Dynamic Estimation of Auditory Temporal Response
Functions via State-Space Models with Gaussian Mixture
Process Noise

Sina Miran', Alessandro Presacco?, Jonathan Z. Simon234, Michael C. Fu?®, Steven 1.

Marcus®?3, Behtash Babadi®®"

1 Starkey Hearing Technologies, Eden Prairie, MN, USA

2 Institute for Systems Research, University of Maryland, College Park, MD, USA

3 Department of Electrical & Computer Engineering, University of Maryland, College
Park, MD, USA

4 Department of Biology, University of Maryland, College Park, MD, USA

5 Robert H. Smith School of Business, University of Maryland, College Park, MD, USA

* behtash@umd.edu

Abstract

Estimating the latent dynamics underlying biological processes is a central problem in
computational biology. State-space models with Gaussian statistics are widely used for
estimation of such latent dynamics and have been successfully utilized in the analysis of
biological data. Gaussian statistics, however, fail to capture several key features of the
dynamics of biological processes (e.g., brain dynamics) such as abrupt state changes and
exogenous processes that affect the states in a structured fashion. Although Gaussian
mixture process noise models have been considered as an alternative to capture such
effects, data-driven inference of their parameters is not well-established in the literature.
The objective of this paper is to develop efficient algorithms for inferring the parameters
of a general class of Gaussian mixture process noise models from noisy and limited
observations, and to utilize them in extracting the neural dynamics that underlie

auditory processing from magnetoencephalography (MEG) data in a cocktail party
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setting. We develop an algorithm based on Expectation-Maximization to estimate the
process noise parameters from state-space observations. We apply our algorithm to
simulated and experimentally-recorded MEG data from auditory experiments in the
cocktail party paradigm to estimate the underlying dynamic Temporal Response
Functions (TRFs). Our simulation results show that the richer representation of the
process noise as a Gaussian mixture significantly improves state estimation and
capturing the heterogeneity of the TRF dynamics. Application to MEG data reveals
improvements over existing TRF estimation techniques, and provides a reliable
alternative to current approaches for probing neural dynamics in a cocktail party
scenario, as well as attention decoding in emerging applications such as smart hearing
aids. Our proposed methodology provides a framework for efficient inference of
Gaussian mixture process noise models, with application to a wide range of biological

data with underlying heterogeneous and latent dynamics.

Author summary

While Gaussian statistics are widely-used in analyzing biological data, they are not able
to fully capture the observed heterogeneity and abrupt changes in the dynamics that
govern the underlying biological processes. A notable example of such a process is the
ability of the human brain to focus attention on one speaker among many in a cocktail
party and switch attention to any other at will. We propose a signal processing
methodology to extract the dynamics of such switching processes from noisy biological
data in a robust and computationally efficient manner, and apply them to
experimentally-recoded magnetoencephalography data from the human brain under
cocktail party settings. Our results provide new insight on the heterogeneous neural
dynamics that govern auditory attention switching. While our proposed methodology
can be readily used as a reliable alternative to existing approaches in studying auditory
processing in the human brain, it is suitable to be applied to a wide range of biological

data with underlying heterogeneous dynamics.
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Introduction

Extracting the latent dynamics that govern biological processes from noisy and limited
measurements is a long-standing challenge in computational biology. From the signal
processing perspective, state-space modeling is a natural and commonly-used framework
for estimation of such latent dynamic processes, i.e., the states, under limited
observations [1]. While traditionally used in application domains such as control system
design [2], tracking [3], and finance [4], this framework has recently been utilized in the
analysis of neural data [5-11]. State-space models (SSMs) often consist of two equations:
the state (evolution) equation, to describe the dynamics of the latent process (e.g., the
intrinsic level of an internal neural state variable), and the observation equation, to
illustrate how the externally-measured observations are related to the process. In signal
processing applications, these equations are typically described in a parametric fashion
using domain-specific expert knowledge of the problem, and parameter estimation is
mostly performed via Expectation Maximization (EM) [12,13] or Variational Inference
(VI) [14,15]. To better model the state evolution, in addition to expected measurement
uncertainties, additive noise terms are often explicitly included in both the state and
observation equations. In traditional applications, i.i.d. Gaussian statistics are
assumed /imposed on these noise terms to account for the aggregate uncertainties and
mismatches in the model. Under linear dynamics and observations, Gaussian noise, and
fixed model parameters, Minimum Mean Square Error (MMSE) state estimation is
conducted by the well-known Kalman filter and smoother [1]. For more general SSMs,
Sequential Monte Carlo (SMC) methods can be used for MMSE state estimation [16].
In the context of neuroimaging data analysis, SMC methods have been utilized in MEG
dipole modeling and source localization [7-9].

Gaussian statistics, however, are often inconsistent with the empirical histograms of
the observations in various applications, including neuroimaging data analysis. For
instance, in MEG analysis, the observation noise consists of intrinsic magnetic noise,
ocular or motion-induced artifacts, as well as background activity unrelated to the
stimulus. While the intrinsic noise can be reliably modeled by Gaussian statistics and
estimated from stimulus-free measurements in experimental settings, the artifacts and

neural background activity are manifestly non-Gaussian and non-stationary. However,
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when there is direct access to the observed signals, source separation techniques have
been successfully utilized to remove and mitigate these latter sources of
uncertainty [17-22].

Similarly, the state model noise terms introduced above, often referred to as process
noise, do not actually follow Gaussian statistics in various real-world
applications [23,24]. This is mainly due to two reasons: First, in time series analysis,
abrupt state changes may not be well represented by Gaussian statistics. Second, in
practice, the statistics of the process noise heavily depend on the specifics of the
experimental design, such as the task demand and subject’s performance, as well as
other exogenous variables not accounted for. Critically, unlike the case of the
observations, states are only indirectly observed, which limits the utility of source
separation techniques. Finally, despite the negative connotation of the word “noise”, the
process noise also captures the model-critical stochasticity of the state evolution. As
such, the goal is to model and account for said stochasticity, as opposed to removing it
as in the case of observation noise.

This issue is particularly important in modeling brain function as a latent dynamic
process: taking the states to represent the underlying neural circuits that process
sensory stimuli, the process noise then consists of both the underlying behaviorally- and
stimulus-driven dynamics as well as the background neural activity (not necessarily
evoked by the stimulus or behavior), which are typically quite structured and far from
being Gaussian. In this context, the state evolution model is more prone to model
mismatch and biases, as compared to the observation equation, considering that we
generally have more control over the measurement system than the generative
mechanism governing the latent process. As a result, the empirical histogram of the
process noise (which can be computed from state estimates) could exhibit multimodal
morphology, with each mode corresponding to a different exogenous process driving the
state dynamics during specific portions of the experiment.

This has led researchers to study SSMs with a Gaussian Mixture (GM) process
noise [25-29] considering that a GM can, in principle, approximate any multimodal
density [30]. These existing results primarily focus on state estimation and
approximation of filtering and smoothing densities under a fized or known GM noise

density. As such, parameter estimation for a GM process noise in SSMs has not been
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well-studied. Switching SSMs has been another direction of research in extending linear
Gaussian SSMs to cope with nonstationarity, model mismatch, and exogenous
processes [15,31-39]. In this approach, several linear Gaussian SSMs are considered to
underlie the observed time series data, which switch according to a Hidden Markov
Model (HMM). Although the filtering and smoothing densities in this model take a GM
form, the potential multimodality of the process noise is not explored or modeled in this
approach. In addition, parameter estimation for switching SSMs is a challenging task in
general, due to the intricate dependence of the data likelihood on the parameters. When
the states are directly observable, the resulting models are known as Markov-switching
Autoregressive (MSAR) models, which notably admit parameter estimation via the EM
algorithm [32,40]. However, for general switching SSMs, parameter estimation often
requires computationally intensive numerical optimization steps [33, 35, 36].

In this work, we fill this gap by developing an EM-based algorithm for estimating the
parameters of a GM process noise model from the observations in an SSM. In our model,
the process noise is not drawn i.i.d. from a GM but instead, a GM component is chosen
at random for a window of fixed (but arbitrary) length, and the process noise within the
window is drawn from said component. The parameters of the GM are unknown. The
EM algorithm has been widely used for parameter estimation both in state-space
modeling [13] and in GM clustering [41], which makes it a promising candidate for our
setting. The EM framework in this setting, however, results in intractable expectations
for parameter updates. We address this issue by leveraging a Sequential Monte Carlo
Expectation Maximization (SMCEM)-type algorithm [42] to approximate the
expectations using smoothed particles obtained through SMC. A major drawback of
particle smoothing approaches is their excessive computational requirements, or
equivalently suffering from sample depletion as the dimension of the target densities
grows while fixing the computational costs [43]. As a more scalable alternative, we
develop another method of approximating the expectations based on closed-form
approximations to the smoothing densities as well as their one-step cross covariances.
To this end, we adopt the two-filter formula for smoothing [26] and devise a belief
propagation algorithm in our setting. As a result, the computational complexity of the
E-step in EM for a GM process noise would be comparable to that of a conventional

Gaussian process noise, akin to performing parallel Kalman filtering and smoothing.
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To demonstrate the benefits of a GM process noise and the efficacy of the developed
estimation framework, we consider two experimental paradigms: a dynamic at-will
attention switching task in a realistic cocktail party scenario, in which the listener
maintains attention to one out of two competing speakers, while being able to switch
attention between the two speech streams at will; and an instructed attention switching
task in a more restricted cocktail party scenario, in which the listener maintains
attention to one out of two competing speakers for the first half of a trial and then
switches attention to the other speaker. The cocktail party is among the key paradigms
in studying the neural dynamics underlying complex auditory processing [44,45]. One of
the most recent quantitative approaches in uncovering these neural dynamics from
neuroimaging data is based on the Temporal Response Function (TRF) model [46]. The
TRF can be considered as an evolving Finite Impulse Response (FIR) filter which gets
convolved with speech features in time, e.g., the speech envelope, to produce the
auditory neural response observed through neuroimaging modalities such as
electroencephalography (EEG) and magnetoencephalography (MEG) [47]. The TRF
framework has resulted in new insights into the mechanisms of speech processing in the
brain in the cocktail party scenario [45,48-50]. For instance, TRF components at
specific lags may exhibit peaks which arise, persist, and disappear over time according
to the attentional state of the listener [51]. The different local dynamics of TRF
components under each of these conditions motivates a GM density to capture such
evolution patterns. Dynamic estimation of TRFs was first discussed in [47] using a
Recursive Least Square (RLS) algorithm. However, smoothing estimates and state-space
modeling are more robust than RLS and filtering estimates in performing a
comprehensive dynamic analysis of TRFs when data from multiple trials is available.
Thus, we study dynamic estimation of TRFs using SSMs and apply our SSM framework
with a GM process noise to both simulated and experimentally recorded MEG data
under a dual-speaker environment where the subject switches attention between the two
speakers at will. The results show that our proposed algorithm can effectively recover
the multimodal structure of the process noise from SSM observations, and that having a
richer and more realistic representation of the process noise allows capturing the TRF
dynamics more precisely and more consistent with the subjects’ behavioral reports, as

compared to the conventional Gaussian SSM or RLS estimation. While our proposed

August 14, 2020

6,/52



Temporal Response Function (TRF)

050 \100/750 200 250 lags (ms)

Convolution Auditory Neural Response

7~ O\

Time ;; ; ; Time

Fig 1. Schematic depiction of the TRF model. The speech features (left, e.g., acoustic
envelope) are convolved with the TRF (top) to predict the auditory neural response
(right).

Speech Features

framework is motivated by and applied to data from auditory experiments, it is
applicable to general state-space modeling problems in which states exhibit

heterogeneous and recurring local dynamic patterns.

Results

In this section, we demonstrate the utility of our proposed algorithms in estimating
TRFs from auditory neural responses to speech, using both simulated and
experimentally-recorded MEG data. Before doing so, we will give an overview of the
TRF model, existing estimation frameworks, and the benefits of our GM SSM

framework for TRF estimation.

The TRF Model

Consider a cocktail party setting [45], in which a subject is listening to two speakers
simultaneously, but only attending to one of the speakers. While the subject is
performing this task, the neural response is recorded using MEG. The TRF is a
commonly used linear encoding model that relates the speech features to the neural
response, by generalizing the concept of event-related evoked responses: instead of
averaging over multiple trials with the same stimulus to obtain the evoked response, the
TRF kernel is obtained by averaging the effect of a diverse set of speech stimuli,
presented as a continuous time series, and hence results in a generalizable encoding
model (See Fig. 1 for a schematic depiction). The speech features used in TRF models
have included the acoustic envelope, acoustic onsets, phoneme representations, word

frequency measures, and semantic composition [52-54]. In a multi-speaker scenario,
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multiple TRFs are used to capture the effect of the speech features of each speaker to
the neural response.

Existing results in auditory neuroscience [11,46-48,51,55] have focused on studying
the behavioral significance of the various peaks in the TRF. For instance, the TRF
exhibits an early positive peak at around 50 ms, referred to as the M50 component,
which is known to represent the encoding of the acoustic envelope. A later negative
peak at around 100 ms lag, referred to as the M100 component, has shown to have an
attentional modulation effect, so that it appears to have a larger magnitude for the
attended speaker’s TRF, compared to the unattended speaker’s TRF. The M50
component is attributed to the effect of early auditory processing in the brain and is
equally represented in both speakers’ TRF's, while the M100 component represents the
later processing stages that segregate the attended speaker from the unattended
one [48].

TRFs are commonly assumed to be static during the duration of an auditory
experiment, and are estimated using regularized least squares [56,57] or
boosting [46, 48, 58]. Dynamic estimation of the TRFs, on the other hand, can provide
insights into the underlying neural dynamics that process speech in the cocktail party
setting, and has significant implications for the design of non-invasive brain-machine
interface devices involving auditory processing, such as the emerging ‘smart’ hearing aid
technology that utilizes neural signals to steer the hearing aid parameters in real-time.

Dynamic estimation of TRFs was first discussed using a regularized RLS framework
in [47]. This method considers changes in the TRFs over consecutive non-overlapping
time windows of small length, and updates the estimates of the TRF's in a recursive
fashion as more data becomes available (See Methods for more details). As such, it
provides filtered estimates of the TRFs and is suited for real-time applications.

Leveraging SSMs for representation and estimation of the TRF's has the advantage
of providing smoothed estimates and directly modeling the evolution of the TRF's
through the state equation, and thereby resulting in a more precise dynamic analysis of
the TRF's in the off-line fashion. In this work, we consider linear Gaussian SSMs and
linear SSMs with GM process noise. As we will demonstrate in the following two
subsections, the linear SSMs with GM process noise have the additional advantage of

accounting for the heterogeneity of the TRF dynamics.
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In what follows, we consider regularized RLS estimates of the TRF, estimates of the
TRF using a Markov Switching Autoregressive (MSAR) model, and smoothed TRF
estimates from a linear Gaussian SSM as benchmarks (See Methods for more details on

these algorithms).

Application to Simulated Data

Consider a 90 s long cocktail party experiment, in which the subject is listening to two
speakers simultaneously and is instructed to switch attention between the two every 15
s starting at time 7.5 s. We synthesize the putative TRF dynamics as shown in Fig.
2-A, based on the relevance of different TRF peaks. We use a sampling rate of Fy = 100
Hz and a length of 250 ms for the TRFs. The TRFs are represented using a dictionary
with five Gaussian atoms with variances of 0.018 s? whose means are separated by 50
ms increments starting from a lag of 0 ms to 200 ms. Furthermore, we consider a
piecewise-constant model for the TRFs over windows of length 300 ms. Letting G be
the dictionary, the TRF at the nt" window is defined as 7, = é’Xn, where x,, is the
state vector at window n. The SSM governing the state evolution is of the form

X, = 0X,_1 + Wy, where a < 1 is a constant and w,, is the process noise. Finally, the
observed neural response is related to the states by y,, = S| 7, + v,,, where S,, are the
speech features of the two speakers relevant to window n and v, is the i.i.d. Gaussian
observation noise, i.e., v,, ~ N(0,02I) (See Methods for more details on the TRF and
state-space models).

Fig. 2-A shows the synthesized TRF heatmaps for speakers 1 and 2, where the
corresponding states are designed such that the M50 component stays relatively
constant for the two speakers, the M100 component is modulated by the attentional
state, and a common high-latency component at 200 ms varies independently of the
subject’s attention. Fig. 2-B shows two snapshots of the TRF of speaker 2 at 10 s,
when speaker 2 is attended, and at 85 s, when speaker 1 is attended. It is worth noting
that the corresponding states in Fig. 2-A are not generated from an SSM. However, the
relatively smooth temporal changes of the TRFs in Fig. 2-A (representing neural
activity in controlled experimental conditions) makes the SSM model a suitable
candidate for dynamic TRF analysis. Indeed, the TRF components at lags of 100 ms

and 200 ms exhibit heterogeneous dynamics across the trial, including periods of
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Fig 2. Designed simulation study: A) Heatmaps of the synthetic TRF's in time for a
two-speaker cocktail party scenario, where the M100 magnitudes are
attention-modulated. B) Example instances of speaker 2’s TRF when the speaker is
attended (left plane) and unattended (right plane). C) Oracle histogram of process
noise in (14) along the M100 dimension of speaker 2, which is computed from (A), and
the fitted GM as the oracle GM fit.

increasing, decreasing, and remaining relatively constant, which model the changes in
auditory state throughout the experiment. Such dynamics can be modeled using a
multimodal process noise w,,. Fig. 2-C shows the histogram of true w,, samples along
with the 3rd state dimension of speaker 2’s TRF (corresponding to the M100
component). The true process noise samples are computed as W,, = X, — X1,
assuming that the true states (x,,’s) in Fig. 2-A are available to an oracle. We refer to
this histogram as the oracle histogram and to the maximum-likelihood GM density fit
to these oracle samples as the oracle GM fit in Fig. 2-C. The constant « is chosen close
to and less than one to enforce temporal continuity. We assume that the TRF dynamics

are governed by one mixture component in each window of length 1.5 s. We simulate
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Fig 3. Convergence of Gaussian mixture parameters for M = 5 in the EM algorithm
with closed-form approximations: A) Mixture probabilities. B) Mixture means (along
the M100 component of speaker 2 as an example). C) Mixture variances (along the
M100 component of speaker 2 as an example). Bold dash lines show the corresponding
parameters of the oracle GM fit. D) GM densities (along the M100 component of
speaker 2 as an example)

the observed neural response y; using two speech signal envelopes as the stimulus
vectors (See Methods for more details on the parameter settings).

Fig. 3 shows the convergence of the estimated parameters using the proposed EM
algorithm in comparison to those given by the oracle GM fit for a nominal observation
SNR of 6.7 dB, using the closed-form approximation approach. The number of mixture
components is chosen as 5 using the Akaike Information Criterion (AIC). The
observation noise variance o2 is also estimated within the EM algorithm. The panels for
the means and diagonal covariances in Fig. 3 correspond to the 3rd state dimension of
speaker 2’s TRF (i.e., the M100 component) from Fig. 2-C. The mixture probabilities
and means of the oracle GM fit are recovered within 30 EM iterations. The covariance

elements, however, take more iterations to converge and tend to underestimate those of
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the oracle GM fit. This shows that at the nominal SNR of 6.7 dB in our simulation, the
algorithm is more sensitive to recovering the average TRF dynamics in each 1.5 s
window than to retrieving the detailed variations within the window.

It is noteworthy that the initialization points in Fig. 3-C, given by the estimated
process noise variance in a Gaussian SSM, are approximately 100 times larger than
those given by the oracle GM fit. Fig. 3-D shows the corresponding estimated process
noise density after 200 EM iterations (blue trace), the oracle GM fit (red trace), and the
Gaussian model fit obtained from a linear Gaussian SSM used for EM initialization
(vellow trace). While the estimated GM process noise density using our proposed
approach closely matches that given by the oracle GM fit, the process noise density
obtained by a linear Gaussian model is heavily biased and is not able to capture the
multimodal nature of the process. Note that while Fig. 2-C alludes to a true density
with 3 GM components, the AIC criterion chose 5 GM components. Nevertheless, the
joint updating of the means, variances, and mixture components (Fig. 3-A, -B and -C)
results in a final density estimate that matches the putative true density with 3 GM
components (Fig. 3-D). As such, our algorithm exhibits robustness to overestimation of
the number of mixture components.

To ease reproducibility, we have archived a MATLAB implementation of the
closed-form approximation method in the GitHub repository, which reproduces the
results of Fig. 3 [59]. Convergence curves for the Monte Carlo approximation method
are previously presented in [60], and are omitted here for brevity.

Fig. 4 shows the normalized RMSE in state estimation with respect to the original
states in Fig. 2-A for nominal observation SNRs in the range [-5.3,9.7] dB with 3 dB
increments. The results are averaged over 10 realizations at each SNR value. The SSMs
clearly outperform the RLS and MSAR algorithms in recovering the true states. Also,
the SSM with GM process noise with either the closed-form or particle smoothing
approximations outperforms the Gaussian SSM. We have considered a total of 2000
particles for the particle smoothing algorithm (Approach 1) so that state estimates are
comparable to those obtained by the closed-form approximation (Approach 2). This
resulted in a ten-fold increase in the run-time compared to the closed-form
approximation method (61.50 seconds and 5.57 seconds for Approaches 1 and 2,

respectively, per EM iteration, on a typical desktop workstation for the settings used in
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Fig 4. Averaged normalized RMSE in state estimation computed over 10 runs of
observation noise at each SNR value for dynamic TRF estimation algorithms, namely,
MSAR, regularized RLS, linear Gaussian SSM, and linear SSM with GM process noise
using closed-form and Monte Carlo particle smoothing approximations. States and noise
parameters are both estimated simultaneously from the observations in each run.

the simulation), which shows the advantage of using the closed-form approximation
method. Examples of the estimated TRF's of speaker 1 under the low nominal
observation SNR of -5.3 dB are shown in Fig. 5. The MSAR (panel B) and RLS
estimates (panel C) exhibit the highest variability compared to the ground truth in Fig.
5-A (imported from Fig. 2-A). While the Gaussian SSM estimate in Fig. 5-D fails to
capture the rapid M100 dynamics as well as the steady M50 component (note the M50
and M100 estimates within the dashed rectangles), the estimate from the SSM with GM
process noise in Fig. 5-E is nearly indistinguishable from the ground truth TRF in Fig.
5-A.

Application to Experimentally-Recorded MEG Data

We present the analysis of data from two separate attention switching experiments,
which we refer to as the at-will and instructed attention switching experiments. In the
at-will attention switching experiment, subjects listened to a speech mixture, and were
instructed to start attending to the male speaker first, and then to switch their

attention between the two speakers at their own will for a minimum of one and a
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Fig 5. Example dynamic TRF estimates for speaker 1 under the low nominal
observation SNR of —5.3 dB: A) The ground truth TRF. B) MSAR. C) Regularized
RLS. D) Linear Gaussian SSM. E) Linear SSM with GM process noise. The dashed
rectangles highlight an example difference of these estimates for the sake of comparison.

maximum of three times during each trial. In the instructed attention switching
experiments, the subjects listened to a speech mixture, and were instructed to start
attending to one speaker first and then to switch their attention to the other speaker
halfway through the trial. The instructed attention switching experiment consists of
data from 7 subjects, with 6 trials each, while the data from the at-will attention
switching experiment pertains to 3 trials of one subject (See Subjects, Stimuli, and
Procedures subsection in the Methods for more details). Although reliable group-level
conclusions for the challenging at-will attention switching experiment require data from

more subjects and trials, given the novelty of this experimental paradigm and its
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potential interest to the auditory attention decoding research community, we have
included the analysis of data from this one subject, separately from the instructed
attention switching data. In addition, a GM process noise in SSMs would be more
beneficial in at-will attention switching experiments, as it can capture the rapid

dynamics that underlie attention switching instances more reliably.

TRF Estimation Results and Discussion

We set the TRF length to 300 ms and consider TRF's to be piece-wise constant over
windows of length 400 ms. Also, we assume that the TRF dynamics are governed by
one mixture component in each window of length 2 s. As before, we represent the TRF's
over a Gaussian dictionary with means separated by 20 ms starting from 0 to 280 ms,
and variances of 8.5 x 1072 s2. To restrict the dynamic range of the process noise wy,,
for the sake of robustness, we consider Inverse Gamma (IG) conjugate priors [61] on the
diagonal elements of the process noise covariance matrices. Note that in the absence of
such priors, the EM algorithm would likely result in TRF's that are highly variable in
time and with no meaningful morphological structure (See Methods for more details on
parameter settings).

Fig. 6 shows example TRF estimates for two trials of the subject in the at-will
attention switching experiment. The vertical dashed lines mark reported attention
switches by the subject. For the sake of brevity, hereafter we only present TRF
estimates based on the RLS, Linear Gaussian SSM and Linear SSM with GM process
noise. The number of mixture components for the process noise was set to 3 for trial 1
and 4 for trial 2, using the AIC criterion. Row A shows speaker 1’s TRF estimate using
RLS, which exhibits the highest variability. Rows B and C show the TRF for the
Gaussian SSM and the SSM with GM process noise, inferred using the closed-form
approximation, respectively. Although the estimated process noise variance in the GM
case is controlled by that of the Gaussian case in each dimension, we observe that the
estimates in row C clearly delineate the heterogeneity of the dynamics of the various
TRF components, which are blurred by the linear Gaussian SSM estimates of row B. In
other words, the multimodal representation of the process noise allows the model to
adapt to rapid changes governed by the subjects’ behavior. Row D displays speaker 2’s

TRF estimate using the linear SSM with GM process noise. Comparing rows C and D,
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by the subject: A) RLS estimate (speaker 1 TRF). B) Gaussian SSM (speaker 1 TRF).
C) SSM with GM process noise (speaker 1 TRF). D) SSM with GM process noise
(speaker 2 TRF). E) M100 magnitude differences between the TRFs of speaker 1 and 2
for the different methods. The SSM with GM process noise better delineates the
heterogeneity of the TRF dynamics and is more consistent with the subjects’ behavioral
reports (see green arrows), while the RLS estimate is highly variable and the estimate of
the Gaussian SSM is overly smooth.

we observe the aforementioned attention modulation effect in the magnitude of the
M100 components. To illustrate this effect further, row E shows the difference between
the M100 magnitudes of the TRF's of speakers 1 and 2, where we locate the M100 at
each time as the smallest TRF elements in the [0.1,0.2] s lag interval. Thus, when
speaker 1 (2) is attended, we expect this difference to be positive (negative). The
attention decoding accuracy in each trial can be computed by comparing the difference
of the M100 magnitudes with level 0 at each time (horizontal dashed line in Fig. 6-E)
considering the reported attended speaker and summing over all the intervals where the

M100 of the attended speaker exhibits a larger magnitude than that of the unattended
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speaker. Note that this decoding strategy is purely based on the TRF estimates in a
single trial. As such, it would not be as accurate as the state-of-the-art attention
decoding methods that use more complex algorithms and extensive training data. The
M100 differences for the RLS exhibit high variability (blue traces), and result in
inconsistencies with the reported attended speakers (e.g., trial 1 after the 35 s mark,
downward arrow). The M100 differences obtained by the linear Gaussian SSM estimates
seem to overly smooth those of the RLS (e.g., trial 2, near the 10 s mark, downward
arrow). The M100 differences obtained from the proposed linear SSM with GM process
noise, however, provide a desirable compromise between these two extremes: Compared
to the linear Gaussian SSM, the M100 differences benefit from the clearly delineated
TRF dynamics and can result in earlier detection of an attention switch, leading to
higher attention decoding accuracy. Instances of this advantage are marked by green
arrows in row E, for both trials. Decoding the attention based on the sign of the M100
differences results in misclassification rates of (6.74%, 12.37%, 22.94%) for trial 1 and
(31.72%, 43.08%, 39.03%) for trial 2, respectively for the SSM with GM process noise,
Gaussian SSM, and RLS, in accordance with the foregoing qualitative analysis.

Fig. 7 displays example TRF estimates for two trials in the instructed attention
switching experiment, in a similar fashion as Fig. 6. The subjects were instructed to
switch their attention at the 30 s mark, halfway through the trial. Again, we observe
that the SSM with GM process noise emphasizes the detailed dynamics of the TRFs
which are sometimes blurred out in the Gaussian SSM or shown with high variability in
the filtering estimates of RLS. This can result in stronger attention modulation effects,
i.e., larger magnitude for the M100 of the attended speaker, or quicker transitions at the
30 s attention switching mark (marked by green arrows). The misclassification rates for
SSM with GM process noise, Gaussian SSM, and RLS are respectively
(25.78%, 26.81%, 31.45%) for trial 1 and (8.55%,9.8%,17.01%) for trial 2.

Fig. 8 shows the group-level analysis results for the subject in the at-will attention
switching experiment (left column) and the seven subjects in the instructed attention
switching experiment (right column). The upper panels display the scatter and box
plots for the computed attention decoding accuracies for the at-will and instructed
attention switching experiments, respectively. With respect to the mean attention

decoding accuracy (red plus sign), RLS estimates exhibit the poorest performance, and
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Fig 7. TRF estimates for two example trials in the instructed attention switching
experiment with vertical dashed lines showing the 30 s mark where subjects were
instructed to switch their attentional focus: A) RLS estimate (speaker 1 TRF). B)
Gaussian SSM (speaker 1 TRF). C) SSM with GM process noise (speaker 1 TRF). D)
SSM with GM process noise (speaker 2 TRF). E) M100 magnitude differences between
the TRF's of speaker 1 and 2 for the different methods. The SSM with GM process
noise better delineates the heterogeneity of the TRF dynamics and is more consistent
with the subjects’ behavioral reports (see green arrows), while the RLS estimate is
highly variable and the estimate of the Gaussian SSM is overly smooth.

SSM with GM process noise results in a modest 1% to 3% improvement over the linear
Gaussian SSM. The attention decoding accuracy, however, is not an ideal metric to
assess the TRF estimation performance, due to the absence of a ground truth and
arbitrary attentional variabilities during a single trial. The lower panels in Fig. 8
summarize the results of the AIC model selection criterion for number of components in
the GM process noise density. For each trial, we considered one to four GM components
for the process noise, and the number with the lowest AIC score was chosen for the SSM
with GM process noise in that trial. If one GM component is chosen based on the AIC

criterion, the SSM with GM process noise reduces to the linear Gaussian SSM. The
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Fig 8. Group-level results for attention decoding accuracy (upper panels) and the AIC
model selection criteria (lower panels) for the at-will (left column) and the instructed
(right column) attention decoding experiments. The upper panels display the
scatter/box plots of trial-level mean attention decoding accuracy across subjects and
trials, while the lower panels show the normalized histogram of the chosen number of
GM components in each trial. The mean attention decoding accuracies, marked by red
plus signs in upper panels, are (75.31%, 72.04%, 66.45%) and (63.24%, 62.74%, 60.28%)
for (SSM with GM process noise, Gaussian SSM, RLS) in the at-will and instructed
attention switching experiments, respectively. Although the SSM with GM process
noise results in modest improvements in mean attention decoding accuracy compared to
the linear Gaussian SSM, the AIC model selection criteria always prefers the former to
the latter.

lower panels in Fig. 8 show the normalized histogram of the chosen number of GM
components across subjects and trials. It is worth noting that for the trials where four
components were chosen, it is possible that a higher number of process noise GM

components would have resulted in a lower AIC score. We observe that in none of the
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trials (out of 45) a linear Gaussian SSM is preferred over an SSM with GM process
noise. This suggests that even when accounting for model complexity, the SSM with
GM process noise fits the observed MEG data better than a linear Gaussian SSM, and

can thus serve as a better explanatory model for the underlying biological processes.

Discussion

We considered the problem of estimating latent dynamics of biological processes from
noisy and limited observations, in which the commonly-used Gaussian statistics fail to
capture the heterogeneous and switching nature of the dynamics. An instance of such
dynamics are the neural processes that underlie auditory attention switching in a
cocktail party consisting of multiple speakers. To address this shortcoming of Gaussian
models, we utilized a SSM with GM process noise and devised an EM algorithm to
estimate the parameters of the GM density from SSM observations. To approximate the
intractable expectations in EM, we considered two approaches, one based on particle
smoothing and another based on closed-form GM approximations to the smoothing
densities.

The main limitation of the first approach based on particle smoothing is the
exponential growth of the number of particles in terms of the dimension of the
smoothing densities. The second approach based on closed-form GM approximations
significantly reduces the computational complexity by requiring a cubic dependence in
the state dimensions, with an additional cubic dependence in the number of GM
mixtures. In addition, the closed-form approximations require a linear SSM model to
hold. If the underlying state-space model is indeed non-linear, linearization techniques
such as those used in the extended [1] or unscented Kalman filter [62] are required,
which may result in model mismatch.

While both the observation and process noise are often non-Gaussian in practice, in
our proposed framework, we have assumed Gaussian statistics to model the observation
noise. This is motivated by the conventional preprocessing techniques applied to the
observed data (e.g., source separation), which are able to remove the non-Gaussian noise
components in such a way that the resulting ‘denoised’ observations admit Gaussian

noise models. Nevertheless, the observation noise can also be modeled by a GM density,
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whose parameters can be estimated in a similar fashion to those of the process noise in
our proposed framework. The resulting inference algorithm, however, would be more
intricate and is deemed as a future extension of our current methodology.

As mentioned in the Introduction, existing parameter estimation techniques for
general switching SSMs are computationally demanding and often require direct
maximization of the data likelihood via numerical methods. The MSAR method
presented here circumvents this challenge by using a surrogate of the states to perform
parameter estimation. It is noteworthy that our SSM with GM process noise can be
thought of as a special case of an SSM with underlying MSAR state dynamics, in which
the state transition probability matrix is constrained to have equal rows. Thus, another
potential extension of our proposed methodology is to utilize the closed-form
approximation approach for estimating the parameters of more general switching SSMs
in a computationally scalable fashion.

As our primary application, we considered the problem of dynamic TRF estimation
from auditory neural responses to speech. We formulated the problem as a linear SSM
with Gaussian or GM process noise, and compared the TRF estimates to those obtained
by the RLS and MSAR algorithms. Application to simulated data shows that the
algorithm can effectively recover the parameters of the underlying GM process noise and
that the GM representation improves state estimation for a synthesized latent process
exhibiting heterogeneous and rapid dynamics. Application to experimentally-recorded
MEG from both at-will and instructed attention switching two-speaker cocktail party
settings revealed that the proposed SSM with GM process noise model and inference
methodology clearly delineates the heterogeneous dynamics of the TRF components
that are otherwise not captured by the other techniques. While the proposed
methodology can be used as a reliable estimation technique for auditory attention
decoding in a cocktail party settings, it can be applied to a wider range of biological

problems in which the underlying model exhibits heterogeneous and switching dynamics.
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Methods

Ethics Statement

All experimental protocols and procedures were approved by the University of Maryland
Institutional Review Board, and written informed consent was obtained from

participants before the experiments.

The Main Problem Formulation

Consider the following generic discrete-time SSM with additive noise:

Xn = fn(xn—l) + w,
Yn = gn(xn) + vy

where x,, € R% and y,, € R% represent the states and the observations at time n,
respectively. We assume that the functional forms of f,(.) and g,(.) are known and
fixed for n =1,..., N, from domain-specific knowledge of the problem. Following our
arguments in the Introduction on the utility of source separation techniques in removing
the non-Gaussian components of the observation noise, we let v,, ~ A(0, R) be the i.i.d.
Gaussian sequence of observation noise. The process noise w,, on the other hand,
accounts for the stochasticity of the state evolution. Note that from a neuroscience
perspective, the process noise consists of both the underlying behaviorally- and
stimulus-driven dynamics as well as the background neural activity (not necessarily
evoked by the stimulus or behavior). While the terminology alludes to a zero-mean
Gaussian disturbance, the process noise in this context is typically quite structured and
far from being a zero-mean Gaussian disturbance. Nevertheless, we adhere to this
terminology for the sake of consistency with existing literature on state estimation.

To represent the process noise w,,, consider a GM with M mixture components and
parameter set © := {p1.a1, H1.01, 21.07 } containing the mixture probabilities p1.ps, mean
vectors p1.p7, and covariance matrices ¥1.p7. We model the state dynamics over
K := N/W consecutive non-overlapping windows of length W. Within each window
1€ {1,...,K}, the process noise is drawn from one of the mixture components, which
we denote by z; € {1,..., M}. Therefore, we have w,, ~ N (,,,3,,) for

n=(_i—-1)W+1,...,iW, independent of v,,, and we consider the z;’s to be i.i.d. with
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P(zi =m) =py, for m=1,..., M. In other words, z; determines the active mixture
component that governs the state dynamics in window i. This can also be interpreted as
a switching Gaussian process noise. For the special case of W = 1, the resulting model
could in principle approximate any arbitrary i.i.d. process noise w, as it is fitting a GM
model to the process noise. In this case, the labels z; of mixture components can vary at
the same rate as that of the states and observations. Note that regardless of the choice
of W, w,, has a GM distribution, but is only i.i.d. when W = 1. We hereafter refer to
the foregoing process noise model, for general W > 1, as the GM process noise model.

Let y{V denote the set of observations from 1 to N, i.e., y1.n, and similarly define
X{V and ZlK for x1.5 and z1.x, respectively. Our goal is to estimate the GM process
noise parameters © from SSM observations Y. As estimation of the observation noise
covariance R in EM is straightforward [13], we assume R to be fixed for convenience
and will briefly review the update equations for R in the following subsection, if it
needs to be estimated from the observed data. As mentioned in the Introduction, R can
also be estimated from stimulus-free conditions. Finally, we adopt the Maximum

Likelihood (ML) estimation framework to estimate © as follows:

O = argénax P ('y{V ’ @) . (2)

Despite its simple statement, the problem of Eq. (2) is challenging due to the difficulties
in computing the optimization argument, i.e., data likelihood, in a computationally

scalable fashion. We will address this challenge in the forthcoming section.

Parameter Estimation

We use the EM algorithm as a solution method for the ML problem in (2). The EM
framework provides an iterative procedure to update the estimated parameter set with

the guarantee that at iteration (£ + 1) we have

P (o1 [807) = p (31| 8) g

where O is the parameter set estimate from the /* iteration [12]. The EM algorithm
guarantees convergence to a local maximum, and most of the work on escaping the

undesirable local maxima in EM theory have focused on providing an informed
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initialization of the algorithm [63,64]. As explained in the Model Parameter Settings
subsection of the Methods, we use the fixed-interval smoothed estimates based on a
Gaussian model to choose ©(©) and initialize the algorithm.

Let H = {ZlK ,aY } denote the set of latent variables in the SSM, which includes
the states and the labels of active mixture component in each window. The EM
algorithm performs the following two steps at the (£ 4 1)*" iteration and repeats them

until convergence to a parameter estimate O:

Em@:Q(@’@@):EH@%P(yyﬁqe)’yﬁ@m}

(4)
M-step : O+ = arg maxg Q (9 ‘ (:)(5))

where the surrogate function Q(@ ’ @(@) is a lower bound on the data log-likelihood.
The expectation in the E-step is over the conditional density of # | yf[ , 00, As all of
the following expectations are also conditioned on yf[ and @(E), we drop the
conditioning in the notation for convenience, but keep the expectation subscript to
denote the random variable with respect to which the expectation is taken. Also,
hereafter the subscript (4,j) represents the time index of the j*" sample in the !
window, i.e., n = (i — 1)WW + j for brevity. The EM algorithm in Eq. (4) in our setting

can be expressed as follows:

E-Step: The surrogate function in the SSM is computed as
Q(0]0Y) =Ey {logP (2K |©) +logP (&Y | 2K,0)} + ¢,

K M w
= Z Z Ey {]]-{zi—m}<10gpm + Zlog 7T(i7j),m>} + ¢, (5)
j=1

i=1 m=1

where 17y denotes the indicator function, c¢; and ¢z are terms not dependent on ©, and

T(i,j),m i defined as

Ty = P (X | X@j-1), 2 = m, ©) (6)
which is computed based on the Gaussian density for w(; ;) in Eq. (1) when z; = m. If
we decompose the conditional expectation in Eq. (5) into two iterated conditional
expectations with respect to XY [PV, 0 and ZK | XY, 0 (where YV is dropped

in the latter due to conditional independence), this equation can be written as
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Q(@’(:)(‘Z)) ZZEX{ logpm—&-Zlogw” }—1—03, (7)

1=1 m=1

where c3 is a constant and Egz,)n is the membership probability and can be expressed

using Bayes’ rule as:
Y

) ~(0)
HJ 1 71' (i,5),m (8)
M SO 0

m/=1 P (i)

,m

ée ;:P( —m‘X (Z))_
2
The variable %Ef), is defined similarly to (6) but for © = O, which makes €} a
3)m ,m
constant with respect to ©.
M-Step: In this step, we maximize the log-likelihood lower bound with respect to
©. Differentiating (7) with respect to O, enforcing the condition ng:l Pm = 1, and
invoking the dominated convergence theorem to change the order of expectation and

differentiation, we obtain the following parameter updates for m =1,..., M:

~e
Z EX{ 17) Z V(%])}

K
1 ¢ =1
A = Y Ex {E0) = —, (9)
i=1 WS Exfe?)
1=1
K w
~(0)
R z; Ex {Ez mj; @GNV (,])} T
S 7 - Al (A (10)
WY Ex{el)}
=1

where v(; j) 1= X(1.5) — fiig) (X(i.5-1))-

Remark 1. If the covariance matrix R of the Gaussian observation noise in (1) also
needs to be estimated from y{V , it can be included in the parameter set ©. The update

formula for R“*+Y in the EM framework then becomes [65]

RO Z Ex { — gn(Xn)) (¥n — gn(xn))T} . (11)

n 1
In addition, if the function f,(-) is only known in parametric form, it is in principle
possible to estimate it via the same EM framework. As an example, which we use for

TRF modeling, consider f,(x) = ax, where « is an unknown constant. Then, the
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coordinate descent update for « takes the form [13]:

w
~0) S (£+1)-1
1Ex {ei,m Zl X1 Zm X(m’—l)}
i Jj=
= — - . (12)
~0) S (£+1)—1 ~(6+1)
E%EX{%mEQXQ%nEm (Mm>—“m )}
= i=

IoN

0+1)

al

In the definition of E“)

i.m i Eq. (8), both the numerator and the denominator include
exponential functions of the states. Therefore, the conditional expectations in Eq. (7)
and in the update equations above are intractable even if the joint smoothing density of
x¥y | YV, 00 is known in closed-form [29]. In this work, we use two different
approaches to address this challenge: In Approach 1, we use Monte Carlo
Approximations for computing the aforementioned expectations. While this approach is
rather straightforward to implement, the resulting algorithm is computationally
intensive. In Approach 2, we instead derive closed-form approximations to the densities
required for computing the expectations. The underlying parameters can be updated

recursively, which makes the resulting algorithm scalable with the problem dimension.

The details of these approaches are given in S1 Appendix.

Dynamic Estimation of the TRF

Consider a cocktail party setting [45], in which a subject is listening to two speakers
simultaneously, but only attending to one of the speakers. While the subject is
performing this task, the neural response is recorded using MEG. Let y; € R denote the
auditory component of the neural response at time ¢ € {1,...,T}, extracted from
multichannel MEG recordings via the Denoising Source Separation (DSS)

algorithm [22,66]. Also, let 55‘” be a speech feature of speaker ¢ € {1,2} at time ¢, e.g.,
the acoustic envelope, and denote by sgq) = [SEQ), e sg‘i)L_l]T € R the vector
containing the previous L features up to (and including) time ¢. In this work, we
consider SEQ) to be the acoustic envelope in log scale, which is known to be a reliable
predictor of the neural response [47]. Other features such as phoneme representations,
word frequency measures, and semantic composition have also been considered in the

()
t

literature [52-54], and can also be included in s;*’. A widely-used linear

stimulus-response model is given by:

Yt = S:’;t + Vt, (13)
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where T, = [ﬁ(l); ;t(z)} € R2L is the concatenation of ?t(l) and 7~'t(2) as the TRF's at time
t corresponding to speakers 1 and 2, respectively. Also, s; = {sgl); S,EQ)] € R is the
concatenation of the speech feature vectors at time ¢, and v; represents the observations
noise. In light of this model, and as mentioned in the Introduction, the TRF ?t(Q) can
be thought of as the impulse response of a linear, but time-varying, system representing
the neural activity and taking as input the speech features of speaker ¢, for ¢ =1, 2.
We assume v; ~ N (0,02) and define the nominal observation SNR as

10logy, (E/0?), where E is the average of the signal component in Eq. (13) over the
trial of length 7. It is common to consider a piecewise-constant approximation to the

TRFs over consecutive non-overlapping time windows of length ¢y, which is comparable

to the length of the TRF L. In other words, 7t = 7, for t € {(n — 1)to +1,...,nto} and

n € {l,...,N} where N = T'/t; is assumed to be an integer without loss of generality.
We then define Yn = [y(nfl)t(ﬁly s ay’nto]T7 Sn - [S(nfl)t0+17 . 7Snto]7 and
Vi = [U(nfl)toﬂv cee ,Unto]T

TRF Estimation via Regularized RLS

First, the TRF's are represented over a dictionary G, i.e, T,Sq) = GXSP, in order to

enforce smoothness in the lag domain and to mimic static TRF estimates [48,49]. The
dynamic TRF estimation framework of [47] can be stated as:

X, = argmingcpor » A"

Yi — SIéXHQ + vh (x)
i=1 2

(14)
7. = GX,

where A € (0,1) is the forgetting factor, «y is the regularization coefficient, h(.) can either

be an £, or {5 penalty [57], and G = diag(G, G) is a block diagonal matrix with G

containing the dictionary atoms. Similar to [11,47], we consider a Gaussian dictionary

G € RYXD where the D columns of G are shifted Gaussian kernels. The parameter \ in

Eq. (14) induces a trade-off between adaptivity and robustness of TRF estimation.

TRF Estimation via MSAR Modeling

While the RLS estimates of the TRF capture the dynamics via the forgetting factor
mechanism, they are not capable of capturing abrupt and/or recurring state dynamics.

MSAR models, on the other hand, explicitly model such dynamics and are thus a
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suitable class of models for TRF estimation. Given that the TRF is not directly
observable, the conventional MSAR models are not readily applicable. In addition, the
SSM extensions of MSAR models do not admit simple parameter estimation procedures.
We thus consider the regularized least squares (LS) estimates of the TRFs, i.e., the RLS
estimates with A = 0, as a surrogate of the true TRF's, which can then be modeled as an
MSAR process.

To this end, let X,, be the regularized LS estimates of the TRF. To capture the
dynamics of X,,, we consider a first-order Markov-switching process with J states. The
underlying HMM is parameterized by the initial probabilities m;, ¢ = 1,2,--- ,J and
transition probability matrix P;;, 4,5 =1,2,---,J. Let s,, € {1,2,---, J} denote the

state at time n. Then, we have:
ﬁn:ajﬁnfl +Wj,n7 lf Sn:jv ]:1a27 7J7 (15)

where «; is the rate of change of the TRF in state j, and w;,, ~ N (p;, Q,) is the i.i.d.
sequence of process noise in state j, j = 1,2,--- ,J. The parameters to be estimated are
M= {{Wi}%]:u (Pl {oy, g, Qj}jzl}. Let w;,, denote Pls, = j[{Xm "y, M].
Then, the MSAR estimates are given by:
J
)/E;MSAR) = Zw]'_’n (/,Lj +aj§n71)» n = 1,2,"' ,N. (16)
j=1
In S1 Appendix, we provide an EM-based algorithm for estimating the parameters M

and recursively computing w; .

TRF Estimation via State-Space Models

The RLS estimate in (14) is a filtering estimate by design and is suited for real-time
estimation of TRFs. For a more precise dynamic analysis of the TRFs in an off-line
fashion, SSMs have the advantage of providing smoothed estimates and directly
modeling the evolution of the TRFs through the state equation. We use the SSM below
to represent the TRF dynamics and its relation to the neural response:

Xp = AXp_1 + W,

7, = Gx,, (17)

yn:SITn"_Vn
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where a € (0,1) controls the nominal rate of change of the TRF, similar to the effect of
the forgetting factor A in Eq. (14) for the RLS framework. In [67], a correspondence
between o and A has been discussed which can result in the same filtering estimates of
the SSM in Eq. (17) with Gaussian noise and the RLS model in Eq. (14), without any
penalization. The parameter a can either be estimated in the EM framework as in Eq.
(12) [13], or it can be set based on the domain-specific knowledge of the problem to
provide a target adaptivity-robustness trade-off, akin to choosing the forgetting factor
in the RLS algorithm. The estimated TRFs in (17) are computed from the smoothing
estimates as T, = CN-}QMN.
By assuming a GM density for w,, in Eq. (17), we can similarly obtain smoothing

estimates of the TRFs, by using the two approaches discussed in the preceding section.

Model Parameter Settings

The following subsections provide detailed information on the choice of the various
model parameters used in the simulation study and application to

experimentally-recorded data from the Results section.

Parameter Settings of the Simulation Study

For the simulation study, we use a sampling rate of Fy, = 100 Hz and a length of 250 ms
for the TRFs, i.e., L = 0.25F;. Let G be a dictionary consisting of five Gaussian atoms
with variances of 0.018 s? whose means are separated by 50 ms increments starting from
a lag of 0 ms to 200 ms. This results in G € R*®*5 and x,, € R!? in Egs. (14) and (17).
We consider a piecewise-constant model for the TRFs over windows of length 300 ms
resulting in N = 300 TRF samples over the trial for each speaker.

We consider W = 5, i.e., the TRF dynamics are governed by one mixture component
in each window of length Wty/F, = 1.5 s. For simplicity, we consider ¥1.5s to be
diagonal, which makes the parameter update formulas of Egs. (21) and (23) in S1
Appendix to also take diagonal forms. The number of mixture components is chosen as
M =5 using the AIC criterion and log-likelihoods computed using Eqgs. (37) and (38)
given in S1 Appendix. The number of states J in the MSAR model can also be chosen
via AIC, but we here take J to be the same as M for fairness of comparison with the

SSM model with GM process noise.
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We also set the parameters of Algorithm 2 given in S1 Appendix as
I'e =T'g =T's = M. To initialize the EM algorithm, we use two methods: 1) initializing
with 13(101)v1 = ﬁ, random means ﬁgoj)w close to zero, and 2(10])\4 equal to the estimated
process noise covariance in the linear Gaussian SSM, and 2) setting 0 as the GM fit
to the empirical samples of process noise in the linear Gaussian SSM, which are
computed from the smoothed state estimates. In other words, a GM is fit on the state
residuals, i.e., empirical process noise samples, w,, = %) 0&7(21 where %) denotes
the smoothed states using a linear Gaussian SSM. The state residuals here do not
necessarily exhibit a clear multimodal histogram due to the Gaussian assumption in the
model and the inaccuracies in state estimation. Nevertheless, a GM fit on the state
residuals serves as a reasonable initialization for the EM algorithm in our experience.

Note that in the simulation studies, we have used the first initialization strategy to
show that under reasonable SNR conditions, the algorithm is able to initialize with
large covariances, i.e., based on the linear Gaussian SSM estimates, and subsequently
retrieve the concentrated mixture components. This is analogous to particle smoothing
methods where the initial samples are drawn from a broad density and through
consecutive weighting and resampling, the particles can eventually capture the
underlying densities. In our experience, the second initialization strategy results in
faster convergence, especially under poor SNR, conditions, due to the extra information
extracted from the residual estimates from the linear Gaussian SSM. Thus, for the real
data analysis, we have used the second initialization strategy.

For the forgetting factor A in RLS, an effective estimation length [47] of 2 s is chosen
to result in comparable TRF estimates to those of the SSM with a = 0.99. Also, v in
Eq. (14) for an ¢ penalty is tuned through two-fold cross-validation. For the Gaussian
SSM and the SSM with GM process noise, diagonal process noise covariance matrices
are considered, and both the process and observation noise parameters as well as the
states are estimated simultaneously for each trial run.

We have considered a total of U = 2000 particles in Algorithm 1 given in S1
Appendix to approximate densities of dimension 2D(W + 1) = 60, so that state
estimates are comparable to those obtained by the closed-form approximation. Note

that the choice of the number of particles is critical for the performance of particle

smoothing, as the number of particles required for stable estimation grows exponentially
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in the dimension of the densities.

Parameter Settings of the Experimentally-Recorded Data Analysis

We set the TRF length to 300 ms and consider TRF's to be piece-wise constant over
windows of length 400 ms. Also, we choose W =5 to enforce that the TRF dynamics
are governed by one mixture component in each window of length 2 s. We represent the
TRFs over a Gaussian dictionary with means separated by 20 ms starting from 0 to 280
ms, and variances of 8.5 x 1072 s2. The parameters A and o are set to 0.92 and 0.97,
respectively, to achieve comparable TRF estimates from Eqs. (14) and (17). The ¢,
penalty 7 in (14) is determined via two-fold cross-validation. We consider diagonal
covariance matrices for the process noise to reduce the dimension of ©, and estimate the
observation noise o2 in the EM framework. The forgetting factor in Eq. (14) enforces a
temporal continuity in TRF estimates and increases robustness to noise and artifacts.
The same effect can be replicated in the SSM of Eq. (17) by considering « close to one
and restricting the dynamic range of the process noise wy,.

To enforce the latter, we consider IG conjugate priors [61] on the diagonal elements
of the process noise covariance matrices. For the Gaussian SSM with w,, ~ N (0, Q)

and Q = diag ([q1,. - .,q2p]), the log-prior takes the form
klogP (Q) = -k 352, ((&d +1)logga + Ed/qd) + ¢, (18)

where {&d, Ed}zil are the parameters of the IG prior and ¢4 includes terms not
dependent on g4’s. The log-prior is then added to the surrogate Q-function of the EM
algorithm, and x determines the strength of the prior with respect to the complete data
log-likelihood. We choose k = N for the linear Gaussian case and k = N/M for the
linear SSM with GM process noise, to correct for the number of mixture components.
We tune the IG parameters using empirical samples of the process noise from the RLS

~(RLS ~(RLS
R _ o2

estimates, computed as w,, = . Thus, the process noise variance is
controlled by the IG prior, which prohibits drastic temporal changes in the TRF. For
the SSM with GM process noise, we also bound the elements of ﬁ%\z{ in each EM
iteration such that the variance of the estimated GM process noise along each
dimension is not larger than those of the linear Gaussian case, i.e., estimated g4’s using

the EM algorithm. Note that in the absence of such priors, the EM algorithm would
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likely result in TRFs that are highly variable in time and with no meaningful

morphological structure.

Subjects, Stimuli, and Procedures

We have used data from two separate attention switching experiments in this work,
which we refer to as the at-will and instructed attention switching experiments.
Neuromagnetic signals were recorded at a sampling frequency of 2 kHz using a
157-sensor whole-head MEG system (Kanazawa Institute of Technology, Nonoichi
Ishikawa, Japan) in a dim magnetically shielded room.

The at-will attention switching dataset is a subset of recordings in [51], where the
participants included five younger-adult (22-33 years old) native English speakers with
normal hearing recruited from the University of Maryland. Only one of the subjects
exhibited a meaningful auditory neural response (i.e., auditory DSS rotation matrix; see
MEG Data Preprocessing subsection for details) with a reliable behavioral report. Two
stories were presented diotically to subjects’ ears, one narrated by a male speaker and
the other one by a female speaker. The stimuli consisted of two segments from the book,
The Legend of Sleepy Hollow by Washington Irving. Subjects listened to trials of the
same speech mixture (each 90 s in duration), and were instructed to start attending to
the male speaker first, and then to switch their attention between the two speakers at
their own will for a minimum of one and a maximum of three times during each trial.
Subjects were also given a switching button that they were instructed to press every
time they decided to switch attention. For each subject, 3 trials were recorded. Prior to
the experiment, a single-speaker pilot study was performed where subjects listened to
three 60 s trials with similar stimuli. Further experimental details can be found in [51].

The instructed attention switching dataset is from the recordings in [50], where
participants included seven normal hearing young adults (20-31 years old). The stimuli
consist of four segments from the book A Child’s History of England by Charles
Dickens narrated by a male and female reader. Two different 60 s-long speech mixtures
of the two speakers were generated, and each mixture was presented to subjects
diotically for three trials. In each trial, subjects were instructed to focus on one speaker
in the first 28 s of the trial, switch their attention to the other speaker after hearing a 2

second pause (between 28 s and 30 s time stamps), and maintain their focus on the
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latter speaker through the end of the trial. After completing the trials for each mixture,
subjects answered comprehensive questions related to the passages they attended to.
The MEG recording and preprocessing setup for this experiment is similar to that of the

at-will attention switching experiment, and more details can be found in [50].

MEG Data Preprocessing

Three reference channels were used to measure and cancel the environmental magnetic
field by using time-shift PCA [21]. All MEG channels and speech envelopes were
band-pass filtered between 2 Hz and 8 Hz (delta and theta bands), corresponding to the
slow temporal modulations in speech [46,48], and downsampled to Fy = 100 Hz. Similar
to [47,50,51], we used the DSS algorithm [22] on pilot trials to decompose the MEG
data into temporally uncorrelated components. By using an averaging bias filter for
promoting consistency across trials, we ordered the DSS components according to their
trial-to-trial phase-locking reliability and chose the first component as the auditory

neural response.

Data Availability

The experimental data used in this paper are publicly available in the Digital
Repository at the University of Maryland at http://hdl.handle.net/1903/26351
(at-will attention switching experiment) and http://hdl.handle.net/1903/26352

(instructed attention switching experiment).
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S1 Appendix: Supplementary Methods

In this appendix, we provide: (i) detailed derivations of the two approaches used for
computing the expectations in Eqs. (9), (10), and (11), (ii) the criteria for model order
selection, and (iii) details of the MSAR estimation procedure. In what follows, we use
the notation ny to denote the set of observations from ny to na, i.e., ¥n,:m,, and

similarly define X7}? and fo for x,,,.n, and z;,.;,, respectively.

Approach 1: Monte Carlo Approximations

One way to approximate the expectations in the update equations of the M-step is to

utilize Monte Carlo methods. Let XE%):U W) foru=1,...,U denote a total of U

sample paths, i.e., particles, with corresponding weights of w(u)

inside the i*" window to
approximate the joint smoothing density of X 83‘)/ VYN, 0O fori=1,..., K. Using
this particle approximation, the update equations of the M-step become:

A(Prl Z Z (“)"EKT:)’ (19)

zlul

K U
£,
> 2 wlVE 3 v,

ﬁ”(f;—ﬁ-l) — i=1 u:lK - 7 (20)
W Wl
i=1lu=1

K U w T
u)~L,u u ~(l+1 u ~(L+1
Z Z (A)Z( )ggm) Z (VEl,i) - [,LgnJr )) (Vgié) - Istn,Jr ))

S(e4+1) _ i=1u=1 j=1
S S Sh (et ’ 2!
W Z Z Wy i,r’n
i=1lu=1
where VE?;) =X ]) — fa (x ( G- 1>) and EEZT:) is defined similarly to Egﬁ)n in (8) with
%gf)j) ’s evaluated at XE7 M)/) XE?Z]) (i) and © = 0¥ in Eq. (6) Particle smoothing

approaches are SMC methods that provide the sample paths X(Z 0) (W) and their
respective weights w [16] The class of algorithms using SMC within EM for SSMs
are referred to as SMCEM [42]. A forward-backward particle smoothing algorithm is
presented in Algorithm 1 as an example of how the approximating particles can be

computed.

Remark 2. In general, particle smoothing approaches are computationally intensive,

especially for high-dimensional problems, which limits their application compared to
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particle filtering methods. In our setting, densities of dimension d,(W 4 1) have to be
approximated by particles. The forward-backward method in Algorithm 1 simply
re-weights the filtering particles according to future observations and incurs an O(U?)
cost. The two-filter particle smoother [68] samples the particles in the smoothing step
but has a similar computational cost. In [68], an approximation based on spatial-index
methods is introduced to reduce the computational cost to O(U logU). Finally, a
particle smoothing method with O(U) cost (similar to that of particle filtering) is
developed in [69]. However, it operates under the assumption of minimal posterior

dependence between x,_1 and X, +1; when sampling for the smoothing density of x,,.

Approach 2: Closed-Form Approximations

In this section, we consider a linear SSM, i.e., f,(x,—1) = Apx,—1 and g,(x,) = C,x,,
in (1), to exploit the GM formulation of the smoothing densities [29]. Techniques such
as the extended Kalman filter [1] or the unscented Kalman filter [62] are often used to
approximate the general state-space model of Eq. (1) with a linear model. We introduce
an approximation to the expectations in the M-step which allows to employ GM
smoothing densities for computing the updated parameters in EM. This is akin to the
application of EM in linear Gaussian SSMs [13]. Then, we construct an algorithm to

efficiently compute the required smoothing densities in closed-form for our setting. As a

Algorithm 1. A Forward-Backward Particle Smoothing Alg.

Input: state-space model in (1) and parameter estimate E108

(u) (w)
(4,0):(4,W) it

1: Initialize X(()") and their filtering weights (D(()“) =1/U.
2: fori=1: K do

3: Sample 2™
4

Output: sample paths x and their weights w

according to ;Eglgw

(u)

(4,0)
component.
~(u) _ W (u )
5" =I5, P (y(;,id XEZ;‘))'
Normalize the weights such that 25:1 wﬁ“) =1.
Resample ng)w) for next window according to @
end for

: Initialize the smoothing weights wﬁg) = ZJE,?).
10: fori =K —1:1do

i

Sample XE?’)O):(LW) using x as the starting point and 2" as the active Gaussian

(w)

i

(u) N (u’)
x(i,W)’e() Wit1

(u’) ,@)(“) §J<1L//) .

(i+1,1)

W _ ~w) & P("(u,

u ~(u

11: w; = w; E % )
ui=t P<x(z‘¥1,1)

u!! =1

*@,w)

12: end for
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result, the computational cost of the M-step would be comparable to performing parallel
instances of fixed-interval smoothing, each corresponding to a component of the GM

process noise.

We first consider a 0t"-order Taylor expansion for Egggn in the update formulas of
(9)-(10) around the mean of the smoothing densities. In other words, éﬁ)n R~ Efi)n where

_(£)
Ei,m

and © = O in Eq. (6).

is computed similarly to (8) with %éf)j) m 8 evaluated at Xiv =x1.ny = Ex{x1.n}

Remark 3. Note that this approximation is valid when the GM smoothing densities
(over which the expectations are computed) do not exhibit multimodal behavior with
mixture components far from each other. Otherwise, the 0** order approximation must
be carried out at the mean of each mixture component separately (rather than at the
mean of the smoothing density). Under high enough observation signal-to-noise ratio
(SNR), the GM smoothing densities are expected to mainly consist of mixture
components with similar means, so the resulting density exhibits a unimodal morphology
concentrated on the ML estimate of the states. Therefore, approximation of E%)n by its
value at the mean of the smoothing density would not introduce significant error at high

&

m can be considered at

SNRs. It is worth noting that higher order approximations to
the cost of more computational cost, which would also result in higher moments of GM
smoothing densities appearing in the M-step update equations. As we will demonstrate

in the Results section, the 0*" order approximation suffices for our applications.

It is known that for a linear SSM with Gaussian mixture noise, the filtering and

smoothing densities also take Gaussian mixture forms [26,29]. Let

~ s Xy
P <XZ'1 ’ i @(£)> =D AN Hpl, 6 (22)
y=1

n
be the one-step joint smoothing density at time n, where the superscript s identifies

smoothing parameters, and I's is the number of mixture components forming the

smoothing density. Taking Ez(',% out of the expectations, the M-step update equations

become:

L0 KR RR (), 5
1K 2 Em 22 Alig) 2 Py PG

]/)\(Z—‘rl) - Zg(f) ~(0+1) _ i=1 j=1 y=1

" K i=1 o

m K ?
W e

i=1
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=0 (s,7) (s,7) (s,7) (s,7) AT
2 Em E (i) Z Plid) (Zw ) <”<u>> )Au.,n

2%+1) = = = K - I‘L’E£+l MEI{+1 I (23)
Wy e,
i=1
where A(i,j) = [-A( ), 1a,] with I, denoting the identity matrix of dimension d,.

Note that the update rule for R in Eq. (11) takes the form:

K M W Ts
RO+ — zynyn S22 D {ven (i), ©F 0 (w3, v -0 (363)), 0T}
i=1m j=1v=
(24)
Similarly, the coordinate descent update rule for « in Eq. (12) takes the form:
K M W T .
DRI Tr{E%““ (=67) }
Qe+ i=1m=1 Jj=1v=1 Y7L (25)
CE U B [ (s ) A )|
2 2 G 2 2 Ty Em (=00),, — (u(3), A%
1=1m= j=1~=1 >

where (Z), and (z), denote the (a, b)™ block and a* block of the matrix Z and vector
z, respectively. In the TRF model of Eq. (17), we have C,, = S G.

Another approach to approximately compute the expectations in the update
equations (9)-(10) is to use the Laplace approximation [70]. This approach however,
requires the computation of the GM joint smoothing density of X ‘ ))1 7@(5) and is
more computationally intensive than the current approximation, which only requires the
one-step smoothing covariances regardless of the choice of W.

The smoothing density parameters in Eq. (22), i.e {pﬁf 7), MS”), ES’V)} have to
be estimated for n =1,..., N in the E-step. In Section II.D of [29], a forward-backward
recursion is used to obtain closed-form solutions for smoothing densities under a linear
SSM with GM noise components. The dimension of the underlying matrices and matrix
inversion costs, however, grows with n as the recursions proceed, which limits the utility
of the algorithm for practical applications even with moderate observation duration.
In [26], the two-filter formula is adopted to compute the GM smoothing densities by
transforming the smoothing problem to a filtering one. An underlying assumption
in [26] is that either C,, is invertible or consecutive observations can be concatenated
such that the effective measurement matrix is invertible. As this assumption does not

hold in general, we instead develop a recursive algorithm based on the two-filter formula
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Fig 9. Schematic depiction of forward /backward updates for Eq. (28).
in our setting to compute the smoothing parameters in (22) in closed-form. Since all of
the following densities are conditioned on 0O similar to Eq. (22), we hereafter drop
the conditioning in our notation for convenience.

Let the filtering density at the end of the (i — 1)** window be
I'r
0,0 f, f, f,
P (xuo) | P1) = 3ol N (xeoi i) 200)) (26)
~y=1

where superscript f identifies forward filtering parameters and I'r is the number of
mixtures forming the filtering density at the end of each window. Also, let the

unnormalized backward information filter [26] at the end of the i*®® window be
I's 1
P (P [xaw) o 308 exn { - xi BRI +xb bR} @D
y=1

where ['g is the number of exponential components forming the information filter at the
end of each window. Note that Eq. (27) is not a density in x. Considering the
independence of z; and ygi’o), the two-filter formula for window ¢ in our switching GM
process noise model can be written as
M
P (20D [PV = e SRR (i YUY | D7)

P (¥, |91

m=1
p (X(i,j) ‘ X(i,j-1)»32n) P ()’f\{,j) ‘ X(i,j)vﬁzn)v (28)
where 37" stands for the event {z; = m}. Our main objective here is to find a recursive
update rule for the joint density of Eq. (28). To this end, we derive recursive formulas
for propagating the forward and backward filters, i.e., the components in the summand
of Eq. (28), within each window (See Fig. 9 for a schematic depiction of this procedure).
The leftmost term in the summand of Eq. (28) is the forward filter and represents

an unnormalized filtering density, which we express as:

August 14, 2020

46/52



T

(4,5) (2,0) ., EY) (f,7)
( l])?y ‘y ) di ) Z ,J), (X(iyj)7p’(i,j),m’E(i,j),m) (29)

for j =1,..., W and compute it through the following unnormalized forward recursion
in j:
¥ (i,0) m
P (%0 VD) | 957 = /P(Y(m') | %) P (%) | Xij-1)30") %
1,5-1 1,0) ,m
P (Xu,jfl)’ygi;i) : ‘3’§ )5 )dxu,j 1)
The recursion is initialized by the filtering density in Eq. (26) at window ¢. This

results in the following forward filter parameter updates:

~ f, ~(£)
M= A(i,j)p’EL;’{zlL + Hm
(f.7) T $(6)
DR A, J)E(z j- 1),mA(i,j) +
- -1
H=3C[ (Cuy)BC],, + R) )
(f7 ) " "
1 ym =B +H (v — Cujh)
fyv  _ S
2( J) (I — HC(M«)) b))
) ) N( o Cy . C aBCT 4R
p(z,J),m p(i,j—l),m y("sJ)’ ('LJ)H” (2,9) (i,5)
and the filtering density at time (4, 7) is computed as
M
,J ~ @] 1,0) _m
P (x| P17) 0 3 B P (s Y1) | 910 577) (31)
m=1
Next, we represent the unnormalized backward information filter
P (V) [ %@, 3;n) in Eq. (28), as
() 1 ()
Zﬂm eXp{ X5 B(y (i) + XD } (32)

where we enforce the normalization Z Zm 1 B(l i),m = 1. Note that this
normalization is applied to avoid numerical instabilities while performing the recursions
and does not change the final smoothing density of Eq. (28), which has to be eventually
normalized. The backward filter in Eq. (32) can be computed through the following

recursion [26]:

X(13):30") = / P (i) | %60) P (e | X0.0),37")

p (yé\i],j+1) ’ X(i,j+1)»3?) dx(i,j+1) (33)

P (yg,ﬂ
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and is initialized by Eq. (27) at the end of window 4. This results in the following

backward filter parameter updates:

5= 80 (1+80),,,5Y)

(i-3+1).m.
E=30b A

B . =C[ RICu, + Al ., [(Eﬁ,‘? ! 1] A 1) (34)
b)) = Ol R~ Al (2 2))— i + AL S B

<2 =0 AN SOV ) 1Tl
Bl < Byt S exP {3 (”‘m> <2m> f' + 50 2 [

and the overall backward filter in the beginning of window ¢ can be computed from Eq.
(32) as
M
4 m
p ()’f\{,()) ‘ X(i,O)) = Z Py P (3’?{,0) ‘ X(i,0)5 31 ) . (35)
m=1

Using Egs. (29) and (32), the parameters of the joint GM smoothing density in Eq.
(28) are computed as:
7' =(y—-1)MTg + (m—1)Ts +9
- -1
(f,m) )
S1 (Em 1)7) +AG) <Em> Aij)

~ -1
S12 =8}, = ~A] (zﬁ,’?)

S,y = B ,+(z“>)71

(4,9) Y
-1
EES)- . S11 Si2
4,5)yY
SQI 822
#m)  \7 (Em) T (O =0
(E(U 1) 7) Fij-1).4 7A(7J) (Em) Hm (36)
_ (s Aw) <m>
up
(s) _ 0
Pii) = B(ig)
u?2
(S)
(s) (f,m) 4@) (m) 1% Gy ]
Py & Plig-1), 6@]’)# I=N=ET

T -1
(f,m) (f,m) (f,m)
X GXP{ (ll’(z,j 1), ) (E(i:jfl)ﬁ) N(ivjl)ﬁ}

1(~O\ (@O A0 1,6 T (0 s
Xexp{‘?(“m) (=) a5 (woe) () #la

where we have v € {1,...,Te}, m € {1,...,M}, and v/ € {1,...,'g}. This brings the
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total number of mixture components in the joint smoothing density of Eq. (28) to

I'e x M x I'g. As the number of mixture components grows exponentially in SSMs with
GM noise components [25], limiting them is a crucial step for practical purposes. To
this end, in forming the density of Eq. (22), the number of mixture components
obtained from Eq. (28) is reduced to I's prior to updating the parameters in the M-step.
In this work, we choose I's components from the density of Eq. (28) with the largest
mixture probabilities for simplicity. However, more accurate mixture reduction
algorithms are available and developed in [25,71,72], but with additional computational
costs. It is worth noting that calculations corresponding to the weights p()’s in Eq.
(30), B’s in (34), and p®’s in (36) should be performed in log-scale to avoid numerical
errors in practice. Algorithm 2 summarizes the steps for calculating the smoothing
density parameters in Eq. (22) for n =1,..., N. Note that when the observation noise
covariance matrix R is unknown, the smoothing densities of Eq. (22) can be replaced in

Eq. (11) to provide a closed-form update for RUHD).

Algorithm 2. Two-Filter Gaussian Mixture Smoothing Alg.

Input: linear state-space model in (1), parameter estimate ©®, and component limits I'F,

I's, and I's.
Output: smoothing density parameters pﬁf).,, /J,Sf%, Esf,).y in (22) for n € {1,...,N} and
e {l,....Ts}.

1: Initialize the filtering density in (26) at n = 0 as the prior on xo.
2: fori=1:K do
3: Run forward recursions of (30) for m = 1,..., M in window 7 starting from (26) and
store the parameters.
4: Compute the filtering density at n = ¢{W from (31).
5: Out of I'r X M mixture components in the filtering density, keep I'r with the largest
probabilities as initialization for window ¢ + 1.
6: end for
7: Initialize the backward filter as P(yN | XN)7 ie, fna =1, By = CLRJCN, and
bNyl = C‘I\r]RflyN.
8: fori=K:1do
9: Run backward recursions of (34) for m =1,..., M in window ¢ starting from (27).
10: Run smoothing algorithm of (36) in window ¢ using backward filtering parameters and
the stored forward filtering parameters.
11: Out of I'r x M x I'g smoothing mixture components, store I's with the largest probabilities
for smoothing densities of (22) in window .
12: Compute the backward filter at n = (i — 1)W from (35).
13: Out of I's x M backward filtering components, keep I's corresponding to the most

significant mixture components of P (X (1) ’ ¥ ) as initialization for window 7 — 1.

(4,0)
14: end for
15: Output the computed smoothing parameters of (22).
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Model Order Selection

An important issue in applications of GMs for clustering is the choice of the number of
mixtures M. Various model selection criteria have been used in the literature of
Gaussian mixtures, including the Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC), and Integrated Completed Likelihood (ICL) [73-76], most
of which require the computation of data log-likelihood. In Approach 1, the
log-likelihood can be approximated using the unnormalized particle filtering weights

Gi(u)’s in Algorithm 1 as

log P (y{V ) ~ K log (zfj:l aE“’) . (37)

In Approach 2, using the unnormalized filtering densities in closed-form

approximation, the log-likelihood in our model can be computed based on [77] as

logP (W) = S, low (S0, 20 P (V) | 910,57))

~ i tog (S0 A (S0 T ) ) (38)

where the last line is derived from integrating the unnormalized filtering density in Eq.

(29).

Details of the MSAR Estimation Procedure

As in the case of SSMs with GM process noise, we consider a Markov switching process
in which the states are constant over consecutive windows of length W indexed by
k=1,2,--- K, where K := N/W. Recall that the parameters to be estimated are
M= {{m I {Pij};{’jflzl, {0, pj, Qj}}']=1}- For simplicity, we assume that Q; is
diagonal. For notational convenience, we denote the Gaussian density with mean g and

covariance Q evaluated at x by N (x; i, Q). Finally, we denote {in};l:élv;;i 4 by

(@,9)

The parameters can be estimated using an instance of the EM algorithm as follows:
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The E-step
Let M) .= {{77 o 1,{ i }” 15 {aj ,uge),Qg-Z)}}-]:l} be the parameter estimates

at iteration ¢. We define:

E;gll = P [Sk :j‘.jfv\((f{;dl),/\/l(e)} 5 é-z(gjk = P |: Sk —],Sk 1= Z‘{X 11(1)‘4/) M(Z):| .
(39)

) ® (13) (OFS ©
(f) agﬂéllb;e]z (Z) al k— 1P b H N(X( k,aw) — a X(k w— 1)7 H/ Q )
LA Sk = 3 PO 0o
Z ai,kbi,k lz Z l k: 1 lm bm k H N(X(k — Q) x(k w— 1)7 I»L'm ,Qm )
=1 =1m=1 w=1
(40)

where aéa and by,)f are the forward and backward filters, respectively, defined as:

~

all) =P s, = LX(H)V)‘M(@} o) =P [X((,ﬁﬁf’l))‘sk = J, R(kt1,0, M| . (41)

The forward and backward filters can be recursively computed via the following
recursions:

J
4 4 4 L
ol =5 a) 1p<>HNX<m)—a§ R, Q). (42)

i=1 w=1

with initialization a( % = 71' H1N(X(1 w) — a(f)x(l w—1); N(é) Q;Z))7 j=1,2,---,J.
w

And,

O~ [ [
sz [V H N (Xet1,0) — o )X<k+1,w71>;u§ ). Q! ))7 (43)
e e ¢ .
with initialization bg;( =1,j=12,---,J.

Remark 4. Note that a direct implementation of the recursions in Eqs. (42) and (43)

is likely to result in numerical instabilities, given that the Gaussian density product

generates notably small values. Given that the expressions for 8(5,1 and § 1, are scale

invariant with respect to a§ ,1, (Z) _, and b; &, one can implement the recursions of Egs.
(42) and (43) in an unnormalized fashion by rescaling the forward and backward filters

after each iteration as:

0 aj () o
ajp < JJ’ 7 bip JJ’ e (44)
! > aﬁ,;ﬁ ! dim1 5512
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It is straightforward to verify that Eq. (40) remains unchanged as a result of this
rescaling procedure. The log-sum-exp approximation can also be used to further avoid

numerical instabilities in computing the Gaussian density products [78].

The M-step

The Markov chain parameters can be updated as follows:

K

" 3%
D 2 pl+) _ i (45)
j I i I K
Z i1 Z Z 67, 1,k
= 1=1k=2

The state-space parameters can be updated via coordinate descent as follows:

K

0 3~ ((x 0 (o
€j7k Z ((X(k,w))m -« (x(k,w—l))m>
(Ng_ul)) _ k=1 w=1 _ 7 (46)
" WS 20
E 5.k
k=1
K w 9
¢ 2 0+1
2 €§’I)c 2 ((X(k w))m = oz(e)(x(k 1))m — (N( N ))m>
<Q§é+1)) k=1 w=1 - 7 (47)
m,m (e)
szl ik
form=1,2,--- ,dy, j=1,2,---,J, and
K dy w
¢ - < < (+1
> 8;11 > (Q(5+1>) > Xew—1))m ((X(k w))m = ( ; + ))m)
(441) k=1 m=1 J mom w=1
@ o K (g & (48)
= )k mz::1 (Q?H}) w{: (ﬁ(k,w—l))?n

The EM algorithm proceeds until a convergence criterion is met at iteration Ly,

upon which the MSAR estimates can be computed as:

J
~(MSAR L L Lo)a
ng,w) )= Zw;k(’) (HS ) +o¢§» O)X(;@wfl)) , n=1,2---,N, (49)
=1
where
R a(.Lo)
w;LkO) =P |:5k: = ]’X((lli’lv)v>,_/\/l(1’0):| = __ak (50)

J (Lo) *
> im1 Qa; i
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