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ABSTRACT

The Gaia satellite will observe the positions and velocities of over a billion Milky Way stars. In the
early data releases, the majority of observed stars do not have complete 6D phase-space information.

In this Letter, we demonstrate the ability to infer the missing line-of-sight velocities until more spectro-
scopic observations become available. We utilize a novel neural network architecture that, after being
trained on a subset of data with complete phase-space information, takes in a star’s 5D astrometry (an-

gular coordinates, proper motions, and parallax) and outputs a predicted line-of-sight velocity with an
associated uncertainty. Working with a mock Gaia catalog, we show that the network can successfully
recover the distributions and correlations of each velocity component for stars that fall within ∼ 5 kpc
of the Sun. We also demonstrate that the network can accurately reconstruct the velocity distribution

of a kinematic substructure in the stellar halo that is spatially uniform, even when it comprises a small
fraction of the total star count.

1. INTRODUCTION

Gaia has ushered in a new age in astrometry, with the
goal of providing precise positions and velocities for an

unprecedented number of stars in the Milky Way (Gaia
Collaboration et al. 2016, 2018). This complete phase-
space information will revolutionize our understanding
of both disk and halo dynamics. In the current data re-
lease (EDR3), most Gaia stars only have 5D astrometry
available (two angular coordinates, two proper motions,
and parallax); less than 1% of the stars have a measured
line-of-sight velocity (Gaia Collaboration et al. 2020).
We demonstrate how to use regressive neural networks
to successfully predict stellar line-of-sight velocities with
an associated uncertainty from 5D astrometry. This ap-
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proach increases the scientific output of early Gaia data
releases until more spectroscopic data is available.

The science applications that benefit from having line-
of-sight velocities are vast—see Wilkinson et al. (2005)
for a review—and include measuring the Milky Way po-
tential, obtaining the local dark matter density, distin-
guishing the thin and thick disk, and mapping substruc-

ture in the stellar disk. One particular case where having
full stellar phase-space information is highly beneficial is
the identification of stellar remnants of disrupted satel-
lite galaxies in the Milky Way (Johnston et al. 1996;
Johnston 1998; Bullock & Johnston 2005). Such merg-
ers are a natural consequence of hierarchical structure
formation (White & Rees 1978), and in addition to de-
positing stars that form the stellar halo, also leave be-
hind dark matter substructures.

The neural network approach proposed in this Letter
has the potential to dramatically and immediately in-
crease the subset of Gaia data that can be used towards
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these applications. We present the results of training,
validating, and testing the network using a simulated
Gaia mock catalog that models both the smooth stellar
halo and disk, as well as kinematic substructure in the
halo. The network is trained on a subset of stars with
full 6D phase-space information using a simple network
loss function similar to the method described in Nix
& Weigend (1994). While 5D astrometry alone is in-
sufficient to provide a reliable prediction of the line-of-
sight velocity for every individual star, incorporating the
learned uncertainty allows us to obtain accurate distri-
butions of the line-of-sight velocity for the full popula-
tion of stars, as well as the correlations between different
velocity components in the Galactocentric frame. Addi-
tionally, the confidence of the network prediction of the
line-of-sight velocity of each star can be inferred from
the learned uncertainty.

The machine learning approach introduced in this

Letter is intended to work in tandem with spectro-
scopic surveys, such as APOGEE, the Gaia-ESO-
Survey, GALAH, LAMOST, RAVE, and SEGUE (Ma-

jewski et al. 2017; Gilmore et al. 2012; Buder et al. 2020;
Cui et al. 2012; Kunder et al. 2017; Yanny et al. 2009).
These surveys provide high-quality line-of-sight veloci-

ties, as well as abundances and stellar parameters. How-
ever, their sky coverage typically overlaps with only a
small fraction of the Gaia catalog. While direct obser-
vations remain the gold standard, we show that neural

network-based inference can serve a complementary role
in studying the Milky Way’s stellar phase-space distri-
bution.

This paper is organized as follows. Section 2 intro-
duces the simulated mock Gaia catalog, and overviews

the machine learning architecture and the training pro-
cedure. Section 3 summarizes the network’s success in
predicting stellar line-of-sight velocities. We conclude
in Section 4 and include three appendices that are ref-
erenced in the text. The neural network used in this
work is provided at the following github repository
https://github.com/adropulic/ML_6th_Dimension.

2. METHODOLOGY

In this section, we provide a description of the mock
dataset used in this work, followed by a detailed discus-
sion of the neural network setup and training strategy.

2.1. Mock Data Catalog

To build our mock catalog, we start from the mock

Gaia DR2 catalog introduced in Rybizki et al. (2018).
This catalog was generated by applying a 3D dust ex-
tinction map to mock Milky Way stellar data simulated
using the public code Galaxia (Sharma et al. 2011).

Galaxia employs the Besançon Galactic model (Robin
et al. 2003), which includes the bulge, thin and thick
disk, as well as the stellar halo. The final mock cat-
alog of ∼ 1.6 billion stars, each with full astrometric
and photometric properties, was created by applying the
combined 3D extinction map from Bovy et al. (2016) to
model dust attenuation along with the Gaia selection
criteria. Mock stars were populated by directly sampling
the analytic phase-space distribution. This final point
is important for our application, as the network should
ideally learn the original kinematic distribution, not ar-
tifacts that may have been introduced in the sampling
procedure that populates the mock catalog. Compara-
tively, generating mock catalogs from numerical galaxy
simulations with finite stellar-mass resolution can intro-
duce artifacts into the stellar kinematics.

For this study, we begin with the full Galaxia mock
catalog of stars1 and select only those with relative par-

allax uncertainty δ$/$ < 0.1 and line-of-sight veloc-
ity vlos ∈ [−550, 550] km/s. This results in a sample
of ∼ 75 million stars, concentrated within ∼ 5 kpc of
the Sun. This sample only models the smooth compo-

nent of the stellar halo and disk. To study the effect
of kinematic substructure on the neural network learn-
ing, we supplement the Galaxia catalog with a popu-

lation of spatially uniform stars whose velocity distribu-
tion resembles that of Gaia Enceladus (Belokurov et al.
2018; Helmi et al. 2018). The Enceladus-like stars are

introduced into the training, validation, and test sets
by replacing 50% of stars with low-metallicity ([Fe/H]
< −1.3) in each of these sets with stars drawn from the
Enceladus distribution in Necib et al. (2018).

The training and validation sets contain seven and one

million randomly selected stars, respectively, both with
G < 13.5 and Teff ∈ [3550, 6900] K. This is intended to
parallel the subset of Gaia data with full 6D informa-
tion (Katz et al. 2019). The test set consists of ∼ 10
million stars of any magnitude and temperature.

Approximately 0.5% of the training and validation set
stars and 0.3% of the test set stars are in substructure.
Only ∼ 14% of stars in the test set fall into the magni-
tude and effective temperature range of the training set,
including the substructure stars.

2.2. Neural Network Architecture & Training

A feedforward neural network is trained to predict a
line-of-sight velocity for each star in the input catalog,
with an associated uncertainty on this prediction. The

1 https://dc.zah.uni-heidelberg.de/gdr2mock/q/download/

static/

https://github.com/adropulic/ML_6th_Dimension
https://dc.zah.uni-heidelberg.de/gdr2mock/q/download/static/
https://dc.zah.uni-heidelberg.de/gdr2mock/q/download/static/
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network is implemented in Keras (Chollet et al. 2015)
using the Tensorflow backend (Abadi et al. 2016). It is
a combination of two halves that are structured identi-
cally except for the last layer (Fig. A1). This compound
network structure permits two outputs: the line-of-sight
velocity as well as the uncertainty on the network’s pre-
diction. Each half of the network consists of six layers:
the input, four hidden layers, and the output. The input
consists of five quantities per star: Galactic longitude
(`), Galactic latitude (b), proper motion in right ascen-
sion (µα), proper motion in declination (µδ), and par-
allax ($). The hidden layers comprise 30 nodes each,
and use a hyperbolic tangent activation function. All
of the network weights are initialized with the glorot

uniform method (Glorot & Bengio 2010). Comprehen-
sive comparisons of different network architectures were
performed to determine this optimal setup (Appendix
A). For example, we trained the network on only Galac-
tic positions x, y, z, and found suboptimal results.

The output layer from one half of the network, which
we will call the “velocity predictor,” consists of a single

node with linear activation in order to attain a contin-
uous value, the line-of-sight velocity. The output layer
from the other half of the network, which we will call the

“uncertainty predictor,” uses a ReLU activation func-
tion in order to constrain the uncertainty on the pre-
dicted line-of-sight velocity to positive values. This net-
work is similar to the mixture density network presented

in Bishop (1994).

The goal of training is to minimize the weighted Gaus-
sian log-likelihood loss function:

L =
N∑
i=1

wi
N


(
vlos,i − vpred

los,i

)2

(√
2σpred

los,i

)2 − log

(
1√

2π σpred
los,i

) ,
(1)

where vlos,i is the true value of a star’s line-of-sight ve-

locity, vpred
los,i is the network’s predicted value of a star’s

line-of-sight velocity, wi is the sample weight of a star,
σpred

los,i is the network’s predicted uncertainty, and N is
the total number of stars. The sample weights are a
function of both `i and vlos,i, and are used to force the
network to learn the tails of the velocity distribution
(Appendix A).

The velocity predictor is first trained using σpred
los,i = 1

for the loss in Eq. (1). Then the uncertainty predictor

is trained using the vlos,i prediction from the velocity
predictor in Eq. (1) without allowing the velocity pre-
dictor to update. Finally, both the velocity predictor
and the uncertainty predictor are updated simultane-
ously using both the predicted vpred

los,i and σpred
los,i in the

loss function. This produces a predicted line-of-sight
velocity value and an uncertainty value per star.

During a training epoch, the stars are partitioned into
batches of 104 stars, and the network is optimized on a
given batch. The Adam optimizer (Kingma & Ba 2017)
is used to minimize the loss function in Eq. (1).

We use an initial learning rate of 10−3 while the de-
fault values are used for the other parameters of the
optimizer. If the loss computed on the validation stars
does not improve for 10 epochs, the learning rate is de-
creased by a factor of 10, with a minimum learning rate
of 10−5. Training is stopped when the validation loss
has not improved for 40 epochs. We verified that the
training and validation losses were similar to check for
overfitting.

3. RESULTS

Next, we present the results of applying the neural
network to our mock catalog. A powerful outcome
of this procedure is the ability to construct an error-

sampled line-of-sight velocity distribution using the net-
work’s predicted uncertainty. We now want to quantify
how well the resulting velocity distributions, as well as

their correlations with each other, reproduce the truth.
With the network’s prediction, we can perform a co-
ordinate transformation on all three velocities into the
Galactocentric frame (vr, vθ, vφ) and properly assign

uncertainties using the procedure in Appendix B. This
makes the presence of the Enceladus-like substructure
more readily apparent.

The top row in Fig. 1 compares the truth, predicted,
and error-sampled predicted distributions for vr, vθ, vφ.

The error-sampled predicted distribution is determined
by the average of 50 Monte Carlo (MC) trials, which are
computed by Gaussian sampling a line-of-sight velocity
per star using the network’s prediction for its value and
uncertainty. The sampled line-of-sight velocity along
with the five known components are subsequently trans-
formed into Galactocentric spherical coordinates. As is
apparent in Fig. 1, the error-sampled predicted distri-
bution is an excellent approximation of the true distri-
bution.

In the bottom row of Fig. 1, the predicted uncertainty
on the Galactocentric velocities is shown as a function of
the predicted Galactocentric velocity for all stars in the
test set, as well as the subset of stars that comprise the
substructure. For each velocity bin, the box denotes the
50% containment about the median uncertainty, while
the whiskers denote the 5% and 95% containment. The
predicted uncertainty for a given star is correlated with
its spatial location and proper motion (Fig. C1). In gen-
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Figure 1. The top row shows the velocity distribution for Galactocentric velocity components. The solid pink(green) histogram
is the true distribution of all(substructure) test-set stars sampled from the mock catalog; note the separate scales for the separate
star counts. The network is trained on 7 million stars(∼ 35,000 substructure stars) from the same catalog. The black dashed
lines show the network’s predicted distribution. The dark pink(green) solid line shows the network prediction after it is Gaussian-
sampled with the predicted uncertainty. The thickness of this line refers to the minimum and maximum of 50 Monte Carlo
trials, described in the text. The error-sampled distribution provides a better approximation of the truth than the predicted
distribution alone. In the bottom row, the predicted uncertainty on the Galactocentric velocities is shown as a function of the
predicted velocity. The pink(green) boxes mark the 50% containment about the median, and the whiskers mark the 5% and
95% containment for all(substructure) stars.

eral, we find that the velocity uncertainties for all stars
(pink) are lowest for values of vr, vθ, vφ, where there is a
comparatively small contribution of substructure stars

(green). This is also where the velocity uncertainties
on the substructure stars are largest, as expected given
that the network is forced to distinguish them from the
disk stars. Indeed, we see that that the network erro-
neously predicts a small tail of substructure stars near
vpred
φ ∼ −200 km/s.

The spread in the predicted velocity uncertainties in
the Galactocentric frame can be substantial. Depending
on the application, one may wish to restrict to a subset
of the data with predicted uncertainties in a particular
range. We find that 25%(13%) of the 10-million star
test set has σpred

r . 10(5) km/s, while 13%(6%) of the

∼ 35,000 substructure stars in the test set have σpred
r .

10(5) km/s. Additionally, we find that 55%(33%) of the
entire test set and 9%(4.5%) of the substructure stars
in the test set have σpred

θ . 10(5) km/s, and 20%(10%)
of the entire test set and 10.5%(5%) of the substruc-

ture stars in the test set have σpred
φ . 10(5) km/s. We

have verified that restricting the sample of stars to those
with the lowest predicted uncertainties does not bias the

kinematic distributions (Figs. A2 and C2).

Figure 2 explores the extent to which the network cap-

tures the correlations among the velocity components.
The top panels show the high-metallicity stars with
[Fe/H] > −1.3 (9,944,046 stars), and the bottom pan-
els show the low-metallicity stars with [Fe/H] < −1.3
(55,942 stars). Dividing the dataset into high- and low-
metallicity stars allows us to evaluate the performance of
the network on disk and halo/substructure stars, respec-
tively. To compute the density histograms in Fig. 2, we
take the mean of 10(500) MC samples drawn from the
high-metallicity(low-metallicity) predicted distribution;
these are calculated the same way as the error-sampled
distributions shown in Fig. 1.

The solid blue(dashed yellow) contours in Fig. 2 in-
dicate the location of 30%, 60%, and 90% containment
intervals for the true(error-sampled) distributions. For
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Figure 2. Two-dimensional distributions are shown for the Galactocentric velocity components. The background histogram
shows the network-predicted kinematic distributions of stars in the test set, sampled over the network’s uncertainty prediction,
to obtain the error-sampled distribution. The top row shows the stars with high-metallicity ([Fe/H] > −1.3), and the bottom
row shows the stars with low-metallicity ([Fe/H] < −1.3) in which the stellar halo and substructure is more prominent. The
contours indicate the location of 30%, 60%, and 90% containment intervals for the true (solid blue), predicted (dotted white)
and error-sampled (dashed yellow) distributions. We emphasize that the correlations between metallicity and velocity are being
captured by the network, even though the network has no direct access to the metallicity information.

comparison, the dashed white contours correspond to

the predicted distributions without sampling over the
network’s error prediction; while they do a reasonable
job at capturing the 2D velocity correlations, they do
not exactly reproduce the truth distributions. In con-
trast, the error-sampled distributions nicely track the
truth distributions for both the metal-poor and metal-

rich samples. This is most striking for the metal-poor
sample, where the velocity contours have a non-trivial
shape due to contributions from the stellar disk, halo,
and substructure. For example, the network captures
the extended vr distribution at the 60% containment
interval in the low-metallicity vr − vφ plane, which is
a characteristic of the Enceladus-like stars. It is im-
portant to highlight that while Fig. 2 is separated into
metal-rich and metal-poor categories, this is done after
training; the network has no direct access to this in-
formation, and yet is able to predict the differences in

line-of-sight distributions for these categories.

Figure 3 summarizes the network’s prediction accu-

racy in the 3D velocity phase space. Each panel is a
quantile-quantile plot that shows the fraction of stars
(according to their true stellar velocities) which fall into

containment intervals defined by the contours of the
error-sampled and predicted distributions, examples of
which are delineated in Fig. 2, for different pairs of ve-
locity coordinates. Below the gray line, the network is
considered overconfident because a given containment
region in the predicted distribution is too small com-
pared to the truth expectation (i.e., the predicted x%

containment region contains < x% of the true stars).
Above the gray line, the opposite is true and the net-
work is considered underconfident.

The solid and dash-dotted lines in Fig. 3 correspond
to the [Fe/H] > −1.3 and [Fe/H] < −1.3 panels in
Fig. 2, respectively. The green lines show the results
for the error-sampled distributions. We see that both
the metal-poor and metal-rich distributions are well-

calibrated in the vr−vφ, vr−vθ, and vθ−vφ planes. For
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Figure 3. The quantile-quantile plots on the neural network posteriors in Galactocentric velocity components, showing the
fraction of stars with true values that fall into containment intervals defined by the contours of the error-sampled and predicted
distributions. The solid green(blue) line and the dashed-dotted green(blue) line correspond to the error-sampled(predicted)
contours in the metal-rich ([Fe/H] > −1.3) and metal-poor ([Fe/H] < −1.3) panels in Fig. 2, respectively. In general, the
network is well-calibrated for the error-sampled distributions (i.e., the green lines track the diagonal gray line in each panel).
For comparison, we compare the network results with those of setting vlos = 0 for stars that lie in the 15◦ region towards and
away from the Galactic Center (pink lines) (Koppelman et al. 2019). Restricting to this region of interest produces a stellar
sample for which we are relatively sure of vθ and vφ, as reflected in the calibration in the vθ − vφ (third panel). However, the
neural network yields a much better calibration in the vr − vφ and vr − vθ planes.

comparison, the blue lines show the same results, but
without taking into account the predicted errors. The

network is more overconfident in this case, especially in
the vθ − vφ plane. These results reflect the qualitative
features of Fig. 2.

Without machine learning techniques, reconstruct-
ing the full 6D Galactocentric phase space of stars

with only 5D information can only be achieved under
certain restrictive conditions. For example, Koppel-
man et al. (2019) proposed setting vlos = 0 for stars

that lie in the region defined by
√
`2 + b2 ≤ 15◦ or√

(`− 180◦)2 + b2 ≤ 15◦. In this region, vθ and vφ
roughly correspond to the proper motion of stars, and

can therefore be reconstructed reasonably accurately,
with limited dependence on vlos. Restricting to this re-
gion, we have 508,798 metal-rich stars and 1,504 metal-
poor stars. We then compare the predicted velocity dis-
tributions, obtained by simply setting vlos = 0 km/s, to
the truth distribution; however, it is important to note
that there is no principled way to assign errors to vlos

with this prescription. As seen in Fig. 3, the results are
well-calibrated and even outperform the network in the
vθ − vφ plane, where this method is designed to excel.
We can see however that the same method is overconfi-
dent in the vr − vφ plane and vr − vθ plane for both the
metal-rich and metal-poor subsets. Our neural network
approach therefore has the benefit of being applicable

beyond a narrow spatial region, and can additionally
predict uncertainties.

4. CONCLUSIONS

In this Letter, we demonstrated that a neural net-
work can successfully predict a star’s line-of-sight ve-

locity and associated uncertainty from 5D astrometric
inputs, after being trained on a subset of data with com-
plete 6D phase-space information. We trained, tested,
and validated the network on mock data that contained

a disk, stellar halo, and Enceladus-like substructure.
The error-sampled network prediction successfully re-
produced the individual velocity distributions, as well

as their correlations. The final results also captured the
expected metallicity dependence of the velocity distri-
butions, even though metallicity was not provided as an

input to the network. The network successfully recon-
structed the velocities of the substructure stars, even
though they comprised only ∼ 0.5% of the training set.
This result demonstrates that the network is learning
more than just the bulk motion of the stars.

A critical feature of the network design is its abil-
ity to provide an uncertainty on its velocity prediction.
The predicted velocity distributions more reliably re-
produced the true distributions when properly sampled

over these errors. The mean network uncertainty on the
predicted line-of-sight velocity was σpred

los = 38 km/s,
with about 8%(1%) of all stars in the test set having
σpred

los . 30(20) km/s. We stress that these uncertain-
ties should not be directly compared to the measured
errors on Gaia ’s line-of-sight velocities. In particular,
σpred

los is the network’s predicted uncertainty on its pro-
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jected value of line-of-sight velocity—for instance, a cor-
rect network prediction for vlos can still be associated
with a large uncertainty. However, we do find that stars
with smaller σpred

los are typically associated with more ac-
curate velocity predictions. Furthermore, restricting to
a subset of stars with these smaller uncertainties does
not bias the overall velocity distributions.

The simple idea of regressing missing kinematic in-
formation can be accomplished by a variety of archi-
tecture choices. For example, Bayesian neural net-
works (Mackay 1995; Bhat & Prosper 2005; Neal 2012;
Gal & Ghahramani 2016; Bai et al. 2016; Blei et al.
2017; Bollweg et al. 2020; Wagner-Carena et al. 2020;
Charnock et al. 2020) may provide an alternative
method for incorporating uncertainties on the network
output. In this case, the network would be rerun many
times over the same inputs, while the weights float
within some prior distribution. Since these approaches

require a more sophisticated neural network architec-
ture, we leave a detailed comparison for future work.

We optimized the neural network architecture by ap-
plying it to a mock Gaia catalog. In practice, the net-
work will be trained on the subset of Gaia data with

complete 6D phase space, eliminating any systematic
uncertainty on the network output associated with us-
ing simulated data. Our training set will expand with

Gaia DR3, which will provide line-of-sight velocities
for an additional ∼ 30 million stars (Gaia Collabora-
tion et al. 2020). The success of our machine learn-

ing approach motivates further studies on other poten-
tial applications, such as recovering individual stellar
streams and/or multiple substructures that overlap in
phase space.

Thus far, we have trained and tested the network on

stars concentrated within 5 kpc of the Sun, but it would
also be beneficial to adapt the method presented here
to apply to stars farther out in the halo. This extension
would be particularly relevant for mapping the potential
of the Milky Way halo and identifying dwarf galaxies
and other substructures, as just two important exam-
ples. For current Gaia data releases, the primary chal-
lenge is the lack of a sufficient training sample, limited
by the number of stars at these distances with complete
6D information. One possibility is to train the network
on a subset of Gaia stars whose line-of-sight velocities
come from cross-matches to other spectroscopic surveys.
Whether this approach will succeed depends on both the
number of cross-matched stars and whether the selec-

tion function of the spectroscopic surveys complicates
the network inference. If successful, this machine learn-
ing approach can potentially be adapted to the upcom-
ing Rubin Observatory.

This Letter shows that there is often incredible infor-
mation waiting to be extracted from high dimensional
correlations, which can be used to maximize the utility
of real world data.
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APPENDIX

In Appendix A, we elaborate on the details of our network architecture, as well as its optimization. In Appendix B,
we explain how to transform the line-of-sight velocity and uncertainty provided by the network to Galactocentric
velocities and associated uncertainties. Finally, in Appendix C, we provide several supplemental figures that are
referenced in the main text.

A. NETWORK INFORMATION

A.1. Tested Network Architectures

In this appendix, we elaborate on the procedure used to select the network architecture described in Sec. 2.2. The
final configuration, illustrated in Fig. A1, was chosen after extensive tests that varied the number of hidden layers,
the number of nodes per layer, the activation function associated with each layer, the sample weights, and the input
parameters.

We tested network architectures under combinations of the following specifications: 1–5 hidden layers, 30–2000 nodes
per layer, ReLU/ELU/Tanh activation functions on the interior layers, and different combinations of input parameters.

Deeper (more layers) and wider (more nodes per layer) networks do not yield a significantly more accurate regression,
and conversely, smaller and narrower networks both perform a less accurate regression. Neither the ReLU activation
function nor the ELU activation function predict the velocity distribution as accurately as the Tanh activation function.

In order to evenly sample the tails of the vlos distribution in our dataset, we implement sample weighting to de-
emphasize the contribution of stars with vlos ∼ 0 km/s. The simplest way to effectively “flatten” the peak of the

vlos distribution is to take the vlos distribution itself to be the reciprocal of the weighting function. In practice, we
histogram the vlos values in each dataset, then interpolate the histogram to extract the probability pi corresponding to
a given star’s value of vlos,i and take wi = 1/pi to be the weight for that star. We refer to this as the “linear weights”

prescription, to contrast with the “logarithmic weights” prescription described below.

We can also implement a weighting scheme that is a less-steep function of vlos,i than 1/pi. To do so, we define the

“logarithmic weights” as wi = log(1/pi)+w0, where w0 is chosen so that wi is positive for all stars. In practice, we find
that linear weights in vlos overly de-emphasize the central vlos values, while logarithmic weights alleviate this issue.
Given the dependence of vlos on Galactic longitude, `, we also implement linear and logarithmic weights on the joint

distribution of vlos and `. Of the four weighting schemes tested, the joint vlos–` logarithmic weights method is the most
effective at recovering the truth distributions. We thus choose this to be our fiducial method for sample weighting.

We also tested a network that included the information from each star’s ten nearest neighbors during training.

Because this additional information does not improve the regression, at least for the dataset considered here, we do
not adopt it for the fiducial method. Lastly, we compared our combined network structure, described in Sec. 2.2, to a
single network with two outputs, and found that the latter does not not learn or train well.

A.2. Network Diagnostics

The network architectures described above in Sec. A.1 were evaluated using the Kullback-Leibler (KL) divergence,
as well as the R2 and χ2 test statistics. These statistics are defined as follows:

DKL(p||q) =
∑
s

ps log2

(
ps
qs

)
, R2 = 1−

N∑
i=1

(
vlos,i − vpred

los,i

vlos,i − v̄los

)2

, and χ2 =
1

N − 1

N∑
i=1

(
vlos,i − vpred

los,i

σpred
los,i

)2

, (A1)

where vlos,i, v
pred
los,i , and σpred

los,i are defined as in Eq. (1), and v̄los is the mean of the true line-of-sight velocity distribution.

Also, p, q are the values of the kernel density estimation of the true and predicted distributions, respectively, evaluated
at each histogram bin value s ∈ [−350, 350] km/s in Fig. 1.

The KL divergence is a measure of how one probability distribution differs from a second, reference probability
distribution (Kullback & Leibler 1951). A small value of the KL divergence DKL indicates very good agreement
between the true and predicted distributions. In other words, if the probability for an event from p is large, but the
probability for the same event in q is small, there will be a large contribution to the statistic. The R2 test statistic
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Velocity predictor

Uncertainty predictor

Scale to
zero mean

and unit
variance

Figure A1. Diagram of the neural network used in this work.

provides a measure of how well the truth values are replicated by the predicted values, without including the predicted
uncertainty measure, σpred

los . The R2 statistic generally ranges from 0 to 1, but can be negative if the fit is very poor.
R2 = 0 is obtained if the predicted velocity is always the mean velocity, while R2 = 1 indicates a completely accurate

prediction for all stars. The χ2 test statistic is a test of the uncertainty prediction, σpred
los . In general, if χ2 � 1, then

the predicted uncertainty is too small. Conversely, if χ2 � 1, then the predicted uncertainty is too large. We note that

each predicted uncertainty is approximately Gaussian. That is, the quantity
(
vlos,i − vpred

los,i

)
/σpred

los,i for the ith star is

approximately Gaussian-distributed over the full sample.

We trained and tested the different network architectures on a smaller dataset than the one ultimately used in this
work and analyzed these architectures using the test statistics in Eq. (A1). We then calculated the test statistics for
each case, evaluating how sensitive the results are to various cuts that span σpred

los < 30 km/s to σpred
los < 150 km/s.

The results are provided in Table A1; all networks included in this table utilize the logarithmic sample weights on the
joint distribution of vlos and `.

Dropout is a technique in which randomly selected nodes are ignored when the network is trained. When not using
dropout and including the proper motions in the input, the results are not sensitive to cuts on the predicted uncertainty
(i.e., the range of the test statistic is small). This is very desirable because the goodness-of-fit does not depend on

the particular selection of stars. However, the networks with dropout have a wide range in the diagnostic metrics as
cuts on σpred

los are applied. Using such networks would thus require extra calibration to understand predictions when
departing from the nominal set of stars.

Input Variables Dropout KL χ2 R2

`, b,$, µα, µδ , x, y, z No 0.008–0.010 0.699–0.749 0.720–0.746

`, b,$, µα, µδ No 0.008–0.010 0.685–0.739 0.704–0.721

x, y, z No 0.009–0.035 0.578–0.779 0.681–0.738

`, b,$, µα, µδ , x, y, z Yes 0.002–0.986 0.245–4.214 0.713–0.857

`, b,$, µα, µδ Yes 0.017–0.075 0.348–0.789 0.712–0.757

x, y, z Yes 0.008–0.096 0.314–3.040 0.651–0.818

Table A1. This table summarizes a few network architectures studied in this work, and the range of test statistics obtained
for each case when restricting the dataset by making various cuts that span σpred

los < 30 km/s to σpred
los < 150 km/s. The test

statistics are defined in Eq. (A1). Our fiducial model is the second row of the table.
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Figure A2. The lines depicted in this figure are the same as those in Fig. 1. However, this figure specifically focuses on the
Galactocentric radial velocity vr, to show that the distribution is unbiased as more restrictive cuts on σpred

r are made.

In the case without dropout, the test statistics and ranges for the (`, b,$, µα, µδ, x, y, z) and (`, b,$, µα, µδ) config-
urations are very similar, suggesting that including the redundant (x, y, z) inputs does not aid the network.

In general, the (x, y, z) network does worse overall, especially when using dropout. This provides a strong indication
that the network is learning more than just the bulk stellar motion, because it uses more than just the location in the

Galaxy.

When dropout is included, the network does better on the initial predictions (i.e., the R2 and KL divergence have

better scores than without dropout at one end of the range), but the spread of the test statistics is still very large.
Also, when looking at χ2 for these models, we see that the estimate of the uncertainty is less accurate, and the spread
of these values is much greater.

After running numerous tests on network architectures, activation functions, input data, and weighting schemes, we
ultimately selected a network with 4 hidden layers with 30 nodes each and without dropout. We only include the 5D

coordinates `, b,$, µα, µδ as input because the extra variables do not significantly help with the regression.

As described in the main text, Fig. 1 highlights the significance of including predicted uncertainty by comparing the
truth, predicted, and error-sampled distributions of vr, the Galactocentric radial velocity. The test statistics described
above in Sec. A.2 were calculated for the vr histograms containing all test stars. When σpred

r is included, the KL
divergence is 0.009, compared to 0.016 when σpred

r is not included. Figure A2 shows the same Galactocentric radial

velocity histograms as in Fig. 1, but selecting stars with σpred
r < 30, 20, 10 km/s. The KL divergence between the

truth and error-sampled distributions decreases from 0.005 when σpred
r < 30 km/s, to 0.002 when σpred

r < 20 km/s, to
< 0.001 when σpred

r < 10 km/s. Making increasingly stronger cuts on uncertainties in a certain velocity component

can be used to obtain increasingly more accurate distributions in that component. It is also possible to make an
uncertainty cut on two coordinates, for example vr and vφ, in pursuit of a high-purity sample of Enceladus-like stars.

The predicted vr values are also evaluated using the χ2 and R2 test statistics. The value of χ2 for the test set
is 0.68 and remains stable when cuts on σpred

r are made, from 0.679 when σpred
r < 30 km/s, to 0.663 and 0.641

when σpred
r < 20 and 10 km/s, respectively. The value of R2 is 0.72. As cuts on σpred

r are made, the value of R2

approaches 1.0, from 0.862 when σpred
r < 30 km/s, to 0.937 and 0.985 when σpred

r < 20 and 10 km/s, respectively.
This again highlights the usefulness of the network’s uncertainty prediction in attaining accurate velocity predictions.
The correlations for the set of stars with σpred

r < 10 km/s are shown in Fig. C2, in which the truth, predicted and
error-sampled distributions align very well in vr. As expected, we see that the truth and error-sampled distributions
across all velocity pairs align better overall.



Machine Learning the 6th Dimension 11

B. TRANSFORMING VELOCITIES AND UNCERTAINTIES

In this appendix, we derive the affine transformation that maps proper motions and line-of-sight velocity to Galac-
tocentric velocities. As a corollary, we also obtain the transformation mapping velocity uncertainties between these
respective coordinate systems.

Consider a star with equatorial coordinate velocities, given by [vlos, α̇d cos δ, δ̇d]ᵀ, where α and δ are right ascension
and declination, respectively, vlos is the line-of-sight velocity and d is the distance of the star from the Sun. The
dot represents a derivative with respect to time. With respect to previously defined variables in the text, we have
µα = α̇d cos δ, µδ = δ̇d, and d = 1/$. Following Bovy (2011), equatorial coordinate velocities can be transformed into
Galactic coordinates velocities via vlos

˙̀d cos b

ḃd

 =

1 0 0

0 cosψ sinψ

0 − sinψ cosψ


 vlos

α̇d cos δ

δ̇d

 ≡ P

 vlos

α̇d cos δ

δ̇d

 , (B1)

where ψ ' 78.3433◦ is the Galactic parallactic angle.

Next, we want to convert velocities in Galactic coordinates into Galactocentric coordinates. To do this, we begin by
writing down the relation between Cartesian coordinates in each coordinate system. Consider a star with Cartesian
Galactocentric coordinates ~rGC; its coordinates ~rg in Cartesian Galactic coordinates is given by

~rg = M−1
�

(
~rGC − ~R�,GC

)
, (B2)

where ~R�,GC = (x�,GC, 0, z�,GC)ᵀ is the Cartesian Galactocentric coordinates of the Sun (we adopt the standard
convention that the Sun lies in the xz-plane in these coordinates, with the Galactic plane lying in the xy-plane). The
matrix M� rotates the Galactic coordinate axes such that they become parallel to the Galactocentric coordinate axes,
and is written explicitly as

M−1
� =

cosβ 0 − sinβ

0 1 0

sinβ 0 cosβ

 , (B3)

where β ≡ arctan(z�,GC/x�,GC). Taking the derivative of the coordinates, we find that

~̇rg = M3M4

 vlos

˙̀d cos b

ḃd

 , (B4)

with

M3 =

cos ` − sin ` 0

sin ` cos ` 0

0 0 1

 , M4 =

cos b 0 − sin b

0 1 0

sin b 0 cos b

 . (B5)

Similarly,

~̇rGC = M−1
2 M−1

1

vrvφ
vθ

 , (B6)

with

M−1
2 =

cosφ − sinφ 0

sinφ cosφ 0

0 0 1

 , M−1
1 =

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 . (B7)
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Finally, taking the derivative of Eq. (B2) and using the expressions derived above, we arrive at the following transfor-
mation between Galactic and Galactocentric velocities:vrvφ

vθ

 = M

 vlos

˙̀d cos b

ḃd

+ M1M2~v�,GC , (B8)

where we have defined M = M1M2M�M3M4, while ~v�,GC is the Cartesian velocity of the Sun in the Galactocentric
frame. Combining this with Eq. (B1), we obtain the full transformation mapping equatorial coordinate velocities to
Galactocentric coordinate velocities: vrvφ

vθ

 = MP

 vlos

α̇d cos δ

δ̇d

+ M1M2~v�,GC . (B9)

This result has been verified by comparison with coordinate transformations implemented by Astropy (Robitaille et al.
2013).

We now turn our attention to the transformation of uncertainties. Assuming Gaussian uncertainties, the differential

probability P (~vtrue;~vm) that the true velocity of a star is ~vtrue(vlos, µα, µδ) given a measured velocity ~vm(vlos, µα, µδ)
is proportional to

P (~vtrue;~vm) ∝ exp

[
−1

2
(~vtrue − ~vm)

ᵀ S−1 (~vtrue − ~vm)

]
, (B10)

where S(vlos, µα, µδ) is the covariance matrix in the basis of equatorial coordinate velocities. Since the differential

probability is invariant under coordinate transformations, we can see immediately that the covariance matrix in the
basis of Galactocentric velocities can be obtained by

S(vr, vφ, vθ) = MP · S(vlos, µα, µδ) · P−1M−1 . (B11)
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C. SUPPLEMENTARY FIGURES

In this appendix, we provide some figures that supplement the discussion in the main text.
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Figure C1. Corner plot for all stars in the test set for the following quantities: true line-of-sight velocity (vtruelos ), predicted
line-of-sight velocity (vpredlos ), predicted uncertainty on light-of-sight velocity (σpred

los ), Galactic longitude and latitude (`,b), inverse
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Figure C2. The background histogram and contours depicted in this figure are the same as those in Fig. 2. However, this
figure shows the resulting error-sampled background histogram and contours for the subset of stars with σpred

r < 10 km/s. There
are 2,490,330 stars with [Fe/H] > −1.3 and 9,316 stars with [Fe/H] < −1.3.
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