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1. Introduction

Parkinson’s disease (PD) affects over six million people globally. PD
leads to devastating chronic motor manifestations such as bradykinesia/
akinesia, rigidity, gait disturbance, and tremor. PD symptoms are
managed by adjusting the schedule and dose of PD medications such as
levodopa and dopamine agonists. However, PD patients at mid- and
advanced-stages of the disease frequently experience additional
treatment-related motor complications such as troubling motor fluctu-
ations between mobile (ON) and akinetic (OFF) states and abnormal,
involuntary dyskinetic movements [1]. At this stage, effective medica-
tion adjustments require accurate knowledge about the nature of pa-
tients’ motor complications over a typical day. The current clinical
protocol entails obtaining this information through periodic clinical
examinations and patient interviews. However, patient interviews can
be unreliable and limited by recall bias [2]. Clinical examinations may
only provide a snapshot of motor functioning, hence failing to capture
an accurate picture of motor complications [3].

Rapid advancements in sensing technologies provide user-friendly
wearables with a long battery life that can be worn by PD patients and
used to unobtrusively assess motor symptoms during activities of daily
living (ADL). Such sensing technologies can be tailored for use in
monitoring PD patients at home to generate clinically actionable infor-
mation that can be provided to the treating physician to make individ-
ualized therapeutic recommendations (Table 1) [4,5]. Commercially
available wearable devices such as Kinesia360™ (Great Lakes
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NeuroTechnologies), Personal KinetiGraph® (PKG®) (Global Kinetics
Corporation Ltd.), REMPARK (Sense4Care), and PERFORM [6] have
various characteristics and deliverables to assess motor complications,
but adoption and implementation in clinical practice have been slow
and limited [7]. Contributing factors to such inconsistency might
include delays in patient acceptance and adherence to wearing new
technology, clinician acceptance, or issues with cost and insurance
coverage. However, in an attempt to look beyond the technology life
cycle to better understand this inconsistency, we sought to review the
current status of these devices and explore possible gaps between the
capabilities of their underlying algorithms compared to the re-
quirements for an accurate motor complication monitoring system that
can facilitate effective therapeutic adjustments. It is our view that a
major factor contributing to slow adoption of at-home monitoring sys-
tems of motor complications is based on the practical utility of the
existing deliverables from such devices, which are mainly determined by
their underlying algorithms. We propose that if revised algorithms can
be used to generate data that can be interpreted more reliably in the
context of widely accepted and understood clinical measures, this would
create more convincing evidence for the clinicians to utilize these de-
vices and the insurance companies to support coverage.

1.1. Requirements of a motor complication monitoring system

For a monitoring device to be effectively used to inform therapy
adjustments, it needs to provide a comprehensive picture of motor
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Table 1
Clinically actionable information required for precise identification of thera-
peutic goals and example medication adjustments to optimize PD control.

Clinically Actionable
Information

Therapeutic Goals Examples of Medication

Adjustments

Duration of OFF
state

Duration of ON
state

Add COMT-I, MAO-I, new
dopaminergic medication,
increase dose of existing
dopaminergic medication,
reducing interval of
dopaminergic medication
dosing

Increase dose of

Reduce OFF time (longer
time spent in ON time with
each dose)

Change in MDS- Improve quality of ON

UPDRS-1II time (greater degree of dopaminergic medication,
severity between symptom improvement add a new dopaminergic
OFF and ON states with each dose) medication, add

Change in tremor
severity from OFF
and ON states

Duration of OND
state

Change in
dyskinesia
severity from OFF
and ON states

trihexyphenidyl (for tremor
only)

Add amantadine or lower
dose of dopaminergic
medication

Reduce dyskinesia
severity or duration

complications using objective measures comparable to the clinically
actionable information (Table 1) obtained from routine assessment tools
(e.g., interview and examination). The average time spent in ON, OFF,
and OND (ON with peak dose or diphasic dyskinesia) states and the
degree of change in symptom severity over a typical day are important
considerations. Three measurements of PD symptoms relevant for
medication adjustments are: 1) Movement Disorder Society Unified PD
Rating Scale (MDS-UPDRS) Part-III to measure motor symptoms in each
state; 2) tremor severity as the physician may decide to pursue specific
medications for tremor management only; 3) the Unified Dyskinesia
Rating Score or Modified Abnormal Involuntary Movement Scale
(mAIMS) to understand dyskinesia severity.

1.2. Introduction to commercially available systems

Kinesia360™ uses sensors on the most affected wrist and ankle to
estimate the severity (scale of 0—4 for severe) of tremor, bradykinesia,
and dyskinesia, and a patient diary application to collect information
about medication states. PKG® uses one sensor on the wrist and provides
a bradykinesia score (BKS) and dyskinesia score (DKS) ranging from 0 to
4 (severe), the occurrence of tremor, and a fluctuation and dyskinesia
score (FDS), derived from BKS and DKS scores for describing motor
fluctuations [8,9]. BKS, DKS, and FDS are new measures that are not
presently obtainable during interviews or examinations. Sense4-
Care/REMPARK uses sensors on the wrist and waist to portray intervals
with tremor, bradykinesia, dyskinesia, medication ON/OFF states, and
freezing of gait and fall incidents without severity scores [10]. Other
devices either require multiple wearables (three in SENSE-PARK [11] or
five in PERFORM [6]) or include peripheral tools, such as a balance
board and touch screen computer to perform prescribed tests, which
pose challenges for large-scale deployment. Other systems, such as
mPower [12] and Medopad (https://medopad.com), require patients’
active engagement (e.g., tapping or performing UPDRS-specific tasks in
front of a smartphone camera) and therefore, cannot achieve unobtru-
sive, continuous monitoring. Such devices are unable to detect durations
of medication states and the transition periods (e.g., ON to OFF or ON to
OND) that are important factors for medication adjustment and may be
more suitable for early PD detection rather than the measurement of
motor complications.
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2. Ideal device capabilities for at-home monitoring of motor
complications

2.1. Measurement and reporting of clinically actionable information

The systems described above measure and provide only some ele-
ments of the clinically actionable information in Table 1. Kinesia360™
does not passively measure or report time spent in different medication
states and instead asks patients’ active engagement to report this in-
formation using the diary application. Although the report provides a
measure of symptom duration and severity, it does not readily match
this to ON, OFF, and OND states. Tremor severity is not provided in the
PKG® report. The system only reports a new measure of dyskinesia and
bradykinesia severity with respect to the median, and 25th and 75th
percentile of a healthy control group averaged over multiple days.
Farzanehfar et al. [13] show that it may still take 2—4 clinical visits to
translate these indices into clinically meaningful metrics by performing
additional examinations and patient interviews. The Sense4Care report
only detects the duration of different states and does not provide any
information on the severity of the tremor, bradykinesia, or dyskinesia.
Table 2 lists each devices’ deliverables along with the characteristics of
their underlying algorithms.

We propose that developing and implementing refined algorithms
that measure the full spectrum of clinically actionable information will
facilitate clinicians’ confidence that these devices can inform disease
management and will enhance patient-clinician communication about
disease manifestations.

2.2. Agreement with clinically accepted measures

The reports provided by such systems are only as accurate as their
underlying algorithms, which are challenged by the difficulty of esti-
mating motor complications from ADL during free-living conditions. For
example, Pulliam et al. [22] show that the Kinesia360™ algorithms
provide good detection accuracy in a simulated home setting study of 13
PD patients, while showing a low estimation of dyskinesia (r = 0.45) and
tremor (r = 0.58) when used on 12 PD patients at home as shown by
Hadley et al. [23].

Griffiths et al. [18] show that PKG® algorithms derive a high cor-
relation for DKS (r = 0.8) and BKS (r = 0.63) in the simulated home
environment. However, in an actual home setting, Horne et al. [19]
show that the DKS correlation was only 0.49 after excluding the patients
without dyskinesia (n = 46), even though PKG® detected substantial
dyskinesia in 11% (n = 5) of those patients. Furthermore, in the home
setting, the BKS correlation during ON state was r 0.42.
PKG®-measured distributions of hours per day spent in different motor
states showed 0.404-0.658 correlation to diary categorizations, and a
0.215-0.324 correlation was found when motor states were assessed at
the single-hour-level [24]. In a study with 12 patients with (n = 5) and
without (n = 7) fluctuations, Horne et al., 2015 [25] show a 97.1%
sensitivity and 87.5% specificity for detecting motor fluctuations.
However, the algorithmically-derived FDS score has not been correlated
with the clinically-measured severity of fluctuation and requires addi-
tional clinician interpretation. Khodakarami et al., 2019 [20] develop a
new algorithm (not included PKG®) to detect clinically meaningful
percent change in UPDRS III from OFF to ON states (i.e., absAUPDRS
III>10), achieving 74% accuracy before removing 83 participants for
different reasons such as not being in their worst OFF state, uncertainty
in the UPDRS III change (removing patients with 11<absAUPDRS
[II<14), or variability in the magnitude and latency of peak response to
levodopa.

Using parameters measured by Sense4Care, Rodriguez-Molinero
et al., 2017 [21] obtain a —0.56 correlation with the total UPDRS-III,
and Sama et al., 2017 [14] obtain a correlation of —0.81 with the bra-
dykinesia item 24 of the UPDRS III. Bayés et al. [15] investigate the
ability of Sense4Care measurements to detect ON and OFF states in 33
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Table 2

Characteristics of three commercially available devices and a recommended monitoring system for assessment of motor complications in PD patients at home. BKS, DKS, and FDS stand for bradykinesia score, dyskinesia

score, and fluctuation and dyskinesia score, respectively.

Sense4Care Recommended System

PKG®

Kinesia 360™

2: Most affected wrist and ankle

2: Waist and most affected wrist

1: Most affected wrist

2: Most affected wrist and ankle

Number of sensors: locations

v Every half-hour detection according to

x Every hour detections during a limited

x Every hour detections are averaged over at

x Not automated.

Medication

Clinically

the patient’s baseline during ADL.

range of ADL [14].

x Patients enter medication states using a least five-day use.

ON/OFF/OND
duration

actionable data

diary app.
x Does not readily match to ON/OFF/OND

v Make clinically meaningful

x Only measures duration of symptoms;

x Missing tremor severity [15].

Severity ratings

measurements of tremor, dyskinesia,

MDS-UPDRS III during ADL.
v Provide high agreement when compared

missing severity ratings.
x Only limited ADL [16].

x Creates new measures of symptom severity

states.

(i.e., BKS, DKS, FDS).
x Low correlation with at-home [18,19]

x Low correlation with UPDRS III [20].

x Tremor algorithm uses only wrist

x Low correlation with UPDRS measurements

Accuracy during ADL

Algorithm

to clinically meaningful metrics.
v Simultaneous analysis of sensors’ data to

compared to in-clinic monitoring.
x One wrist sensor does not capture disease

when used in home settings [17].

Characteristics

sensor data and bradykinesia/

capture disease manifestations on both

the lower and upper limb.
v Continuous and automated

dyskinesia only the waist sensor data.

manifestations on the lower limb.

x No, requires patients reporting medication x Measurements are averaged over at least x Not a continuous estimation during all

Continuous/
Unobtrusive

measurements during all ADL.

ADL [21,16].
x Transition periods between OFF and

five-day use to reduce error [18,19],

states.

thereby missing day-to-day variations.

ON are excluded from analysis [14].
x Medication state detection is not

v Detect medication states customized to a

x Medication state detection is not

x Symptom severity measures do not readily

Interpretability to an
individual patient

patient’s baseline.
v Estimate clinically interpretable severity

individualized to each patient’s own

baseline.
x Missing severity ratings.

individualized to each patient’s own

baseline.
x Severity ratings are based on comparison to

match to ON, OFF, and OND states and
further clinical correlation is required.

measures to identify intra-individual

changes of severity.

healthy controls.
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PD patients during three days of home monitoring. Accuracy for ON
detection was 88% and 97% for OFF detection, but only used an average
of five predictions per patient over three days after performing extreme
post-processing of the results, such as excluding patient-reported
medication states that differed over two consecutive hours [15]. It is,
therefore, unclear how the system performs during transition periods
between OFF and ON.

In summary, existing algorithms provide only some -clinically
actionable information, and they also perform differently between
controlled and home settings. Significant data exclusions or other post-
processing techniques are required to show acceptable agreement with
clinically recognized measures of symptom severity or ON/OFF states,
and the reduced performance in the home setting has not yet been
explored. The use of algorithms that can better relate passive measure-
ments to clinical measurements combined with the use of data charac-
teristics to investigate or explain mismatches would further enhance
clinician confidence in the utility and value of these devices.

2.3. Reporting the full spectrum of disease variability

Available systems do not fully report the variability in motor features
that may occur in a patient’s living environment and do not report all
aspects of disease severity. For example, Kinesia360™ does not provide
medication states. PKG® only detects the presence or absence of hand
tremor as explained by Braybrook et al. [17], and tremor fluctuations
are not incorporated into the FDS score. A change in the dyskinesia
mainly drives the PKG® FDS score, and Ossig et al. [24] show that the
method is not sensitive to change in BKS before and after DBS. Addi-
tionally, using only one wrist sensor, PKG® does not capture PD mani-
festations in the lower extremities. As explained in the related
references, Sense4Care only detects intervals with hand tremor [16].
Although Sense4Care uses two sensors, the data from each sensor is not
integrated. For example, the wrist sensor only employs a tremor algo-
rithm [16], while the waist sensor is used separately to measure lower
limb dyskinetic movements [26] and bradykinesia [14].

PKG® has to be worn at least five days and only reports an average
report of its metrics across those days per patient to reduce the error in
BKS and DKS estimations [19] and motor states [24]. Day-to-day vari-
ations are, therefore, less apparent. Sense4Care does not identify vari-
ability because it does not detect PD motor features during all ADL. For
example, it does not detect dyskinesia during ambulation as shown by
Sama et al. [14], and bradykinesia is only assessed during ambulation as
shown in the work of Pérez-Lopez et al. [26]. The OFF state is detected in
ambulatory conditions by the presence of gait bradykinesia, and the ON
state is detected as the absence of bradykinesia during walking, or
dyskinesia when not walking.

It is well understood that PD manifestations vary substantially be-
tween individuals and that different motor phenotypes exist (i.e.,
tremor-dominant and postural instability gait disturbance subtypes of
PD). Algorithms in unobtrusive monitoring systems should use features
that identify fluctuating and dyskinetic or undertreated patients based
on clinically actionable information regardless of an individual’s spe-
cific manifestations, active therapy, or activity level.

2.4. Interpretability of the report for an individual patient and
implications for clinical practice

The devices reviewed in this paper provide new objective measures
referenced to group “norms” derived from either a group of PD patients
or healthy controls. When estimating PD severity ratings, a change in the
new measures provides a sense of severity relative to the group level, but
what this degree of change means to the patient’s disease state and how
the clinician can use that information to adjust medication is unknown
unless those metrics represent a clinically meaningful metric relevant to
that patient. As a result, the reports from these devices can capture inter-
individual variations relative to the group level but are generally unable
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to identify intra-individual changes relevant to the patient’s baseline
[71.

In the case of medication state detection, where one patient’s OFF
state severity could be similar to another patient’s ON state (see Fig. 1
from our PD patient data [27]), comparison to other PD patients or
healthy controls may miss intra-individual variations in disease mani-
festations and inaccurately characterize the individual as ON or OFF at
all time-points. Unless there are algorithms that can detect medication
states relative to the patient’s baseline, the device cannot provide ac-
curate measurements of medication state.

Additionally, the implications for clinical practice when using these
devices are not robustly demonstrated in existing studies. In a recent
study by Isaacson et al., 2019 [28], Kinesia360™ data did not reflect
improvements in PD symptoms after treatment with rotigotine, though
UPDRS III did. Horne et al., 2016 [19] explored PKG® to demonstrate
motor improvements following DBS. Both the mAIMS and DKS scores
reflected a reduction in dyskinesia with DBS. However, BKS could not
show the effect of DBS, although there was a difference in
clinician-measured UDPRS III scores before and after DBS. Joshi et al.,
2019 [29] found that across 85 visits in 63 patients, PKG® use improved
the ability to assess the impact of therapy in 38% of visits and improved
dialogue with patients in 59% of the visits. PKG® identified symptoms
that were not reported by 48% of the patients while missing a symptom
in 24%. In another study [30], 59% of PKG® reports (n = 112) did not
provide additional information beyond routine clinical evaluation, and
its use resulted in adjusting the patient’s medical management in 32% of
cases. A study by Farzanehfar et al., 2018 [31] showed amongst 33 PD
patients, 14 required therapeutic adjustments and a median of 3 addi-
tional clinical visits (range 2-4) were required following PKG® report-
ing to achieve therapeutic goals) for 14 (out of 33) PD patients.

For a device to be relevant to clinical decision-making or positively
impact clinical practice, the algorithms within them should robustly
consider both inter- and intra-individual comparisons and directly
deliver the information about clinically actionable information in the
device report.

3. Conclusions

Despite the significant potential of using commercially available
wearable systems for unobtrusive assessment of PD motor complications
during ADLs, their adoption and implementation have not been robust.
Our investigation of these devices indicates that their onboard, inter-
pretive algorithms do not necessarily provide complete information and
may not be tailored for individualized patient care. One may suggest
that the existing discrepancy between these devices and the clinical
gold-standard assessments might indicate their ability to provide addi-
tional information beyond the clinical assessments. If that is the case,
more research is needed to apply the knowledge learned to the disease
state; otherwise the existing gap in adopting and implementing such
devices will remain. Specifically, for measuring motor symptoms that
inform disease management and for clinicians to feel comfortable with
their use, these devices need to generate data that can be interpreted
alongside widely accepted and understood clinical measures. A better
definition of accuracy of these outcomes with respect to the clinical
gold-standard assessments is needed to address the issues with the
subjectivity of these gold-standard measures. Moreover, when there is a
disagreement between these technology measures and the gold-
standard, more analysis is needed to interpret the differences, which
could lead to additional information gained by technology.

We propose that obstacles to adoption relate largely to the limita-
tions of these devices’ underlying algorithms, which currently generate
data that is not individualized and not sensitive to change at the patient
level. Furthermore, current algorithms do not provide all the required
information about motor complications, are based on comparative
metrics, or do not provide a full spectrum of the disease severity during
ADLs in the home environment. Consequently, these systems have
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Fig. 1. MDS-UPDRS-III scores of 19 PD subjects in OFF and ON states [28].
Although in different states, subjects in groups A and B have similar
MDS-UPDRS-III scores indicating that medication state has to be detected
individually and not from disease severity.

limited capability to accurately and comprehensively report clinically
actionable information and still require either additional patient
participation or clinical assessment to inform therapeutic decision-
making. The essential characteristics and deliverables of a system that
can address these limitations are listed in Table 2. Such systems with
readily interpretable data will enhance patient-clinician communication
about disease manifestations. They can facilitate understanding of the
association between various symptoms and the clinical state, or the
interpretation of the digital parameters.

Additional individualization of technology-based assessments such
as the number and placement of the sensors according to the patient’s
need and a capability to monitor the patient’s adherence to the device
use could further improve the applicability of these devices. However,
with the recent advances in engineering and algorithm development, we
recommend developing optimized algorithms that find the optimal in-
flection point between accuracy and complexity without adding more
layers of complexity to encourage patients’ enthusiasm and adopt-
ability. Non-motor symptom detection via wearable sensors poses
separate and unique challenges, and is unlikely to be accomplished
using the same unobtrusive techniques as motor symptom detection.
However, when separately assessed, they can be considered alongside
the data generated from devices intended to measure motor complica-
tions to determine the relationship of these symptoms to ON or OFF
status for clinicians to select the most appropriate medication plan.
Lastly, there is growing interest in developing technology to meet
patient-centered needs [32], and the development of new algorithms
could accomplish this by prioritizing novel digital endpoints (https://
aact.ctti-clinicaltrials.org/).

We acknowledge that there may be other factors which are beyond
the scope of this paper which may impact the adoptability of wearable
systems to monitor motor complications. Regardless, we believe that an
unobtrusive home monitoring system for measurement of motor com-
plications that is equipped with new or refined algorithms meeting key
requirements as described in this viewpoint will be better positioned for
clinical adoption by a wide variety of care providers involved in man-
aging PD patients.
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