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Abstract

We study the solvability of the second boundary value problem for a class of highly sin-
gular fourth order equations of Monge—Ampere type. They arise in the approximation
of convex functionals subject to a convexity constraint using Abreu type equations.
Both the Legendre transform and partial Legendre transform are used in our analysis.
In two dimensions, we establish global solutions to the second boundary value prob-
lem for highly singular Abreu equations where the right hand sides are of g-Laplacian
type for all ¢ > 1. We show that minimizers of variational problems with a convexity
constraint in two dimensions that arise from the Rochet—-Choné model in the monop-
olist’s problem in economics with g-power cost can be approximated in the uniform
norm by solutions of the Abreu equation for a full range of g.
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1 Introduction
1.1 Singular Fourth Order Equations of Monge-Ampére Type

This paper is concerned with a class of fourth order equations of Monge—Ampere type

3" UV Dy;[G' (det D*u)] = trace [(det D2u)(Du)~ ' D*(G' (det D2u))]
Q=1
— f inQCR" (1.1

Here and throughout, n > 2, U = (UY)1<; j<, = (det D*u)(D?u)~" is the cofactor
8%u
W) 1<i,j<n
uniformly convex function u, and G : (0, c0) — R is a smooth function satisfying
certain conditions. Equations of this type appear in many contexts ranging from affine
geometry, complex geometry and economics.
Equation (1.1) \l)vith the right hand side f = f(x) has been extensively studied.

matrix of the Hessian matrix D?u = (D; JU<i j<n = ( of an unknown

When G(t) = t»+2, it is the prescribed affine mean curvature equation in affine
geometry [8]. When G (#) = logt,itis the Abreu’s equation arising from the problem of
finding extremal metrics on toric manifolds in Kéhler geometry [1], and itis equivalent
to

" 92yl

~ 0x;0x;

= f ),

L]

where (u%/) is the inverse matrix of D?u. The regularity and solvability of these
equations and related geometric problems have been extensively investigated in the
past two decades, including [6,7,10-13,19,20,31-33,35,36], to name a few. In all
these works, the regularity theory of linearized Monge—Ampere equation, initiated
in the fundamental work of Caffarelli-Gutiérrez [4], plays an important role. The
second order operator L, := U/ D; ; 1s called a linearized Monge—Ampere operator
because the coefficient matrix (U") comes from the linearization of the Monge—
Ampere operator:

_ 0(det D%u)
T 3(D2%u)

One can also note that L,v = U/ D;jv = trace(U D?v) is the coefficient of 7 in the
expansion

det D*(u + tv) = det D*u + ¢ trace(U D?v) + - - - + t" det D*v.
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Singular Fourth Order Equations of Monge-Ampére Type Page 3 of 32 13

Recently, a class of fourth order equations of Monge—Ampere type in the general
form of

U Di;[G'(det D*u)] = f(x,u, Du, D*u) (1.2)

has been introduced by the first author in [23-25] in the study of convex functionals
with a convexity constraint related to the Rochet—-Choné model [30] for the monopo-
list’s problem in economics; see also [5] for the precursor of this class of equation. One
usually takes G (f) = log ¢ (the Abreu type equation) or G(t) = ¥ where0 < 0 < 1/n
(the affine maximal surface type equation). If we view the linearized Monge—Ampere
operator as a non-divergence form operator, then for regularity theory, a natural inte-
grability condition for the right hand side is L”. In general, the regularity theory of
linearized Monge—Ampere equation with L” right hand side in previous works, includ-
ing those in [4,17,18], does not apply to (1.2), since the right hand side of (1.2) depends
on D?u which is a priori only a matrix-valued measure. This is the reason why (1.2)
was called singular Abreu equation in the above mentioned works. As mentioned in
[23], even when f (x, u, Du, D?u) = Au, the right hand side of (1.2) has low integra-
bility, which is at most L'*# for some small constant &. However, the regularity results
for the linearized Monge—Ampére equation with L"/>*¢ right hand side in [28], which
makes use of the divergence form character of L, (note that, Y *_; D;U" = 0 for all
Jj) via the optimal integrability of its Green’s function, allow the first author to study
(1.2) in two dimensions under suitable assumptions on f and boundary data. In light
of this, it is natural to consider (1.2) when f has a divergence form structure, of which
f = Au = div (Du) is a particular example.

When f is just the divergence of a vector field, such as div (| Du 19-2Du) where 1 <
q < 2,theright hand side of (1.2), which contains the term | Du |‘1’2Au, become more
singular in D?u and hence it does not belong to L'*¢. Equation (1.2) with this type of
highly singular right hand side f arises from the analysis of the Rochet—-Choné model
[30] with g-power cost; see Sect. 1.3. Despite this singularity, div (| Du|9~%Du) is the
divergence of a bounded vector field when Du is bounded. In dimension two, based
on the L'*¢ integrability of the Green’s function of the linearized Monge—Ampére
operator, interior and global Holder regularity estimates for linearized Monge—Ampere
equation with the right hand being the divergence of a bounded vector field have been
established in [21,22]. The higher dimensional case is widely open. Nevertheless, these
results suggest the possibility of solving certain boundary value problems for (1.2) in
the case of highly singular right hand side. To apply the results in [21,22], a key step is
to obtain the positive lower and upper bounds for the Hessian determinant det Du of
a solution u. However, the techniques in [23-25] could not handle the highly singular
Abreu type equations.

In this paper, we use the Legendre transform and partial Legendre transform to
investigate the regularity and solvability of highly singular Eq. (1.2) which arises
from a variational problem. This is the case when f has the form

n n n
fGu, Du, D*u) = F. =Y Fp; — Y FpzDiu— Y Fpp Diju  (1.3)
i=1 i=1 i,j=1

@ Springer



13 Page4of32 N.Q. Le, B. Zhou

where F = F(x, z, p) is a function on R" x R x R”. In order words, (1.2) is the
Euler-Lagrange equation of the functional

f(u):/ F(x,u,Du)dx—/ G(detD2u)dx. (1.4)
Q Q

The Legendre transform has been extensively used in the analysis of the Monge—
Ampere type equations including the fourth order (1.1) with f depending only on the
independent variable x; see, for example [7,20,31,32,35,36] and the references therein.
Likewise, the partial Legendre transform has been widely used to investigate fine
properties of Monge—Ampere equations, especially degenerate ones; see, for example
[9,16,26,27] and the references therein. However, to the best of our knowledge, it has
not been used in fourth order equations of Monge—Ampere type before. For equation
of the type (1.2), the Legendre transform usually gives one-sided bound for det Du.
In two dimensions, it turns out out the other one-sided bound can be obtained using
the partial Legendre transform.

Note that (1.2) can be written as a system of two equations for u and w =
G'(det D*u). One is a Monge—Ampere equation for u in the form of

det D*u = (G') " (w)
and other is a linearized Monge—Ampere equation for w in the form of
Lyw =U"YDjjw = f(-,u, Du, D*u).

Thus, a very natural boundary value problem for (1.2) is the second boundary
value problem where one describes the values of u and w on the boundary 9€2. In
what follows, when u is only C3, the expression Zf =1 U " Djjw is understood as

Yo D; (U Djw).

1.2 Solvability of the Second Boundary Value Problem for Highly Singular Abreu
Equations

Letg € (1, 00). Let 2 be an open, smooth, bounded and uniformly convex domain in
R™. Let ¢ € C°(Q), ¥ € C3(Q) with infyq ¥ > 0.

We are interested in the second boundary value problem of the Abreu equation with
right hand side of g-Laplacian type for a uniformly convex function u:

n
> U Dijw = ~div (|Du|"?Du) + F(x,u) in <,
ij=1
w = (det D’u)~' inQ, (1.5)
u =¢ onaf2,
w =Y ond2
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Here FO(x, z) is a function on R” x R. The particular form of the right hand side of
(1.5) was partially motivated by problems from economics; see (1.15). Of course, one
can replace the term —div (|Du|?~2Du) in (1.5) by other expressions involving Du
and D?u. We chose this particular form in (1.5) due to its simplicity; moreover, this
form still captures the highly singular feature of the right hand side in the Hessian
D?u which is the case when 1 < g < 2 and Du is small, or when ¢ > 2 and Du is
large. It should be emphasized that the negative sign in —div (|Dul|? ~2Du) in (1.5)
is crucial. If this term is replaced by div (|Du|‘1_2Du), then (1.5) might not have a
global, smooth and uniformly convex solution; see [24, Remark 1.5].

In two dimensions, Eq. (1.5) in the case of ¢ > 2 and F, 0 = 0 was considered in
[23, Theorem 2.6]. The case 1 < g < 2, evenif F, 0 = 0, was left open. Also left open
in the two dimensions was the case of ¢ > 2 and F 0 =£0.

The solvability of (1.5) is usually established using higher order a priori estimates
and degree theory. As mentioned earlier, a critical step is to obtain the a priori lower
and upper bounds for det D>u when 1 < ¢ < 2 and F, O = 0. All known arguments
in obtaining the lower bound for det D?u use two 1ngredlents () div (|Dul?"2Du) <
C Au when | Du| is bounded; and (ii) trace (U/) = Au. Thus, they are applicable only
to g > 2 and n = 2. Here we use the Legendre transform to study (1.5). We resolve
the remaining cases 1 < ¢ < oo and FZO # 0 in dimensions n = 2.

We assume that FO is smooth and satisfies

Fo(x,2) <w(z); —F2(x,2)(z -2 <w(Z]) forallx €2, andallz,7eR
(1.6)

where o : [0, 00) — [0, 00) is a continuous and increasing function.
Our first main theorem states as follows.

Theorem 1.1 (Solvability of the second boundary value problem for highly singular
Abreu equations) Let Q@ C R? be an open, smooth, bounded and uniformly convex
domain. Let g > 1. Assume (1.6) holds. Assume that ¢ € C>(Q2) and € C3(Q) with
infyq ¥ > 0. Consider the following second boundary value problem:

2
YUY Djjw = —div(Dul?"?Du) + F)(x.u) inQ,
i j=1

w = et D*uw)~' inQ, (1.7
u =¢ onof2,
w =Y ondQ.

(1) If g = 2, then there exists a uniformly convex solution u € C*B(Q) 10 (1.7) with
||”||C4,/5(§) <C
for some B € (0, 1) and C > 0 depending on q, Q, w, F°, ¢ and .
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13 Page60f32 N.Q. Le, B. Zhou

(i) If1 < q < 2, then there exists a uniformly convex solution u € C>#(Q) to (1.7)
with

lullcspg = C

for some B € (0, 1) and C > 0 depending on q, 2, w, F°, ¢ and .

Theorem 1.1 will be proved in Sect. 3. The main idea of the proof of Theorem 1.1
is to use partial Legendre transform. After the partial Legendre transformation, the
first two equations of (1.7) become a quasi-linear elliptic equation for the dual w* of
w. To estimate the a priori lower and upper bounds for det D>u when 1 < ¢ < 2 and
F ZO £ 0, we need the C? character of w* (in order to apply the maximum principle to an
elliptic equation in non-divergence form) which is equivalent to u being C*. This is not
possible for g € (1, 2). Thus, we will not apply the partial Legendre transform directly
to (1.7). Instead, we apply it to its approximation (3.1) whose global C* solutions are
guaranteed.

The Legendre transform can also be used to establish interior higher order derivative
estimates in higher dimensions for (1.5) when F. ZO < 0. This is the content of our next
theorem.

Theorem 1.2 (Interior higher order derivative estimates for highly singular Abreu
equations) Let n > 3. Let u € C3(Q) N C%(Q) be a uniform convex solution to (1.5)
where FO is smooth, F? < 0, ¢ € C3(Q), ¥ € C3(Q) with infyq ¥ > 0. Then, for
any Q' € Q, we have

lullcaeoy = C ifg =2
and
lullcraoy <C ifl <g <2

where o and C depend on ¢, ¥, FO Q. n, q and dist(Q', 9K2).

We will prove Theorem 1.2 in Sect. 2. However, due to the lack of global regularity
in higher dimensions for the linearized Monge—Ampere equation with right hand side
being the divergence of a bounded vector field, it is still an open problem to solve the
second boundary value problem for (1.5) when n > 3. Note that, when n > 3 and the
right hand side of (1.5) is replaced by —ydiv (|Du|?~2Du) where g>2andy >0
is a small constant depending on n, ¢, ¢, ¥ and €2, the existence of a unique global
C*P(Q) solution to (1.5) was established in [24]. It would be interesting to remove
this smallness of y.

1.3 Approximations of Minimizers of Rochet-Choné Model with Non-quadratic
Costs

Iict Qp, Q2 be bognded, open, smooth, and convex domains in R” where 2 contains
Qo. Let ¢ € C°(R) be a convex function. Let F(x, z, p) : R” x R x R” — R be the
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Singular Fourth Order Equations of Monge-Ampére Type Page 7 of 32 13

Lagrangian given by
F(x.z.p) = (pl?/q —x - p)y(x) + F'(x.2)

where y is a nonnegative and Lipschitz function. We assume the following convexity
and growth assumptions on FO:

(F2(x,2) = F2(x, )2 —2) = 0; |F(x,2)|
+F%x, 2)] < n(lz]) forall x € Qpandz,Z € R (1.8)

where 7 : [0, o0) — [0, 00) is a continuous and increasing function.

When FO(x, z) = zy (x), the Lagrangian F covers the Rochet—~Choné model with
g-power cost and relative frequency of agents in the population given by y; see [30,
p. 790]. We are interested in the following variational problem subject to a convexity
constraint:

inf / F(x,u(x), Du(x))dx (1.9)
uesS[y,R0]J Qo

where

S [¢, Qo] = {u : Qo — R | u is convex and admits a convex extension to 2 such that
u = @ on Q2\Q}. (1.10)

Since functionsin S [¢, 0] are Lipschitz continuous with Lipschitz constants bounded
from above by || Dol =), S[e, Q0] is compact in the topology of uniform conver-
gence on compact subsets of 2. With (1.8), one can show that (1.9) has a minimizer
in S[g, Qo). Heuristically, the boundary conditions for minimizers associated with
(1.10) are

au d . .
u=¢ and FT™ < a—(p on 0829 where v is the unit outer normal vector on 082g.
Vo Vo

(1.11)

In [30], Rochet—Choné modeled the monopolist problem in product line design with
g-power cost using minimization, over convex functions u > ¢, of the functional

d(u) = / [|Du(x)|q/q —x-Du(x)+ u(x)] y(x)dx. (1.12)
Qo

Here —®(u) is the monopolist’s profit; u is the buyers’ indirect utility function
with bilinear valuation; 29 C R” is the collection of types of agents; y is the relative
frequency of different types of agents in the population; the given convex function ¢
is referred to as the participation constraint. The constraint (1.10) can be heuristically
viewed as a special case of the constraint # > ¢ in .
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13 Page80f32 N.Q. Le, B. Zhou

The convexity constraints such as # > ¢ in (1.12) and (1.10) in (1.9) pose serious
challenges, as elucidated in [2,29], in numerically computing minimizers of the above
problems. This calls for robust approximation schemes for minimizers of variational
problems with a convexity constraint. The question we would like to address here is
how to approximate minimizers of (1.9) in the uniform norm by solutions of some
higher order equations whose global well-posedness can be established. The approxi-
mating scheme proposed in [23,25] use the second boundary value problem of fourth
order equations of Abreu type and it only works for ¢ = 2 and n = 2; see also [5]
for F not depending on p. The reason ¢ = 2 is that the gradient-dependent term
Fl(x, p) = (Ipl9/q — x - p)y(x) of the Lagrangian F was required to satisfy for
some C > 0

(x, p)| < C(Ip| + 1) for all x € Qg and for each i.
(1.13)

1 . 1
0<F), (x.p) <Cly [|F

i Xi

Inspired by the approximation Eq. (3.1) in the proof of Theorem 1.1, we will
answer positively the question of approximating minimizers of (1.9) by solutions of
the second boundary value problems of fourth order equations of Monge—Ampere
type for the full range (1, oo) of ¢. The idea is to modify the schemes in [23,25] by
further approximating the gradient-dependent term. We describe this scheme below.

Let p be a uniformly convex defining function of €2, that is,

Q:={xeR":pkx) <0}, p=00n0dRand Dp # 0 on 3. (1.14)

For ¢ > 0, let §(¢) = ¢, and consider the following second boundary value problem
for a uniform convex function u,:

n
e Y UYDjw. =f inQ,
i, j=l1
w, = (det D*u,)”' inQ, (1.15)
U, =¢ onas2,
we =Y onad2,

where

aF° ~ 9 2 a2 , .
P Tz(x,us(x))—;Tm(y(x)[(lDugl +38(e)) 7 ue —xz]) if x € Qo,

i <u£(x) —o(x) — sﬁ(epm — 1)) ifx € Q\ Q0.
(1.16)

The first two equations of (1.15) arise as the Euler—Lagrange equation of the functional
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Singular Fourth Order Equations of Monge-Ampére Type Page 9 of 32 13

Jg.e () ;=/ [(|Du|2+a(s))%/q—x.Du]y(x)dx+/ FO(x, u)dx
Qo Q0

1 1
—sflogdetDzudx+— (u—q@ —em?
Q 2e Jaq,

(eP™ — 1))%dx.
(1.17)

Our final theorem, which is concerned with the solvability and asymptotic behavior
of solutions to (1.15)—(1.16) when ¢ — 0, states as follows.

Theorem 1.3 Let Q and Q2 be bounded, open, smooth, and convex domains in R>
(n = 2) where Q2 is uniformly convex and contains Qo. Let NS C(Q), /S c? (Q)
where ¢ is convex, and infyq W > 0. Assume that the smooth function F° satisfies
(1.8). Let y be a nonnegative and Lipschitz function on Q. If ¢ > 2, then we also
assume that y is a constant. If ¢ > 0 is small, then, the following facts hold:

(1) The system (1.15)—(1.16) has a uniformly convex solution u, € W‘”(Q) for all
s € (n, 00).

(i) Let uy € WHS(Q) (s > n) be a solution to (1.15)~(1.16). Then, a subsequence of
ug converges uniformly on compact subsets of Q to a minimizer u € S[p, Qo] of
(1.9).

We will prove Theorem 1.3 in Sect. 4.

Remark 1.4 If F° (x, z) is uniformly convex with respect to z, then the minimizer of
(1.9) is unique. When ¢ = 2, and 8(¢) = 0, the equation (1.15) was considered in
[23,25]. Suppose 1 < g < 2 and §(¢) = 0in (1.15). Even if we obtain positive lower
and upper bound for det D?u,, the best regularity we can get for u, is C*>%(). This
is due to the jump over 92 of the terms on the right hand side. Thus, we cannot get
W45 (€2) solutions as stated in Theorem 1.3.

Notation The Legendre transform of u will be denoted by u* while the partial
Legendre transform of u will be denoted by u*. We use v to denote the unit outer
normal to 9€2.

The rest of the paper is organized as follows. The Legendre transform and partial
Legendre transform and their applications to the Abreu equations will be discussed in
Sect. 2. In particular, we prove Theorem 1.2 with the Legendre transform. The proof
of Theorem 1.1 will be given in Sect. 3. In Sect. 4, we will prove Theorem 1.3.

2 Legendre Transform and Partial Legendre Transform

2.1 Legendre Transform and Regularity in General Dimension

In this section, we derive the dual equation of (1.2) under Legendre transform in any
dimension. After the Legendre transform, the equation is still a linearized Monge—

Ampere equation. Denote the Legendre transform u™ of u by

u*(y) =x-Du —u, wherey= Du(x) € Q* = Du(Q).

@ Springer



13 Page 10 0f 32 N.Q. Le, B. Zhou

Proposition 2.1 Let u € C*(Q) be a uniformly convex solution to (1.2) in Q where f
is given by (1.3). Then in Q* = Du(), its Legendre transform u* satisfies

u*,ijDijw* = f*. @.1)
Here (u*'/) is the inverse matrix of D*u*,
w* = G((det D*u*)™") — (det D*u*) "' G’ ((det D*u*)™1), (2.2)
and
fr= Fmp_,-“*’ij + (Fpizyi + Fpixy — F2), (2.3)

where Fpipi = Fpip; (Du*,y - Du* —u*, y) and likewise for F,,, Fp,,, and F.
Ifue C3(Q), then instead of (2.1), we have

D;((det D*u*)u* D;w*) = f* det D*u*
in the weak sense.

Proof Recall that u is a critical point of the functional

Fu) := / F(x,u, Du)dx —f G (det Dzu) dx == B(u) — A(u).
Q Q

From
det D*u = [det D*u*]™", dx = det D*u* dy,
we have
Fu)=F W") :=B*u") — A*u"),
where
Alu) = /Q det D*u*G((det D*u*)~ ) dy := A*(u*),
and

B(u) = / F(Du*,y - Du* — u*, y)det D*u* dy := B*(u*).
Q*

Note that u* is a critical point of the dual functional F*(u*). To find an equation for
u*, we need to find the variations of F*.
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Singular Fourth Order Equations of Monge—Ampére Type Page 11 of 32 13

Letp € C{°(2*). Let w* be given as in (2.2) and (U*/) be the cofactor matrix of
D?u*. Note that (U*'/) is divergence free, that is

n
> DiU* =0 forall j.
i=1
Then, integrating by parts twice, one finds

dA* (¥ + tg)

- |z=0=/ U*’ijw*Dijwdyzf U Dijw*pdy.
* Q*

By integration by parts, we find that

dB*(u* + te)

o li=0 = / Fy. D det D*u* dy —+—/ (y - Do — @) F. det D*u* dy
Q* Q*

+/ FD;joU*" dy
Q*
= / F,. D det D*u* dy +/ (y - Do — @) F. det D*u* dy
Q* Q*
—/ [kaDkiu*ngaU*’ij + 3y, (y - Du* —u*)F,D;joU*"
Q*
+Fp, DypU | dy.
Using 0y, (y - Du* — u*) = yxDy;u™ and Dyiu*U*Y = det Dzu*(Skj, we obtain

dB*(u* +t .
dB*u” +19) —/ goFZdetDzu*dy—/ Fy, DjoU*Y dy
* Q*

dt li—0 =
= —/mgon det Dzu*dy+/SZ*</)F,,ikakju*U*’ij dy
* \/5\2* @Fpiz0y,; (y - Du* — WU dy + fQ* wFpiﬁ_iU*’ij dy
= | #lEppU S 4 (Fp,yi + Fpx; — F2) det D*u*]dy.
Therefore

B dA*(u™ +tg)
dt

dF*(u* +tg0)| _dB*(u* +1y)
dt =0 = dt

= / QLFp,p, U + (Fp2yi + Fpxy — F2) det D*u* — U Djjw*]dy.
Q* ’

|t:0 |t:0

From

dF*(u* +te)

T li=o =0, forallp e C°(Q"),
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13 Page 120f32 N. Q. Le, B. Zhou

we obtain
U Djjw* = Fpp, U + (Fp2yi + Fpx, — F2) det D*u* = f*det D*u*
and this gives the desired equation for u*. O

Remark 2.2 A direct calculation as in Lemma 2.7 in [20] gives another proof of Propo-
sition 2.1.

Using Proposition 2.1, we can establish the interior higher order derivative estimates
for the second boundary value problem of (1.5).

Proof of Theorem 1.2 We use C and C to denote universal positive constants depend-
ing only on ¢, ¥, FO, n, g and Q. For ¢ > 1, we have from the convexity of u that

—div (|Dul?"2Du) < 0.
Note that F2(x, z) < 0. Hence U D;jw = —div (|Dul?"2Du) + FO(x,u) < 0. By
the maximum principle applied to the equation U/ Dijw < 0, we see that w attains

its minimum value on the boundary. Thus w > infzq ¢ > 0. This together with
det D?u = w™! gives a universal upper bound for det D%u:

det D*u < C.

Hence, from u = ¢ on 92, we have supg, |u| < C. Furthermore, we can construct
suitable barriers to get

|Du| < C in Q. (2.4)

Let u*(y) be the Legendre transform of u(x) where y = Du(x) € Q* := Du().
Then

| < C in Q*. 2.5)

Let (U*'7) be the cofactor matrix of D?u*. Then, with the notation as in Proposition
2.1,and F(x,z, p) = |p|9/q + F°(x, z), we have

w* = —log det Du* — 1,
f*det D*u* = (Fpy p,u™" — F,) det D2u*
= U™ D;j(lyl?/q) — F det D*u*.

From (2.1), we deduce that u™ satisfies
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D; (U D; (1y|9/q +logdet D*u*) | = UV D;; (1y|7/q + logdet D*u*
J q 4 J q g
0 2
= F_(Du*,y - Du* — u*)det D“u*
(2.6)

in Q*. In view of (2.4) and (2.5), we find that FZO(Du*, y - Du* — u*) is universally
bounded in *. Hence, for a universally large constant C; > 0, we have in Q*:

D; [U*’ifDi (|y|q/q + log det D2u* + Clu*)]
= [FO(Du*, y - Du* — u*) +nCy]det D*u* > 0. 2.7

If y = Du(x) € 9Q*, then
det D*u*(y) = [det D*u(x)]”" = ¥ (x) = ¥ (Du*(y)).

This together with (2.4) and (2.5) shows that on 3Q*, |y|? /g + log det D?u* + Ciu*
is bounded by a universal constant. We can apply the maximum principle to (2.6) to
conclude that

1y1?/q + logdet D*u* + Cyu* < sup(|y|?/q + logdet D*u* + Ciu*) < C in Q*.
aN*

Note thatifu € C3(2)NC?(RQ), we apply the maximum principle for elliptic equations
in divergence form (see [15, Theorem 8.1]) to the divergence form of (2.7).

In particular, w(x) = det D2u*( y) is bounded from above by a universal constant.
Thus det Dy is bounded from below by a positive universal constant. In conclusion,
we have

0<C ! <detD?u<cC. (2.8)

These bounds together with the the boundary data ¢ of u being C>(£2) allow us to
establish, from below, a universal (and positive) modulus of convexity of u in the
interior of €2; see [14, Corollary 4.11 and Theorem 4.16]. Now, we use the interior
Holder estimate for the linearized Monge—Ampere equation with bounded right hand
side [4,34], applied to (2.6), to conclude that log det D%u* is C* in the interior of §*,
for some o > 0 universal, with universal estimates. This combined with the universal
modulus of convexity of u implies that det D?u is C* in the interior of . Therefore,
from Caffarelli’s C>* estimates for the Monge—Ampére equation [3], we obtain C>¢
estimates in the interior of §2 for u. Thus, in the interior of 2, UY D; ;j is a uniformly
elliptic operator with C coefficients. Since ¢ > 1, |[Du|9~2Du is a CP vector field
in the interior of 2 for B > 0 universal. Using [15, Theorem 8.32], we obtain from
the first equation of (1.5), that is,

U" Dijw = —div (|Dul?"2Du) + F2(x, u),
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the interior C1'¥ estimates for w, where y = min{e, B}. This, in turns, gives the
interior C3¥ estimates for u.
When g > 2, we have better regularity estimates. In this case

—div (|Du|!"2Du) = —|Du|?""*Au — (q — 2)|Du|?"*D;uD;uD;;u

is C% in the interior of €2 for some a; = a4 (o, g¢) > 0 universal. Now we can use
the standard Schauder theory to the first equation of (1.5) to get the interior C>%
estimates for w. Hence, we get the interior C*% estimates for u. O

We also derive global smoothness estimates for the second boundary value problem
of (1.2) in terms of the W2”(£2) norm of the solutions when F is of a special form.

Proposition 2.3 Let 2 C R" be an open, smooth, bounded and uniformly convex
domain. Assume that ¢ € C>(Q) and ¢ € C3(Q) with infaqy > 0. Sup-
pose F(x,z,p) = FOx,z) + F'(p) is smooth with |D*F'(p)| < M for all
p = (p1,..., pn) € R". Consider a smooth solution u to the second boundary
value problem for (1.2) where G(t) = logt. Assume that ||u|lw2nqy < K. Then

u € CH(Q) with
||M||C4,a(§) =< C

where a > 0 and C depends on FO,Fl K, M, @, ¥, nand Q2.

Proof Weuse C, Cy, Cy, ... to denote universal positive constants depending only on
FO F', K, M, ¢, ¥, nand Q. When F(x, z, p) = F(x, z) + F(p), we have

fx) = on(xs u(x)) — Fl],l.pj(Du(x))DijM(x) (2.9
and
I fllzn < Cn, M, K, F°, Q). (2.10)
Note that
det(U") = (det D*u)"' = w1,

W@_ apply the Aleksandrov-Bakelman—Pucci estimate (see, [15, Theorem 9.1]) to
UYDjjw = f in Q with w = ¥ on 9<2 to find that

S
supw < supy + C(n, 2) H—
Qp as? (det(U”))l/n L()

< sup ¥ + C(n, Q) | f 1l (g sup(w =D/,
Q2 Q

It follows that w < C and hence

w<C, detD’u>C"'>0.
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Using the above estimates and arguing as in [20, Lemma 2.5], we have

sup |Du| < C. 2.11)
Q

We use the Legendre transform and notation as in Proposition 2.1. Then
w* = —logdet D%u* — 1, Fpl.pju*’ij = u*’ijD,:,'Fl(y)
and, from (2.3), we deduce that
u* Dij(w* — F'(y)) = —FX(Du*, y - Du* —u*) in Q*. (2.12)
From (2.11) and u*(y) = x - Du(x) — u(x) where y = Du(x), we deduce
u*| + |FO(Du*,y - Du* —u*)| < Cy in Q.
Thus, for a large universal constant C, > 0, we have
w Y Dij(w* — FY(y) + Cou®) = —=F*(Du*,y - Du* —u*) 4+ nCy > 0 in Q*.

Hence, by the maximum principle, w* — F!(y) 4+ Cou* attains it maximum on dQ*.
If y = Du(x) € 0Q*, then

1
w*(y) = —logdet D?u*(y) — 1 = logdet D?u(x) — 1 =log——— — 1< C
Y (Du*(y))

From this, we find that
w* < C in Q*.

Therefore, det D?u(x) = @ (PutD+1 < € in Q. This combined with the lower
bound for det D?u gives

0<C!'<detD*u <C inQ. (2.13)

Now, using (2.13) and (2.10), we can apply the global C* estimates for the linearized
Monge—Ampere equation (see, [19, Theorem 1.4]) to

U'Dijjw=f inQ, w=1v ondQ,
to get
”wuca(ﬁ) <C3
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where « and C3 are universal positive constants. From the global C>* estimates for
the Monge—Ampere equation (see [33]) applied to

det D’u =w™' in Q,

2.14
u=¢ onoas, ( )

we find
lull 2o gy < Ca-

Therefore, the second order operator U%/ D;  is uniformly elliptic with C¢ (Q) coeffi-
cients. Moreover, from (2.9), we find that f € C*(2). Using the classical Schauder
estimates to U D;;w = f, we deduce that w € C>%(Q) with lwllc2.ag < C. With
this estimate, (2.14) easily gives

”””c‘ka(ﬁ) <C.

O

Remark 2.4 The assumption |F 11,' Pl =M in Proposition 2.3 can be removed if
one has [[ullco.1q) + lully2n(q) < K or [[ully2teqy < K for some & > 0.

From (2.12), we also obtain the following interior estimates.

Proposition 2.5 Ler Q@ C R” be a convex domain. Let F* : R" x R — R be a smooth
function. Let u € C3(2) be a uniformly convex solution to

n

> U Djjl(det D*u)~"] = —div (|1Du|? *Du) + FO(x,u) inQ (2.15)

ij=1
that satisfies

0 < & < det D*u < A. (2.16)
Then there exists a constant a« € (0, 1) depending only on A, A, n and q with the
following property: For any Q' € S, there exists a constant C > 0 depending on
supq, |u|, the modulus of convexity of u, A, A, n, q, FO and dist(Q', 9R), such that
||u||c4»0t(g2/ <C ifg=2
and
lullcse@y <C ifl <g <2.

Remark 2.6 In dimension two, (2.16) implies a positive lower bound on the modulus
of convexity of u; see, for example [27, Lemma 2.5].

@ Springer



Singular Fourth Order Equations of Monge—Ampére Type Page 17 of 32 13

2.2 Partial Legendre Transform in Two Dimensions

In this section, we consider n = 2 and write u(x) = u(x1, x2). The partial Legendre
transform in the x{-variable is

u*(&,m) = xquy (x1, x2) — u(xy, x2), (2.17)
where
y=(&,n) =P, x2) = (uy, x2) € P(Q) := Q.
We have
IE. ) <u u> Ixr,x0) [ —inn
— = , and ———— = | “xin x|,
d(x1, x2) 0 1 G160 0 1
Hence,
N N 1 N N det D%u N Uy xs
Uy = X1, Upe = LU= —Uy,, U = —————— Ur = — .
& && . n X220 . &n .

In the following proposition, we deduce the dual equation for (1.2) under partial
Legendre transform. One can derive the dual equation for the general case of F'(x, z, p)
and G, but for simplicity we only consider a special case for (1.2) which is appropriate
for the proof of Theorem 1.1. This is the case of Eq. (3.1) in Sect. 3. As we explained
in the introduction, when 1 < g < 2, we can not expect C* solution to (1.7).

Proposition 2.7 Let G(t) = logt and F(x, z, p) = (|p|> +8)% /q + FO(x, z), where
§>0andq > 1. Let u € C*() be a uniformly convex solution to (1.2) in Q where
f is given by (1.3). Then in Q* = P (), its partial Legendre transform u* satisfies

* o x * *2 2 *2 *2 %
W wge +wy, — wg —;wn =w"fr. (2.18)

*
Uiy

I and
Ugg

Here w* = —
f* = (52 + M;Z + S)%_l(l + ugnz _ uznugg)
*2 q_ 5
+Ha = 2E +uy” + 6272 E +uqu,)? —uputa, | — Flut,
where FZO = on(ug, n, 5“2 —u).

Proof Recall that u is a critical point of the functional

Dul? +6)2
F(u) :=/ de—/logdetDzudx+/ FO(x, u)dx
Q q Q Q
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= Flw) — Au) + FOu).

From

u*
det D>y = — 1"

*

dxidxy = uf; d&dn,
Ugg

we have
2 *2 1
+up”+9)2
]_-1 (l/t) — / %u&f d%‘dn = ‘7_‘1,*(”*)’

— _@ * e AR K
A(u) = log > Ugg dédn .= A*(u),
* &&

Fou) = / FO(x1, x2, u) dxidx;
Q
= /Q FO(ug, n, §uf — u*)ut, d&dy == FO* (u®).
Note that u* is a critical point of the dual functional
Fru*) = FU* ) — A*u*) + FOr ().
To find an equation for u*, we need to find the variations of F*.

Let ¢ € C5°(R2*). Using integration by parts, we obtain

q
dF"* (u* +19) E* 4w’ +96)2
— =0 =/ — g d€dn

dt q
+ [ @i+ 0 g dedy
= - /Q (@ uy? 9 E +upug, g didn
+ [ @+ gt dedy
- /Q TE 4 + 9T €+ ujut,ep dsdn
—fg*[(s2 Ful? + 8wt ul 1y didy.

dA*(u* +19) Ugg [ Polige — Upn®Pse )
T":o_ T\ T T 7 M

*
" Ugg

n

M*
+log | == | pez dédy
Uee
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PrnUie — Unp@ uy
= / M"_bg( )905%‘ dédn
* um] gg

- / —w*) gy — gee +logw* e dédn

= [ (-t + o w*);;;) pdidn.

AFO* (@ + 1) ,

dt
+ / FOper dedn
Q‘k
= fQ (Epe — ) Flute dsdn - /Q (up — ut)e Floe dedy
= —/ onugg(pdfdn.
Q‘k
Therefore

dF*(u* + t9)
dt
dFY*u* + tg) dA*(u* + tg) dFO*(u* + 1g)
= TI - 7 lr=0 + 7 lr=0

=/Q* (16> +up? + 37 € +uput, e — 1€ +uy” + 93 uputly) w dedn

lr=0

t=

- fQ (—[(w*)—l],,,7 + (logw*)ez + onugs) o ded.

From

dF*(u* +tg)

T lr=0 =0, forall g € C5°(22"),

we find that, after the partial Legendre transformation, Eq. (1.2) becomes
—[(w*)—l],m + (logw")gz
= E+u+ T A g, — ulute)
+(q = 2E +uy +8)IE +ujut,)? — uy utul,] — Fout,.
After simplifications, it becomes

ko 4wt — *2 2 *2
W Weg T Wy = W = 22Uy
= w? (@ 4y’ + O+, — k)
g = DE* +u) + 8 T2E +ujut,)? — u utun,] — Foul,).
(2.19)
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Therefore, (2.18) is proved. O

3 Proof of Theorem 1.1

Proof of Theorem 1.1 Theorem 1.1 follows from Theorem 3.1 by lettinge — 0. O

Theorem 3.1 Let Q C R? be an open, smooth, bounded and uniformly convex domain.
Let g > 1. Assume (1.6) holds. Assume that ¢ € C>(Q) and ¥ € C3(Q) with
infaq ¥ > 0. Let §(¢) = ¢. Consider the following second boundary value problem:

2
Z UYDjw = —div((|Du|2+a(s))¥Du)+FZ°(x,u) inQ,
i,j=l1
w = (det D*uw)~" inQ, G.D
u =¢ onod<2,
w =Y ondifQ.

Then, the following facts hold:

(a) There exists a uniformly convex solution u, € C*7(Q) 1o (3.1) forall y € (0, 1).
(b) If g > 2, then

luellcarpig = C
for some B € (0, 1) and C > 0 depending on q, Q, w, F°, ¢ and .
© If1 < g <2, then
luellesng < C

for some B € (0, 1) and C > 0 depending on q, 2, w, F°, ¢ and .

The proof of Theorem 3.1, using a priori estimates and degree theory, is similar to
that of Theorem 2.1 in [23]. We focus here on the a priori estimates.

For the rest of this section, let us be a smooth, uniformly convex solution to (3.1).
We drop the subscript € in ug, and we, etc. to simplify notations. Universal constants
in the following paragraphs depend only on @, ¥, infyq ¥, 2, ¢, F°, and w. However,
they are independent of ¢.

3.1 Uniform Bound for u

We first establish the universal bound for u.

Lemma 3.2 There is a universal constant C such that

lull Loy < Ci.
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Proof Note that, for a convex function u € C 2(ﬁ) with u = ¢ on 92, we have (see,
e.g., [20, inequality (2.7)])

1/n
lullLeo@) = CliellLe@) + Cn, 2, llellie2 ) (Ag(uj)") where u)} = max (0, uy).

Thus, to prove the lemma, it suffices to prove

/m(uj)" ds <cC. (3.2)

For this, we use the arguments as in the proof of [23, Lemma 4.2]. Let p be a strictly
convex defining function of 2 as in (1.14). Let

i=g¢+uE’ —1.

Then, for p universally large, depending on n, Q and [|¢[|¢2(q). the function # is

convex, belongs to C3(Q). Furthermore, as in [20, Lemma 2.1], we can verify that for
some constant C depending only on n, €2, and [|¢|| ¢4 (g,

() llillcaeg < C, and det D*i > C~1 >0,
(ii) letting w = [det D%i]~!, and denoting by (U7 the cofactor matrix of D%, then

09000, =
Lo(£2)

Let K (x) denote the Gauss curvature of €2 at x € d€2. Then, from the estimate (4.10)

in the proof of [23, Lemma 4.2] with & = 0 and n = 2 which uses (i) and (ii), we
obtain

/ Kyu?dsS < / [—F2(x, u) + div ((| Dul* + 5(e))2 Du)J(u — i) dx
Q Q
’ 1/2
+C < (uj)2d5> +C. (3.3)
Q2

Since u is universally bounded, we use (1.6) to get a universal constant C > 0 such
that

—F(x, u)(u — i) < C.
From integration by parts and (i), we find

fdiV((|Du|2+8(8))%Du)(u—12)dx=/ —(|Du|2+8(s))%Du-(Du—DlZ)dx
Q 02

< C(q,sup|Du|) < C.
Q
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Thus (3.3) gives

172
/ Kyu?dS<C+C (/ (uj)2d5> .
R QR

In view of inf3q (K ) > 0, we deduce that fm u% dS < C which establishes (3.2). O

3.2 Hessian Determinant Bounds for u

Next we provide a universal upper bound for det D?u.

Lemma 3.3 There is a universal constant Co such that
det D’u < C» in Q.

Proof By Lemma 3.2, supg, |#| is universally bounded by a constant C1. We will use
the partial Legendre transform in Proposition 2.7. Note that

N@*) = E +ul® + 80 +up,” —ulhule) + (g — DUE +ujul,) — u) uleu

> (g — D& +ul® + £2uf,” + (g — Dubut,” +2(q — Dujsul,

]
2 % % *2 x x
& ugguryy — (g — Duy ugeuy, = 0.
Thus, recalling (1.6), we find
* * q4_ * * * *
= E+u) +OINWY) — Flufe > —Foule > —Culy  (34)

where C depends on C; and w.
Let Z = logw* + a(éug — u*). Note that Sug — u* = u is universally bounded by
Lemma 3.2. By simple computations,

(Gui —u")s = uge,

(Eug —u*)y = Eug, —uy,

(Euf —uM)ee = ufe + Eulee,
(ug —u")yy = Sugyy, —uy,,

| WhgtEs T WanEer _ WMEer +Ugy,

2 - *
U Ugg

* __
wi:—

So we have

*

: .
Ze = — :
g =L Tobug
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wh _wi
— * *
Zee = 0 oz Tl FSuge),

*

Zy = w_z +aGug, —uy),

* *2
_ nm-o_ n * _*
Zyy = wr w2 +oaGugy, —uy,)-

Then, using (3.4), we can estimate

W' Zeg + Zy
1 * * * *2 1 *2 * K * * K *
= pr WWeg - wyy —wm = — 2wt + af (Wit + Ugy,) + o (Winge —uy,)

1 1
= —(—w%z + w*zf*) — aéwgugs + Zaw*ugg

w* w*
> s ;w,*lz — Cw*zugs) —afwiufs + 200w uf,
*2
= w—zz —afw Z; +0{2$2w*u§§ + Qo — C)w ug,.

Choosing « > 0 suffienctly large, we have
W Zgg + Zyy + 25w Zeg > 0.

Hence Z = logw* + oz(éug — u*) attains its maximum on d2*. Note that if y =
(&,n) = P(x) € 9Q*, then

1
- < <C.

W) = — M — et D2u(x) = —— < - <
U Y(x) ~ infyo ¢

It follows that w* < C, and hence, det D*u < Cy. O

Remark 3.4 The above calculations use that w? € C2. They do not apply directly to
the solutions of (1.7) when 1 < ¢ < 2 because w ¢ C2(S).

Finally, we prove a universal positive lower bound for det D?u.
Lemma 3.5 There is a universal constant C3 > 0 such that
det D*u > C3 in Q.
Proof From the universal upper bound for det D?u in Lemma 3.3, we can construct an
explicit barrier using the uniform convexity of 2 to show that, for a universal constant

still denoted by C»,

|Du| < C»in Q. 3.5)
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We use the Legendre transform in Proposition 2.1. Recall that

w* = —logdet D*u* — 1.

q
2

2
When F(x, z, p) = Qo)

7 + FO(x, z), the term

0] k0]
Fppju™" =u |:

q
(Iy]>+8)% }
q _

Yiyj

can be absorbed into the left hand side of (2.1) and we get, after a sign change of both
sides

2 q

.. 5)2

u*t |:logdet D*u* + W} =F. (3.6)
Yiyj

Note that the right hand side of (3.6) depends on supg, |u*| and supg, | Du*|. Observe
that

(IyI> +8)%

wi |:log det D*u* +
q

+Au*j| =F)+nA>0
Yiyj

if A is sufficiently large depending on supg, |u*| and supg, | Du*|. We use the maximum
principle to conclude that log det Du* + % + Au™* attains its maximum on 9 Q*. If
y = Du(x) € 9Q*, then

log det D?u*(y) = log[det D*u(x)]~" = log ¥ (Du*(y)) < C.

It follows that log det D%u* < C from which we find det D?u > Csy = e €. O

3.3 Proof of Theorem 3.1

Before giving the proof of Theorem 3.1, we state a main tool regarding Holder estimates
for the linearized Monge—Ampere equation. By combining the global Holder estimates
for the linearized Monge—Ampere equation in [19, Theorem 1.4] (in all dimensions,
with right hand side being in L") and [22, Theorem 1.2] (in two dimensions, with right
hand side being the divergence of a bounded vector field), we obtain the following
theorem.

Theorem 3.6 (Global Holder estimates for the linearized Monge—Ampere equation)
Let 2 be a bounded, uniformly convex domain in R" (n = 2) with 92 € C3. Let
¢:Q— R ¢ e CO(Q)N CAQ) be a convex function satisfying

0 <A <detD’¢ <A < o0, and ¢ |30 C>.
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Denote by (d') = (det D*¢)(D*¢)~" the cofactor matrix of D*¢. Let v € C(S2) N
C%(2) be the solution to the linearized Monge—Ampére equation

CIDijD[jv =g+divG in<,
V=g on L2,

where ¢ € C*(0RQ) for some a € (0,1), G € L*(Q,R") and g € L"(Q). Then
v € CY(Q2) with the estimate

lvllger @ =€ (llellce@e) + gl @ + 1Glx@)

where ay and C depend only on X, A, n, a, [||lc3q) 10823 and the uniform
convexity of Q. C also depends on diam(S2).

Proof of Theorem 3.1 By Lemmas 3.3 and 3.5, we have
0 < C3 <det D*u, < C, and |ug| + |Dug| < C», in Q.

We apply Theorem 3.6 to the solution w, of

.. -2
{ Ul Dijw, = —div((|Dugl? +8(e))'T Dug) + F(x,u;) in <, a7

we =Y onadf2,

and find that w, € C%() with universal estimates and a universal & € (0, 1). Now
we apply the global C>“ regularity for the Monge—Ampere equation (see [33])

detDzu‘E :ws_1 in ,
Ug =¢ onag2,

to obtain u, € C 2")‘(5) with universal estimates. As a consequence, the second order

operator U’ D; ; is uniformly elliptic with Holder continuous coefficients with a uni-
versal exponent «.

(a) The right hand side of (3.7) is

—2 —4
fo = —(IDuc? +8€)T Aug — (g — 2)(|Dug|> +8(6))"T Diute Djue Dijue
+F)(x, u) € C*(Q)

with || fe |l ce @ depending also on &. Therefore, we can estimate the C>%($)

norm of w, from (3.7). This gives u, € C 4 (Q) with estimates depending on ¢.
It follows that we can estimate the C' () norm of f, depending also on . Using
(3.7) again, we find that w, € C>7 () for all y < 1. Hence u, € C*?(Q) with
estimates depending on €.
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(b) Assume g > 2. Then f, € C¥(RQ) for some universal y € (0, 1) and ||f8||cy(§) <
C4 for some universal constant C4. Therefore, we can estimate the C># () norm
of w, from (3.7) for B := min{w, y}. This gives u, € C*P () with a universal
estimate

[luee ”C‘W(ﬁ) < Cs.

(c) Assume 1 < g < 2. Note that (| Du, |2 +38(g)) % Du, is Holder continuous with a
universal exponent y depending on @ and ¢ > 1. Let § = min{«, y}. Using (3.7),
we see that the universal C1-#(Q) estimates for w, follows from [15, Theorem
8.33]. Hence, we have the universal C3-#(Q) estimates for u,.

4 Proof of Theorem 1.3

Proof of Theorem 1.3 The proof of this theorem follows the strategy of that of [25,
Theorem 1.4].

(i) We solve (1.15)=(1.16) in W**() (s > n = 2) by proving a priori W** ()
estimates for uniformly convex W**(2) solutions and then using the degree theory.
Once the a priori W45 (Q) estimates have been established (see, (4.1)), we can use a
Leray—Schauder degree argument as in [23, Theorem 2.1] to show the existence of a
uniformly convex solution u, € W4s(Q) (forall s < 00) to the system (1.15)—(1.16).
Thus, it suffices to prove these a priori estimates.

Let u, € W**(Q) be a uniformly convex solution to (1.15)—(1.16). We will prove
that, if ¢ is sufficiently small, then

||u8||W4~S(£2) = C(Sv @, vasQO»Sv n, J/) (41)
In what follows, we call constants depending on ¢, ¥, 2, Q9. s, 0, y universal. Con-
stants depending on ¢ will be mentioned explicitly.
The key step in establishing (4.1) and in proving (ii) is to prove the universal bound,
independent of &, for u, when ¢ is sufficiently small.

Step 1: Universal L°° bound for u.. We will prove that, if ¢ is sufficiently small,
then

”ué‘”LOO(Q) < C(QD, Kﬁ» Qv QOv s, 1, V) (42)

Let
Flee p)=[(pP +8@nt /g —x - p]y 0. (43)
Then,
Flpp = PP+ )T [(1pI? +5(£)8; + (@ — Dpip Iy (x),
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and, recalling that §(¢) = ¢,

) < max{l,q — 1)(IpP + &) Ty ).
“4.4)

. q=2
min{l, g — B(pl* +6) 7 v < (F. .

where I is the identity 2 x 2 matrix. Therefore, the lowest eigenvalue of (Fgl‘ i pj)
blows up when p is smallif 1 < g < 2 or p large if ¢ > 2. This is a crucial difference
between F sl and the function F! in [25, Theorem 1.4] where F'! was assumed to satisfy
F 1%,- pj < C,I, for some universal constant C. Thus, we need to refine the analysis in

[25] to overcome the unboundedness of the Hessian of F, 81 in the p variable.
Since uy < sup,q ue = Sup,q ¢ by convexity, to prove (4.2), it suffices to prove
that

> —C inQ. @.5)

Let us denote as in (3.1) in [25]:

1

i=g¢+ea(e” —1).

Then

0 d (OF) 1 )
fo= | PG e ) = o 550 Due ) ) | ey () + — (0 () = 06)) xen ()
x; \ dp; e

=[O ue(0) = FL (6 Due) = FL, , (6, Due(0)Dijue | x5y (x)

1
+o e () - u(x)) xe\Qo ().

As in (3.6) in [25], we have

/ e((u)H"dS < C +f — fo(ue — )dx. (4.6)
Q2 Q
Let
i ) _ dist(Qo, Q)
M = . = inf fe — 1), @1 = —F——
Sausg) ol m 1512]0 v 151210 (e ) diam(€2)
Casel If
m—-M-—-1 .
ug > ———— in Qo
o

then, by convexity, we obtain (4.5).
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Case 2 There is z € Q¢ such that
M
w(z) < 2270 <,
o

We will show that
ug < i in Q. 4.7
Indeed, for any x € Q¢ \ {z}, let y be the intersection of the ray zx with 9<2. Then

x=az+ (1 —-a)y Whereazuz&,

-y
Thus, by convexity

us(x) <aus(z) + (1 —aus(y) <au.(z) + M <m-—1< igrzlfﬁ < u(x).
0
Therefore, we have (4.7). With (4.7), we have

/Q Fsl,pipj Dijus(us —u)dx <0. (4.8)
0

Let us now continue with the proof of (4.5) in Case 2. Using the convexity of F (see
(1.8)) and the universal boundedness of i, we get

/ —F2(x, us (x) (e — it)dx < / —F2(x, i(x)) (s — i)dx < C + Cyllue |l (5)-
Q0

Q0

(4.9)

Since u, is convex with u, = ¢ on €2, we have the following gradient estimate (see,
(3.1)in [23])

maxyQ ¢ — Ug(x)
D <—> f Q. 4.10
|Dug(x)| < st 99 orx € (4.10)

For F defined by (4.3),

q-2
Fsl,p,.x,.(x,p) =(pl>+&)'7 pive, — Xiyy, — y ().

We recall that y is a nonnegative, Lipschitz function and it is a constant if g > 2.
Hence, we have

|F,

&, DiX

i(x, ) < Ca(|p| + 1) forall x € ¢ and for each i.
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This the only place where we need to assume y is constant when g > 2. Thus, using
(4.10), we can estimate in :

|}, (6 Dite (0)) (e (x) — ()| < Ca(| Dute ()] + D (Jute (x)] + C)

< C3(lus(0)* +1). (4.11)
By Corollary 2.2 in [25], we have
litell oy < C +C / ueldx. @.12)
Q\Qo
This together with [|i|| < q) < C gives
llie || Lo gy < C + C/ lue — i|%dx. (4.13)
Q\Qo

From (4.9), (4.8), (4.11) and (4.13), we find that

—fe(ue —u)dx = ./gz [Fslyp[x‘. (x, Dug(x)) + F,sl’p[,p/_(x, Dug(x))Dijug] (ug —u)dx
) |

+/ —FO(x, ue (v)) (e — @) dx
Q0

Q0

< C+ Cilluglipoo(nq) + C3/Q (lue)® + 1y dx
0
< Clluell oo (g + €

< c+c4/ lue — ii|? dx. (4.14)
Q\Q
Note that f; = %(u5 — u) in 2\ 9. Hence, it follows from (4.6) and (4.13) that

1
f s((ue)j)"dS+f — |up — ii|*dx
Q2 Q\Q0 2¢e

1
< c+/ —fs(ug—ft)dx+/ — |up — ii|)?dx
Q Q\Qp 2¢€

- 1 -
=C+ —fg(ug—u)dx+/ ——|up — i|*dx
Q0 Q\Q 2¢
1
5c+c4/ |u£—ft|2dx—/ —lup — ii|%dx.
2\ Q\Qo 2€

Therefore, if ¢ < g9 where gy < 1 is universally small, then we get
+\n 1 ~12
e((ug)y)"dS + —lue —ul“dx < C (4.15)
a0 Q\Qy 28
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Using (4.12) and the universal boundedness of i, we obtain (4.2) as asserted.
Step 2 W*S estimate for u, if & < g.
From (4.2) and gradient estimate (4.10), we find

| Dug|lpoo(2q) < Cs. (4.16)

Therefore, recalling (4.4), we obtain the following refined estimate on the Hessian of
Fg1 when evaluated at Du,(x) where x € Qq:

(Fsl’p[pj (x, Dug(x))) < Cy(e)Ir forall x € Q. (4.17)

where

q=2 .
(@ —D(CE+e) 7 Iyl ifq=>2,
Cy(e) =

=2 .
g 2 ||y||L°°(Qo) if 1 < q < 2.

From the universal a priori L°°(2) estimates (4.2) for u, and the refined Hessian
estimate (4.17), we can establish the a priori W45 (Q) estimates (4.1) for u, as in [23,
Theorem 4.1]. The proof of (i) is now complete.

(i) Let u, € W*S(2) (s > n) be a solution to (1.15)—(1.16) where & < . Then
(4.2) and (4.16) hold. Thus, for x € 2y, we have

q=2 q—1
|D,Fl(x, Dug)| = |Dug|(|1Dusl* + ) 7 y(x) < (C3+¢) 7 |yl

2 g—1
< (C5+ 1) 7 |lyllLee(g)-

Now, we argue exactly as in the proof of Theorem 1.4 (ii) in [25], which uses the
universal boundedness of | D, F‘,g1 (x, Dug)|, to complete the proof of (ii). We omit the
details. O
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