/ε′ > 2/ε ≥ 2D, i ≤ n. Hence, we can apply Theorem 4.1 to obtain

�
(

 ∩ 
α

(
ε′)) ≤ �
α

(
ε′)(U ′)−n

.

Taking the union over all (α1, . . . , αn) ∈ F , we then get

�
 ≤ (
U ′)−n

∑
α∈F

�
α

(
ε′) ≤ (εU)−n,

where at the last step we used our definition of U ′. �

Next, we combine the discrete approximation set introduced above with the small ball
probability of Lemma 2.8.
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PROPOSITION 5.2. For any b,ρ, δ ∈ (0,1) and K ≥ 1, there are n5.2 = n5.2(b, δ, ρ,K),
u5.2 = u5.2(b, δ, ρ) ∈ (0, u2.10(b, δ, ρ)), γ5.2 = γ5.2(b, δ, ρ,K) ∈ (0,1/2) and γ ′

5.2 = γ ′
5.2(b,

δ, ρ,K) with the following property. Let n ≥ n5.2, e2 ≤ D ≤ D0 ≤ eγ ′
5.2n, 0 ≤ k ≤ n/ lnD0,

m := n − k, and let M be an m × n random matrix with independent entries Mij such that
L(Mij ,1) ≤ b, for all i, j ,

(20) Var
(
Mi) ≤ 1

64
min

(
(1 − b)δγ 2

5.2n
2,D2

0u5.2n
)

for every i ≤ m, and

E‖M‖2
HS ≤ Kn2.

Let M(1) be the matrix obtained from M by removing the first row. Then,

P
{∃x ∈ Incomp(δ, ρ) ∩ SD(M,γ5.2, u5.2) s.t. RLCDM(1)

γ5.2
√

n,u5.2
(x) ≥ D0,M

(1)x = 0
} ≤ 2e−n.

PROOF. First, we should carefully define the parameters. We choose u := u5.1(b, δ, ρ).
Next, set U := 2e3C2

2.8, where C2.8 is taken from Lemma 2.8 with parameters c0 := 1/2
and u/4, and we assume without loss of generality that C2.8 ≥ 1. Finally, take γ :=
γ5.1(b, δ, ρ,U,K), γ ′ := c̃2.8γ

2/4 ≤ 1.
Let e2 ≤ D ≤ D0 ≤ eγ ′n, and let random matrix M satisfy the assumptions of the proposi-

tion. Let 
 be the set defined in Proposition 5.1 with ε := 1/D0. Set

ED := {∃x ∈ Incomp(δ, ρ) ∩ SD(M,γ,u) s.t. RLCDM(1)

γ
√

n,u
(x) ≥ D0,M

(1)x = 0
}
.

Note that whenever x and y are two vectors in R
n with RLCDM(1)

γ
√

n,u
(x) ≥ D0 and ‖x−y‖∞ ≤

1
D0

√
n

, then necessarily RLCDM(1)

γ
√

n/2,u/4(y) ≥ D0 (as follows from Lemma 2.9).

Hence, applying Proposition 5.1, we get

P(ED) ≤ e−n + P
{
There is y ∈ 
 with

∣∣M(1)y
∣∣ ≤ √

n/D0 and RLCDM(1)

γ
√

n/2,u/4(y) ≥ D0
}

≤ e−n + �
 sup
y

P
{∣∣M(1)y

∣∣ ≤ √
n/D0

}
≤ e−n + (D0/U)n sup

y
P

{∣∣M(1)y
∣∣ ≤ √

n/D0
}
,

where the supremum is taken over all vectors y ∈ 3
2Bn

2 \ 1
2Bn

2 with RLCDM(1)

γ
√

n/2,u/4(y) ≥ D0.
Fix any y satisfying the above conditions. Set ε̃ := 2C2.8/D0, and observe that, by our

conditions on D0,

ε̃ ≥ C2.8 exp
(−c̃2.8γ

2n/4
) + C2.8/RLCDM(1)

γ
√

n/2,u/4(y).

Applying Lemma 2.8, we then obtain

P
{∣∣M(1)y

∣∣ ≤ √
n/D0

} ≤ P
{∣∣M(1)y

∣∣ ≤ 2
√

m − 1/D0
}

≤ P
{∣∣M(1)y

∣∣ ≤ ε̃
√

m − 1
} ≤ (C2.8ε̃)

m−1.

Taking the supremum over all admissible y, we then get

P(ED) ≤ e−n + (D0/U)n(C2.8ε̃)
m−1 ≤ e−n + Dn−m+1

0 U−n(
2C2

2.8
)n

.

The result follows by the choice of U and the condition on m. �
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Our proof of Theorem 1.2, in the case Var(Aj ) = �(n), j = 1,2, . . . , n, is a straightfor-
ward application of Proposition 5.2 (taking a dyadic sequence of level sets), together with
results of [14] on invertibility over compressible vectors. The fact that in our model some
columns may have variances much greater than n adds some complexity to the proof because
the relation (20) for such columns may hold true only for “large enough” D0 leaving a gap
in the treatment of small values of the parameter. We deal with this issue in the statement
below by carefully splitting the event in question into subevents and invoking Lemma 2.10
that allows to deterministically bound RLCD in terms of the variance.

PROPOSITION 5.3. Let b, δ, ρ ∈ (0,1) and K ≥ 1 be parameters, and let u5.2, γ5.2 be
taken from Proposition 5.2. Then, there are n5.3(b, δ, ρ,K) and γ ′

5.3(b, δ, ρ,K) with the fol-
lowing property. Let n ≥ n5.3, let n × n matrix A be as in the statement of Theorem 1.2 and
let j ≤ n be such that

Var(Aj ) ≤ min
(
h2

2.10e
−4n2,

1

64
(1 − b)δγ 2

5.2n
2
)
,

where h2.10 is taken from Lemma 2.10. Then,

P
{∃x ∈ Incomp(δ, ρ) orth. to Ai, i �= j , with RLCD

Aj

γ5.2
√

n,u5.2
(x) ≤ eγ ′

5.3n
} ≤ 2−n/2.

PROOF. We will assume that n is large and that γ ′ > 0 is a small parameter whose value
can be recovered from the proof below. Without loss of generality, j = 1. Let A′ be the
submatrix of A composed of all columns Ai satisfying

Var(Ai) ≤ min
(
h2

2.10e
−4n2,

1

64
(1 − b)δγ 2

5.2n
2
)
.

We note that the number of columns of A′ is, at least, n − K/min(h2
2.10e

−4, 1
64(1 − b)δγ 2

5.2).
Further, let M be the transpose of A′, and denote by W the submatrix of M(1) formed by
removing rows with variances, at least, n9/8.

The proof of the statement is reduced to estimating probability of the event

E ′ := {∃x ∈ Incomp(δ, ρ) with M(1)x = 0 and RLCDA1
γ5.2

√
n,u5.2

(x) ≤ eγ ′n}
.

We can write

P
(
E ′) ≤ ∑

log2 n−1≤�≤γ ′n log2 e

P
{∃x ∈ Incomp(δ, ρ) ∩ S2�(M,γ5.2, u5.2) with M(1)x = 0

}
+ P

{∃x ∈ Incomp(δ, ρ) with M(1)x = 0 and RLCDM
γ5.2

√
n,u5.2

(x) < n
}
.

The first sum can be estimated directly by applying Proposition 5.2 with D0 := D := 2�,
log2 n−1 ≤ � ≤ γ ′n log2 e (note that the relation (20) is fulfilled for such D for all rows of M

and that the proposition can be applied as long as K/min(h2
2.10e

−4, 1
64(1 − b)δγ 2

5.2) ≤ 1/γ ′).
Further, the condition that RLCDM

γ5.2
√

n,u5.2
(x) < n implies that either RLCDW

γ5.2
√

n,u5.2
(x) < n

or RLCDW
γ5.2

√
n,u5.2

(x) ≥ n and RLCDMq

γ5.2
√

n,u5.2
(x) < n for some row Mq of M . Hence, we

get

P
(
E ′) ≤ 2n · 2e−n + ∑

q

P
{∃x ∈ Incomp(δ, ρ) with Wx = 0 and RLCDW

γ5.2
√

n,u5.2
(x) ≥ n

and RLCDMq

γ5.2
√

n,u5.2
(x) < n

}
+ P

{∃x ∈ Incomp(δ, ρ) with Wx = 0 and RLCDW
γ5.2

√
n,u5.2

(x) < n
}
.
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To estimate the sum, we apply Lemma 2.10 which, together with our restrictions on the
variances, allows to deterministically bound the RLCD with respect to Mq by e2. Thus, we
get

P
{∃x ∈ Incomp(δ, ρ) with Wx = 0 and RLCDW

γ5.2
√

n,u5.2
(x) ≥ n

and RLCDMq

γ5.2
√

n,u5.2
(x) < n

}
= P

{∃x ∈ Incomp(δ, ρ) with Wx = 0 and RLCDW
γ5.2

√
n,u5.2

(x) ≥ n

and e2 ≤ RLCDMq

γ5.2
√

n,u5.2
(x) < n

}
.

Splitting the interval [e2, n] into dyadic subintervals and applying Proposition 5.2 with D0 :=
n and for the matrix formed by concatenating W and Mq , we get an upper bound 2e−n log2 n

for the probability.
In order to estimate probability of the event{∃x ∈ Incomp(δ, ρ) with Wx = 0 and RLCDW

γ5.2
√

n,u5.2
(x) < n

}
,

we apply Lemma 2.10; this time the definition of W implies that RLCD with respect to
each row is deterministically bounded from below by n3/8 for a sufficiently large n. Again,
splitting of the interval [n3/8, n] into dyadic subintervals reduces the question to estimating
events of the form {∃x ∈ Incomp(δ, ρ) ∩ SD(W,γ5.2, u5.2) with Wx = 0

}
for some D ∈ [n3/8, n]. Taking D0 := D, one can see that the condition (20) is fulfilled for all
rows of W and that the difference between the number of columns and rows of W is clearly
less than n/ lnD0. Thus, Proposition 5.2 is applicable.

Summarizing, we get P(E ′) ≤ C′ne−n lnn for a universal constant C′ > 0. The result fol-
lows for all sufficiently large n. �

Now, we are in position to prove Theorem 1.2.

PROOF OF THEOREM 1.2. We will assume that n is large. We start by recording a prop-
erty of A which follows immediately from Lemma 2.1 (i.e., [14], Lemma 5.3). For any
j ≤ n, with probability, at least, 1 − e−c1n any unit vector orthogonal to {Ai, i �= j} is (δ, ρ)-
incompressible for some δ, ρ ∈ (0,1) depending only on b, K (here, c1 ∈ (0,1) depends only
on b, K). Indeed, let j ≤ n, let B be the n × (n − 1) matrix formed from A by removing Aj

and define M := BT. Then,

P
{∃x ∈ Comp(δ, ρ) orthogonal to Hj

} ≤ P

{
inf

x∈Comp(δ,ρ)
|Mx| = 0

}
≤ e−c1n,

where in the last passage Lemma 2.1 (i.e., [14], Lemma 5.3) was used.
Set

r := min
(
h2

2.10e
−4,

1

64
(1 − b)δγ 2

5.2

)
,

where h2.10 and γ5.2 are defined in respective lemmas with the parameters b, K , δ, ρ. Pick
any index j ≤ n such that Var(Aj ) ≤ rn2, and let v be a random unit vector orthogonal to Hj

and measurable with respect to the sigma-field generated by Hj . Applying Proposition 5.3
together with the above observation, we get

v is (δ, ρ)-incompressible and RLCD
Aj

γ5.2
√

n,u5.2
(v) ≥ eγ ′

5.3n

with probability, at least, 1 − ec1n − 2−n/2. Application of Lemma 2.5 finishes the proof. �
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REMARK 5.4. In our proof, the randomized least common denominator acts like a me-
diator in the relationship between anticoncentration properties of matrix-vector products and
cardinalities of corresponding discretizations (nets), following the ideas developed in [19].
A crucial element of our argument is the fact that RLCD is stable with respect to small per-
turbations of the vector, which we quantify in Lemma 2.9.

An alternative approach recently considered in [32] is based on directly estimating the
concentration function for “typical” points on a multidimensional lattice. The argument of
[32] uses, as an important step, certain stability properties of the Lévy concentration function
and of small ball probability estimates for linear combinations of Bernoulli random variables.
However, in the general (non-Bernoulli) setting and with different distributions of entries of
the matrix, obtaining satisfactory stability properties similar to those in [32] seems to be a
very nontrivial problem, in the situation when the approximation is done by a random vector.
We note here that in our net construction the approximating vector is, indeed, random and
depends on the realization of the matrix.

On a technical level, since RLCD is a structural (geometric) property, its stability follows
from relatively simple computations, while the Lévy concentration function is much more
difficult to control; in particular, the Esseen lemma provides only an upper bound for the
concentration function, hence cannot be relied on when studying its stability.

6. Proof of the Theorem 1.1. In this section we formally derive Theorem 1.1 from The-
orem 1.2, using a modification of the “invertibility via distance” lemma from [19].

LEMMA 6.1 (Invertibility via distance). Let A be any n × n random matrix. Fix a pair
of parameters δ, ρ ∈ (0, 1

2), and assume that n ≥ 4/δ. Then, for any ε > 0,

P

{
inf

x∈Incomp(δ,ρ)
|Ax| ≤ ε

ρ√
n

}
≤ 4

δn
inf

I⊂[n],
�I=n−�δn/2�

∑
j∈I

P
{
dist(Aj ,Hj ) ≤ ε

}
,

where Hj denotes the subspace spanned by all the columns of A, except for Aj .

PROOF. Fix any I ⊂ [n] with �I = n − �δn/2�, and consider event

E :=
{

inf
x∈Incomp(δ,ρ)

|Ax| ≤ ε
ρ√
n

}
.

Fix any realization of the matrix A such that the event holds, that is, there exists a vector
x ∈ Incomp(δ, ρ) with |Ax| ≤ ε

ρ√
n

. In view of the definition of the set Incomp(δ, ρ), there is

a subset Jx ⊂ [n] of cardinality �δn� such that |xi | ≥ ρ/
√

n for all i ∈ Jx , whence

dist(Ai,Hi) ≤ |xi |−1|Ax| ≤ ε, i ∈ Jx.

Note that Jx ∩ I has cardinality, at least, �δn� − �δn/2� ≥ δn/4. Thus,

E ⊂ {
�
{
i ∈ I : dist(Ai,Hi) ≤ ε

} ≥ δn/4
}
.

It remains to note that

P
{
�
{
i ∈ I : dist(Ai,Hi) ≤ ε

} ≥ δn/4
} ≤ 4

δn
E�

{
i ∈ I : dist(Ai,Hi) ≤ ε

}
. �

PROOF OF THEOREM 1.1. The theorem follows from Lemma 2.1 (i.e., Lemma 5.3 from
[14]), Lemma 6.1 and Theorem 1.2, by taking I0 := {i ∈ [n] : E|Ai |2 ≤ rn2} and noting that,
in view of the assumption E‖A‖2

HS ≤ Kn2, we have �I0 = n − K/r ≥ n − �δn/2� for all
sufficiently large n so that, for all large enough n,

P

{
inf

x∈Incomp(δ,ρ)
|Ax| ≤ ε

ρ√
n

}
≤ 4

δn

∑
j∈I0

P
{
dist(Aj ,Hj ) ≤ ε

}
.

�
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