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Abstract
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lem for highly singular Abreu equations where the right hand sides are of q-Laplacian
type for all q > 1. We show that minimizers of variational problems with a convexity
constraint in two dimensions that arise from the Rochet–Choné model in the monop-
olist’s problem in economics with q-power cost can be approximated in the uniform
norm by solutions of the Abreu equation for a full range of q.
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1 Introduction

1.1 Singular Fourth Order Equations of Monge–Ampère Type

This paper is concerned with a class of fourth order equations ofMonge–Ampère type

n∑

i, j=1

Ui j Di j [G ′(det D2u)] ≡ trace
[
(det D2u)(D2u)−1D2(G ′(det D2u))

]

= f in � ⊂ R
n . (1.1)

Here and throughout, n ≥ 2, U = (Ui j )1≤i, j≤n = (det D2u)(D2u)−1 is the cofactor

matrix of theHessianmatrix D2u = (Di ju)1≤i, j≤n ≡
(

∂2u
∂xi ∂x j

)

1≤i, j≤n
of an unknown

uniformly convex function u, and G : (0,∞) → R is a smooth function satisfying
certain conditions. Equations of this type appear in many contexts ranging from affine
geometry, complex geometry and economics.

Equation (1.1) with the right hand side f = f (x) has been extensively studied.

When G(t) = t
1

n+2 , it is the prescribed affine mean curvature equation in affine
geometry [8].WhenG(t) = log t , it is theAbreu’s equation arising from theproblemof
finding extremal metrics on toric manifolds in Kähler geometry [1], and it is equivalent
to

n∑

i, j=1

∂2ui j

∂xi∂x j
= f (x),

where (ui j ) is the inverse matrix of D2u. The regularity and solvability of these
equations and related geometric problems have been extensively investigated in the
past two decades, including [6,7,10–13,19,20,31–33,35,36], to name a few. In all
these works, the regularity theory of linearized Monge–Ampère equation, initiated
in the fundamental work of Caffarelli–Gutiérrez [4], plays an important role. The
second order operator Lu := Ui j Di j is called a linearized Monge–Ampère operator
because the coefficient matrix (Ui j ) comes from the linearization of the Monge–
Ampère operator:

U = ∂(det D2u)

∂(D2u)
.

One can also note that Luv = Ui j Di jv = trace(UD2v) is the coefficient of t in the
expansion

det D2(u + tv) = det D2u + t trace(UD2v) + · · · + tn det D2v.
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Recently, a class of fourth order equations of Monge–Ampère type in the general
form of

Ui j Di j [G ′(det D2u)] = f (x, u, Du, D2u) (1.2)

has been introduced by the first author in [23–25] in the study of convex functionals
with a convexity constraint related to the Rochet–Choné model [30] for the monopo-
list’s problem in economics; see also [5] for the precursor of this class of equation. One
usually takesG(t) = log t (theAbreu type equation) orG(t) = tθ where 0 < θ < 1/n
(the affine maximal surface type equation). If we view the linearized Monge–Ampère
operator as a non-divergence form operator, then for regularity theory, a natural inte-
grability condition for the right hand side is Ln . In general, the regularity theory of
linearizedMonge–Ampère equationwith Ln right hand side in previousworks, includ-
ing those in [4,17,18], does not apply to (1.2), since the right hand side of (1.2) depends
on D2u which is a priori only a matrix-valued measure. This is the reason why (1.2)
was called singular Abreu equation in the above mentioned works. As mentioned in
[23], even when f (x, u, Du, D2u) = �u, the right hand side of (1.2) has low integra-
bility, which is at most L1+ε for some small constant ε. However, the regularity results
for the linearizedMonge–Ampère equation with Ln/2+ε right hand side in [28], which
makes use of the divergence form character of Lu (note that,

∑n
i=1 DiUi j = 0 for all

j) via the optimal integrability of its Green’s function, allow the first author to study
(1.2) in two dimensions under suitable assumptions on f and boundary data. In light
of this, it is natural to consider (1.2) when f has a divergence form structure, of which
f = �u = div (Du) is a particular example.
When f is just the divergence of a vector field, such as div (|Du|q−2Du)where 1 <

q < 2, the right hand side of (1.2), which contains the term |Du|q−2�u, becomemore
singular in D2u and hence it does not belong to L1+ε. Equation (1.2) with this type of
highly singular right hand side f arises from the analysis of the Rochet–Choné model
[30] with q-power cost; see Sect. 1.3. Despite this singularity, div (|Du|q−2Du) is the
divergence of a bounded vector field when Du is bounded. In dimension two, based
on the L1+ε integrability of the Green’s function of the linearized Monge–Ampère
operator, interior and globalHölder regularity estimates for linearizedMonge–Ampère
equation with the right hand being the divergence of a bounded vector field have been
established in [21,22]. The higher dimensional case iswidely open.Nevertheless, these
results suggest the possibility of solving certain boundary value problems for (1.2) in
the case of highly singular right hand side. To apply the results in [21,22], a key step is
to obtain the positive lower and upper bounds for the Hessian determinant det D2u of
a solution u. However, the techniques in [23–25] could not handle the highly singular
Abreu type equations.

In this paper, we use the Legendre transform and partial Legendre transform to
investigate the regularity and solvability of highly singular Eq. (1.2) which arises
from a variational problem. This is the case when f has the form

f (x, u, Du, D2u) = Fz −
n∑

i=1

Fpi xi −
n∑

i=1

Fpi z Diu −
n∑

i, j=1

Fpi p j Di j u (1.3)
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where F = F(x, z, p) is a function on R
n × R × R

n . In order words, (1.2) is the
Euler–Lagrange equation of the functional

F(u) =
∫

�

F(x, u, Du) dx −
∫

�

G(det D2u) dx . (1.4)

The Legendre transform has been extensively used in the analysis of the Monge–
Ampère type equations including the fourth order (1.1) with f depending only on the
independent variable x ; see, for example [7,20,31,32,35,36] and the references therein.
Likewise, the partial Legendre transform has been widely used to investigate fine
properties of Monge–Ampère equations, especially degenerate ones; see, for example
[9,16,26,27] and the references therein. However, to the best of our knowledge, it has
not been used in fourth order equations of Monge–Ampère type before. For equation
of the type (1.2), the Legendre transform usually gives one-sided bound for det D2u.
In two dimensions, it turns out out the other one-sided bound can be obtained using
the partial Legendre transform.

Note that (1.2) can be written as a system of two equations for u and w =
G ′(det D2u). One is a Monge–Ampère equation for u in the form of

det D2u = (G ′)−1(w)

and other is a linearized Monge–Ampère equation for w in the form of

Luw = Ui j Di jw = f (·, u, Du, D2u).

Thus, a very natural boundary value problem for (1.2) is the second boundary
value problem where one describes the values of u and w on the boundary ∂�. In
what follows, when u is only C3, the expression

∑n
i, j=1U

i j Di jw is understood as∑n
i, j=1 Di (Ui j D jw).

1.2 Solvability of the Second Boundary Value Problem for Highly Singular Abreu
Equations

Let q ∈ (1,∞). Let � be an open, smooth, bounded and uniformly convex domain in
R
n . Let ϕ ∈ C5(�), ψ ∈ C3(�) with inf∂� ψ > 0.
We are interested in the second boundary value problem of the Abreu equation with

right hand side of q-Laplacian type for a uniformly convex function u:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n∑

i, j=1

Ui j Di jw = −div (|Du|q−2Du) + F0
z (x, u) in �,

w = (det D2u)−1 in �,

u = ϕ on ∂�,

w = ψ on ∂�.

(1.5)
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Here F0(x, z) is a function on R
n × R. The particular form of the right hand side of

(1.5) was partially motivated by problems from economics; see (1.15). Of course, one
can replace the term −div (|Du|q−2Du) in (1.5) by other expressions involving Du
and D2u. We chose this particular form in (1.5) due to its simplicity; moreover, this
form still captures the highly singular feature of the right hand side in the Hessian
D2u which is the case when 1 < q < 2 and Du is small, or when q > 2 and Du is
large. It should be emphasized that the negative sign in −div (|Du|q−2Du) in (1.5)
is crucial. If this term is replaced by div (|Du|q−2Du), then (1.5) might not have a
global, smooth and uniformly convex solution; see [24, Remark 1.5].

In two dimensions, Eq. (1.5) in the case of q ≥ 2 and F0
z ≡ 0 was considered in

[23, Theorem 2.6]. The case 1 < q < 2, even if F0
z ≡ 0, was left open. Also left open

in the two dimensions was the case of q ≥ 2 and F0
z 
≡ 0.

The solvability of (1.5) is usually established using higher order a priori estimates
and degree theory. As mentioned earlier, a critical step is to obtain the a priori lower
and upper bounds for det D2u when 1 < q < 2 and F0

z 
≡ 0. All known arguments
in obtaining the lower bound for det D2u use two ingredients: (i) div (|Du|q−2Du) ≤
C�u when |Du| is bounded; and (ii) trace (Ui j ) = �u. Thus, they are applicable only
to q ≥ 2 and n = 2. Here we use the Legendre transform to study (1.5). We resolve
the remaining cases 1 < q < ∞ and F0

z 
≡ 0 in dimensions n = 2.
We assume that F0 is smooth and satisfies

F0
z (x, z) ≤ ω(|z|); −F0

z (x, z)(z − z̃) ≤ ω(|z̃|) for all x ∈ �, and all z, z̃ ∈ R

(1.6)

where ω : [0,∞) → [0,∞) is a continuous and increasing function.
Our first main theorem states as follows.

Theorem 1.1 (Solvability of the second boundary value problem for highly singular
Abreu equations) Let � ⊂ R

2 be an open, smooth, bounded and uniformly convex
domain. Let q > 1. Assume (1.6) holds. Assume that ϕ ∈ C5(�) andψ ∈ C3(�) with
inf∂� ψ > 0. Consider the following second boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2∑

i, j=1

Ui j Di jw = −div(|Du|q−2Du) + F0
z (x, u) in �,

w = (det D2u)−1 in �,

u = ϕ on ∂�,

w = ψ on ∂�.

(1.7)

(i) If q ≥ 2, then there exists a uniformly convex solution u ∈ C4,β(�) to (1.7) with

‖u‖C4,β (�) ≤ C

for some β ∈ (0, 1) and C > 0 depending on q,�, ω, F0, ϕ and ψ .
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(ii) If 1 < q < 2, then there exists a uniformly convex solution u ∈ C3,β(�) to (1.7)
with

‖u‖C3,β (�) ≤ C

for some β ∈ (0, 1) and C > 0 depending on q,�, ω, F0, ϕ and ψ .

Theorem 1.1 will be proved in Sect. 3. The main idea of the proof of Theorem 1.1
is to use partial Legendre transform. After the partial Legendre transformation, the
first two equations of (1.7) become a quasi-linear elliptic equation for the dual w� of
w. To estimate the a priori lower and upper bounds for det D2u when 1 < q < 2 and
F0
z 
≡ 0, we need theC2 character ofw� (in order to apply themaximumprinciple to an

elliptic equation in non-divergence form) which is equivalent to u beingC4. This is not
possible for q ∈ (1, 2). Thus, we will not apply the partial Legendre transform directly
to (1.7). Instead, we apply it to its approximation (3.1) whose global C4 solutions are
guaranteed.

TheLegendre transform can also be used to establish interior higher order derivative
estimates in higher dimensions for (1.5) when F0

z ≤ 0. This is the content of our next
theorem.

Theorem 1.2 (Interior higher order derivative estimates for highly singular Abreu
equations) Let n ≥ 3. Let u ∈ C3(�) ∩ C2(�) be a uniform convex solution to (1.5)
where F0 is smooth, F0

z ≤ 0, ϕ ∈ C5(�), ψ ∈ C3(�) with inf∂� ψ > 0. Then, for
any �′ � �, we have

‖u‖C4,α(�′) ≤ C if q ≥ 2

and

‖u‖C3,α(�′) ≤ C if 1 < q < 2

where α and C depend on ϕ,ψ, F0, �, n, q and dist(�′, ∂�).

We will prove Theorem 1.2 in Sect. 2. However, due to the lack of global regularity
in higher dimensions for the linearized Monge–Ampère equation with right hand side
being the divergence of a bounded vector field, it is still an open problem to solve the
second boundary value problem for (1.5) when n ≥ 3. Note that, when n ≥ 3 and the
right hand side of (1.5) is replaced by −γ div (|Du|q−2Du) where q ≥ 2 and γ > 0
is a small constant depending on n, q, ϕ, ψ and �, the existence of a unique global
C4,β(�) solution to (1.5) was established in [24]. It would be interesting to remove
this smallness of γ .

1.3 Approximations of Minimizers of Rochet–ChonéModel with Non-quadratic
Costs

Let �0, � be bounded, open, smooth, and convex domains in R
n where � contains

�0. Let ϕ ∈ C5(�) be a convex function. Let F(x, z, p) : Rn ×R×R
n → R be the
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Lagrangian given by

F(x, z, p) = (|p|q/q − x · p)γ (x) + F0(x, z)

where γ is a nonnegative and Lipschitz function. We assume the following convexity
and growth assumptions on F0:

(F0
z (x, z) − F0

z (x, z̃))(z − z̃) ≥ 0; |F0
z (x, z)|

+|F0(x, z)| ≤ η(|z|) for all x ∈ �0 and z, z̃ ∈ R (1.8)

where η : [0,∞) → [0,∞) is a continuous and increasing function.
When F0(x, z) = zγ (x), the Lagrangian F covers the Rochet–Choné model with

q-power cost and relative frequency of agents in the population given by γ ; see [30,
p. 790]. We are interested in the following variational problem subject to a convexity
constraint:

inf
u∈S̄[ϕ,�0]

∫

�0

F(x, u(x), Du(x)) dx (1.9)

where

S̄[ϕ,�0] = {u : �0 → R | u is convex and admits a convex extension to � such that

u = ϕ on �\�0}. (1.10)

Since functions in S̄[ϕ,�0] are Lipschitz continuouswithLipschitz constants bounded
from above by ‖Dϕ‖L∞(�), S̄[ϕ,�0] is compact in the topology of uniform conver-
gence on compact subsets of �. With (1.8), one can show that (1.9) has a minimizer
in S̄[ϕ,�0]. Heuristically, the boundary conditions for minimizers associated with
(1.10) are

u = ϕ and
∂u

∂ν0
≤ ∂ϕ

∂ν0
on ∂�0 where ν0 is the unit outer normal vector on ∂�0.

(1.11)

In [30], Rochet–Chonémodeled themonopolist problem in product line designwith
q-power cost using minimization, over convex functions u ≥ ϕ, of the functional

�(u) =
∫

�0

[|Du(x)|q/q − x · Du(x) + u(x)
]
γ (x) dx . (1.12)

Here −�(u) is the monopolist’s profit; u is the buyers’ indirect utility function
with bilinear valuation; �0 ⊂ R

n is the collection of types of agents; γ is the relative
frequency of different types of agents in the population; the given convex function ϕ

is referred to as the participation constraint. The constraint (1.10) can be heuristically
viewed as a special case of the constraint u ≥ ϕ in �0.
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The convexity constraints such as u ≥ ϕ in (1.12) and (1.10) in (1.9) pose serious
challenges, as elucidated in [2,29], in numerically computing minimizers of the above
problems. This calls for robust approximation schemes for minimizers of variational
problems with a convexity constraint. The question we would like to address here is
how to approximate minimizers of (1.9) in the uniform norm by solutions of some
higher order equations whose global well-posedness can be established. The approxi-
mating scheme proposed in [23,25] use the second boundary value problem of fourth
order equations of Abreu type and it only works for q = 2 and n = 2; see also [5]
for F not depending on p. The reason q = 2 is that the gradient-dependent term
F1(x, p) = (|p|q/q − x · p)γ (x) of the Lagrangian F was required to satisfy for
some C > 0

0 ≤ F1
pi p j

(x, p) ≤ C In; |F1
pi xi (x, p)| ≤ C(|p| + 1) for all x ∈ �0 and for each i .

(1.13)

Inspired by the approximation Eq. (3.1) in the proof of Theorem 1.1, we will
answer positively the question of approximating minimizers of (1.9) by solutions of
the second boundary value problems of fourth order equations of Monge–Ampère
type for the full range (1,∞) of q. The idea is to modify the schemes in [23,25] by
further approximating the gradient-dependent term. We describe this scheme below.

Let ρ be a uniformly convex defining function of �, that is,

� := {x ∈ R
n : ρ(x) < 0}, ρ = 0 on ∂� and Dρ 
= 0 on ∂�. (1.14)

For ε > 0, let δ(ε) = ε, and consider the following second boundary value problem
for a uniform convex function uε:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ε

n∑

i, j=1

Ui j
ε Di jwε = fε in �,

wε = (det D2uε)
−1 in �,

uε = ϕ on ∂�,

wε = ψ on ∂�,

(1.15)

where

fε =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂F0

∂z (x, uε(x)) −
n∑

i=1

∂

∂xi

(
γ (x)[(|Duε|2 + δ(ε))

q−2
2 uε,xi − xi ]

)
if x ∈ �0,

1
ε

(
uε(x) − ϕ(x) − ε

1
3n2 (eρ(x) − 1)

)
if x ∈ � \ �0.

(1.16)

The first two equations of (1.15) arise as the Euler–Lagrange equation of the functional
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Jq,ε(u) :=
∫

�0

[
(|Du|2 + δ(ε))

q
2 /q − x · Du

]
γ (x) dx +

∫

�0

F0(x, u) dx

−ε

∫

�

log det D2u dx + 1

2ε

∫

�\�0

(u − ϕ − ε
1

3n2 (eρ(x) − 1))2 dx .

(1.17)

Our final theorem, which is concerned with the solvability and asymptotic behavior
of solutions to (1.15)–(1.16) when ε → 0, states as follows.

Theorem 1.3 Let �0 and � be bounded, open, smooth, and convex domains in R
2

(n = 2) where � is uniformly convex and contains �0. Let ϕ ∈ C5(�),ψ ∈ C3(�)

where ϕ is convex, and inf∂� ψ > 0. Assume that the smooth function F0 satisfies
(1.8). Let γ be a nonnegative and Lipschitz function on �. If q > 2, then we also
assume that γ is a constant. If ε > 0 is small, then, the following facts hold:

(i) The system (1.15)–(1.16) has a uniformly convex solution uε ∈ W 4,s(�) for all
s ∈ (n,∞).

(ii) Let uε ∈ W 4,s(�) (s > n) be a solution to (1.15)–(1.16). Then, a subsequence of
uε converges uniformly on compact subsets of � to a minimizer u ∈ S̄[ϕ,�0] of
(1.9).

We will prove Theorem 1.3 in Sect. 4.

Remark 1.4 If F0(x, z) is uniformly convex with respect to z, then the minimizer of
(1.9) is unique. When q = 2, and δ(ε) = 0, the equation (1.15) was considered in
[23,25]. Suppose 1 < q < 2 and δ(ε) = 0 in (1.15). Even if we obtain positive lower
and upper bound for det D2uε, the best regularity we can get for uε is C2,α(�). This
is due to the jump over ∂�0 of the terms on the right hand side. Thus, we cannot get
W 4,s(�) solutions as stated in Theorem 1.3.

Notation The Legendre transform of u will be denoted by u∗ while the partial
Legendre transform of u will be denoted by u�. We use ν to denote the unit outer
normal to ∂�.

The rest of the paper is organized as follows. The Legendre transform and partial
Legendre transform and their applications to the Abreu equations will be discussed in
Sect. 2. In particular, we prove Theorem 1.2 with the Legendre transform. The proof
of Theorem 1.1 will be given in Sect. 3. In Sect. 4, we will prove Theorem 1.3.

2 Legendre Transform and Partial Legendre Transform

2.1 Legendre Transform and Regularity in General Dimension

In this section, we derive the dual equation of (1.2) under Legendre transform in any
dimension. After the Legendre transform, the equation is still a linearized Monge–
Ampère equation. Denote the Legendre transform u∗ of u by

u∗(y) = x · Du − u, where y = Du(x) ∈ �∗ = Du(�).

123



   13 Page 10 of 32 N. Q. Le, B. Zhou

Proposition 2.1 Let u ∈ C4(�) be a uniformly convex solution to (1.2) in � where f
is given by (1.3). Then in �∗ = Du(�), its Legendre transform u∗ satisfies

u∗,i j Di jw
∗ = f ∗. (2.1)

Here (u∗,i j ) is the inverse matrix of D2u∗,

w∗ = G((det D2u∗)−1) − (det D2u∗)−1G ′((det D2u∗)−1), (2.2)

and

f ∗ = Fpi p j u
∗,i j + (Fpi z yi + Fpi xi − Fz), (2.3)

where Fpi p j = Fpi p j (Du∗, y · Du∗ − u∗, y) and likewise for Fpi z , Fpi xi , and Fz.
If u ∈ C3(�), then instead of (2.1), we have

D j ((det D
2u∗)u∗,i j Diw

∗) = f ∗ det D2u∗

in the weak sense.

Proof Recall that u is a critical point of the functional

F(u) :=
∫

�

F(x, u, Du) dx −
∫

�

G(det D2u) dx := B(u) − A(u).

From

det D2u = [det D2u∗]−1, dx = det D2u∗ dy,

we have

F(u) = F∗(u∗) := B∗(u∗) − A∗(u∗),

where

A(u) =
∫

�∗
det D2u∗G((det D2u∗)−1) dy := A∗(u∗),

and

B(u) =
∫

�∗
F(Du∗, y · Du∗ − u∗, y) det D2u∗ dy := B∗(u∗).

Note that u∗ is a critical point of the dual functional F∗(u∗). To find an equation for
u∗, we need to find the variations of F∗.
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Let ϕ ∈ C∞
0 (�∗). Let w∗ be given as in (2.2) and (U∗,i j ) be the cofactor matrix of

D2u∗. Note that (U∗,i j ) is divergence free, that is

n∑

i=1

DiU
∗,i j = 0 for all j .

Then, integrating by parts twice, one finds

d A∗(u∗ + tϕ)

dt
|t=0 =

∫

�∗
U∗,i jw∗Di jϕ dy =

∫

�∗
U∗,i j Di jw

∗ϕ dy.

By integration by parts, we find that

dB∗(u∗ + tϕ)

dt
|t=0 =

∫

�∗
Fxi Diϕ det D2u∗ dy +

∫

�∗
(y · Dϕ − ϕ)Fz det D

2u∗ dy

+
∫

�∗
FDi jϕU

∗,i j dy

=
∫

�∗
Fxi Diϕ det D2u∗ dy +

∫

�∗
(y · Dϕ − ϕ)Fz det D

2u∗ dy

−
∫

�∗

[
Fxk Dkiu

∗DjϕU
∗,i j + ∂yi (y · Du∗ − u∗)FzD jϕU

∗,i j

+Fpi D jϕU
∗,i j

]
dy.

Using ∂yi (y · Du∗ − u∗) = yk Dkiu∗ and Dkiu∗U∗,i j = det D2u∗δk j , we obtain

dB∗(u∗ + tϕ)

dt
|t=0 = −

∫

�∗
ϕFz det D

2u∗ dy −
∫

�∗
Fpi D jϕU

∗,i j dy

= −
∫

�∗
ϕFz det D

2u∗ dy +
∫

�∗
ϕFpi xk Dkj u

∗U∗,i j dy

+
∫

�∗
ϕFpi z∂y j (y · Du∗ − u∗)U∗,i j dy +

∫

�∗
ϕFpi p jU

∗,i j dy

=
∫

�∗
ϕ[Fpi p jU

∗,i j + (Fpi z yi + Fpi xi − Fz) det D
2u∗] dy.

Therefore

dF∗(u∗ + tϕ)

dt
|t=0 = dB∗(u∗ + tϕ)

dt
|t=0 − d A∗(u∗ + tϕ)

dt
|t=0

=
∫

�∗
ϕ[Fpi p j U

∗,i j + (Fpi z yi + Fpi xi − Fz) det D
2u∗ −U∗,i j Di jw

∗] dy.

From

dF∗(u∗ + tϕ)

dt
|t=0 = 0, for all ϕ ∈ C∞

0 (�∗),
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we obtain

U∗,i j Di jw
∗ = Fpi p jU

∗,i j + (Fpi z yi + Fpi xi − Fz) det D
2u∗ = f ∗ det D2u∗

and this gives the desired equation for u∗. ��

Remark 2.2 A direct calculation as in Lemma 2.7 in [20] gives another proof of Propo-
sition 2.1.

Using Proposition 2.1,we can establish the interior higher order derivative estimates
for the second boundary value problem of (1.5).

Proof of Theorem 1.2 We use C and C1 to denote universal positive constants depend-
ing only on ϕ,ψ, F0, n, q and �. For q > 1, we have from the convexity of u that

−div (|Du|q−2Du) ≤ 0.

Note that F0
z (x, z) ≤ 0. Hence Ui j Di jw = −div (|Du|q−2Du) + F0

z (x, u) ≤ 0. By
the maximum principle applied to the equation Ui j Di jw ≤ 0, we see that w attains
its minimum value on the boundary. Thus w ≥ inf∂� ψ > 0. This together with
det D2u = w−1 gives a universal upper bound for det D2u:

det D2u ≤ C .

Hence, from u = ϕ on ∂�, we have sup� |u| ≤ C . Furthermore, we can construct
suitable barriers to get

|Du| ≤ C in �. (2.4)

Let u∗(y) be the Legendre transform of u(x) where y = Du(x) ∈ �∗ := Du(�).
Then

|u∗| ≤ C in �∗. (2.5)

Let (U∗,i j ) be the cofactor matrix of D2u∗. Then, with the notation as in Proposition
2.1, and F(x, z, p) = |p|q/q + F0(x, z), we have

w∗ = − log det D2u∗ − 1,

f ∗ det D2u∗ = (Fpi p j u
∗,i j − Fz) det D

2u∗

= U∗,i j Di j (|y|q/q) − F0
z det D2u∗.

From (2.1), we deduce that u∗ satisfies
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Dj

[
U∗,i j Di

(
|y|q/q + log det D2u∗)]

= U∗,i j Di j

(
|y|q/q + log det D2u∗)

= F0
z (Du∗, y · Du∗ − u∗) det D2u∗

(2.6)

in �∗. In view of (2.4) and (2.5), we find that F0
z (Du∗, y · Du∗ − u∗) is universally

bounded in �∗. Hence, for a universally large constant C1 > 0, we have in �∗:

Dj

[
U∗,i j Di

(
|y|q/q + log det D2u∗ + C1u

∗)]

= [F0
z (Du∗, y · Du∗ − u∗) + nC1] det D2u∗ ≥ 0. (2.7)

If y = Du(x) ∈ ∂�∗, then

det D2u∗(y) = [det D2u(x)]−1 = ψ(x) = ψ(Du∗(y)).

This together with (2.4) and (2.5) shows that on ∂�∗, |y|q/q + log det D2u∗ + C1u∗
is bounded by a universal constant. We can apply the maximum principle to (2.6) to
conclude that

|y|q/q + log det D2u∗ + C1u
∗ ≤ sup

∂�∗
(|y|q/q + log det D2u∗ + C1u

∗) ≤ C in �∗.

Note that if u ∈ C3(�)∩C2(�), we apply themaximumprinciple for elliptic equations
in divergence form (see [15, Theorem 8.1]) to the divergence form of (2.7).

In particular, w(x) = det D2u∗(y) is bounded from above by a universal constant.
Thus det D2u is bounded from below by a positive universal constant. In conclusion,
we have

0 < C−1 ≤ det D2u ≤ C . (2.8)

These bounds together with the the boundary data ϕ of u being C5(�) allow us to
establish, from below, a universal (and positive) modulus of convexity of u in the
interior of �; see [14, Corollary 4.11 and Theorem 4.16]. Now, we use the interior
Hölder estimate for the linearized Monge–Ampère equation with bounded right hand
side [4,34], applied to (2.6), to conclude that log det D2u∗ is Cα in the interior of �∗,
for some α > 0 universal, with universal estimates. This combined with the universal
modulus of convexity of u implies that det D2u is Cα in the interior of �. Therefore,
from Caffarelli’s C2,α estimates for the Monge–Ampère equation [3], we obtain C2,α

estimates in the interior of � for u. Thus, in the interior of �, Ui j Di j is a uniformly
elliptic operator with Cα coefficients. Since q > 1, |Du|q−2Du is a Cβ vector field
in the interior of � for β > 0 universal. Using [15, Theorem 8.32], we obtain from
the first equation of (1.5), that is,

Ui j Di jw = −div (|Du|q−2Du) + F0
z (x, u),
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the interior C1,γ estimates for w, where γ := min{α, β}. This, in turns, gives the
interior C3,γ estimates for u.

When q ≥ 2, we have better regularity estimates. In this case

−div (|Du|q−2Du) = −|Du|q−2�u − (q − 2)|Du|q−4DiuD juDi j u

is Cαq in the interior of � for some αq = αq(α, q) > 0 universal. Now we can use
the standard Schauder theory to the first equation of (1.5) to get the interior C2,αq

estimates for w. Hence, we get the interior C4,αq estimates for u. ��
We also derive global smoothness estimates for the second boundary value problem

of (1.2) in terms of the W 2,n(�) norm of the solutions when F is of a special form.

Proposition 2.3 Let � ⊂ R
n be an open, smooth, bounded and uniformly convex

domain. Assume that ϕ ∈ C5(�) and ψ ∈ C3(�) with inf∂� ψ > 0. Sup-
pose F(x, z, p) = F0(x, z) + F1(p) is smooth with |D2F1(p)| ≤ M for all
p = (p1, . . . , pn) ∈ R

n . Consider a smooth solution u to the second boundary
value problem for (1.2) where G(t) = log t . Assume that ‖u‖W 2,n(�) ≤ K. Then
u ∈ C4,α(�) with

‖u‖C4,α(�) ≤ C

where α > 0 and C depends on F0, F1, K , M, ϕ, ψ, n and �.

Proof We use C,C1,C2, . . . to denote universal positive constants depending only on
F0, F1, K , M , ϕ,ψ , n and �. When F(x, z, p) = F0(x, z) + F1(p), we have

f (x) = F0
z (x, u(x)) − F1

pi p j
(Du(x))Di ju(x) (2.9)

and

‖ f ‖Ln(�) ≤ C(n, M, K , F0,�). (2.10)

Note that

det(Ui j ) = (det D2u)n−1 = w−(n−1).

We apply the Aleksandrov–Bakelman–Pucci estimate (see, [15, Theorem 9.1]) to
Ui j Di jw = f in � with w = ψ on ∂� to find that

sup
�

w ≤ sup
∂�

ψ + C(n,�)

∥∥∥∥
f

(det(Ui j ))1/n

∥∥∥∥
Ln(�)

≤ sup
∂�

ψ + C(n,�) ‖ f ‖Ln(�) sup
�

(w(n−1)/n).

It follows that w ≤ C and hence

w ≤ C, det D2u ≥ C−1 > 0.
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Using the above estimates and arguing as in [20, Lemma 2.5], we have

sup
�

|Du| ≤ C . (2.11)

We use the Legendre transform and notation as in Proposition 2.1. Then

w∗ = − log det D2u∗ − 1, Fpi p j u
∗,i j = u∗,i j Di j F

1(y)

and, from (2.3), we deduce that

u∗,i j Di j (w
∗ − F1(y)) = −F0

z (Du∗, y · Du∗ − u∗) in �∗. (2.12)

From (2.11) and u∗(y) = x · Du(x) − u(x) where y = Du(x), we deduce

|u∗| + |F0
z (Du∗, y · Du∗ − u∗)| ≤ C1 in �∗.

Thus, for a large universal constant C2 > 0, we have

u∗,i j Di j (w
∗ − F1(y) + C2u

∗) = −F0(Du∗, y · Du∗ − u∗) + nC2 > 0 in �∗.

Hence, by the maximum principle, w∗ − F1(y) + C2u∗ attains it maximum on ∂�∗.
If y = Du(x) ∈ ∂�∗, then

w∗(y) = − log det D2u∗(y) − 1 = log det D2u(x) − 1 = log
1

ψ(Du∗(y))
− 1 ≤ C .

From this, we find that

w∗ ≤ C in �∗.

Therefore, det D2u(x) = ew∗(Du(x))+1 ≤ C in �. This combined with the lower
bound for det D2u gives

0 < C−1 ≤ det D2u ≤ C in �. (2.13)

Now, using (2.13) and (2.10), we can apply the global Cα estimates for the linearized
Monge–Ampère equation (see, [19, Theorem 1.4]) to

Ui j Di jw = f in �, w = ψ on ∂�,

to get

‖w‖Cα(�) ≤ C3
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where α and C3 are universal positive constants. From the global C2,α estimates for
the Monge–Ampère equation (see [33]) applied to

{
det D2u = w−1 in �,

u = ϕ on ∂�,
(2.14)

we find

‖u‖C2,α(�) ≤ C4.

Therefore, the second order operator Ui j Di j is uniformly elliptic with Cα(�) coeffi-
cients. Moreover, from (2.9), we find that f ∈ Cα(�). Using the classical Schauder
estimates toUi j Di jw = f , we deduce that w ∈ C2,α(�) with ‖w‖C2,α(�) ≤ C . With
this estimate, (2.14) easily gives

‖u‖C4,α(�) ≤ C .

��
Remark 2.4 The assumption |F1

pi p j
(x, p)| ≤ M in Proposition 2.3 can be removed if

one has ‖u‖C0,1(�) + ‖u‖W 2,n(�) ≤ K or ‖u‖W 2,n+ε(�) ≤ K for some ε > 0.

From (2.12), we also obtain the following interior estimates.

Proposition 2.5 Let � ⊂ R
n be a convex domain. Let F0 : Rn ×R → R be a smooth

function. Let u ∈ C3(�) be a uniformly convex solution to

n∑

i, j=1

Ui j Di j [(det D2u)−1] = −div (|Du|q−2Du) + F0
z (x, u) in � (2.15)

that satisfies

0 < λ < det D2u ≤ �. (2.16)

Then there exists a constant α ∈ (0, 1) depending only on λ,�, n and q with the
following property: For any �′ � �, there exists a constant C > 0 depending on
sup� |u|, the modulus of convexity of u, λ, �, n, q, F0 and dist(�′, ∂�), such that

‖u‖C4,α(�′) ≤ C if q ≥ 2

and

‖u‖C3,α(�′) ≤ C if 1 < q < 2.

Remark 2.6 In dimension two, (2.16) implies a positive lower bound on the modulus
of convexity of u; see, for example [27, Lemma 2.5].
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2.2 Partial Legendre Transform in Two Dimensions

In this section, we consider n = 2 and write u(x) = u(x1, x2). The partial Legendre
transform in the x1-variable is

u�(ξ, η) = x1ux1(x1, x2) − u(x1, x2), (2.17)

where

y = (ξ, η) = P(x1, x2) := (ux1, x2) ∈ P(�) := ��.

We have

∂(ξ, η)

∂(x1, x2)
=

(
ux1x1 ux1x2
0 1

)
, and

∂(x1, x2)

∂(ξ, η)
=

(
1

ux1x1
− ux1x2

ux1x1
0 1

)
.

Hence,

u�
ξ = x1, u�

ξξ = 1

ux1x1
, u�

η = −ux2 , u�
ηη = −det D2u

ux1x1
, u�

ξη = −ux1x2
ux1x1

.

In the following proposition, we deduce the dual equation for (1.2) under partial
Legendre transform.One can derive the dual equation for the general case of F(x, z, p)
andG, but for simplicity we only consider a special case for (1.2) which is appropriate
for the proof of Theorem 1.1. This is the case of Eq. (3.1) in Sect. 3. As we explained
in the introduction, when 1 < q < 2, we can not expect C4 solution to (1.7).

Proposition 2.7 Let G(t) = log t and F(x, z, p) = (|p|2 + δ)
q
2 /q + F0(x, z), where

δ ≥ 0 and q > 1. Let u ∈ C4(�) be a uniformly convex solution to (1.2) in � where
f is given by (1.3). Then in �� = P(�), its partial Legendre transform u� satisfies

w�w�
ξξ + w�

ηη − w�
ξ
2 − 2

w�
w�

η
2 = w�2 f �. (2.18)

Here w� = − u�
ηη

u�
ξξ

and

f � = (ξ2 + u�
η
2 + δ)

q
2 −1(1 + u�

ξη
2 − u�

ηηu
�
ξξ )

+(q − 2)(ξ2 + u�
η
2 + δ)

q
2 −2[(ξ + u�

ηu
�
ξη)

2 − u�
η
2u�

ξξu
�
ηη] − F0

z u
�
ξξ ,

where F0
z = F0

z (u�
ξ , η, ξu�

ξ − u�).

Proof Recall that u is a critical point of the functional

F(u) :=
∫

�

(|Du|2 + δ)
q
2

q
dx −

∫

�

log det D2u dx +
∫

�

F0(x, u) dx
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:= F1(u) − A(u) + F0(u).

From

det D2u = −u�
ηη

u�
ξξ

, dx1dx2 = u�
ξξ dξdη,

we have

F1(u) =
∫

��

(ξ2 + u�
η
2 + δ)

q
2

q
u�

ξξ dξdη := F1,�(u�),

A(u) =
∫

��

log

(
−u�

ηη

u�
ξξ

)
u�

ξξ dξdη := A�(u�),

F0(u) =
∫

�

F0(x1, x2, u) dx1dx2

=
∫

��

F0(u�
ξ , η, ξu�

ξ − u�)u�
ξξ dξdη := F0,�(u�).

Note that u� is a critical point of the dual functional

F�(u�) = F1,�(u�) − A�(u�) + F0,�(u�).

To find an equation for u�, we need to find the variations of F�.
Let ϕ ∈ C∞

0 (��). Using integration by parts, we obtain

dF1,�(u� + tϕ)

dt
|t=0 =

∫

��

(ξ2 + u�
η
2 + δ)

q
2

q
ϕξξ dξdη

+
∫

��

(ξ2 + u�
η
2 + δ)

q
2 −1u�

ηϕηu
�
ξξ dξdη

= −
∫

��

(ξ2 + u�
η
2 + δ)

q
2 −1(ξ + u�

ηu
�
ξη)ϕξ dξdη

+
∫

��

(ξ2 + u�
η
2 + δ)

q
2 −1u�

ηϕηu
�
ξξ dξdη

=
∫

��

[(ξ2 + u�
η
2 + δ)

q
2 −1(ξ + u�

ηu
�
ξη)]ξϕ dξdη

−
∫

��

[(ξ2 + u�
η
2 + δ)

q
2 −1u�

ηu
�
ξξ ]ηϕ dξdη.

d A�(u� + tϕ)

dt
|t=0 =

∫

��

−u�
ξξ

u�
ηη

(
−ϕηηu�

ξξ − u�
ηηϕξξ

u�
ξξ

2

)
u�

ξξ

+ log

(
−u�

ηη

u�
ξξ

)
ϕξξ dξdη
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=
∫

��

ϕηηu�
ξξ − u�

ηηϕξξ

u�
ηη

+ log

(
−u�

ηη

u�
ξξ

)
ϕξξ dξdη

=
∫

��

−(w�)−1ϕηη − ϕξξ + logw�ϕξξ dξdη

=
∫

��

(
−[(w�)−1]ηη + (logw�)ξξ

)
ϕ dξdη.

dF0,�(u� + tϕ)

dt
|t=0 =

∫

��

(ξϕξ − ϕ)F0
z u

�
ξξ dξdη +

∫

��

F0
x1ϕξu

�
ξξ dξdη

+
∫

��

F0ϕξξ dξdη

=
∫

��

(ξϕξ − ϕ)F0
z u

�
ξξ dξdη −

∫

��

(ξu�
ξ − u�)ξ F

0
z ϕξ dξdη

= −
∫

��

F0
z u

�
ξξϕ dξdη.

Therefore

dF�(u� + tϕ)

dt
|t=0

= dF1,�(u� + tϕ)

dt
|t=0 − d A�(u� + tϕ)

dt
|t=0 + dF0,�(u� + tϕ)

dt
|t=0

=
∫

��

(
[(ξ2 + u�

η
2 + δ)

q
2 −1(ξ + u�

ηu
�
ξη)]ξ − [(ξ2 + u�

η
2 + δ)

q
2 −1u�

ηu
�
ξξ ]η

)
ϕ dξdη

−
∫

��

(
−[(w�)−1]ηη + (logw�)ξξ + F0

z u
�
ξξ

)
ϕ dξdη.

From

dF�(u� + tϕ)

dt
|t=0 = 0, for all ϕ ∈ C∞

0 (��),

we find that, after the partial Legendre transformation, Eq. (1.2) becomes

−[(w�)−1]ηη + (logw�)ξξ

= (ξ2 + u�
η
2 + δ)

q
2 −1(1 + u�

ξη
2 − u�

ηηu
�
ξξ )

+ (q − 2)(ξ2 + u�
η
2 + δ)

q
2 −2[(ξ + u�

ηu
�
ξη)

2 − u�
η
2u�

ξξu
�
ηη] − F0

z u
�
ξξ .

After simplifications, it becomes

w�w�
ξξ + w�

ηη − w�
ξ
2 − 2

w�
w�

η
2

= w�2 · {(ξ2 + u�
η
2 + δ)

q
2 −1(1 + u�

ξη
2 − u�

ηηu
�
ξξ )

+(q − 2)(ξ2 + u�
η
2 + δ)

q
2 −2[(ξ + u�

ηu
�
ξη)

2 − u�
η
2u�

ξξu
�
ηη] − F0

z u
�
ξξ }.

(2.19)
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Therefore, (2.18) is proved. ��

3 Proof of Theorem 1.1

Proof of Theorem 1.1 Theorem 1.1 follows from Theorem 3.1 by letting ε → 0. ��
Theorem 3.1 Let� ⊂ R

2 be an open, smooth, bounded and uniformly convex domain.
Let q > 1. Assume (1.6) holds. Assume that ϕ ∈ C5(�) and ψ ∈ C3(�) with
inf∂� ψ > 0. Let δ(ε) = ε. Consider the following second boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2∑

i, j=1

Ui j Di jw = −div((|Du|2 + δ(ε))
q−2
2 Du) + F0

z (x, u) in �,

w = (det D2u)−1 in �,

u = ϕ on ∂�,

w = ψ on ∂�.

(3.1)

Then, the following facts hold:

(a) There exists a uniformly convex solution uε ∈ C4,γ (�) to (3.1) for all γ ∈ (0, 1).
(b) If q ≥ 2, then

‖uε‖C4,β (�) ≤ C

for some β ∈ (0, 1) and C > 0 depending on q,�, ω, F0, ϕ and ψ .

(c) If 1 < q < 2, then

‖uε‖C3,β (�) ≤ C

for some β ∈ (0, 1) and C > 0 depending on q,�, ω, F0, ϕ and ψ .

The proof of Theorem 3.1, using a priori estimates and degree theory, is similar to
that of Theorem 2.1 in [23]. We focus here on the a priori estimates.

For the rest of this section, let uε be a smooth, uniformly convex solution to (3.1).
We drop the subscript ε in uε, and wε, etc. to simplify notations. Universal constants
in the following paragraphs depend only on ϕ,ψ , inf∂� ψ ,�, q, F0, and ω.However,
they are independent of ε.

3.1 Uniform Bound for u

We first establish the universal bound for u.

Lemma 3.2 There is a universal constant C1 such that

‖u‖L∞(�) ≤ C1.
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Proof Note that, for a convex function u ∈ C2(�) with u = ϕ on ∂�, we have (see,
e.g., [20, inequality (2.7)])

‖u‖L∞(�) ≤ C‖ϕ‖L∞(�) + C(n,�, ‖ϕ‖C2(�))

(∫

∂�
(u+

ν )n
)1/n

where u+
ν = max(0, uν).

Thus, to prove the lemma, it suffices to prove

∫

∂�

(u+
ν )n dS ≤ C . (3.2)

For this, we use the arguments as in the proof of [23, Lemma 4.2]. Let ρ be a strictly
convex defining function of � as in (1.14). Let

ũ = ϕ + μ(eρ − 1).

Then, for μ universally large, depending on n,� and ‖ϕ‖C2(�), the function ũ is
convex, belongs to C5(�). Furthermore, as in [20, Lemma 2.1], we can verify that for
some constant C depending only on n, �, and ‖ϕ‖C4(�)

(i) ‖ũ‖C4(�) ≤ C, and det D2ũ ≥ C−1 > 0,

(ii) letting w̃ = [det D2ũ]−1, and denoting by (Ũ i j ) the cofactor matrix of D2ũ, then

∥∥∥Ũ i j Di j w̃

∥∥∥
L∞(�)

≤ C .

Let K (x) denote the Gauss curvature of ∂� at x ∈ ∂�. Then, from the estimate (4.10)
in the proof of [23, Lemma 4.2] with θ = 0 and n = 2 which uses (i) and (ii), we
obtain

∫

∂�

Kψu2ν dS ≤
∫

�

[−F0
z (x, u) + div ((|Du|2 + δ(ε))

q−2
2 Du)](u − ũ) dx

+C

(∫

∂�

(u+
ν )2 dS

)1/2

+ C . (3.3)

Since ũ is universally bounded, we use (1.6) to get a universal constant C > 0 such
that

−F0
z (x, u)(u − ũ) ≤ C .

From integration by parts and (i), we find

∫

�
div ((|Du|2 + δ(ε))

q−2
2 Du)(u − ũ) dx =

∫

∂�
−(|Du|2 + δ(ε))

q−2
2 Du · (Du − Dũ) dx

≤ C(q, sup
�

|Dũ|) ≤ C .
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Thus (3.3) gives

∫

∂�

Kψu2ν dS ≤ C + C

(∫

∂�

(u+
ν )2 dS

)1/2

.

In view of inf∂�(Kψ) > 0, we deduce that
∫
∂�

u2ν dS ≤ C which establishes (3.2). ��

3.2 Hessian Determinant Bounds for u

Next we provide a universal upper bound for det D2u.

Lemma 3.3 There is a universal constant C2 such that

det D2u ≤ C2 in �.

Proof By Lemma 3.2, sup� |u| is universally bounded by a constant C1. We will use
the partial Legendre transform in Proposition 2.7. Note that

N (u�) : = (ξ2 + u�
η
2 + δ)(1 + u�

ξη
2 − u�

ηηu
�
ξξ ) + (q − 2)[(ξ + u�

ηu
�
ξη)

2 − u�
η
2u�

ξξu
�
ηη]

≥ (q − 1)ξ2 + u∗
η
2 + ξ2u∗

ξη
2 + (q − 1)u�

η
2u�

ξη
2 + 2(q − 2)u�

ηξu
�
ξη

−ξ2u�
ξξu

�
ηη − (q − 1)u�

η
2u�

ξξu
�
ηη ≥ 0.

Thus, recalling (1.6), we find

f � = (ξ2 + u�
η
2 + δ)

q
2 −2N (u�) − F0

z u
�
ξξ ≥ −F0

z u
�
ξξ ≥ −Cu�

ξξ (3.4)

where C depends on C1 and ω.
Let Z = logw� + α(ξu�

ξ − u�). Note that ξu�
ξ − u� = u is universally bounded by

Lemma 3.2. By simple computations,

(ξu�
ξ − u�)ξ = ξu�

ξξ ,

(ξu�
ξ − u�)η = ξu�

ξη − u�
η,

(ξu�
ξ − u�)ξξ = u�

ξξ + ξu�
ξξξ ,

(ξu�
ξ − u�)ηη = ξu�

ξηη − u�
ηη,

w�
ξ = −u�

ηηξu
�
ξξ − u�

ηηu
�
ξξξ

u�
ξξ

2 = −w�u�
ξξξ + u�

ξηη

u�
ξξ

.

So we have

Zξ = w�
ξ

w�
+ αξu�

ξξ ,
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Zξξ = w�
ξξ

w�
− w�

ξ
2

w�2
+ α(u�

ξξ + ξu�
ξξξ ),

Zη = w�
η

w�
+ α(ξu�

ξη − u�
η),

Zηη = w�
ηη

w�
− w�

η
2

w�2
+ α(ξu�

ξηη − u�
ηη).

Then, using (3.4), we can estimate

w�Zξξ + Zηη

= 1

w�
(w�w�

ξξ + w�
ηη − w�

ξ
2 − 1

w�
w�

η
2
) + αξ(w�u�

ξξξ + u�
ξηη) + α(w�u�

ξξ − u�
ηη)

= 1

w�
(
1

w�
w�

η
2 + w�2 f �) − αξw�

ξu
�
ξξ + 2αw�u�

ξξ

≥ 1

w�
(
1

w�
w�

η
2 − Cw�2u�

ξξ ) − αξw�
ξu

�
ξξ + 2αw�u�

ξξ

= w�
η
2

w�2
− αξw�Zξ + α2ξ2w�u�

ξξ + (2α − C)w�u�
ξξ .

Choosing α > 0 suffienctly large, we have

w�Zξξ + Zηη + αξw�Zξ ≥ 0.

Hence Z = logw� + α(ξu�
ξ − u�) attains its maximum on ∂��. Note that if y =

(ξ, η) = P(x) ∈ ∂��, then

w�(y) = −u�
ηη

u�
ξξ

= det D2u(x) = 1

ψ(x)
≤ 1

inf∂� ψ
≤ C .

It follows that w� ≤ C , and hence, det D2u ≤ C2. ��
Remark 3.4 The above calculations use that w�

ε ∈ C2. They do not apply directly to
the solutions of (1.7) when 1 < q < 2 because w /∈ C2(�).

Finally, we prove a universal positive lower bound for det D2u.

Lemma 3.5 There is a universal constant C3 > 0 such that

det D2u ≥ C3 in �.

Proof From the universal upper bound for det D2u in Lemma 3.3, we can construct an
explicit barrier using the uniform convexity of � to show that, for a universal constant
still denoted by C2,

|Du| ≤ C2 in �. (3.5)
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We use the Legendre transform in Proposition 2.1. Recall that

w∗ = − log det D2u∗ − 1.

When F(x, z, p) = (|p|2+δ)
q
2

q + F0(x, z), the term

Fpi p j u
∗,i j = u∗,i j

[
(|y|2 + δ)

q
2

q

]

yi y j

can be absorbed into the left hand side of (2.1) and we get, after a sign change of both
sides

u∗,i j

[
log det D2u∗ + (|y|2 + δ)

q
2

q

]

yi y j

= F0
z . (3.6)

Note that the right hand side of (3.6) depends on sup� |u∗| and sup� |Du∗|. Observe
that

u∗,i j

[
log det D2u∗ + (|y|2 + δ)

q
2

q
+ Au∗

]

yi y j

= F0
z + nA ≥ 0

if A is sufficiently large depending on sup� |u∗| and sup� |Du∗|.We use themaximum
principle to conclude that log det D2u∗ + |y|q

q + Au∗ attains its maximum on ∂�∗. If
y = Du(x) ∈ ∂�∗, then

log det D2u∗(y) = log[det D2u(x)]−1 = logψ(Du∗(y)) ≤ C .

It follows that log det D2u∗ ≤ C from which we find det D2u ≥ C3 = e−C . ��

3.3 Proof of Theorem 3.1

Before giving theproof ofTheorem3.1,we state amain tool regardingHölder estimates
for the linearizedMonge–Ampère equation. By combining the globalHölder estimates
for the linearized Monge–Ampère equation in [19, Theorem 1.4] (in all dimensions,
with right hand side being in Ln) and [22, Theorem 1.2] (in two dimensions, with right
hand side being the divergence of a bounded vector field), we obtain the following
theorem.

Theorem 3.6 (Global Hölder estimates for the linearized Monge–Ampère equation)
Let � be a bounded, uniformly convex domain in R

n (n = 2) with ∂� ∈ C3. Let
φ : � → R, φ ∈ C0,1(�) ∩ C2(�) be a convex function satisfying

0 < λ ≤ det D2φ ≤ � < ∞, and φ |∂�∈ C3.

123



Singular Fourth Order Equations of Monge–Ampère Type Page 25 of 32    13 

Denote by (�i j ) = (det D2φ)(D2φ)−1 the cofactor matrix of D2φ. Let v ∈ C(�) ∩
C2(�) be the solution to the linearized Monge–Ampère equation

{
�i j Di jv = g + div G in �,

v = ϕ on ∂�,

where ϕ ∈ Cα(∂�) for some α ∈ (0, 1), G ∈ L∞(�,Rn) and g ∈ Ln(�). Then
v ∈ Cα1(�) with the estimate

‖v‖Cα1 (�) ≤ C
(‖ϕ‖Cα(∂�) + ‖g‖Ln(�) + ‖G‖L∞(�)

)

where α1 and C depend only on λ, �, n, α, ‖φ‖C3(∂�), ‖∂�‖C3 and the uniform
convexity of �. C also depends on diam(�).

Proof of Theorem 3.1 By Lemmas 3.3 and 3.5, we have

0 < C3 ≤ det D2uε ≤ C2 and |uε| + |Duε| ≤ C2, in �.

We apply Theorem 3.6 to the solution wε of

{
Ui j

ε Di jwε = −div((|Duε|2 + δ(ε))
q−2
2 Duε) + F0

z (x, uε) in �,

wε = ψ on ∂�,
(3.7)

and find that wε ∈ Cα(�) with universal estimates and a universal α ∈ (0, 1). Now
we apply the global C2,α regularity for the Monge–Ampère equation (see [33])

{
det D2uε = w−1

ε in �,

uε = ϕ on ∂�,

to obtain uε ∈ C2,α(�) with universal estimates. As a consequence, the second order
operator Ui j

ε Di j is uniformly elliptic with Hölder continuous coefficients with a uni-
versal exponent α.

(a) The right hand side of (3.7) is

fε := −(|Duε|2 + δ(ε))
q−2
2 �uε − (q − 2)(|Duε|2 + δ(ε))

q−4
2 DiuεDjuεDi juε

+F0
z (x, uε) ∈ Cα(�)

with ‖ fε‖Cα(�) depending also on ε. Therefore, we can estimate the C2,α(�)

norm of wε from (3.7). This gives uε ∈ C4,α(�) with estimates depending on ε.
It follows that we can estimate the C1(�) norm of fε depending also on ε. Using
(3.7) again, we find that wε ∈ C2,γ (�) for all γ < 1. Hence uε ∈ C4,γ (�) with
estimates depending on ε.
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(b) Assume q ≥ 2. Then fε ∈ Cγ (�) for some universal γ ∈ (0, 1) and ‖ fε‖Cγ (�) ≤
C4 for some universal constant C4. Therefore, we can estimate the C2,β(�) norm
of wε from (3.7) for β := min{α, γ }. This gives uε ∈ C4,β(�) with a universal
estimate

‖uε‖C4,β (�) ≤ C5.

(c) Assume 1 < q < 2. Note that (|Duε|2+δ(ε))
q−2
2 Duε is Hölder continuous with a

universal exponent γ depending on α and q > 1. Let β = min{α, γ }. Using (3.7),
we see that the universal C1,β(�) estimates for wε follows from [15, Theorem
8.33]. Hence, we have the universal C3,β(�) estimates for uε.

��

4 Proof of Theorem 1.3

Proof of Theorem 1.3 The proof of this theorem follows the strategy of that of [25,
Theorem 1.4].

(i) We solve (1.15)–(1.16) in W 4,s(�) (s > n = 2) by proving a priori W 4,s(�)

estimates for uniformly convex W 4,s(�) solutions and then using the degree theory.
Once the a priori W 4,s(�) estimates have been established (see, (4.1)), we can use a
Leray–Schauder degree argument as in [23, Theorem 2.1] to show the existence of a
uniformly convex solution uε ∈ W 4,s(�) (for all s < ∞) to the system (1.15)–(1.16).
Thus, it suffices to prove these a priori estimates.

Let uε ∈ W 4,s(�) be a uniformly convex solution to (1.15)–(1.16). We will prove
that, if ε is sufficiently small, then

‖uε‖W 4,s (�) ≤ C(ε, ϕ, ψ,�,�0, s, η, γ ). (4.1)

In what follows, we call constants depending on ϕ,ψ,�,�0, s, η, γ universal. Con-
stants depending on ε will be mentioned explicitly.

The key step in establishing (4.1) and in proving (ii) is to prove the universal bound,
independent of ε, for uε when ε is sufficiently small.

Step 1: Universal L∞ bound for uε. We will prove that, if ε is sufficiently small,
then

‖uε‖L∞(�) ≤ C(ϕ, ψ,�,�0, s, η, γ ). (4.2)

Let

F1
ε (x, p) =

[
(|p|2 + δ(ε))

q
2 /q − x · p

]
γ (x). (4.3)

Then,

F1
ε,pi p j

= (|p|2 + ε)
q−4
2 [(|p|2 + δ(ε))δi j + (q − 2)pi p j ]γ (x),
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and, recalling that δ(ε) = ε,

min{1, q − 1}(|p|2 + ε)
q−2
2 γ (x)I2 ≤ (F1

ε,pi p j
) ≤ max{1, q − 1}(|p|2 + ε)

q−2
2 γ (x)I2,

(4.4)

where I2 is the identity 2 × 2 matrix. Therefore, the lowest eigenvalue of (F1
ε,pi p j

)

blows up when p is small if 1 < q < 2 or p large if q > 2. This is a crucial difference
between F1

ε and the function F1 in [25, Theorem 1.4] where F1 was assumed to satisfy
F1
pi p j

≤ C∗ I2 for some universal constant C∗. Thus, we need to refine the analysis in
[25] to overcome the unboundedness of the Hessian of F1

ε in the p variable.
Since uε ≤ sup∂� uε = sup∂� ϕ by convexity, to prove (4.2), it suffices to prove

that

uε ≥ −C in �. (4.5)

Let us denote as in (3.1) in [25]:

ũ = ϕ + ε
1

3n2 (eρ − 1).

Then

fε =
[
F0
z (x, uε(x)) − ∂

∂xi

(
∂F1

ε

∂ pi
(x, Duε(x))

)]
χ�0(x) + 1

ε
(uε(x) − ũ(x))χ�\�0(x)

=
[
F0
z (x, uε(x)) − F1

ε,pi xi (x, Duε(x)) − F1
ε,pi p j

(x, Duε(x))Di j uε

]
χ�0(x)

+1

ε
(uε(x) − ũ(x))χ�\�0(x).

As in (3.6) in [25], we have

∫

∂�

ε((uε)
+
ν )ndS ≤ C +

∫

�

− fε(uε − ũ)dx . (4.6)

Let

M := sup
∂�

|ϕ|, m := inf
�0

ϕ + inf
�0

(eρ − 1), ᾱ := dist(�0, ∂�)

diam(�)
> 0.

Case 1 If

uε ≥ m − M − 1

ᾱ
in �0

then, by convexity, we obtain (4.5).
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Case 2 There is z ∈ �0 such that

uε(z) ≤ m − M − 1

ᾱ
< 0.

We will show that

uε ≤ ũ in �0. (4.7)

Indeed, for any x ∈ �0 \ {z}, let y be the intersection of the ray zx with ∂�. Then

x = αz + (1 − α)y where α = |x − y|
z − y

≥ ᾱ.

Thus, by convexity

uε(x) ≤ αuε(z) + (1 − α)uε(y) ≤ ᾱuε(z) + M ≤ m − 1 < inf
�0

ũ ≤ ũ(x).

Therefore, we have (4.7). With (4.7), we have

∫

�0

F1
ε,pi p j

Di j uε(uε − ũ)dx ≤ 0. (4.8)

Let us now continue with the proof of (4.5) in Case 2. Using the convexity of F0 (see
(1.8)) and the universal boundedness of ũ, we get

∫

�0

−F0
z (x, uε(x))(uε − ũ)dx ≤

∫

�0

−F0
z (x, ũ(x))(uε − ũ)dx ≤ C + C1‖uε‖L∞(�0).

(4.9)

Since uε is convex with uε = ϕ on �, we have the following gradient estimate (see,
(3.1) in [23])

|Duε(x)| ≤ max∂� ϕ − uε(x)

dist(x, ∂�)
for x ∈ �. (4.10)

For F1
ε defined by (4.3),

F1
ε,pi xi (x, p) = (|p|2 + ε)

q−2
2 piγxi − xiγxi − γ (x).

We recall that γ is a nonnegative, Lipschitz function and it is a constant if q > 2.
Hence, we have

|F1
ε,pi xi (x, p)| ≤ C2(|p| + 1) for all x ∈ �0 and for each i .
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This the only place where we need to assume γ is constant when q > 2. Thus, using
(4.10), we can estimate in �0:

|F1
ε,pi xi (x, Duε(x))(uε(x) − ũ(x))| ≤ C2(|Duε(x)| + 1)(|uε(x)| + C)

≤ C3(|uε(x)|2 + 1). (4.11)

By Corollary 2.2 in [25], we have

‖uε‖L∞(�0) ≤ C + C
∫

�\�0

|uε|dx . (4.12)

This together with ‖ũ‖L∞(�) ≤ C gives

‖uε‖L∞(�0) ≤ C + C
∫

�\�0

|uε − ũ|2dx . (4.13)

From (4.9), (4.8), (4.11) and (4.13), we find that

∫

�0

− fε(uε − ũ)dx =
∫

�0

[
F1
ε,pi xi (x, Duε(x)) + F1

ε,pi p j
(x, Duε(x))Di j uε

]
(uε − ũ) dx

+
∫

�0

−F0
z (x, uε(x))(uε − ũ) dx

≤ C + C1‖uε‖L∞(�0) + C3

∫

�0

(|uε|2 + 1) dx

≤ C‖uε‖2L∞(�0)
+ C

≤ C + C4

∫

�\�0

|uε − ũ|2 dx . (4.14)

Note that fε = 1
ε
(uε − ũ) in �\�0. Hence, it follows from (4.6) and (4.13) that

∫

∂�

ε((uε)
+
ν )ndS +

∫

�\�0

1

2ε
|uε − ũ|2dx

≤ C +
∫

�

− fε(uε − ũ)dx +
∫

�\�0

1

2ε
|uε − ũ|2dx

= C +
∫

�0

− fε(uε − ũ)dx +
∫

�\�0

− 1

2ε
|uε − ũ|2dx

≤ C + C4

∫

�\�0

|uε − ũ|2dx −
∫

�\�0

1

2ε
|uε − ũ|2dx .

Therefore, if ε ≤ ε0 where ε0 < 1 is universally small, then we get

∫

∂�

ε((uε)
+
ν )ndS +

∫

�\�0

1

2ε
|uε − ũ|2dx ≤ C (4.15)
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Using (4.12) and the universal boundedness of ũ, we obtain (4.2) as asserted.
Step 2 W 4,s estimate for uε if ε ≤ ε0.

From (4.2) and gradient estimate (4.10), we find

‖Duε‖L∞(�0) ≤ C5. (4.16)

Therefore, recalling (4.4), we obtain the following refined estimate on the Hessian of
F1

ε when evaluated at Duε(x) where x ∈ �0:

(F1
ε,pi p j

(x, Duε(x))) ≤ C∗(ε)I2 for all x ∈ �0. (4.17)

where

C∗(ε) =
⎧
⎨

⎩
(q − 1)(C2

5 + ε)
q−2
2 ‖γ ‖L∞(�0) if q ≥ 2,

ε
q−2
2 ‖γ ‖L∞(�0) if 1 < q < 2.

From the universal a priori L∞(�) estimates (4.2) for uε and the refined Hessian
estimate (4.17), we can establish the a priori W 4,s(�) estimates (4.1) for uε as in [23,
Theorem 4.1]. The proof of (i) is now complete.

(ii) Let uε ∈ W 4,s(�) (s > n) be a solution to (1.15)–(1.16) where ε ≤ ε0. Then
(4.2) and (4.16) hold. Thus, for x ∈ �0, we have

|DpF
1
ε (x, Duε)| = |Duε|(|Duε|2 + ε)

q−2
2 γ (x) ≤ (C2

5 + ε)
q−1
2 ‖γ ‖L∞(�0)

≤ (C2
5 + 1)

q−1
2 ‖γ ‖L∞(�0).

Now, we argue exactly as in the proof of Theorem 1.4 (ii) in [25], which uses the
universal boundedness of |DpF1

ε (x, Duε)|, to complete the proof of (ii). We omit the
details. ��
Acknowledgements The authors would like to thank the referee for helpful comments on the manuscript.
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