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PIERRE BALDI AND ROMAN VERSHYNIN

Abstract. Motivated by biological considerations, we study sparse neural maps from an
input layer to a target layer with sparse activity, and specifically the problem of storing
K input-target associations (x, y), or memories, when the target vectors y are sparse. We
mathematically prove that K undergoes a phase transition and that in general, and some-
what paradoxically, sparsity in the target layers increases the storage capacity of the map.
The target vectors can be chosen arbitrarily, including in random fashion, and the memories
can be both encoded and decoded by networks trained using local learning rules, including
the simple Hebb rule. These results are robust under a variety of statistical assumptions on
the data. The proofs rely on elegant properties of random polytopes and sub-gaussian ran-
dom vector variables. Open problems and connections to capacity theories and polynomial
threshold maps are discussed.

1. Introduction

Sparse representations of information are often observed in biological and artificial neura
stems, and in other statistical systems as well. Arguments in support of sparsity rang
om low energy consumption in physical systems to interpretability in artificial models. Fur
ermore, sparsity can be an emergent properties, or it can be artificially designed, typicall
including penalty functions that favor sparsity. Here we study sparse encoding of infor

ation in neural maps and analyze their properties and possible computational advantages
rticularly from a storage viewpoint.

1. Biological Sparsity. Many examples of sparse representations in neurobiology ar
und, for instance, in the early processing stages of sensory systems, across both sensor
odalities and biological organisms. Together with a change in the activity pattern, from
nse input representation to a sparse target representation in response to a stimulus, on
ten observes also a significant expansion in the number of active neurons in the target layer
For example, in the mouse visual system there are about 20,000 projecting neurons in th
rsal Lateral Geniculate Nucleus (dLGN) [30] whereas there are 120,000-215,000 neurons in
ouse primary visual cortex area V1, where sparse activity is observed ([59] and reference
erein). In the cat visual cortex, a 25-fold expansion is observed between the number o
ons leaving V1 and the number of axons entering V1 from the LGN. However, only 5–10%
V1 neurons respond to any natural scene stimulus [51]. The following additional example
e extracted from [5]. In the olfactory system of the fly, the antenna lobe comprising 5
omeruli projects to the mushroom body containing about 2,500 Kenyon cells. When an
orant stimulus is presented, 59% of the projection neurons and only 6% of the Kenyon cell
e activated [63]. Likewise, in rodents, the olfactory bulb projects to the piriform corte
8], which hosts millions of pyramidal neurons,roughly three orders of magnitude more than
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e number of glomeruli in the bulb. While the response of the neurons in the olfactor
lb to odorant stimuli is quite dense [66], only about 10% of the neurons in the piriform
rtex show an evoked response to each odorant [60, 55]. Similar ratios are observed in th
matosensory system [14], the auditory system [23], and even the electrosensory system o
ectric fish [19].
The fact that the same basic strategy seems to have emerged in evolution across a variet
organisms and sensory systems requires an explanation and suggests that this strateg

ay have specific advantages. There have been attempts, for instance, to explain the emer
nce of sparse representations in V1 as reflecting the sparse, largely statistically independen
mponents of natural images [50, 12]. However these arguments do not necessarily apply t
her sensory system, or explain why a sparse basis is chosen over a dense basis that could

e more compact or combinatorially richer, or justify the expansion aspect of the strategy.

2. Computational Sparsity. On the computational side, sparsity has been studied in
veral different settings. Regularization terms, or prior distributions, associated with th
1 norm tend to produce sparsely parameterized models where a subset of the parameter
e equal to zero, which can increase interpretability in some situations. The L1 approach
es back at least to work done in geology in the 1980s, [58] and has been further developed
d publicized under the name of LASSO (least absolute shrinkage and selection operator

1] (see also [62]). Many other sparsity-related priors have been developed in recent years
n example of continuous “shrinkage” prior centered at zero is the horseshoe prior [17, 18]
owever technically these continuous priors do not have a mass at zero. Thus anothe
ternative direction is to use discrete mixtures [47, 33] where the prior on each weight w
nsists of a mixture of a point mass at wi = 0 with an absolutely continuous distribution
similar approach, applied to pixel intensities, rather than weights, has been developed

cently to construct effective generative models of very sparse images [45]. Finally, there is
gnificant literature in compressed sensing research, where efficient sparse coding algorithm
ve been developed for recovering sparse signals that underwent linear compression [25, 16
, 29, 32, 31, 52, 2, 53, 54].
Our main goal in this work is to better understand the computational role of sparsity in
uronal maps. Our work is closest in spirit to [5], but with a number of significant differ
ces. First, although we discuss expansion issues, our primary focus here is on sparsity
t on expansion. Second our goal is to understand the possible computational advantage
sparsity. And Tthird, our approach is mathematical and aimed at deriving precise theo

ms, as opposed to approximate results derived using physics approximations or compute
mulations.

2. Basic Framework and Notation

1. Neural Maps and Threshold Functions. We wish to understand neural mapping
from a layer of size n to a layer of size m. For simplicity, we call the layer of size n th

put layer, and the layer of size m the target layer and the resulting architecture an A(n,m
chitecture. The mapping is to be implemented by m linear threshold functions–as one o
e simplest neuronal models–although we will briefly consider other computational units
ch as polynomial threshold functions of low degree [6]. We let T (n,m) denote the set o
l such linear threshold maps, and T d(n,m) denote the set of all such threshold maps o
gree d. As a result, the activities in the target layers are always binary with value 0 or 1
hen the activities in the layer of size n are also binary with values in {0, 1} or {−1,+1}, th
its in the layer of size m implement Boolean functions and we call them linear threshold
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tes, or polynomial threshold gates in the polynomial case. We let Hn = {0, 1}n denot
e n-dimensional hypercube with individual coordinates in {0, 1}. It is sometimes mor
nvenient to consider input vectors in Kn = {−1, 1}n, the n-dimensional hypercube wit
dividual coordinates in {−1, 1}. A simple affine transformation transforms one type o
percube into the other, and such transformations can be absorbed into the weights of th
reshold functions, so any result obtained with a threshold map applied to input vectors in
n can be transformed into an equivalent result with input vectors in Kn and vice versa.

2. Input and Target Models. In general, we imagine that the input layer is presented
ith dense input vectors x of length n, and we want to explore their mapping into spars
presentations y of length m in the target layer. To generate dense input vectors x, one ca
nsider different models, in both the continuous and binary cases, including the followin
es:

(1) Gaussian Model [N(0, 1)]n in which the components of x are independent identicall
distributed with standard normal distribution.

(2) Uniform Model U [S(n− 1)] in which x is sampled uniformly over the unit sphere in
n-dimensional Euclidean space.

(3) Bernoulli Model [B(1
2)]n in which the components of x are independent identicall

distributed with symmetric Bernoulli coin flip distribution with parameter p=0.5.
(4) Uniform Model U(1

2 , n) which corresponds to a uniform distribution over all vector
of length n containing n/2 ones and n/2 zeros. The fact that n may be odd is no
important for our considerations (in this case use the the floor and ceiling operators)

me of the same notation and models can be used also to generate sparse vectors, so tha
e let:

(1) Sparse Bernoulli Model [B(p]n in which the components of x are independent an
identically distributed with probability p of being one (and zero otherwise), with
small.

(2) Sparse Uniform: U(p, n) in which x is sampled uniformly over the binary vectors o
Hn having a fraction p of their entries equal to one, and the rest equal to zero, with
small. There are of course

(
n
np

)
such vectors, with the same remark as above regardin

the use of the floor ceiling operators when np is not an integer.

lthough these sparse models can also be applied to the input layer, they are meant to b
plied primarily to the target layer, replacing n with m, and x with y. While for certai
athematical considerations one model may be easier to use than the other, it is well known
at for many probabilistic considerations, especially in terms of asymptotic results, th
rresponding Bernoulli and Uniform models are very similar and that [B(p]n is a slightl
meared” version of U(p, n). In particular, all the vectors with pn components equal to on
ve the same probability in [B(p)]n, but this probability is slightly lower compared to th
rresponding uniform model due to the smearing. Most importantly, we will also conside
odels, other than the uniform models, where the components of x or y are not independen
each other, or where x and y are not independent of each other.
Whatever the model, in the end we assume that we have a set of memories, or trainin
t, consisting of K pairs (x, y), and one of our main goals is to find the maximal number K
memories that can be stored in the neural map.
A Boolean vector of size n is called p-sparse if it contains pn ones, and n(1 − p) zeros

ikewise, we call a Boolean function of n variables p-sparse if its vector of assignment o
rgets (corresponding to the last column of its truth table) is p-sparse, i.e. the functio
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kes the value 1 for p2n entries, and 0 otherwise. In general, we will use p and q to denot
related probabilities (and thus it is not the case that q = 1− p). Finally, in order to avoi
e use of double indexes, we use x1, x2, ...., xK to denote the set of input training examples
d x1, x2, ...., xn to denote the components of an input vector x. Whenever this notation i
ed, its meaning should be obvious from the context.

3. Storage and Memories. Now let us assume that we have K (dense) real-valued o
nary vectors x in the input layer, and that we want to map them into K (sparse) binar
ctors, or representations, y = F (x) in the target layer. The K associations (x, y) are calle
emories and, for concreteness, the reader may think of x as the activity triggered by a
or in a primary sensory layer, and of y as its sparse representation in a subsequent layer. In
is work, we are concerned primarily with maximizing K, i.e. the number of memories tha
e stored in the mapping and the effects that the size m of the target layer, and the sparsit
the vectors y, have on the mapping. There are two additional properties of the mapping F
at are important: continuity and un-ambiguity. By continuous, we mean that if x is one o
e input memories and x′ is close to x, then in general one should expect F (x′) = F (x), i.e
e odors of two slightly different bananas should be mapped to identical (or very similar
nary representations. Using linear threshold functions automatically enforces continuit
most everywhere. By un-ambiguity, we mean that the target vectors y should be far apar
om each other to avoid any possibility of confusion (the binary representation of the banan
or should not be confused with the binary representation of the odor of any other fruit)

his can be formalized for instance by maximizing the average Hamming distance between
e vectors y = F (x). In short we want a map F that has maximal memory storage, that i
so continuous and un-ambiguous. In the rest of the paper we will prove that maximizin
emory storage leads to sparsity in the target layer and suggest that large target layer
pport un-ambiguity.

4. Paradox. It must be noted from the outset that the maximization of memory storag
sparse neural maps has a paradoxical flavor. For simplicity, let us assume that we wan
encode the K input vectors into K p-sparse vectors in the target layer. The total numbe
such possible vectors is given by

(
m
pm

)
and this number is maximal when p = 0.5. In othe

ords there are far more possibilities for choosing the target y vectors when the target vector
e constrained to be dense. Likewise, the total number of p-sparse Boolean functions of n
oolean variables is given by

(
2n

p2n

)
, which is also maximal when p = 0.5, providing also th

pression that dense representations offer more choices and are easier to realize.

5. Resolution. The resolution of this paradox must come from the constraints we placed
the function F . In particular, consider a single linear threshold function or gate, with
random input vectors of size n. Assume that the targets are assigned randomly with

arsity p. Equivalently, assume that the K points are colored randomly in black and white
here p is the probability of assigning a white color. When are the black and white point
early separable? If p = 0.5, we know [8] that the maximal number of random memorie
at can be stored satisfies K ≈ n (related results are known also for polynomial threshold
nctions [9]). On the other hand, in the binary case, if only one target is equal to 1 and
l the other targets are 0, it is easy to see that any K memory associations can be realized
. it is always possible to separate one corner of the hypercube from all the other corner
ing a hyperplane. Thus, in a sense this extreme case of sparsity leads to greater storage
. greater values of K. In short, it is intuitively clear that the smaller the fraction o
hite points is, the greater its chance of being linearly separable. Thus what is needed is
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antitative understanding of this phenomenon. As we are going to describe, the solution o
is problem is closely related to the theory of random polytopes and is characterized by
ase transition.

3. Phase Transition

We now provide a formal definition for the neural maps of interest and the underlyin
estion we wish to address.

efinition 3.1 (Threshold maps). A map F : Rn → {0, 1}m is called a linear threshold ma
all m components of F are linear threshold functions. Equivalently, F is a threshold ma
it can be expressed as:

F (x) := h
(
Wx− b

)

r some m × n matrix W and some vector b ∈ Rm, where h is the Heaviside functio
plied component-wise. The Heaviside function has value 0 for negative arguments, and
r positive arguments.

Note that the bias can also be included in the weights W by assuming there is one additiona
put unit always clamped to one. Likewise, we can define polynomial threshold maps o
gree d if all m components of F are polynomial threshold functions of degree d. We le
d(n,m) denote the set of all such threshold maps. In this case, each component i has th
rm: fi(x) = h(Pd(x)) where Pd is a polynomial of degree d in the variables x1, . . . xn and h
the Heaviside function.

uestion 3.2. Let x ∈ Rn and y ∈ {0, 1}m be random vectors, possibly dependent. Conside
sample of K independent data points (xk, yk) drawn from the distribution of (x, y). Doe
ere exists a threshold map F ∈ T (n,m) such that:

F (xk) = yk for all k = 1, . . . ,K?

If we require F : Rn → Rm to be a linear map (and the distribution of x is non-degenerate
g. absolutely continuous) then the answer to Question 3.2 is Yes if and only if K ≤ n
emarkably, for a larger class of linear threshold maps, one can fit samples of size muc
rger than n.

heorem 3.3 (Phase transition). Assume that x is a standard normal random vector in
n and y is an independent vector in {0, 1}m whose coordinates are i.i.d. Bernoulli wit
rameter q ∈ (0, 1). Fix ε ∈ (0, 1) and let n → ∞, allowing m, K and q depend on n
ssume that K � n and Kq � logm.

If 2Kq log(K/n)(1+ε) < n then the answer to Question 3.2 is Yes with probability 1−o(1)
If 2Kq log(K/n)(1−ε) > n then the answer to Question 3.2 is No with probability 1−o(1)

Here, and everywhere else, the notation a(n) � b(n) (or b(n) � a(n)) means tha
n)/a(n) → 0 as n → ∞. It is important to note how little this result depends on m
we consider a single linear threshold neuron (m = 1) corresponding to an A(n, 1) network

e have:

orollary 3.4 (Phase transition). Assume that x is a standard normal random vector in R
d y is an independent vector in {0, 1} whose coordinates are i.i.d. Bernoulli with paramete
∈ (0, 1). Fix ε ∈ (0, 1) and let n→∞, allowing K and q depend on n. Assume that K � n

If 2Kq log(K/n)(1+ε) < n then the sample of K points is linearly separable with probabilit
1− o(1).
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If 2Kq log(K/n)(1 − ε) > n then the sample of K points is not linearly separable wit
probability 1− o(1).

To better understand this result, let us first notice that for ε very small we have:

(1) If K = Cn for some constant C > 0, then the phase transition occurs for: q =
1/(2C logC). For instance, if C = 10 then the phase transition occurs for: q =
1/(20 log 10).

(2) If K = n1+α for α > 0, then the phase transition occurs for: q = 1/(2αnα log n). Fo
instance, if K = n2, then α = 1 and the transition occurs for: q = 1/(2n log n).

Theorem 3.3 can be deduced from two results on the geometry of Gaussian polytopes
onsider N independent random vectors x1, . . . , xN taking values in Rn. Their convex hu
a random polytope in Rn. If xk are drawn from the standard Gaussian distribution, th
ndom polytope:

P := conv(x1, . . . , xN )

called a Gaussian polytope.
Random polytopes including random regular polytopes [1, 64, 13, 26], random Gaussian

olytopes [39, 10, 24, 36], and more general random polytopes [46, 44, 43, 38, 41, 42], hav
een extensively studied in the area of asymptotic convex geometry. One remarkable propert
that random polytopes in high dimensions are neighborly: points xk are likely to form
rtices of P (instead of falling into the interior of P ), the intervals that join pairs of point

k are likely to form edges of P , the triangles that are formed by triples of points xk are likel
form two-dimensional faces of P , and this continues up to faces of a certain dimension s

. Donoho and J. Tanner were the first to determine asymptotically sharp threshold for th
itical dimension s [24]:

heorem 3.5 (Typical faces of a Gaussian polytope). Let x1, . . . , xN be independent standar
aussian random vectors in Rn. Fix ε ∈ (0, 1) and let n→∞, allowing N and s depend o
.

If 2s log(N/n)(1 + ε) < n then conv(x1, . . . , xs) is a face of the polytope conv(x1, . . . , xN
with probability 1− o(1) as n→∞.
If 2s log(N/n)(1−ε) > n then conv(x1, . . . , xs) is not a face of the polytope conv(x1, . . . , xN
with probability 1− o(1) as n→∞.

Motivated by the basic problem of compressed sensing, this theorem sparked many late
velopments, some of which are summarized in e.g. [27, 3, 11, 40]. In particular, th
obability in both parts of Theorem 3.5 can be improved to:

1− exp(−cε2s), (3.1

e [3, Theorem II].

roof of Part 1 of Theorem 3.3. Let us first assume that m = 1. Call the points xk wit
bels yk = 0 “black points” and the others “white points”. Let s denote the number of whit
oints. The assumption Kq � 1 implies that s = Kq(1 +o(1)) with probability 1−o(1). Le

condition on the labels (yk) with the number of white points s satisfying the conditio
ove. Our assumption implies that:

2s log(K/n)(1 + ε/2) ≤ 2Kq log(K/n)(1 + ε) < n

n is large. Then, applying part 1 of Theorem 3.5 with ε/2 instead of ε, we see that th
nvex hull of white points is a face of the polytope conv(x1, . . . , xN ) with probability 1−o(1
n → ∞. This means that the sets of black and white points are linearly separable, i.e
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ey can be separated by an affine hyperplane. Equivalently, there exists a threshold function
∈ T (n, 1) that realizes the data.
The general case where m ≥ 1 follows by taking a union bound over the m events, one fo
ch coordinate of y. Due to (3.1), the probability of failure is bounded by m·exp(−cεKq)�
Kq � logm. �

The second part of Theorem 3.3, unfortunately, does not follow from Theorem 3.5 by
milar argument. While it is true that a set of points x1, . . . , xs that spans a face of th
olytope P = conv(x1, . . . , xN ) must be linearly separated from the other points xs+1, . . . , xN
e converse may may not be true. As Figure 1 shows, points x1, . . . , xs might still be linearl
parated from xs+1, . . . , xN even if they do not form a face of P .

Figure 1. Proof of Part 1 of Theorem 3.3.: The white points xk (labeled yk = 1) form
a face of the Gaussian polytope conv(x1, . . . , xN ) and thus are linearly separated from
the black points. However, this reasoning can not be reversed: black points may be
linearly separated from the white without forming a face of the Gaussian polytope.

A different property of Gaussian polytopes can be used to deduce the second part o
heorem 3.3: the existence of a round core of P . The following result shows that P contain
e centered Euclidean ball of radius r ≈

√
2 log(N/n).

heorem 3.6 (Round core of a Gaussian polytope). For every ε ∈ (0, 1) there exists C(ε) >
ch that the following holds. Assume that N ≥ C(ε)n and let x1, . . . , xN be independen
andard Gaussian random vectors in Rn. Then:

conv(x1, . . . , xN ) ⊃
√

2 log
(N
n

)
(1− ε) ·B(n)

ith probability at least 1 − e−n. Here B(n) denotes the unit Euclidean ball in Rn centere
the origin.

A weaker version of this result, with an absolute constant factor instead of the constant 2
es back to Gluskin [35], where the result is stated in the dual form. Gluskin’s result inspired
any further developments in the area of asymptotic convex geometry. Its ramifications can
e found in particular in [34, 44, 22] and [4, Section 7.5]. None of the published versions o
luskin’s theorem, to our knowledge, exhibit the exact absolute constant 2 that is critica
r our purposes. We give a proof of Theorem 3.6 in Appendix A, which essentially combine
e argument in [34] with an asymptotically sharp tail bound of the normal distribution.
Now we can deduce Part 2 of Theorem 3.3, setting m = 1 for simplicity. There are s ≈ K

hite points (those with labels yk = 1), and they are independent Gaussian random vectors

their arithmetic mean x0 has Euclidean norm r0 ≈
√
n/Kq. By the assumption, thi

antity is smaller than r ≈
√

2 log(N/n), which is the radius of the round core of th
nvex hull of the N − s black points. So x0 falls inside this round core and, as such, it i
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t linearly separable from the black points, see Figure 2. Hence the black and white point
e not linearly separable. Here is a more formal proof.

Figure 2. Proof of Part 2 of Theorem 3.3. The arithmetic mean of the white points
(labeled yk = 1) has norm r0 ≈

√
n/Kq. This is smaller than the radius of the round

core r ≈
√

2 log(N/n) of the Gaussian polytope formed by the black points. Hence
the black and white points are not linearly separated.

roof of Part 2 of Theorem 3.3. Without loss of generality, we can assume that m = 1. Con
tion on all labels yk so that the number of white points s (those with labels yk = 1) satisfie
= Kq(1 + o(1)), just like we did in the proof of the first part of the theorem. Without los
generality, q ≤ 1/2. The number of black points N := K − s then satisfies N ≥ K/3 fo

rge n. Thus we have for large n:

2s log(N/n) ≥ 2Kq log(K/n)(1− ε/2) (using also that K � n)

≥ n(1 + ε/2) (using our key assumption). (3.2

Let us apply Theorem 3.6 for the black points and with ε/4 instead of ε. It says that:

conv(black points) ⊃ rB(n)

here:

r =

√
2 log

(N
n

)(
1− ε

4

)
≥
√
n

s

(
1 +

ε

2

)(
1− ε

4

)
≥
√
n

s

(
1 +

ε

8

)
(3.3

e to (3.2).
On the other hand, the arithmetic mean of the white points:

x0 :=
1

s

∑

k: yk=1

xk

a rescaled normal random vector, namely it x0 = g/
√
s where g is a standard norma

ndom vector in Rn. Due to a standard concentration inequality for the norm, ‖g‖2 =
+ o(1))

√
n with probability 1− o(1), which yields:

‖x0‖2 = (1 + o(1))

√
n

s
.

Comparing this to (3.3), we see that for large n:

‖x0‖2 < r

ith probability 1− o(1). This means that x0 lies in the ball rB(n), which in turn lies in th
nvex hull of the black points.
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Summarizing, we showed that with high probability, the arithmetic mean of the whit
oints x0 lies in the convex hull of the black points. Therefore, the sets of black and whit
oints can not be separated by any hyperplane. Equivalently, there does not exist an
reshold function F ∈ T (n, 1) that realizes the data. The proof is complete. �

1. Realizing all label assignments simultaneously. The model of data considered i
heorem 3.3, in which we assumed that the labels yk are independent of the data points xk, i
t very realistic. Fortunately, this result can be strengthened and allow for any dependenc
the labels yk on xk. The only requirement is the sparsity of label assignment. We say tha
e label assignment is s-sparse if, for each coordinate i ∈ {1, . . . ,m}, at most s of the label
(i), . . . , yK(i) are equal to 1.

heorem 3.7 (All label assignments simultaneously). Assume that x1, . . . , xK are draw
dependently from the standard normal distribution in Rn. Fix ε ∈ (0, 1) and let n → ∞
lowing m, K and s depend on n. If:

2es log
(
K/(n · 2√π)

)
(1 + ε) < n

en the following holds with probability 1−o(1). For any s-sparse label assignment y1, . . . , yK
, 1}m, there exists a function F ∈ T (n,m) such that:

F (xk) = yk for all k = 1, . . . ,K.

Up to absolute constant factors, this result is stronger than the first part of Theorem 3.3
deed, if Kq � logm, the label assignment is s-sparse with s = Kq(1+o(1)) with probabilit
− o(1).
Theorem 3.7 follows in a way similar to the previous theorems in this Section from

ronger form of Donoho-Tanner’s Theorem 3.5, which was also proved in [24].

heorem 3.8 (All faces of a Gaussian polytope). Let x1, . . . , xN be independent standar
aussian random vectors in Rn. Fix ε ∈ (0, 1) and let n→∞, allowing N and s depend o
.

If 2es log
(
N/(n · 2√π)

)
(1 + ε) < n then the following holds with probability 1 − o(1) a

n→∞. For every subset I ⊂ [N ] of size |I| ≤ s, the convex hull conv(xi : i ∈ I) is a fac
of the polytope conv(x1, . . . , xN ).
If 2es log

(
N/(n · 2

√
π)
)
(1 − ε) > n then the following holds with probability 1 − o(1

as n → ∞. There exists a subset I ⊂ [N ] of size |I| ≤ s such that the convex hu
conv(xi : i ∈ I) is not a face of the polytope conv(x1, . . . , xN ).

Theorem 3.3 establishes the existence of a phase transition for the number K of asso
ations that can be stored in a linear threshold map, under the assumptions that x is
andard normal vector and y is independent from x. However, this leaves open two impor
nt questions. First, it would be useful to be able to prove a similar result for other realisti
stributions for x and y. It would be of particular interest to obtain results for the cas
here the components of x are binary, or when they are not independent. And similarly fo
for instance when y is not independent of x. Second, Second, one would like to know i
e memories that are plausible for a physical neural system [6].
These questions will be addressed using two key concepts: (1) sub-gaussian distributions
d (2) local learning rules, in particular Hebbian learning rules. We begin by providin
me background on learning rules.
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4. Learning algorithms

Before we use sub-gaussian distributions to extend the previous theorems, it is useful t
ok at the algorithms by which the memories could be learnt. First, it should be clear tha
general the m units of an A(n,m) architecture learn independently of each other, and thu
is enough to study learning in a single unit. Second, if the set of data pairs (x, y) is linearl
parable, the SVM learning approach of finding an hyperplane with maximum margin can b
lved using linear or quadratic programming methods [20, 15, 21]. However, such method
e not necessarily plausible for a physical neural system, as they do not necessarily resul
a learning algorithm for the synaptic weights that is local [7], i.e. that it depends onl
variables available locally at the synapse. In practice, for the models considered here, i

eans that we are interested in learning rules of the form:

∆wi = F (xi, y, o)

ere xi is the i-th component of the input vector x, y is the target value, and o is the actua
tput value of the neuron. The rules in this section are written for a single training example
rresponding to on-line learning, but they can be averaged across multiple examples in batch
arning. There are three main, different but highly related, local learning rules that can b
nsidered: gradient descent, the perceptron rule, and the simple Hebb rule.

1. Gradient Descent Learning Rule. For gradient descent, we modify the Heavisid
reshold function to a sigmoidal logistic function. It is well known (e.g. [6] that, usin
e relative entropy (or Kullback-Leibler divergence) between the target y and the output
oduced by the logistic function, the gradient descent rule has the form:

∆wi = η(y − o)xi
here η is the learning rate. The error function is convex and therefore gradient descent, o
ochastic gradient descent, with a suitable learning rate converge to a set of weights which
inimize the error function.

2. Perceptron Learning Rule. The perceptron learning rule [56]is usually written as:

∆wi =





xi, y = 1 and o = −1

−xi, y = −1 and o = +1

0 otherwise.

ing a linear threshold functions with outputs and targets in {−1,+1}. It is applied t
l the weights including the bias. The perceptron learning algorithm initializes the weigh
ctor to zero w(0) = 0, and then at each step it selects an element of the training se
at is mis-classified and applies the learning rule above. Note that because the weights ar
itialized to zero, the learning rate simply rescales all the weights, including the biase,) and
us it can be chosen to be 1. Notice that the rule above can be rewritten as:

∆wi =
1

2
(y − o)xi

hich shows its connection to gradient descent, and as:

∆wi = yxi
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r the examples that are misclassified, which shows its connection to the simple Hebb rul
scribed below.
The perceptron learning theorem states [49] that if the data is separable, then the percep

on algorithm will converge to a separating hyperplane in finite time. One may suspect tha
is may be the case because the rule amounts to applying stochastic gradient descent to
it with a sigmoidal (logistic or tanh) transfer function, which is similar to a perceptron
addition, the rule above clearly improves the performance on an example x that is mis

assified. For instance if the target of x is y = +1 and x is mis-classified and selected at ste
then we must have w(t) · x < 0 and w(t + 1) = w(t) + x. As a result, the performance o
e perceptron on example x is improved since w(t + 1) · x = w(t) · x + ||x||2, and similarl
r mis-classified examples that have a negative target. To prove convergence more precisely
is enough to take a unit vector w∗ that separates the data and show that the cosine of th
gle between w(t) and w∗ increases faster than C

√
t.

3. Simple Hebb Learning Rule. The simple Hebb rule can be written as:

∆wi = yxi

ith a learning rate of one. For the threshold maps F considered here (Definition 3.1), in
ctor form this translates to:

W :=
K∑

k=1

ykx
T
k (4.1

The simple Hebb rule is the rule used, for instance, to store memories in Hopfield network
7] corresponding to networks of symmetrically connected linear threshold gates. As we hav
en the perceptron algorithm is identical to the simple Hebb rule on the examples that ar
isclassified. Thus a key question to be examined is what happens when the simple Hebb
le is applied once to all the training examples.
Thus in the next section we extend the previous sparsity results into two directions. Firs

e allow more general sub-gaussian models for the data, with more complex dependenc
ructures. Second, we show that the neural map can be implemented using the simple Hebb
le.

Computing threshold maps with sub-gaussian data and the simple Hebb rule

In a sense, Theorems 3.3 and 3.7 tell us that threshold maps are able to realize memorie
at are completely random. But such memories, which lack any pattern, seem to be th
rdest data to realize. And thus one can reasonably suspect that threshold maps ought t

e able to realize pretty much any kind of data for the same value of K. We are going to show
at this is indeed the case. Not only any dependence of the labels yk on xk can be allowe
we saw in Theorem 3.7, but the data points xk may come from a general distribution i

n, and without any independence requirements on the coordinates of xk or yk.
The reader may be quick to realize that this task is impossible in some cases, even fo
= 1. If the distribution of the input data consists of three points on a line, with the middl

oint labeled 1 and the other two 0, then such data is not linearly separable and thus no
alizable by a linear threshold function. Remarkably, these impossible cases are rare and
ere is a simple recipe to rule them out.
We only need to place standard moment assumptions on the distribution of x. Namely

e assume x to be sub-gaussian, which means that all one-dimensional marginals of x ar
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ochastically dominated by λg where g ∼ N(0, 1) and λ ≥ 0 is some number. The smalles
ultiplier λ can be defined as the sub-gaussian norm ‖x‖ψ2

. The Gaussian, Uniform, an
ernoulli models described in Section 2.2 are all examples of sub-gaussian distributions. In al
these models, the sub-gaussian norms of x are bounded by an absolute constant (irrespec

ve of n or p). Basic definitions about sub-gaussian distributions are given for completenes
Appendix B, while a more extensive treatment can be found in [65, Sections 2.5, 2.6, 3.4]
Let us first state our result informally.

heorem 5.1 (Informal). If x ∈ Rn is sub-gaussian and all coordinates of y ∈ {0, 1}m tak
lue 1 with probabilities at most q, and Kq � logm, then the condition:

Kq log(Km) log(1/q)� n

arantees that all data points (xk, yk) for which ‖xk‖2 �
√
n can be realized by a threshol

ap F . Moreover, the map F can be achieved using the simple Hebb rule.

Here and in the following sections, we use the notation a � b if there exist two absolut
ositive constants c1 and c2 such that c1b ≤ a ≤ c2b. This notation is useful only when a and
ry as a function of other variables, such as n, and the constants are absolute in the sense tha
ey do not depend on these other variables. The condition‖xk‖2 �

√
n may seem mysteriou

the first sight. Note, however, that this condition is consistent with the natural scaling: i
l coordinates of x have unit variance, then E‖x‖22 = n, so that the norm of x is expecte
be of order

√
n. If, in addition, the coordinates of x are independent, the concentration

the norm [65, Theorem 3.1.1] guarantees that ‖x‖2 ≈
√
n with probability 1 − exp(−cn)

y a union bound, this means that the requirement ‖xk‖2 �
√
n holds automatically for a

ta points in the sample, so it can be removed from the statement of the theorem.
For general distributions, however, the condition ‖xk‖2 �

√
n can not be removed. Jointl

ith the requirement of sub-gaussian distribution, this condition rules out the data that i
possible to realize. Suppose, for instance, that the distribution of x is supported on a line
e the three-point distribution we mentioned above. Since the distribution is sub-gaussian
e event ‖xk‖2 �

√
n is extremely unlikely: its probability is exponentially small in n. Thi

ent is unlikely to hold for any data point in the sample.
Let us now state Theorem 5.1 formally.

heorem 5.2 (Formal). Assume that x is a mean zero, sub-gaussian random vector in Rn
d y is a random vector in {0, 1}m. Denote α :=‖x‖ψ2

and qi := P
{
y(i) = 1

}
, i = 1, . . . ,m

et m0 ≥ m be such that Kqi ≥ C logm0 for all i. Let β, γ > 0 be such that:

C
(
α2β2/γ4

)
Kqi log(Km0) log

2

qi(1− qi)
≤ cn, i = 1, . . . ,m. (5.1

onsider K data points (xk, yk), k = 1, . . . ,K sampled independently from the distribution o
, y). Then, with probability at least 1− 2m/m0, there exists a map F ∈ T (n,m) such that

F (xk) = yk for all data points xk satisfying γ
√
n ≤‖xk‖2 ≤ β

√
n.

oreover, the matrix W of the threshold map F = h(Wx − b) can be computed by the Heb
le (4.1) and b can be any vector (either fixed or dependent on the data) whose coordinate
i) all satisfy:

1

2
γ2n < b(i) < γ2n. (5.2

Note that in this theorem we do not assume any kind of independence in the distribution
(x, y). In particular, the coordinates of x and of y may be correlated with each other, an
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e label vector y may be correlated with x. The proof of this theorem is given in Appendi
.

6. Binary Input Vectors

Theorem 3.3 dealt with inputs associated with a standard normal random vectorm, and
mains true for any rescaling, if the standard deviation of the normal components is not one
om Theorem 5.2, we can immediately derive corollaries to deal with binary vectors taken
cording to the models [B(p)]n or U(p, n) with p = 0.5, as well as other values of p (as long a
is not too small). When p = 0.5, these models are very close to the standard normal model
the [B(0.5)]n model over Kn all the components are i.i.d. with mean zero and variance 1
in the standard normal model. In the U(0.5, n) model over Kn, all the components ar

entically distributed with mean zero and variance 1, and with an identical small negativ
variance for all non-diagonal terms (see [26] for results on randomly projected hypercubes)

orollary 6.1 (Informal). If x ∈ Kn and all coordinates of y ∈ {0, 1}m take value 1 wit
obabilities at most q, and Kq � logm, then the condition:

Kq log(Km) log(1/q)� n

arantees that all data points (xk, yk) can be realized by a threshold map F . Moreover, th
ap F can be achieved using the simple Hebb rule.

More precisely, one has the following result.

orollary 6.2 (Formal). Assume that x is a mean zero random binary vector in Kn, and y i
random vector in {0, 1}m. Denote α(n) :=‖x‖ψ2

and qi := P
{
y(i) = 1

}
, i = 1, . . . ,m. Le

0 ≥ m be such that Kqi ≥ C logm0 for all i. Consider K data points (xk, yk), k = 1, . . . ,K
mpled independently from the distribution of (x, y) with K satisfying:

C[α(n)]2Kqi log(Km0) log
2

qi(1− qi)
≤ cn, i = 1, . . . ,m. (6.1

Then, with probability at least 1 − 2m/m0, there exists a map F ∈ T (n,m) such tha
(xk) = yk. Moreover, the matrix W of the threshold map F = h(Wx− b) can be compute
the simple Hebb rule (4.1) and b can be any vector (either fixed or dependent on the data

hose all coordinates b(i) all satisfy:

1

2
n < b(i) < n. (6.2

This corollary is obtained immediately by applying Theorem 5.2, noting that the binar
ctor x is sub-gaussian and that for every vector in Kn: ||x|| = √n. As previously stated, w
ow that α(n), which appears in 6.1, is bounded. An obvious special case of this Corollar
obtained when the components of x are i.i.d. symmetric Bernoulli random variables (i.

ademacher random variables). In Appendix B, we show that in this case the sub-gaussian
rm α = α(n) is bounded by, and as n→∞ converges to,

√
8/
√

3.

7. Input Sparsity

Theorem 5.2 holds for considerably general input distributions, in particular distribution
at produce dense input vectors. However, one can also consider cases where the inpu
ctors themselves tend to be sparse. In particular, this situation could occur if the firs
arse target layer became the input layer for a subsequent, new, target layer. Theorem 5.
es allow the data points xk to be sparse, having most of their coordinates equal zero
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owever, the sparsity reduces the norms of xk, thereby making the condition ‖xk‖2 �
√
n

rder to satisfy, which in turn demands more sample points K in (5.1).
As we will show now, the data points xk can be made almost arbitrarily sparse for free
rprisingly, the sparsity has almost no effect on the sample size. Let us first state this resul

formally.

heorem 7.1 (Informal). If x ∈ {0, 1}n and y ∈ {0, 1}m are independent random vector
hose coordinates are i.i.d and take values 1 with probabilities p and q respectively, an
q � logm and np� log(Km), then the condition:

Kq log(Km)� n

arantees that the answer to Question 3.2 is Yes with probability 1 − o(1). Moreover, th
reshold map F can be computed by the Hebb rule.

And here is a formal version of the result, with more controls.

heorem 7.2. Assume that x is a random vector in {0, 1}n and y is an independent random
ctor in {0, 1}m. Assume that the coordinates of x are i.i.d. Bernoulli with paramete
∈ (0, 1/2] and the coordinates of y are i.i.d Bernoulli with parameter q ∈ (0, 1). Conside
data points (xk, yk), k = 1, . . . ,K sampled independently from the distribution of (x, y)

et m0 ≥ m be such that Kq ≥ C logm0, np ≥ C log(Km0), and:

Kq log(Km0) ≤ cn.
hen, with probability at least 1− 3m/m0, there exists a map F ∈ T (n,m) such that:

F (xk) = yk for all k = 1, . . . ,K.

oreover, the matrix W in the threshold map F = h(Wx− b) can be computed by a versio

the Hebb rule W :=
∑K

k=1 ykx̄
T
k where x̄k = xk−Exk, and b can be any vector (either fixe

dependent on the data) whose all coordinates satisfy
np

4
< b(i) <

np

8
. (7.1

This result can be proved in a similar way to Theorem 5.2.

roof. Let us first assume that m = 1 and check that the map F satisfies:

F (x1) = y1

ith high probability. Once we have done this, a union bound over K data points and m
ordinates of y will finish the argument. When m = 1, the function F can be expressed as

F (x) = h
(
〈w, x〉 − b

)
where w =

K∑

k=1

ykx̄k. (7.2

Step 1. Decomposition into signal and noise. In order to prove that F (x1) = y1, le
expand 〈w, x1〉 as follows:

〈w, x1〉 = y1〈x̄1, x1〉+
〈 K∑

k=2

ykx̄k, x1

〉
=: signal + noise. (7.3

We would like to show that the signal to noise ratio is large. To this end, consider th
ndom sets:

I := {k : yk = 1} ⊆ {2, . . . ,K}, J := {j : x1(j) = 1} ⊆ {1, . . . , n}.
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nce yk are i.i.d. Bernoulli random variables with parameter q, Bernstein’s inequality (se
g. [65, Theorem 2.8.4]) implies that:

|I| ≤ 10Kq (7.4

ith probability at least 1 − 4 exp(−c1Kq) ≥ 1 − 1/m0. (The last bound follows from
eorem’s assumption on Kq with a suitably large constant C.) Similarly, since x1(j) ar
.d. Bernoulli random variables with parameter q, we have:

2

3
np ≤|J | ≤ 2np (7.5

ith probability at least 1 − 4 exp(−c0np) ≥ 1 − 1/(Km0). (The last bound follows from
eorem’s assumption on np with a suitably large constant C.) Condition on a realization o
random vector x1 and labels y2, . . . , yK satisfying (7.5) and (7.4).
Let us estimate the strength of the signal and noise in (7.3). If y1 = 0, the signal i
viously zero, and when y1 = 1, we have:

signal = 〈x̄1, x1〉 =
n∑

j=1

(
x1(j)− p

)
x1(j) = (1− p)

n∑

j=1

x1(j) = (1− p)|J | ≥ np

3
.

Step 2. Bounding the noise. The noise in (7.3) can be expressed as:

noise =

n∑

j=1

K∑

k=2

ykx̄k(j)x1(j) =
∑

k∈I, j∈J

(
xk(j)− p

)
.

he sets I and J are fixed by conditioning, and the noise is the sum of |I||J | i.i.d. ran
m variables with mean zero, variance p(1 − p), and which are uniformly bounded by 1

ernstein’s inequality then implies that:

P
{
|noise| > t |x1, y2, . . . , yK

}
≤ 2 exp

(
− c2 min

{ t2

|I||J | p(1− p) , t
})

≤ 2 exp
(
− c3 min

{ t2

Kqnp2
, t
})

(by (7.4) and (7.5))

≤ 1

Km0

we choose:

t := C1

(√
log(Km0)Kqnp2 + log(Km0)

)

ith a suitably large constant C1. Thus, with (conditional) probability at least 1−1/(Km0)
e noise satisfies:

|noise| ≤ t ≤ np

12
.

he last bound follows from the assumptions of the theorem with sufficiently large constan
and sufficiently small constant c.

Step 3. Estimating the signal-to-noise ratio. Lifting the conditioning on x1 an
, . . . , yK , we conclude the following with (unconditional) probability at least 1 − 1/m0 −
(Km0). If y1 = 0 then signal = 0, otherwise signal ≥ np/3; the noise satisfies |noise| ≤
p/12.
Putting this back into (7.3), we see that if y1 = 1, yields:

〈w, x1〉 ≥
np

3
− np

12
=
np

4
> b
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the assumption (7.1) on b. So 〈w, x1〉 − b is positive and thus, by (7.2), F (x1) = 1 = y1.
If, on the other hand, y1 = 0 then:

〈w, x1〉 ≤
np

12
< b.

〈w, x1〉 − b is negative and thus, by (7.2), F (x1) = 0 = y1. Thus, in either case, we hav
(x1) = y1 as claimed.

Step 4. Union bound. We can repeat this argument for any fixed k = 1, . . . ,K an
us obtain F (xk) = yk with probability at least 1 − 1/m0 − 2/(Km0). Now take a unio

ound over all k = 1, . . . ,K. This should be done carefully: recall that the term 1/m0 in th
obability bound appears because we wanted the set I to satisfy (7.4). The set I obviousl
es not depend on our choice of a particular k; it is fixed during the application of th
ion bound and the term 1/m0 does not increase in this process. Thus, we showed that th
nclusion:

F (xk) = yk for all k = 1, . . . ,K

lds with probability at least 1 − 1/m0 − 2K/(Km0) = 1− 3/m0.
This completes the proof of the theorem in the case m = 1. To extend it to general m

e apply the argument above for each coordinate i = 1, . . . ,m of y and finish by taking th
ion bound over all m coordinates. �

8. Further results

1. Autoencoders. It is easy to check that the conclusion of Theorem 7.1 remains th
me if we center the label vectors yk in Hebb rule, i.e. set:

W :=
K∑

k=1

ȳkx̄
T
k , where x̄k := xk − Ex, ȳk := yk − E y.

ne can check that the effect of the centering of yk on the signal-to-noise ratio is negligible
e skip verifying the routine details.
This version of Hebb rule is symmetric, so we can apply Theorem 7.1 again, swapping xk
and p with yk, m and q respectively. It follows that F can be inverted on the data, and th
verse is again a threshold function! Moreover, the inverse:

F−1 : yk 7→ xk

given by the same Hebb rule (up to the swapping), namely:

WT =
K∑

k=1

x̄kȳ
T
k .

his, of course, holds under the mild assumptions that Kq � logm, np� log(Km), Kp�
g n, mq � log(Kn), as well as the key assumptions:

Kq log(Km)� n and Kp log(Kn)� m.

This observation has an unusual consequence for “Hebb networks”, i.e. two-layer neura
tworks whose weights are trained by the Hebb rule. If we feed xk into the input layer, th
twork computes yk in the output layer. Furthermore, we can reverse the direction of thi
mputation by feeding yk into the output layer; the network then computes xk in the inpu
yer.
One can interpret this as a construction of a “Hebb autoencoder” with three layers of size

, m and n. If we feed the data xk into the input layer, it is transformed into yk in th
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dden layer, and back to xk in the output layer. Up to logarithmic factors, we can train
ch autoencoder to a zero error on a sample of size K ∼ nm if we set p ∼ 1/n and q ∼ 1/m

2. Robustness. Hebb rule is very robust. Indeed, we can replace the exact formula W :=
K
k=1 ykx

T
k in (4.1) by its approximate version:

W :=
K∑

k=1

ykx̃
T
k (8.1

here x̃k are any sub-gaussian i.i.d. random vectors in Rn whose distribution is positivel
rrelated with xk, i.e.:

E〈xk, x̃k〉 & cn.
ur analysis of signal-to-noise ratio remains mostly the same, and the results modify in
tural way (the constant c enters the formulas). We skip the details.
This robustness may be useful during development and learning. In addition, it has tw
her consequences.
1. Quantization. The weights can be updated by just three values: −1, 0, 1. This ca

e seen if we use the Hebb rule (8.1) with:

x̃ := sign(x)

here the sign is applied coordinate-wise.
2. Sparsification. The weight matrices associated with Hebbian learning can easily b
arsified. All we have to do is multiply the weights by independent Bernoulli(ρ) random
riables with small ρ. The sparsified weights are positively correlated with the origina
eights, and thus versions of our results hold for sparse networks as well.

3. Learning. In terms of [65, Section 8.4]: We showed that the empirical risk, or in-sampl
sk, is RK(f∗K) = 0. Then the expected error, or expected learning risk, is:

R(f∗K) = R(f∗K)−RK(f∗K) ≤ sup
f∈F

∣∣R(f)−RK(f)
∣∣ .

√
vc(F)

K
.

he last bound can be found in [65, Section 8.4.4].)

9. Sparsity and Expansion

The results above show that a computational advantage of sparsity in the target layer i
at it allows to increase the number of memories that can be stored in the map. Howeve
does not say anything about the expansion often observed in the target layer. Indeed, w
ve already noted how little the theorems derived in the previous sections depend on th

ze m of the target layer. Thus is there an explanation for the expansion?
There could be many reasons behind the expansion, for instance developmental constraints

owever, one obvious computational reason that may be taken into consideration is producin
aps that are un-ambiguous see Section 2. In order to minimize the risk of ambiguity, it i
asonable to try to maximize the Hamming distance between patterns in the target layer. I
e have two q-sparse binary patterns, in the target layer, their maximal Hamming distanc
2qm and it is easy to see that only a linear number of patterns can be selected so tha
y pair of them is at maximal Hamming distance. Thus the number of such memories mus
ow linearly in m; and the same time it must be equal to K, which is significantly large
an n given the results in the previous theorems. Thus maximizing the pairwise distances o
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e target memories leads to layer expansion where m is significantly larger than n in orde
minimize the overlap between the encodings of different memories.

10. Conclusion and Open Problems

In this work, we have shown that neural maps with a sparse hidden layer can store mor
emories, and both effective coding and decoding can be achieved using the simple Hebb’
arning rule. However, many open problems remain to investigate including further tighten
g the bound of some of the theorems or obtaining results that are not necessarily asymptoti
t hold exactly in some finite regime.

.1. Polynomial Threshold Maps. Superficially it may seem that the results in thi
ork are restricted to the case of linear threshold functions or gates, but this is not the case
milar results may hold for other classes of functions, such as polynomial threshold function
gates of degree d with the functional form:

F (x) = h(
∑

I:1≤|I|≤d
wIx

I − b)

ere I runs over all non-empty subsets of [n] = {1, 2, . . . , n}, and if I = {i1, . . . , ik} w
t: xI = xi1 . . . xik . Note that in this notation we allow only pure monomials where al
e powers associated with each variable are equal to one. While the more general case can

e analyzed similarly, focusing on pure monomials simplifies things and furthermore, when
∈ Kn, x2

i = 1 for every i = 1, . . . , n and thus higher power terms are not needed. Note als
at the bias b correspond to I = ∅. We call homogeneous the case where all the monomial
ve degree exactly d:

F (x) = h(
∑

I:|I|=d
wIx

I − b)

r a given n-dimensional vector x, we let x⊗d denote the tensor of all the monomials o
der exactly d, and x⊗≤d denote the tensor of all non-constant monomials of order d or less
hus a polynomial threshold function (or gate), can be viewed as a linear function (or gate
plied to the corresponding tensors.
Next, consider that the vector x is a random vector with i.i.d. symmetric Bernoulli com

onents. Note that in this case xI is also a symmetric Bernoulli random variable for an
n-empty I ⊂ [n]. Furthermore, for any pair of distinct subsets I and J the variables x
d xJ are independent, i.e. there is pairwise independence but not global independence

sing the results from Section 5 leads to the following corollaries, stated first informally and
en more formally.

orollary 10.1 (Informal). If x ∈ Kn has i.i.d symmetric Bernoulli components and al
ordinates of y ∈ {0, 1}m take value 1 with probabilities at most q, and Kq � logm, the
e condition

Kq log(Km) log(1/q)�
(
n

≤ d

)
(resp. Kq log(Km) log(1/q)�

(
n

d

)
)

arantees that all data points (xk, yk) can be realized by a polynomial (resp. homogenou
lynomial) threshold map F of degree d.
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orollary 10.2 (Formal). Assume that x ∈ Kn has i.i.d symmetric Bernoulli component

d y is a random vector in {0, 1}m. Denote α :=
∥∥∥x⊗≤d

∥∥∥
ψ2

(resp. α :=
∥∥∥x⊗d

∥∥∥
ψ2

) an

:= P
{
y(i) = 1

}
, i = 1, . . . ,m. Let m0 ≥ m be such that Kqi ≥ C logm0 for all i

onsider K data points (xk, yk), k = 1, . . . ,K sampled independently from the distribution
(x, y) with K satisfying:

Cα2Kqi log(Km0) log
2

qi(1− qi)
≤ c
(
n

≤ d

)
, i = 1, . . . ,m (10.1

, respectively in the homogeneous case,

Cα2Kqi log(Km0) log
2

qi(1− qi)
≤ c
(
n

d

)
, i = 1, . . . ,m (10.2

hen, with probability at least 1 − 2m/m0, there exists a polynomial (resp. homogeneou
lynomial) threshold map F of degree d F ∈ T d(n,m) such that F (xk) = yk.

The proof of this statement is an immediate application of Theorem 5.2, noting that: (1

e tensors x⊗≤d (resp. x⊗d) are sub-gaussian; and (2)
∥∥∥x⊗≤d

∥∥∥
2

=
(
n
≤d
)
− 1 (resp.

∥∥∥x⊗d
∥∥∥

2
=

)
). However, the bounds above depend on the value of α = α(n, d), the sub-gaussia

rm of the corresponding Bernoulli tensors. Thus open problems here include estimatin
e value of α(n, d), and finding better estimates associated with the phase transition fo

olynomial threshold maps with d > 1, in both the asymptotic and non-asymptotic regime
ee additional discussion at the end of Appendix B).

.2. Neuronal Capacity and Storage. Finally, it is useful to view the results in thi
per in terms of neuronal capacity, storage, and information theory where neural learning i
en as a communication process whereby information is transferred from the training dat
the synaptic weights. The amount of information that can be communicated, essentiall

e capacity of the channel, can be estimated into two different ways, one at each end of th
annel. At the synaptic end, we can investigate how much information can be stored in th
napses and at the data end, we can investigate how much information can be extracted
om the training set. The apparent paradox alluded to in Section 2 is that in the case o
arse functions, information seems to decrease at the synaptic end, but to increase at th
aining data end. We now treat these questions more precisely by defining and comparin
fferent notions of storage and capacity.
For simplicity, we look at the A(n, 1) Boolean architectures, but the same ideas can b
tended to other architectures, including A(n,m) maps, as well as to non-Boolean cases
hus in general we assume that we are considering a class C of Boolean functions of n
riables. Of particular interest here are the cases where the Boolean functions are linea
reshold gates, and the training sets have targets that are sparse. At the level of the clas

self, we can first define the cardinal capacity.

.2.1. The Synaptic View: the Cardinal Capacity. The cardinal capacity C of C is define
:

C(C) = log2 |C|
he capacity can be interpreted as the minimum average number of bits required to commu
cate an element of C in a very long message consisting of a random sequence of elements in
taken with a random uniform distribution (which corresponds to the worst case in term
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the number of required bits). In the case of linear threshold gates, it can be viewed as th
mber of bits that must be “communicated” from the world (i.e. the training set) to th
naptic weights, and stored in the synaptic weights in order to select a specific input-outpu
nction. The set of all Boolean functions has capacity 2n. The set of all p-sparse Boolea
nctions has obviously a small cardinal capacity given by log2

(
2n

p2n

)
. The set T (n, 1) o

l linear threshold gates of n variables has capacity log2 |T (n, 1)| ≈ n2 ([8]and reference
erein). The work presented here leads to an interesting open question: what is the fraction
p sparse Boolean functions that can be implemented by linear threshold gates? Or, equiv

ently, what is the fraction of linear threshold Boolean functions that are also p-sparse? An
viously a similar question can be posed for polynomial threshold gates of degree d > 1.
If the linear threshold functions where to intersect the p sparse Boolean functions roughl
the same way as all other Boolean functions do as a function of p, then one would conjectur
at the number of p-sparse linear threshold gates is approximately given by:

|Tp(n, 1)| ≈ 2n
2

(
2n

p2n

)

22n

It is worth noting, that the value of |Tp(n, 1)| is known exactly in some simple case
rresponding to the lowest values of p. In particular:

|T2−n(n, 1)| = 2n

nce it is always possible to linearly separate one vertex of the hypercube from all the othe
rtices. Likewise,

|T2−(n−1)(n, 1)| = n2n

2
nce two vertices can be linearly separated if and only if they are adjacent. And similarl
r p = 3/2n and p = 4/2n (e.g. four vertices can be linearly separated if and only if the
rm a face).
Now we look at the other end of the communication channel, at the information contained
the data, which itself can be captured using different notions, such as the VC dimension
e discriminant dimension, and the training capacity.

.2.2. VC dimension. The VC dimension V of C is the size of the largest set S of inpu
ctors that can be shattered by C:

V (C) = max
S∈Hn

|S| : S can be be shattered

hus obviously we have: 2V ≤ 2C = |C|. In addition, the Sauer-Shelah lemma gives th
per bound:

2V ≤ 2C ≤
(

2n

≤ V

)

here
(

2n

≤V
)

denotes the sum of all binomial terms of the form
(

2n

k

)
with k ≤ V . The VC

mension of all Boolean functions of n variables is 2n. The VC dimension of all p-spars
oolean functions is p2n. The VC dimension of all linear threshold gates is n + 1, whic
ises another problem: What is the VC dimension of the set Tp(n, 1) of all p-sparse linea
reshold gates?
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.2.3. Discriminant Dimension. The discriminant dimension D of C is the size of the small
t set S of input vectors that can be used to discriminate the elements of C, i.e. no tw
ements of C behave identically on this set S:

D(C) = min
S∈Hn

|S| : no two elements of the class behave identically on S

o communicate a long sequence of elements of C, in the worst case of a uniform distribution
er C, we: (1) first pay a fixed cost by communicating the minimal discriminant data se

min; and then (2) encode each element f of the sequence by the D = |Smin| bits describin
e behavior of f on Smin. Thus asymptotically D bits are sufficient to communicate
nction in C and thus: C ≤ D. The discriminant dimension of all Boolean functions o
variables is 2n. The discriminant dimension of all p sparse Boolean functions is also 2n

his leads to two open questions of determining the discriminant dimension for T (n, 1) an
(n, 1). For linear threshold gates, the discriminant dimension is at least n2. If D(T ) i
e discriminant dimension for linear threshold functions, then one may conjecture that th
mber of p-sparse linear threshold gates is approximately given by:

|Tp(n, 1)| ≈
(
D(T )

pD(T )

)

suming that in general p-sparse linear functions behave in a typical way on the discriminan
t, i.e. are p-sparse on the discriminant set.

.2.4. Training Capacity. The training capacity aims to measure the size of the larges
aining set S that can be learnt/realized by a given learning system. This notion can onl
ake sense if a distribution D is defined over possible training sets (otherwise the size o
rgest set is trivially 2n for all non-empty C. A number of variations on the definition o
aining capacity are possible depending on various factors such as: (1) the assumptions on
e distribution D of the training data:(2) whether one allows a fraction δ of the possibl
aining sets to be un-realizable; and (3) whether one allows an error rate of up to ε on th
ta sets that are realizable. Thus in general we may denote the training capacity by:

D
δ,ε(C) = max

S∈Hn,D
|S| : with probability at least 1 − δ S can be be learnt with error at mostε

r instance:

KU0,0(C) = max k : every input-ouput data set of size k can be realized exactly

here U denotes the uniform distribution.
The distribution D plays an important role. If the inputs and the targets are i.i.d. with
symmetric Bernouilli distribution, then the training capacity of a linear threshold gate i
proximately n. However, if the targets are p sparse, our results show that it is higher.

Appendix A. A round core of a Gaussian polytope: Proof of Theorem 3.6

Assume that the Gaussian polytope

P := conv(x1, . . . , xN )

es not contain the ball rB(n), for some r > 0. Then there exists a point x0 ∈ P wit

0‖ ≤ r. This point must be separated from P by a hyperplane, and in particular, by som
ce of the polytope P .
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To express this condition analytically, note that the points xi are in general position in R
most surely. In particular, every subset {xi : i ∈ I} of n points spans an affine hyperplan
Rn. We can parametrize this hyperplane by its unit normal hI ∈ Rn and an offset aI

ways choosing the direction of hI so that aI ≥ 0. In other words, for every subset I ⊂ [N
here [N ] = {1, . . . , N}) with |I| = n there exist hI ∈ Rn and aI ≥ 0 such that

span (xi : i ∈ I) =
{
x ∈ Rn : 〈hI , x〉 = aI

}
.

When x0 is separated from P by a face of P , there exists a subset I ⊂ [N ] of size |I| = n
ch that the function f(x) = 〈hI , x〉−aI vanishes on all points xi, i ∈ I, takes the same sig
all other points xi, and takes the opposite sign on x0. In other words, one of the followin

o alternatives must happen:

〈hI , xi〉 < aI < 〈hI , x0〉 for all i ∈ Ic; (A.1

〈hI , xi〉 > aI > 〈hI , x0〉 for all i ∈ Ic. (A.2

Suppose (A.1) occurs. Then, since 〈hI , x0〉 ≤‖x0‖2 ≤ r, we have

〈hI , xi〉 < r for all i ∈ Ic. (A.3

, alternatively, (A.2) occurs, then, since aI ≥ 0, we have

〈hI , xi〉 > 0 for all i ∈ Ic. (A.4

mmarizing, we have shown that if P 6⊃ rB(n), there exists I ⊂ [N ], |I| = n, such tha
ther (A.3) or (A.4) holds.
Fix I and condition on the random vectors xi, i ∈ I. This fixes the unit normal hI . Thu

I , xi〉, i ∈ Ic, are N −n independent N(0, 1) random variables, and so we can compute th
nditional probability

P
{

(A.3) holds
}

=
(
P
{
g ≤ r

})N−n
, where g ∼ N(0, 1).

milarly,

P
{

(A.4) holds
}

=
(
P
{
g > 0

})N−n
≤
(
P
{
g ≤ r

})N−n

ing symmetry and since r > 0.
Running the union bound over all subsets I ⊂ [N ], |I| = n and lifting the conditionin
er xi, i ∈ I, we conclude that

P
{
P 6⊃ rB(n)

}
≤ 2

(
N

n

)(
P
{
g < r

})N−n
. (A.5

It remains to show that this quantity is bounded by e−n if we set

r :=

√
2 log

(N
n

)
(1− ε).

o do so, we can use the following known Gaussian tail bound:

P
{
g ≥ r

}
≥
(1

r
− 1

r3

)
· 1√

2π
e−r

2/2,

hich can be found in [28, Theorem 1.4] and [65, Proposition 2.1.2]. Recall that we assum
at N ≥ C(ε)n with C(ε) suitably large. Thus we can make r suitably large in terms of
d simplify the above bound to

P
{
g ≥ r

}
≥ exp

[
−
(

1 +
ε

2

)r2

2

]
≥ exp

[
−
(

1− ε

2

)
log
(N
n

)]
=
( n
N

)1−ε/2
.
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hen
(
P
{
g < r

})N−n
≤
[
1−

( n
N

)1−ε/2]N/2
(since we can assume that N ≥ 2n)

≤ exp
[
− N

2

( n
N

)1−ε/2]
(since 1− z ≤ e−z for z ≥ 0)

= exp
[
− n

2

(N
n

)ε/2]
.

Next, we can use the bound
(
N
n

)
≤ (eN/n)n (see e.g. [65, Exercise 0.0.5]) and obtain

(
N

n

)(
P
{
g < r

})N−n
≤ exp

[
n
(

log
(eN
n

)
− 1

2

(N
n

)ε/2)]
≤ 1

2
exp(−n).

the last step we used the assumption N ≥ C(ε)n with a suitably large C(ε). Substitut
is into (A.5) to complete the proof. �

Appendix B. Sub-Gaussian Distributions

.1. Definition and Basic Properties. A random variable X is sub-gaussian if it satisfie
y of the following four (or five) equivalent properties. In the statements of these properties
e parameters Ki > 0 differ from each other by at most an absolute constant factor.

(1) The tail of X is dominated by a Gaussian tail, that is:

P(|X| ≥ t) ≤ 2 exp(−t2/K2
1 ) for all t ≥ 0

(2) The moments of X satisfy:

||X||Lp = E|X|p)1/p ≤ K2
√
p for all p ≥ 1

(3) The moment generating function of X2 satisfies:

E exp(λ2X2) ≤ exp(K2
3λ

2) for all λ such that|λ| ≤ 1

K3

(4) The moment generating function of X2 is bounded at some point in the sense that:

E exp(X2/K2
4 ) ≤ 2

(5) Furthermore, if E(X) = 0 then properties 1-4 are also equivalent to the followin
fifth property. The moment generating function of X satisfies:

E exp(λX) ≤ exp(K2
5λ

2) for all λ ∈ R
he sub-gaussian norm of X, denoted by ||X||Ψ2 is defined by:

||X||Ψ2 = inf
{
t > 0 : E(exp(X2/t2)) ≤ 2

}

A random vector X in Rn is sub-gaussian if the one-dimensional marginals < X,x > ar
b-gaussian random variables for all x ∈ Rn. The sub-gaussian norm of X is defined as:

||X||Ψ2 = sup
x∈Sn−1

|| < X,x > ||Ψ2

here Sn−1 is the sphere of radius 1 in Rn.
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.2. Sub-gaussian norm of symmetric Bernoulli vectors. In connection with Corollar
1, we assume that x = (x1, . . . , xn) and the xi are i.i.d. Bernouilli ±1 random variable
ith probability p = 0.5. The sub-gaussian norm of x is given by:

α(n) = ||x||Ψ2 = sup
u∈Sn−1

|| < u, x > ||Ψ2 = sup
u∈Sn−1

inf
t>0
{E exp(< u, x >2 /t2) ≤ 2} (B.1

here Sn−1 is the sphere of radius 1 in Rn. Now we can write:

E exp(< u, x >2 /t2) =
1

2n

∑

x∈Kn

exp(< u, x >2 /t2) (B.2

ote that for fixed u the expectation is a continuous, strictly monotone, decreasing function
t ∈ (0,+∞), decreasing in value from +∞ to 0. Thus the value 2 is achieved by th

pectation for a single value of t and inf can be replaced by min in Equation B.1. Th
rresponding value of t varies continuously as u is varied over the closed set Sn−1. Thus th
aximum value of the corresponding t is achieved on Sn−1 (at multiple points for symmetr
asons) and sup can be replaced by max in Equation B.1. The following theorem provide
e bound and asymptotic value of the sub-gaussian norm.

heorem B.1. Let Z be a standard normal random variable Z ∼ N(0, 1) and x = (x1, . . . , xn
a vector of i.i.d. symmetric Bernoulli random variables. Fix u ∈ Sn−1 and let X =<

, x >. Then, for any σ > 0, we have:

E exp(σ2X2/2) ≤ E exp(σ2Z2/2) =
1√

1− σ2
.

urthermore, the sub-gaussian norm α(n) of x satisfies:

α(n) ≤
√

8√
3

and α(n)→
√

8√
3

n→∞.

roof of Theorem B.1. The proof is based on the Chernoff bound on the moment generatin
nction of Z and X.

emma B.2 (Chernoff’s bound). For any λ ∈ R, we have

E exp(λX) ≤ E exp(λZ) = exp(λ2/2).
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o prove this bound, note that the identity for Z is the basic formula for the momen
nerating function of the normal distribution. For X, we have

E exp(λX) = E exp
( n∑

i=1

uixi

)

=
n∏

i=1

E exp(λuixi) (by independence)

=
n∏

i=1

cosh(λui) (since xi = ±1 with equal probabilities)

≤
n∏

i=1

exp(λ2u2
i /2) (since cosh(x) ≤ exp(x2/2) everywhere)

= exp
( n∑

i=1

λ2u2
i /2
)

= exp(λ2/2) (by assumption on ui)

Now to finish the proof of Theorem B.1, we first note that the following identity holds fo
ery x ∈ R and σ > 0:

exp(σ2x2/2) =
1

σ
√

2π

∫ ∞

−∞
eλxe−λ

2/2σ2
dλ

nce each side represents the moment generating function of a N(0, σ2) random variabl
aluated at x, i.e. E exp(Y x) where Y ∼ N(0, σ2). We then substitute x = X and tak
pectation on both sides. This yields:

E exp(σ2X2/2) =
1

σ
√

2π

∫ ∞

−∞
E[eλX ] e−λ

2/2σ2
dλ

≤ 1

σ
√

2π

∫ ∞

−∞
e−λ

2/2 e−λ
2/2σ2

dλ (by Lemma B.2)

=
1

σ
√

2π

∫ ∞

−∞
e−λ

2/2b2 dλ (where b = σ/
√

1− σ2)

=
b

σ
=

1√
1− σ2

.

we repeat the same computation for Z, the inequality (due to the application of Lemma B.2
ecomes an equality and the first part of the theorem is proven. As a consequence, settin
2 = 3/4, we obtain:

E exp((3/8)X2) ≤ E exp((3/8)Z2) ≤ 2

d thus:

‖X‖ψ2
≤‖Z‖ψ2

≤
√

8/3.

hich completes the proof of Theorem B.1. �

Note, a naive Gaussian approximation to the exponent in Equation B.2, combined with
Lagrangian optimization argument showing that the corresponding maximal vectors hav
mponents of fixed magnitude 1/

√
n, provides the estimate:
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α(n) ≈

√
1 +

√
1 + (4(ln 2)(n− 1)/n)

2 ln 2
≈

√
1 +

√
1 + (4(ln 2)

2 ln 2
(B.3

hich is fairly close to the true value
√

8/
√

3.

.3. Sug-gaussian norm of symmetric Bernoulli tensors. Unlike the case d = 1, her
e numbers α(n, d) are not bounded as n → ∞. To see this, let us allow for simplicit
petitions in the sets I of indices defining the tensor. This makes the tensor xd have di
ension nd (as opposed to

(
n
d

)
). With this in mind, for every vector a in Rn we have

=< xd, ad >=< x, a >d. Let a be the unit vector with all the same coefficients 1/
√
n. B

e Central Limit Theorem, < x, a >→ G where G is N(0, 1). The convergence here is i
stribution as n→∞. Thus:

Eexp(X2/t2)− > Eexp(G2d/t2) =∞
r every t > 0, as long as d > 1. This shows that the sub-gaussian norm of X is larger tha
(for large enough n). Since t is arbitrary, it follows that the sub-gaussian norm of X goe
infinity. Using the same Central Limit Approximation used above, in the case of d = 1
es not help in the case d > 1.

Appendix C. Proof of Theorem 5.2

Our proof of Theorem 5.2 will be based on standard facts about sub-gaussian distribution
ee [65]) and the following lemma.

emma C.1 (Conditioning sub-gaussian distributions). Let x be a sub-gaussian random
ctor taking values in Rn. Then for any event E with positive probability, we have

‖x‖ψ2(·|E) ≤ C‖x‖ψ2

√
log

2

P(E)
.

In the statement of this lemma and thereafter, we write ‖x‖ψ2(·|E) to indicate that th

b-gaussian norm of x is computed while conditioned on the event E .

roof. Taking the inner product of x with a fixed unit vector, we can reduce the problem t
e case n = 1 where x is a random variable. Furthermore, by homogeneity we can assum
at ‖x‖ψ2

= 1. Then, denoting q := P(E), we have

P
{
x > t | E

}
≤ P

{
x > t

}

P(E)
≤ 2e−ct

2

q
≤ 2e−ct

2/2

long as

t ≥ t0 :=

√
2

c
log
(1

q

)
.

the range where t < t0, a trivial bound holds

P
{
x > t | E

}
≤ 2e−t

2/2t20 ,

ecause the right hand side is greater than 1. Combining the two bounds, we conclude b
e definition of the sub-gaussian norm that

‖x‖ψ2(·|E) . max(1, t0) .
√

log
2

q
.
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he proof is complete. �

roof of Theorem 5.2. Let us first assume that m = 1 and check that the map F satisfies

F (x1) = y1

ith high probability. Once we have done this, a union bound over K data points and m
ordinates of y will finish the argument. When m = 1, the function F can be expressed as

F (x) = h
(
〈w, x〉 − b

)
where w =

K∑

k=1

ykxk. (C.1

Step 1. Decomposition into signal and noise. In order to prove that F (x1) = y1, le
expand 〈w, x1〉 as follows:

〈w, x1〉 = y1‖x1‖22 +
〈 K∑

k=2

ykxk, x1

〉
=: signal + noise. (C.2

We would like to show that the signal to noise ratio is large. To this end, consider th
ndom set

I := {k : yk = 1} ⊆ {2, . . . ,K}.
nce yk are i.i.d. Bernoulli random variables with parameter q, Bernstein’s inequality (se
g. [65, Theorem 2.8.4]) implies that

|I| ≤ 10Kq (C.3

ith probability at least 1−2 exp(−c1Kq) ≥ 1−1/m0. (The last bound follows from theorem’
sumption on Kq with a suitably large constant C.) Condition on a realization of label
, . . . , yK satisfying (7.5). Furthermore, condition on a realization of the random vector x
ith moderate norm, namely

γ
√
n ≤‖x1‖2 ≤ β

√
n. (C.4

Let us estimate the strength of the signal and noise in (C.2). If y1 = 0, the signal i
viously zero, and when y1 = 1, we have

signal =‖x1‖22 ≥ γ2n.

Step 2. Bounding the noise. To bound the noise term in (C.2), let us use Lemma C.1
gives

‖xk‖ψ2(·|y2,...,yK) =‖xk‖ψ2(·|yk) . α
√

log
2

q(1− q) , k = 2, . . . ,K. (C.5

he equality in (C.5) is due to independence. The inequality in (C.5) uses the fact that th
ents {yk = 0} and {yk = 1} have probabilities with probabilities 1− q and q, both of whic
n be bounded below by q(1− q).
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Using the approximate rotation invariance of sub-gaussian distributions (see [65, Proposi
on 2.6.1]) followed by the bounds (C.3) and (C.5), we obtain

∥∥∥∥
K∑

k=2

ykxk

∥∥∥∥
ψ2(·|y2,...,yK)

=

∥∥∥∥
∑

k∈I
xk

∥∥∥∥
ψ2(·|y2,...,yK)

.
(∑

k∈I
‖xk‖2ψ2(·|y2,...,yK)

)1/2

. α
√
Kq log

2

q(1− q) .

his implies that, conditioned on x1 and y2, . . . , yk, the noise term in (C.2) is sub-gaussian

‖noise‖ψ2(·|x1,y2,...,yK) =

∥∥∥∥
〈 K∑

k=2

ykxk, x1

〉∥∥∥∥
ψ2(·|x1,y2,...,yK)

≤
∥∥∥∥
K∑

k=2

ykxk

∥∥∥∥
ψ2(·|y2,...,yK)

·‖x1‖2

. α
√
Kq log

2

q(1− q) · β
√
n =: R. (C.6

y the definition of sub-gaussian norm, this yields the tail bound:

P
{
|noise| > t |x1, y2, . . . , yK

}
≤ 2 exp(−c0t

2/R2) ≤ 1

Km0

we choose

t := C1

√
log(Km0)R

ith a suitably large constant C1. Thus, with (conditional) probability at least 1−1/(Km0)
e noise satisfies

|noise| ≤ t ≤ 1

2
γ2n.

he last bound follows from the definitions of t and R in (C.6) and the key assumption (5.1
ith a suitably large constant C.

Step 3. Estimating the signal-to-noise ratio. Lifting the conditioning on x1 an
, . . . , yK , we conclude the following with (unconditional) probability at least 1 − 1/m0 −
(Km0). If y1 = 0 then signal = 0, otherwise signal ≥ γ2n as long as x1 has moderate norm

er (C.4); the noise satisfies |noise| ≤ 1
2γ

2n.
Putting this back into (C.2), we see that if y1 = 1 and x1 has moderate norm per (C.4)

e have

〈w, x1〉 ≥ γ2n− 1

2
γ2n =

1

2
γ2n > b

the assumption (5.2) on b. So 〈w, x1〉 − b is positive and thus, by (C.1), F (x1) = 1 = y1

If, on the other hand, y1 = 0 then

〈w, x1〉 ≤
1

2
γ2n < b.

〈w, x1〉 − b is negative and thus, by (C.1), F (x1) = 0 = y1. Thus, in either case, we hav
(x1) = y1 as claimed.

Step 4. Union bound. We can repeat this argument for any fixed k = 1, . . . ,K an
us obtain F (xk) = yk with probability at least 1 − 1/m0 − 1/(Km0). Now take a unio

ound over all k = 1, . . . ,K. This should be done carefully: recall that the term 1/m0 in th
obability bound appears because we wanted the set I to satisfy (7.4). The set I obviousl
es not depend on our choice of a particular k; it is fixed during the application of th
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ion bound and the term 1/m0 does not increase in this process. Thus, we showed that th
nclusion

F (xk) = yk for all k = 1, . . . ,K

lds with probability at least 1 − 1/m0 −K/(Km0) = 1− 2/m0.
This completes the proof of the theorem in the case m = 1. To extend it to general m, w
ply argument above for each coordinate i = 1, . . . ,m of y and finish by taking the unio

ound over all m coordinates. �
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