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1. Introduction 

Parkinson’s disease (PD) affects over six million people globally. PD 
leads to devastating chronic motor manifestations such as bradykinesia/ 
akinesia, rigidity, gait disturbance, and tremor. PD symptoms are 
managed by adjusting the schedule and dose of PD medications such as 
levodopa and dopamine agonists. However, PD patients at mid- and 
advanced-stages of the disease frequently experience additional 
treatment-related motor complications such as troubling motor fluctu-
ations between mobile (ON) and akinetic (OFF) states and abnormal, 
involuntary dyskinetic movements [1]. At this stage, effective medica-
tion adjustments require accurate knowledge about the nature of pa-
tients’ motor complications over a typical day. The current clinical 
protocol entails obtaining this information through periodic clinical 
examinations and patient interviews. However, patient interviews can 
be unreliable and limited by recall bias [2]. Clinical examinations may 
only provide a snapshot of motor functioning, hence failing to capture 
an accurate picture of motor complications [3]. 

Rapid advancements in sensing technologies provide user-friendly 
wearables with a long battery life that can be worn by PD patients and 
used to unobtrusively assess motor symptoms during activities of daily 
living (ADL). Such sensing technologies can be tailored for use in 
monitoring PD patients at home to generate clinically actionable infor-
mation that can be provided to the treating physician to make individ-
ualized therapeutic recommendations (Table 1) [4,5]. Commercially 
available wearable devices such as Kinesia360™ (Great Lakes 

NeuroTechnologies), Personal KinetiGraph® (PKG®) (Global Kinetics 
Corporation Ltd.), REMPARK (Sense4Care), and PERFORM [6] have 
various characteristics and deliverables to assess motor complications, 
but adoption and implementation in clinical practice have been slow 
and limited [7]. Contributing factors to such inconsistency might 
include delays in patient acceptance and adherence to wearing new 
technology, clinician acceptance, or issues with cost and insurance 
coverage. However, in an attempt to look beyond the technology life 
cycle to better understand this inconsistency, we sought to review the 
current status of these devices and explore possible gaps between the 
capabilities of their underlying algorithms compared to the re-
quirements for an accurate motor complication monitoring system that 
can facilitate effective therapeutic adjustments. It is our view that a 
major factor contributing to slow adoption of at-home monitoring sys-
tems of motor complications is based on the practical utility of the 
existing deliverables from such devices, which are mainly determined by 
their underlying algorithms. We propose that if revised algorithms can 
be used to generate data that can be interpreted more reliably in the 
context of widely accepted and understood clinical measures, this would 
create more convincing evidence for the clinicians to utilize these de-
vices and the insurance companies to support coverage. 

1.1. Requirements of a motor complication monitoring system 

For a monitoring device to be effectively used to inform therapy 
adjustments, it needs to provide a comprehensive picture of motor 
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complications using objective measures comparable to the clinically 
actionable information (Table 1) obtained from routine assessment tools 
(e.g., interview and examination). The average time spent in ON, OFF, 
and OND (ON with peak dose or diphasic dyskinesia) states and the 
degree of change in symptom severity over a typical day are important 
considerations. Three measurements of PD symptoms relevant for 
medication adjustments are: 1) Movement Disorder Society Unified PD 
Rating Scale (MDS-UPDRS) Part-III to measure motor symptoms in each 
state; 2) tremor severity as the physician may decide to pursue specific 
medications for tremor management only; 3) the Unified Dyskinesia 
Rating Score or Modified Abnormal Involuntary Movement Scale 
(mAIMS) to understand dyskinesia severity. 

1.2. Introduction to commercially available systems 

Kinesia360™ uses sensors on the most affected wrist and ankle to 
estimate the severity (scale of 0–4 for severe) of tremor, bradykinesia, 
and dyskinesia, and a patient diary application to collect information 
about medication states. PKG® uses one sensor on the wrist and provides 
a bradykinesia score (BKS) and dyskinesia score (DKS) ranging from 0 to 
4 (severe), the occurrence of tremor, and a fluctuation and dyskinesia 
score (FDS), derived from BKS and DKS scores for describing motor 
fluctuations [8,9]. BKS, DKS, and FDS are new measures that are not 
presently obtainable during interviews or examinations. Sense4-
Care/REMPARK uses sensors on the wrist and waist to portray intervals 
with tremor, bradykinesia, dyskinesia, medication ON/OFF states, and 
freezing of gait and fall incidents without severity scores [10]. Other 
devices either require multiple wearables (three in SENSE-PARK [11] or 
five in PERFORM [6]) or include peripheral tools, such as a balance 
board and touch screen computer to perform prescribed tests, which 
pose challenges for large-scale deployment. Other systems, such as 
mPower [12] and Medopad (https://medopad.com), require patients’ 
active engagement (e.g., tapping or performing UPDRS-specific tasks in 
front of a smartphone camera) and therefore, cannot achieve unobtru-
sive, continuous monitoring. Such devices are unable to detect durations 
of medication states and the transition periods (e.g., ON to OFF or ON to 
OND) that are important factors for medication adjustment and may be 
more suitable for early PD detection rather than the measurement of 
motor complications. 

2. Ideal device capabilities for at-home monitoring of motor 
complications 

2.1. Measurement and reporting of clinically actionable information 

The systems described above measure and provide only some ele-
ments of the clinically actionable information in Table 1. Kinesia360™ 
does not passively measure or report time spent in different medication 
states and instead asks patients’ active engagement to report this in-
formation using the diary application. Although the report provides a 
measure of symptom duration and severity, it does not readily match 
this to ON, OFF, and OND states. Tremor severity is not provided in the 
PKG® report. The system only reports a new measure of dyskinesia and 
bradykinesia severity with respect to the median, and 25th and 75th 
percentile of a healthy control group averaged over multiple days. 
Farzanehfar et al. [13] show that it may still take 2–4 clinical visits to 
translate these indices into clinically meaningful metrics by performing 
additional examinations and patient interviews. The Sense4Care report 
only detects the duration of different states and does not provide any 
information on the severity of the tremor, bradykinesia, or dyskinesia. 
Table 2 lists each devices’ deliverables along with the characteristics of 
their underlying algorithms. 

We propose that developing and implementing refined algorithms 
that measure the full spectrum of clinically actionable information will 
facilitate clinicians’ confidence that these devices can inform disease 
management and will enhance patient-clinician communication about 
disease manifestations. 

2.2. Agreement with clinically accepted measures 

The reports provided by such systems are only as accurate as their 
underlying algorithms, which are challenged by the difficulty of esti-
mating motor complications from ADL during free-living conditions. For 
example, Pulliam et al. [22] show that the Kinesia360™ algorithms 
provide good detection accuracy in a simulated home setting study of 13 
PD patients, while showing a low estimation of dyskinesia (r = 0.45) and 
tremor (r = 0.58) when used on 12 PD patients at home as shown by 
Hadley et al. [23]. 

Griffiths et al. [18] show that PKG® algorithms derive a high cor-
relation for DKS (r = 0.8) and BKS (r = 0.63) in the simulated home 
environment. However, in an actual home setting, Horne et al. [19] 
show that the DKS correlation was only 0.49 after excluding the patients 
without dyskinesia (n = 46), even though PKG® detected substantial 
dyskinesia in 11% (n = 5) of those patients. Furthermore, in the home 
setting, the BKS correlation during ON state was r = 0.42. 
PKG®-measured distributions of hours per day spent in different motor 
states showed 0.404–0.658 correlation to diary categorizations, and a 
0.215–0.324 correlation was found when motor states were assessed at 
the single-hour-level [24]. In a study with 12 patients with (n = 5) and 
without (n = 7) fluctuations, Horne et al., 2015 [25] show a 97.1% 
sensitivity and 87.5% specificity for detecting motor fluctuations. 
However, the algorithmically-derived FDS score has not been correlated 
with the clinically-measured severity of fluctuation and requires addi-
tional clinician interpretation. Khodakarami et al., 2019 [20] develop a 
new algorithm (not included PKG®) to detect clinically meaningful 
percent change in UPDRS III from OFF to ON states (i.e., absΔUPDRS 
III>10), achieving 74% accuracy before removing 83 participants for 
different reasons such as not being in their worst OFF state, uncertainty 
in the UPDRS III change (removing patients with 11≤absΔUPDRS 
III≤14), or variability in the magnitude and latency of peak response to 
levodopa. 

Using parameters measured by Sense4Care, Rodríguez-Molinero 
et al., 2017 [21] obtain a −0.56 correlation with the total UPDRS-III, 
and Samà et al., 2017 [14] obtain a correlation of −0.81 with the bra-
dykinesia item 24 of the UPDRS III. Bayés et al. [15] investigate the 
ability of Sense4Care measurements to detect ON and OFF states in 33 

Table 1 
Clinically actionable information required for precise identification of thera-
peutic goals and example medication adjustments to optimize PD control.  

Clinically Actionable 
Information 

Therapeutic Goals Examples of Medication 
Adjustments 

Duration of OFF 
state 

Reduce OFF time (longer 
time spent in ON time with 
each dose) 

Add COMT-I, MAO-I, new 
dopaminergic medication, 
increase dose of existing 
dopaminergic medication, 
reducing interval of 
dopaminergic medication 
dosing 

Duration of ON 
state 

Change in MDS- 
UPDRS-III 
severity between 
OFF and ON states 

Improve quality of ON 
time (greater degree of 
symptom improvement 
with each dose) 

Increase dose of 
dopaminergic medication, 
add a new dopaminergic 
medication, add 
trihexyphenidyl (for tremor 
only) 

Change in tremor 
severity from OFF 
and ON states 

Duration of OND 
state 

Reduce dyskinesia 
severity or duration 

Add amantadine or lower 
dose of dopaminergic 
medication Change in 

dyskinesia 
severity from OFF 
and ON states  
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PD patients during three days of home monitoring. Accuracy for ON 
detection was 88% and 97% for OFF detection, but only used an average 
of five predictions per patient over three days after performing extreme 
post-processing of the results, such as excluding patient-reported 
medication states that differed over two consecutive hours [15]. It is, 
therefore, unclear how the system performs during transition periods 
between OFF and ON. 

In summary, existing algorithms provide only some clinically 
actionable information, and they also perform differently between 
controlled and home settings. Significant data exclusions or other post- 
processing techniques are required to show acceptable agreement with 
clinically recognized measures of symptom severity or ON/OFF states, 
and the reduced performance in the home setting has not yet been 
explored. The use of algorithms that can better relate passive measure-
ments to clinical measurements combined with the use of data charac-
teristics to investigate or explain mismatches would further enhance 
clinician confidence in the utility and value of these devices. 

2.3. Reporting the full spectrum of disease variability 

Available systems do not fully report the variability in motor features 
that may occur in a patient’s living environment and do not report all 
aspects of disease severity. For example, Kinesia360™ does not provide 
medication states. PKG® only detects the presence or absence of hand 
tremor as explained by Braybrook et al. [17], and tremor fluctuations 
are not incorporated into the FDS score. A change in the dyskinesia 
mainly drives the PKG® FDS score, and Ossig et al. [24] show that the 
method is not sensitive to change in BKS before and after DBS. Addi-
tionally, using only one wrist sensor, PKG® does not capture PD mani-
festations in the lower extremities. As explained in the related 
references, Sense4Care only detects intervals with hand tremor [16]. 
Although Sense4Care uses two sensors, the data from each sensor is not 
integrated. For example, the wrist sensor only employs a tremor algo-
rithm [16], while the waist sensor is used separately to measure lower 
limb dyskinetic movements [26] and bradykinesia [14]. 

PKG® has to be worn at least five days and only reports an average 
report of its metrics across those days per patient to reduce the error in 
BKS and DKS estimations [19] and motor states [24]. Day-to-day vari-
ations are, therefore, less apparent. Sense4Care does not identify vari-
ability because it does not detect PD motor features during all ADL. For 
example, it does not detect dyskinesia during ambulation as shown by 
Samà et al. [14], and bradykinesia is only assessed during ambulation as 
shown in the work of Pérez-López et al. [26]. The OFF state is detected in 
ambulatory conditions by the presence of gait bradykinesia, and the ON 
state is detected as the absence of bradykinesia during walking, or 
dyskinesia when not walking. 

It is well understood that PD manifestations vary substantially be-
tween individuals and that different motor phenotypes exist (i.e., 
tremor-dominant and postural instability gait disturbance subtypes of 
PD). Algorithms in unobtrusive monitoring systems should use features 
that identify fluctuating and dyskinetic or undertreated patients based 
on clinically actionable information regardless of an individual’s spe-
cific manifestations, active therapy, or activity level. 

2.4. Interpretability of the report for an individual patient and 
implications for clinical practice 

The devices reviewed in this paper provide new objective measures 
referenced to group “norms” derived from either a group of PD patients 
or healthy controls. When estimating PD severity ratings, a change in the 
new measures provides a sense of severity relative to the group level, but 
what this degree of change means to the patient’s disease state and how 
the clinician can use that information to adjust medication is unknown 
unless those metrics represent a clinically meaningful metric relevant to 
that patient. As a result, the reports from these devices can capture inter- 
individual variations relative to the group level but are generally unable Ta
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to identify intra-individual changes relevant to the patient’s baseline 
[7]. 

In the case of medication state detection, where one patient’s OFF 
state severity could be similar to another patient’s ON state (see Fig. 1 
from our PD patient data [27]), comparison to other PD patients or 
healthy controls may miss intra-individual variations in disease mani-
festations and inaccurately characterize the individual as ON or OFF at 
all time-points. Unless there are algorithms that can detect medication 
states relative to the patient’s baseline, the device cannot provide ac-
curate measurements of medication state. 

Additionally, the implications for clinical practice when using these 
devices are not robustly demonstrated in existing studies. In a recent 
study by Isaacson et al., 2019 [28], Kinesia360™ data did not reflect 
improvements in PD symptoms after treatment with rotigotine, though 
UPDRS III did. Horne et al., 2016 [19] explored PKG® to demonstrate 
motor improvements following DBS. Both the mAIMS and DKS scores 
reflected a reduction in dyskinesia with DBS. However, BKS could not 
show the effect of DBS, although there was a difference in 
clinician-measured UDPRS III scores before and after DBS. Joshi et al., 
2019 [29] found that across 85 visits in 63 patients, PKG® use improved 
the ability to assess the impact of therapy in 38% of visits and improved 
dialogue with patients in 59% of the visits. PKG® identified symptoms 
that were not reported by 48% of the patients while missing a symptom 
in 24%. In another study [30], 59% of PKG® reports (n = 112) did not 
provide additional information beyond routine clinical evaluation, and 
its use resulted in adjusting the patient’s medical management in 32% of 
cases. A study by Farzanehfar et al., 2018 [31] showed amongst 33 PD 
patients, 14 required therapeutic adjustments and a median of 3 addi-
tional clinical visits (range 2–4) were required following PKG® report-
ing to achieve therapeutic goals) for 14 (out of 33) PD patients. 

For a device to be relevant to clinical decision-making or positively 
impact clinical practice, the algorithms within them should robustly 
consider both inter- and intra-individual comparisons and directly 
deliver the information about clinically actionable information in the 
device report. 

3. Conclusions 

Despite the significant potential of using commercially available 
wearable systems for unobtrusive assessment of PD motor complications 
during ADLs, their adoption and implementation have not been robust. 
Our investigation of these devices indicates that their onboard, inter-
pretive algorithms do not necessarily provide complete information and 
may not be tailored for individualized patient care. One may suggest 
that the existing discrepancy between these devices and the clinical 
gold-standard assessments might indicate their ability to provide addi-
tional information beyond the clinical assessments. If that is the case, 
more research is needed to apply the knowledge learned to the disease 
state; otherwise the existing gap in adopting and implementing such 
devices will remain. Specifically, for measuring motor symptoms that 
inform disease management and for clinicians to feel comfortable with 
their use, these devices need to generate data that can be interpreted 
alongside widely accepted and understood clinical measures. A better 
definition of accuracy of these outcomes with respect to the clinical 
gold-standard assessments is needed to address the issues with the 
subjectivity of these gold-standard measures. Moreover, when there is a 
disagreement between these technology measures and the gold- 
standard, more analysis is needed to interpret the differences, which 
could lead to additional information gained by technology. 

We propose that obstacles to adoption relate largely to the limita-
tions of these devices’ underlying algorithms, which currently generate 
data that is not individualized and not sensitive to change at the patient 
level. Furthermore, current algorithms do not provide all the required 
information about motor complications, are based on comparative 
metrics, or do not provide a full spectrum of the disease severity during 
ADLs in the home environment. Consequently, these systems have 

limited capability to accurately and comprehensively report clinically 
actionable information and still require either additional patient 
participation or clinical assessment to inform therapeutic decision- 
making. The essential characteristics and deliverables of a system that 
can address these limitations are listed in Table 2. Such systems with 
readily interpretable data will enhance patient-clinician communication 
about disease manifestations. They can facilitate understanding of the 
association between various symptoms and the clinical state, or the 
interpretation of the digital parameters. 

Additional individualization of technology-based assessments such 
as the number and placement of the sensors according to the patient’s 
need and a capability to monitor the patient’s adherence to the device 
use could further improve the applicability of these devices. However, 
with the recent advances in engineering and algorithm development, we 
recommend developing optimized algorithms that find the optimal in-
flection point between accuracy and complexity without adding more 
layers of complexity to encourage patients’ enthusiasm and adopt-
ability. Non-motor symptom detection via wearable sensors poses 
separate and unique challenges, and is unlikely to be accomplished 
using the same unobtrusive techniques as motor symptom detection. 
However, when separately assessed, they can be considered alongside 
the data generated from devices intended to measure motor complica-
tions to determine the relationship of these symptoms to ON or OFF 
status for clinicians to select the most appropriate medication plan. 
Lastly, there is growing interest in developing technology to meet 
patient-centered needs [32], and the development of new algorithms 
could accomplish this by prioritizing novel digital endpoints (https:// 
aact.ctti-clinicaltrials.org/). 

We acknowledge that there may be other factors which are beyond 
the scope of this paper which may impact the adoptability of wearable 
systems to monitor motor complications. Regardless, we believe that an 
unobtrusive home monitoring system for measurement of motor com-
plications that is equipped with new or refined algorithms meeting key 
requirements as described in this viewpoint will be better positioned for 
clinical adoption by a wide variety of care providers involved in man-
aging PD patients. 
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Fig. 1. MDS-UPDRS-III scores of 19 PD subjects in OFF and ON states [28]. 
Although in different states, subjects in groups A and B have similar 
MDS-UPDRS-III scores indicating that medication state has to be detected 
individually and not from disease severity. 
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[10] J. Cabestany, À. Bayés, Parkinson’s Disease Management through ICT: the 
REMPARK Approach, River Publishers, Gistrup, 2017. 

[11] J. Ferreira, C. Godinho, A. Santos, J. Domingos, D. Abreu, R. Lobo, N. Gonçalves, 
M. Barra, F. Larsen, Ø. Fagerbakke, I. Akeren, Quantitative home-based assessment 
of Parkinson’s symptoms: the SENSE-PARK feasibility and usability study, BMC 
Neurol. 15 (1) (2015) 1–7. 

[12] B. Bot, C. Suver, E. Neto, M. Kellen, A. Klein, C. Bare, M. Doerr, A. Pratap, 
J. Wilbanks, E. Dorsey, S. Friend, The mPower study, Parkinson disease mobile 
data collected using ResearchKit, Sci. Data 3 (1) (2016) 1–9. 

[13] P. Farzanehfar, H. Woodrow, M. Braybrook, S. McGregor, A. Evans, F. Nicklason, 
M. Horne, Objective measurement in routine care of people with Parkinson’s 
disease improves outcomes, npj Parkinson’s Dis. 4 (1) (2018) 1–8. 
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