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Abstract

Estimating the latent dynamics underlying biological processes is a central problem in

computational biology. State-space models with Gaussian statistics are widely used for

estimation of such latent dynamics and have been successfully utilized in the analysis of

biological data. Gaussian statistics, however, fail to capture several key features of the

dynamics of biological processes (e.g., brain dynamics) such as abrupt state changes and

exogenous processes that affect the states in a structured fashion. Although Gaussian

mixture process noise models have been considered as an alternative to capture such

effects, data-driven inference of their parameters is not well-established in the literature.

The objective of this paper is to develop efficient algorithms for inferring the parameters

of a general class of Gaussian mixture process noise models from noisy and limited

observations, and to utilize them in extracting the neural dynamics that underlie

auditory processing from magnetoencephalography (MEG) data in a cocktail party
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setting. We develop an algorithm based on Expectation-Maximization to estimate the

process noise parameters from state-space observations. We apply our algorithm to

simulated and experimentally-recorded MEG data from auditory experiments in the

cocktail party paradigm to estimate the underlying dynamic Temporal Response

Functions (TRFs). Our simulation results show that the richer representation of the

process noise as a Gaussian mixture significantly improves state estimation and

capturing the heterogeneity of the TRF dynamics. Application to MEG data reveals

improvements over existing TRF estimation techniques, and provides a reliable

alternative to current approaches for probing neural dynamics in a cocktail party

scenario, as well as attention decoding in emerging applications such as smart hearing

aids. Our proposed methodology provides a framework for efficient inference of

Gaussian mixture process noise models, with application to a wide range of biological

data with underlying heterogeneous and latent dynamics.

Author summary

While Gaussian statistics are widely-used in analyzing biological data, they are not able

to fully capture the observed heterogeneity and abrupt changes in the dynamics that

govern the underlying biological processes. A notable example of such a process is the

ability of the human brain to focus attention on one speaker among many in a cocktail

party and switch attention to any other at will. We propose a signal processing

methodology to extract the dynamics of such switching processes from noisy biological

data in a robust and computationally efficient manner, and apply them to

experimentally-recoded magnetoencephalography data from the human brain under

cocktail party settings. Our results provide new insight on the heterogeneous neural

dynamics that govern auditory attention switching. While our proposed methodology

can be readily used as a reliable alternative to existing approaches in studying auditory

processing in the human brain, it is suitable to be applied to a wide range of biological

data with underlying heterogeneous dynamics.
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Introduction

Extracting the latent dynamics that govern biological processes from noisy and limited

measurements is a long-standing challenge in computational biology. From the signal

processing perspective, state-space modeling is a natural and commonly-used framework

for estimation of such latent dynamic processes, i.e., the states, under limited

observations [1]. While traditionally used in application domains such as control system

design [2], tracking [3], and finance [4], this framework has recently been utilized in the

analysis of neural data [5–11]. State-space models (SSMs) often consist of two equations:

the state (evolution) equation, to describe the dynamics of the latent process (e.g., the

intrinsic level of an internal neural state variable), and the observation equation, to

illustrate how the externally-measured observations are related to the process. In signal

processing applications, these equations are typically described in a parametric fashion

using domain-specific expert knowledge of the problem, and parameter estimation is

mostly performed via Expectation Maximization (EM) [12,13] or Variational Inference

(VI) [14, 15]. To better model the state evolution, in addition to expected measurement

uncertainties, additive noise terms are often explicitly included in both the state and

observation equations. In traditional applications, i.i.d. Gaussian statistics are

assumed/imposed on these noise terms to account for the aggregate uncertainties and

mismatches in the model. Under linear dynamics and observations, Gaussian noise, and

fixed model parameters, Minimum Mean Square Error (MMSE) state estimation is

conducted by the well-known Kalman filter and smoother [1]. For more general SSMs,

Sequential Monte Carlo (SMC) methods can be used for MMSE state estimation [16].

In the context of neuroimaging data analysis, SMC methods have been utilized in MEG

dipole modeling and source localization [7–9].

Gaussian statistics, however, are often inconsistent with the empirical histograms of

the observations in various applications, including neuroimaging data analysis. For

instance, in MEG analysis, the observation noise consists of intrinsic magnetic noise,

ocular or motion-induced artifacts, as well as background activity unrelated to the

stimulus. While the intrinsic noise can be reliably modeled by Gaussian statistics and

estimated from stimulus-free measurements in experimental settings, the artifacts and

neural background activity are manifestly non-Gaussian and non-stationary. However,
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when there is direct access to the observed signals, source separation techniques have

been successfully utilized to remove and mitigate these latter sources of

uncertainty [17–22].

Similarly, the state model noise terms introduced above, often referred to as process

noise, do not actually follow Gaussian statistics in various real-world

applications [23,24]. This is mainly due to two reasons: First, in time series analysis,

abrupt state changes may not be well represented by Gaussian statistics. Second, in

practice, the statistics of the process noise heavily depend on the specifics of the

experimental design, such as the task demand and subject’s performance, as well as

other exogenous variables not accounted for. Critically, unlike the case of the

observations, states are only indirectly observed, which limits the utility of source

separation techniques. Finally, despite the negative connotation of the word “noise”, the

process noise also captures the model-critical stochasticity of the state evolution. As

such, the goal is to model and account for said stochasticity, as opposed to removing it

as in the case of observation noise.

This issue is particularly important in modeling brain function as a latent dynamic

process: taking the states to represent the underlying neural circuits that process

sensory stimuli, the process noise then consists of both the underlying behaviorally- and

stimulus-driven dynamics as well as the background neural activity (not necessarily

evoked by the stimulus or behavior), which are typically quite structured and far from

being Gaussian. In this context, the state evolution model is more prone to model

mismatch and biases, as compared to the observation equation, considering that we

generally have more control over the measurement system than the generative

mechanism governing the latent process. As a result, the empirical histogram of the

process noise (which can be computed from state estimates) could exhibit multimodal

morphology, with each mode corresponding to a different exogenous process driving the

state dynamics during specific portions of the experiment.

This has led researchers to study SSMs with a Gaussian Mixture (GM) process

noise [25–29] considering that a GM can, in principle, approximate any multimodal

density [30]. These existing results primarily focus on state estimation and

approximation of filtering and smoothing densities under a fixed or known GM noise

density. As such, parameter estimation for a GM process noise in SSMs has not been
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well-studied. Switching SSMs has been another direction of research in extending linear

Gaussian SSMs to cope with nonstationarity, model mismatch, and exogenous

processes [15,31–39]. In this approach, several linear Gaussian SSMs are considered to

underlie the observed time series data, which switch according to a Hidden Markov

Model (HMM). Although the filtering and smoothing densities in this model take a GM

form, the potential multimodality of the process noise is not explored or modeled in this

approach. In addition, parameter estimation for switching SSMs is a challenging task in

general, due to the intricate dependence of the data likelihood on the parameters. When

the states are directly observable, the resulting models are known as Markov-switching

Autoregressive (MSAR) models, which notably admit parameter estimation via the EM

algorithm [32,40]. However, for general switching SSMs, parameter estimation often

requires computationally intensive numerical optimization steps [33,35,36].

In this work, we fill this gap by developing an EM-based algorithm for estimating the

parameters of a GM process noise model from the observations in an SSM. In our model,

the process noise is not drawn i.i.d. from a GM but instead, a GM component is chosen

at random for a window of fixed (but arbitrary) length, and the process noise within the

window is drawn from said component. The parameters of the GM are unknown. The

EM algorithm has been widely used for parameter estimation both in state-space

modeling [13] and in GM clustering [41], which makes it a promising candidate for our

setting. The EM framework in this setting, however, results in intractable expectations

for parameter updates. We address this issue by leveraging a Sequential Monte Carlo

Expectation Maximization (SMCEM)-type algorithm [42] to approximate the

expectations using smoothed particles obtained through SMC. A major drawback of

particle smoothing approaches is their excessive computational requirements, or

equivalently suffering from sample depletion as the dimension of the target densities

grows while fixing the computational costs [43]. As a more scalable alternative, we

develop another method of approximating the expectations based on closed-form

approximations to the smoothing densities as well as their one-step cross covariances.

To this end, we adopt the two-filter formula for smoothing [26] and devise a belief

propagation algorithm in our setting. As a result, the computational complexity of the

E-step in EM for a GM process noise would be comparable to that of a conventional

Gaussian process noise, akin to performing parallel Kalman filtering and smoothing.
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To demonstrate the benefits of a GM process noise and the efficacy of the developed

estimation framework, we consider two experimental paradigms: a dynamic at-will

attention switching task in a realistic cocktail party scenario, in which the listener

maintains attention to one out of two competing speakers, while being able to switch

attention between the two speech streams at will; and an instructed attention switching

task in a more restricted cocktail party scenario, in which the listener maintains

attention to one out of two competing speakers for the first half of a trial and then

switches attention to the other speaker. The cocktail party is among the key paradigms

in studying the neural dynamics underlying complex auditory processing [44,45]. One of

the most recent quantitative approaches in uncovering these neural dynamics from

neuroimaging data is based on the Temporal Response Function (TRF) model [46]. The

TRF can be considered as an evolving Finite Impulse Response (FIR) filter which gets

convolved with speech features in time, e.g., the speech envelope, to produce the

auditory neural response observed through neuroimaging modalities such as

electroencephalography (EEG) and magnetoencephalography (MEG) [47]. The TRF

framework has resulted in new insights into the mechanisms of speech processing in the

brain in the cocktail party scenario [45,48–50]. For instance, TRF components at

specific lags may exhibit peaks which arise, persist, and disappear over time according

to the attentional state of the listener [51]. The different local dynamics of TRF

components under each of these conditions motivates a GM density to capture such

evolution patterns. Dynamic estimation of TRFs was first discussed in [47] using a

Recursive Least Square (RLS) algorithm. However, smoothing estimates and state-space

modeling are more robust than RLS and filtering estimates in performing a

comprehensive dynamic analysis of TRFs when data from multiple trials is available.

Thus, we study dynamic estimation of TRFs using SSMs and apply our SSM framework

with a GM process noise to both simulated and experimentally recorded MEG data

under a dual-speaker environment where the subject switches attention between the two

speakers at will. The results show that our proposed algorithm can effectively recover

the multimodal structure of the process noise from SSM observations, and that having a

richer and more realistic representation of the process noise allows capturing the TRF

dynamics more precisely and more consistent with the subjects’ behavioral reports, as

compared to the conventional Gaussian SSM or RLS estimation. While our proposed
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Fig 1. Schematic depiction of the TRF model. The speech features (left, e.g., acoustic
envelope) are convolved with the TRF (top) to predict the auditory neural response
(right).

framework is motivated by and applied to data from auditory experiments, it is

applicable to general state-space modeling problems in which states exhibit

heterogeneous and recurring local dynamic patterns.

Results

In this section, we demonstrate the utility of our proposed algorithms in estimating

TRFs from auditory neural responses to speech, using both simulated and

experimentally-recorded MEG data. Before doing so, we will give an overview of the

TRF model, existing estimation frameworks, and the benefits of our GM SSM

framework for TRF estimation.

The TRF Model

Consider a cocktail party setting [45], in which a subject is listening to two speakers

simultaneously, but only attending to one of the speakers. While the subject is

performing this task, the neural response is recorded using MEG. The TRF is a

commonly used linear encoding model that relates the speech features to the neural

response, by generalizing the concept of event-related evoked responses: instead of

averaging over multiple trials with the same stimulus to obtain the evoked response, the

TRF kernel is obtained by averaging the effect of a diverse set of speech stimuli,

presented as a continuous time series, and hence results in a generalizable encoding

model (See Fig. 1 for a schematic depiction). The speech features used in TRF models

have included the acoustic envelope, acoustic onsets, phoneme representations, word

frequency measures, and semantic composition [52–54]. In a multi-speaker scenario,
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multiple TRFs are used to capture the effect of the speech features of each speaker to

the neural response.

Existing results in auditory neuroscience [11, 46–48,51,55] have focused on studying

the behavioral significance of the various peaks in the TRF. For instance, the TRF

exhibits an early positive peak at around 50 ms, referred to as the M50 component,

which is known to represent the encoding of the acoustic envelope. A later negative

peak at around 100 ms lag, referred to as the M100 component, has shown to have an

attentional modulation effect, so that it appears to have a larger magnitude for the

attended speaker’s TRF, compared to the unattended speaker’s TRF. The M50

component is attributed to the effect of early auditory processing in the brain and is

equally represented in both speakers’ TRFs, while the M100 component represents the

later processing stages that segregate the attended speaker from the unattended

one [48].

TRFs are commonly assumed to be static during the duration of an auditory

experiment, and are estimated using regularized least squares [56,57] or

boosting [46,48,58]. Dynamic estimation of the TRFs, on the other hand, can provide

insights into the underlying neural dynamics that process speech in the cocktail party

setting, and has significant implications for the design of non-invasive brain-machine

interface devices involving auditory processing, such as the emerging ‘smart’ hearing aid

technology that utilizes neural signals to steer the hearing aid parameters in real-time.

Dynamic estimation of TRFs was first discussed using a regularized RLS framework

in [47]. This method considers changes in the TRFs over consecutive non-overlapping

time windows of small length, and updates the estimates of the TRFs in a recursive

fashion as more data becomes available (See Methods for more details). As such, it

provides filtered estimates of the TRFs and is suited for real-time applications.

Leveraging SSMs for representation and estimation of the TRFs has the advantage

of providing smoothed estimates and directly modeling the evolution of the TRFs

through the state equation, and thereby resulting in a more precise dynamic analysis of

the TRFs in the off-line fashion. In this work, we consider linear Gaussian SSMs and

linear SSMs with GM process noise. As we will demonstrate in the following two

subsections, the linear SSMs with GM process noise have the additional advantage of

accounting for the heterogeneity of the TRF dynamics.
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In what follows, we consider regularized RLS estimates of the TRF, estimates of the

TRF using a Markov Switching Autoregressive (MSAR) model, and smoothed TRF

estimates from a linear Gaussian SSM as benchmarks (See Methods for more details on

these algorithms).

Application to Simulated Data

Consider a 90 s long cocktail party experiment, in which the subject is listening to two

speakers simultaneously and is instructed to switch attention between the two every 15

s starting at time 7.5 s. We synthesize the putative TRF dynamics as shown in Fig.

2-A, based on the relevance of different TRF peaks. We use a sampling rate of Fs = 100

Hz and a length of 250 ms for the TRFs. The TRFs are represented using a dictionary

with five Gaussian atoms with variances of 0.018 s2 whose means are separated by 50

ms increments starting from a lag of 0 ms to 200 ms. Furthermore, we consider a

piecewise-constant model for the TRFs over windows of length 300 ms. Letting G̃ be

the dictionary, the TRF at the nth window is defined as τn = G̃xn, where xn is the

state vector at window n. The SSM governing the state evolution is of the form

xn = αxn−1 + wn, where α < 1 is a constant and wn is the process noise. Finally, the

observed neural response is related to the states by yn = S>n τn + vn, where Sn are the

speech features of the two speakers relevant to window n and vn is the i.i.d. Gaussian

observation noise, i.e., vn ∼ N (0, σ2I) (See Methods for more details on the TRF and

state-space models).

Fig. 2-A shows the synthesized TRF heatmaps for speakers 1 and 2, where the

corresponding states are designed such that the M50 component stays relatively

constant for the two speakers, the M100 component is modulated by the attentional

state, and a common high-latency component at 200 ms varies independently of the

subject’s attention. Fig. 2-B shows two snapshots of the TRF of speaker 2 at 10 s,

when speaker 2 is attended, and at 85 s, when speaker 1 is attended. It is worth noting

that the corresponding states in Fig. 2-A are not generated from an SSM. However, the

relatively smooth temporal changes of the TRFs in Fig. 2-A (representing neural

activity in controlled experimental conditions) makes the SSM model a suitable

candidate for dynamic TRF analysis. Indeed, the TRF components at lags of 100 ms

and 200 ms exhibit heterogeneous dynamics across the trial, including periods of
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Fig 2. Designed simulation study: A) Heatmaps of the synthetic TRFs in time for a
two-speaker cocktail party scenario, where the M100 magnitudes are
attention-modulated. B) Example instances of speaker 2’s TRF when the speaker is
attended (left plane) and unattended (right plane). C) Oracle histogram of process
noise in (14) along the M100 dimension of speaker 2, which is computed from (A), and
the fitted GM as the oracle GM fit.

increasing, decreasing, and remaining relatively constant, which model the changes in

auditory state throughout the experiment. Such dynamics can be modeled using a

multimodal process noise wn. Fig. 2-C shows the histogram of true wn samples along

with the 3rd state dimension of speaker 2’s TRF (corresponding to the M100

component). The true process noise samples are computed as ŵn = xn − αxn91,

assuming that the true states (xn’s) in Fig. 2-A are available to an oracle. We refer to

this histogram as the oracle histogram and to the maximum-likelihood GM density fit

to these oracle samples as the oracle GM fit in Fig. 2-C. The constant α is chosen close

to and less than one to enforce temporal continuity. We assume that the TRF dynamics

are governed by one mixture component in each window of length 1.5 s. We simulate
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the observed neural response yt using two speech signal envelopes as the stimulus

vectors (See Methods for more details on the parameter settings).

Fig. 3 shows the convergence of the estimated parameters using the proposed EM

algorithm in comparison to those given by the oracle GM fit for a nominal observation

SNR of 6.7 dB, using the closed-form approximation approach. The number of mixture

components is chosen as 5 using the Akaike Information Criterion (AIC). The

observation noise variance σ2 is also estimated within the EM algorithm. The panels for

the means and diagonal covariances in Fig. 3 correspond to the 3rd state dimension of

speaker 2’s TRF (i.e., the M100 component) from Fig. 2-C. The mixture probabilities

and means of the oracle GM fit are recovered within 30 EM iterations. The covariance

elements, however, take more iterations to converge and tend to underestimate those of
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the oracle GM fit. This shows that at the nominal SNR of 6.7 dB in our simulation, the

algorithm is more sensitive to recovering the average TRF dynamics in each 1.5 s

window than to retrieving the detailed variations within the window.

It is noteworthy that the initialization points in Fig. 3-C, given by the estimated

process noise variance in a Gaussian SSM, are approximately 100 times larger than

those given by the oracle GM fit. Fig. 3-D shows the corresponding estimated process

noise density after 200 EM iterations (blue trace), the oracle GM fit (red trace), and the

Gaussian model fit obtained from a linear Gaussian SSM used for EM initialization

(yellow trace). While the estimated GM process noise density using our proposed

approach closely matches that given by the oracle GM fit, the process noise density

obtained by a linear Gaussian model is heavily biased and is not able to capture the

multimodal nature of the process. Note that while Fig. 2-C alludes to a true density

with 3 GM components, the AIC criterion chose 5 GM components. Nevertheless, the

joint updating of the means, variances, and mixture components (Fig. 3-A, -B and -C)

results in a final density estimate that matches the putative true density with 3 GM

components (Fig. 3-D). As such, our algorithm exhibits robustness to overestimation of

the number of mixture components.

To ease reproducibility, we have archived a MATLAB implementation of the

closed-form approximation method in the GitHub repository, which reproduces the

results of Fig. 3 [59]. Convergence curves for the Monte Carlo approximation method

are previously presented in [60], and are omitted here for brevity.

Fig. 4 shows the normalized RMSE in state estimation with respect to the original

states in Fig. 2-A for nominal observation SNRs in the range [95.3, 9.7] dB with 3 dB

increments. The results are averaged over 10 realizations at each SNR value. The SSMs

clearly outperform the RLS and MSAR algorithms in recovering the true states. Also,

the SSM with GM process noise with either the closed-form or particle smoothing

approximations outperforms the Gaussian SSM. We have considered a total of 2000

particles for the particle smoothing algorithm (Approach 1) so that state estimates are

comparable to those obtained by the closed-form approximation (Approach 2). This

resulted in a ten-fold increase in the run-time compared to the closed-form

approximation method (61.50 seconds and 5.57 seconds for Approaches 1 and 2,

respectively, per EM iteration, on a typical desktop workstation for the settings used in
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the simulation), which shows the advantage of using the closed-form approximation

method. Examples of the estimated TRFs of speaker 1 under the low nominal

observation SNR of 95.3 dB are shown in Fig. 5. The MSAR (panel B) and RLS

estimates (panel C) exhibit the highest variability compared to the ground truth in Fig.

5-A (imported from Fig. 2-A). While the Gaussian SSM estimate in Fig. 5-D fails to

capture the rapid M100 dynamics as well as the steady M50 component (note the M50

and M100 estimates within the dashed rectangles), the estimate from the SSM with GM

process noise in Fig. 5-E is nearly indistinguishable from the ground truth TRF in Fig.

5-A.

Application to Experimentally-Recorded MEG Data

We present the analysis of data from two separate attention switching experiments,

which we refer to as the at-will and instructed attention switching experiments. In the

at-will attention switching experiment, subjects listened to a speech mixture, and were

instructed to start attending to the male speaker first, and then to switch their

attention between the two speakers at their own will for a minimum of one and a
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Fig 5. Example dynamic TRF estimates for speaker 1 under the low nominal
observation SNR of −5.3 dB: A) The ground truth TRF. B) MSAR. C) Regularized
RLS. D) Linear Gaussian SSM. E) Linear SSM with GM process noise. The dashed
rectangles highlight an example difference of these estimates for the sake of comparison.

maximum of three times during each trial. In the instructed attention switching

experiments, the subjects listened to a speech mixture, and were instructed to start

attending to one speaker first and then to switch their attention to the other speaker

halfway through the trial. The instructed attention switching experiment consists of

data from 7 subjects, with 6 trials each, while the data from the at-will attention

switching experiment pertains to 3 trials of one subject (See Subjects, Stimuli, and

Procedures subsection in the Methods for more details). Although reliable group-level

conclusions for the challenging at-will attention switching experiment require data from

more subjects and trials, given the novelty of this experimental paradigm and its

August 14, 2020 14/52



potential interest to the auditory attention decoding research community, we have

included the analysis of data from this one subject, separately from the instructed

attention switching data. In addition, a GM process noise in SSMs would be more

beneficial in at-will attention switching experiments, as it can capture the rapid

dynamics that underlie attention switching instances more reliably.

TRF Estimation Results and Discussion

We set the TRF length to 300 ms and consider TRFs to be piece-wise constant over

windows of length 400 ms. Also, we assume that the TRF dynamics are governed by

one mixture component in each window of length 2 s. As before, we represent the TRFs

over a Gaussian dictionary with means separated by 20 ms starting from 0 to 280 ms,

and variances of 8.5× 10−3 s2. To restrict the dynamic range of the process noise wn

for the sake of robustness, we consider Inverse Gamma (IG) conjugate priors [61] on the

diagonal elements of the process noise covariance matrices. Note that in the absence of

such priors, the EM algorithm would likely result in TRFs that are highly variable in

time and with no meaningful morphological structure (See Methods for more details on

parameter settings).

Fig. 6 shows example TRF estimates for two trials of the subject in the at-will

attention switching experiment. The vertical dashed lines mark reported attention

switches by the subject. For the sake of brevity, hereafter we only present TRF

estimates based on the RLS, Linear Gaussian SSM and Linear SSM with GM process

noise. The number of mixture components for the process noise was set to 3 for trial 1

and 4 for trial 2, using the AIC criterion. Row A shows speaker 1’s TRF estimate using

RLS, which exhibits the highest variability. Rows B and C show the TRF for the

Gaussian SSM and the SSM with GM process noise, inferred using the closed-form

approximation, respectively. Although the estimated process noise variance in the GM

case is controlled by that of the Gaussian case in each dimension, we observe that the

estimates in row C clearly delineate the heterogeneity of the dynamics of the various

TRF components, which are blurred by the linear Gaussian SSM estimates of row B. In

other words, the multimodal representation of the process noise allows the model to

adapt to rapid changes governed by the subjects’ behavior. Row D displays speaker 2’s

TRF estimate using the linear SSM with GM process noise. Comparing rows C and D,
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Fig 6. TRF estimates for two example trials in the at-will attention switching
experiment with vertical dashed lines showing the reported times of attention switches
by the subject: A) RLS estimate (speaker 1 TRF). B) Gaussian SSM (speaker 1 TRF).
C) SSM with GM process noise (speaker 1 TRF). D) SSM with GM process noise
(speaker 2 TRF). E) M100 magnitude differences between the TRFs of speaker 1 and 2
for the different methods. The SSM with GM process noise better delineates the
heterogeneity of the TRF dynamics and is more consistent with the subjects’ behavioral
reports (see green arrows), while the RLS estimate is highly variable and the estimate of
the Gaussian SSM is overly smooth.

we observe the aforementioned attention modulation effect in the magnitude of the

M100 components. To illustrate this effect further, row E shows the difference between

the M100 magnitudes of the TRFs of speakers 1 and 2, where we locate the M100 at

each time as the smallest TRF elements in the [0.1, 0.2] s lag interval. Thus, when

speaker 1 (2) is attended, we expect this difference to be positive (negative). The

attention decoding accuracy in each trial can be computed by comparing the difference

of the M100 magnitudes with level 0 at each time (horizontal dashed line in Fig. 6-E)

considering the reported attended speaker and summing over all the intervals where the

M100 of the attended speaker exhibits a larger magnitude than that of the unattended
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speaker. Note that this decoding strategy is purely based on the TRF estimates in a

single trial. As such, it would not be as accurate as the state-of-the-art attention

decoding methods that use more complex algorithms and extensive training data. The

M100 differences for the RLS exhibit high variability (blue traces), and result in

inconsistencies with the reported attended speakers (e.g., trial 1 after the 35 s mark,

downward arrow). The M100 differences obtained by the linear Gaussian SSM estimates

seem to overly smooth those of the RLS (e.g., trial 2, near the 10 s mark, downward

arrow). The M100 differences obtained from the proposed linear SSM with GM process

noise, however, provide a desirable compromise between these two extremes: Compared

to the linear Gaussian SSM, the M100 differences benefit from the clearly delineated

TRF dynamics and can result in earlier detection of an attention switch, leading to

higher attention decoding accuracy. Instances of this advantage are marked by green

arrows in row E, for both trials. Decoding the attention based on the sign of the M100

differences results in misclassification rates of (6.74%, 12.37%, 22.94%) for trial 1 and

(31.72%, 43.08%, 39.03%) for trial 2, respectively for the SSM with GM process noise,

Gaussian SSM, and RLS, in accordance with the foregoing qualitative analysis.

Fig. 7 displays example TRF estimates for two trials in the instructed attention

switching experiment, in a similar fashion as Fig. 6. The subjects were instructed to

switch their attention at the 30 s mark, halfway through the trial. Again, we observe

that the SSM with GM process noise emphasizes the detailed dynamics of the TRFs

which are sometimes blurred out in the Gaussian SSM or shown with high variability in

the filtering estimates of RLS. This can result in stronger attention modulation effects,

i.e., larger magnitude for the M100 of the attended speaker, or quicker transitions at the

30 s attention switching mark (marked by green arrows). The misclassification rates for

SSM with GM process noise, Gaussian SSM, and RLS are respectively

(25.78%, 26.81%, 31.45%) for trial 1 and (8.55%, 9.8%, 17.01%) for trial 2.

Fig. 8 shows the group-level analysis results for the subject in the at-will attention

switching experiment (left column) and the seven subjects in the instructed attention

switching experiment (right column). The upper panels display the scatter and box

plots for the computed attention decoding accuracies for the at-will and instructed

attention switching experiments, respectively. With respect to the mean attention

decoding accuracy (red plus sign), RLS estimates exhibit the poorest performance, and
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Fig 7. TRF estimates for two example trials in the instructed attention switching
experiment with vertical dashed lines showing the 30 s mark where subjects were
instructed to switch their attentional focus: A) RLS estimate (speaker 1 TRF). B)
Gaussian SSM (speaker 1 TRF). C) SSM with GM process noise (speaker 1 TRF). D)
SSM with GM process noise (speaker 2 TRF). E) M100 magnitude differences between
the TRFs of speaker 1 and 2 for the different methods. The SSM with GM process
noise better delineates the heterogeneity of the TRF dynamics and is more consistent
with the subjects’ behavioral reports (see green arrows), while the RLS estimate is
highly variable and the estimate of the Gaussian SSM is overly smooth.

SSM with GM process noise results in a modest 1% to 3% improvement over the linear

Gaussian SSM. The attention decoding accuracy, however, is not an ideal metric to

assess the TRF estimation performance, due to the absence of a ground truth and

arbitrary attentional variabilities during a single trial. The lower panels in Fig. 8

summarize the results of the AIC model selection criterion for number of components in

the GM process noise density. For each trial, we considered one to four GM components

for the process noise, and the number with the lowest AIC score was chosen for the SSM

with GM process noise in that trial. If one GM component is chosen based on the AIC

criterion, the SSM with GM process noise reduces to the linear Gaussian SSM. The
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Fig 8. Group-level results for attention decoding accuracy (upper panels) and the AIC
model selection criteria (lower panels) for the at-will (left column) and the instructed
(right column) attention decoding experiments. The upper panels display the
scatter/box plots of trial-level mean attention decoding accuracy across subjects and
trials, while the lower panels show the normalized histogram of the chosen number of
GM components in each trial. The mean attention decoding accuracies, marked by red
plus signs in upper panels, are (75.31%, 72.04%, 66.45%) and (63.24%, 62.74%, 60.28%)
for (SSM with GM process noise, Gaussian SSM, RLS) in the at-will and instructed
attention switching experiments, respectively. Although the SSM with GM process
noise results in modest improvements in mean attention decoding accuracy compared to
the linear Gaussian SSM, the AIC model selection criteria always prefers the former to
the latter.

lower panels in Fig. 8 show the normalized histogram of the chosen number of GM

components across subjects and trials. It is worth noting that for the trials where four

components were chosen, it is possible that a higher number of process noise GM

components would have resulted in a lower AIC score. We observe that in none of the
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trials (out of 45) a linear Gaussian SSM is preferred over an SSM with GM process

noise. This suggests that even when accounting for model complexity, the SSM with

GM process noise fits the observed MEG data better than a linear Gaussian SSM, and

can thus serve as a better explanatory model for the underlying biological processes.

Discussion

We considered the problem of estimating latent dynamics of biological processes from

noisy and limited observations, in which the commonly-used Gaussian statistics fail to

capture the heterogeneous and switching nature of the dynamics. An instance of such

dynamics are the neural processes that underlie auditory attention switching in a

cocktail party consisting of multiple speakers. To address this shortcoming of Gaussian

models, we utilized a SSM with GM process noise and devised an EM algorithm to

estimate the parameters of the GM density from SSM observations. To approximate the

intractable expectations in EM, we considered two approaches, one based on particle

smoothing and another based on closed-form GM approximations to the smoothing

densities.

The main limitation of the first approach based on particle smoothing is the

exponential growth of the number of particles in terms of the dimension of the

smoothing densities. The second approach based on closed-form GM approximations

significantly reduces the computational complexity by requiring a cubic dependence in

the state dimensions, with an additional cubic dependence in the number of GM

mixtures. In addition, the closed-form approximations require a linear SSM model to

hold. If the underlying state-space model is indeed non-linear, linearization techniques

such as those used in the extended [1] or unscented Kalman filter [62] are required,

which may result in model mismatch.

While both the observation and process noise are often non-Gaussian in practice, in

our proposed framework, we have assumed Gaussian statistics to model the observation

noise. This is motivated by the conventional preprocessing techniques applied to the

observed data (e.g., source separation), which are able to remove the non-Gaussian noise

components in such a way that the resulting ‘denoised’ observations admit Gaussian

noise models. Nevertheless, the observation noise can also be modeled by a GM density,
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whose parameters can be estimated in a similar fashion to those of the process noise in

our proposed framework. The resulting inference algorithm, however, would be more

intricate and is deemed as a future extension of our current methodology.

As mentioned in the Introduction, existing parameter estimation techniques for

general switching SSMs are computationally demanding and often require direct

maximization of the data likelihood via numerical methods. The MSAR method

presented here circumvents this challenge by using a surrogate of the states to perform

parameter estimation. It is noteworthy that our SSM with GM process noise can be

thought of as a special case of an SSM with underlying MSAR state dynamics, in which

the state transition probability matrix is constrained to have equal rows. Thus, another

potential extension of our proposed methodology is to utilize the closed-form

approximation approach for estimating the parameters of more general switching SSMs

in a computationally scalable fashion.

As our primary application, we considered the problem of dynamic TRF estimation

from auditory neural responses to speech. We formulated the problem as a linear SSM

with Gaussian or GM process noise, and compared the TRF estimates to those obtained

by the RLS and MSAR algorithms. Application to simulated data shows that the

algorithm can effectively recover the parameters of the underlying GM process noise and

that the GM representation improves state estimation for a synthesized latent process

exhibiting heterogeneous and rapid dynamics. Application to experimentally-recorded

MEG from both at-will and instructed attention switching two-speaker cocktail party

settings revealed that the proposed SSM with GM process noise model and inference

methodology clearly delineates the heterogeneous dynamics of the TRF components

that are otherwise not captured by the other techniques. While the proposed

methodology can be used as a reliable estimation technique for auditory attention

decoding in a cocktail party settings, it can be applied to a wider range of biological

problems in which the underlying model exhibits heterogeneous and switching dynamics.
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Methods

Ethics Statement

All experimental protocols and procedures were approved by the University of Maryland

Institutional Review Board, and written informed consent was obtained from

participants before the experiments.

The Main Problem Formulation

Consider the following generic discrete-time SSM with additive noise:
xn = fn(xn−1) + wn

yn = gn(xn) + vn

(1)

where xn ∈ Rdx and yn ∈ Rdy represent the states and the observations at time n,

respectively. We assume that the functional forms of fn(.) and gn(.) are known and

fixed for n = 1, . . . , N , from domain-specific knowledge of the problem. Following our

arguments in the Introduction on the utility of source separation techniques in removing

the non-Gaussian components of the observation noise, we let vn ∼ N (0,R) be the i.i.d.

Gaussian sequence of observation noise. The process noise wn, on the other hand,

accounts for the stochasticity of the state evolution. Note that from a neuroscience

perspective, the process noise consists of both the underlying behaviorally- and

stimulus-driven dynamics as well as the background neural activity (not necessarily

evoked by the stimulus or behavior). While the terminology alludes to a zero-mean

Gaussian disturbance, the process noise in this context is typically quite structured and

far from being a zero-mean Gaussian disturbance. Nevertheless, we adhere to this

terminology for the sake of consistency with existing literature on state estimation.

To represent the process noise wn, consider a GM with M mixture components and

parameter set Θ := {p1:M ,µ1:M ,Σ1:M} containing the mixture probabilities p1:M , mean

vectors µ1:M , and covariance matrices Σ1:M . We model the state dynamics over

K := N/W consecutive non-overlapping windows of length W . Within each window

i ∈ {1, . . . ,K}, the process noise is drawn from one of the mixture components, which

we denote by zi ∈ {1, . . . ,M}. Therefore, we have wn ∼ N (µzi ,Σzi) for

n = (i− 1)W + 1, . . . , iW , independent of vn, and we consider the zi’s to be i.i.d. with
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P(zi = m) = pm for m = 1, . . . ,M . In other words, zi determines the active mixture

component that governs the state dynamics in window i. This can also be interpreted as

a switching Gaussian process noise. For the special case of W = 1, the resulting model

could in principle approximate any arbitrary i.i.d. process noise wn, as it is fitting a GM

model to the process noise. In this case, the labels zi of mixture components can vary at

the same rate as that of the states and observations. Note that regardless of the choice

of W , wn has a GM distribution, but is only i.i.d. when W = 1. We hereafter refer to

the foregoing process noise model, for general W ≥ 1, as the GM process noise model.

Let YN
1 denote the set of observations from 1 to N , i.e., y1:N , and similarly define

XN
1 and ZK1 for x1:N and z1:K , respectively. Our goal is to estimate the GM process

noise parameters Θ from SSM observations YN
1 . As estimation of the observation noise

covariance R in EM is straightforward [13], we assume R to be fixed for convenience

and will briefly review the update equations for R in the following subsection, if it

needs to be estimated from the observed data. As mentioned in the Introduction, R can

also be estimated from stimulus-free conditions. Finally, we adopt the Maximum

Likelihood (ML) estimation framework to estimate Θ as follows:

Θ̂ML := arg max
Θ

P
(
YN

1

∣∣∣Θ
)
. (2)

Despite its simple statement, the problem of Eq. (2) is challenging due to the difficulties

in computing the optimization argument, i.e., data likelihood, in a computationally

scalable fashion. We will address this challenge in the forthcoming section.

Parameter Estimation

We use the EM algorithm as a solution method for the ML problem in (2). The EM

framework provides an iterative procedure to update the estimated parameter set with

the guarantee that at iteration (`+ 1) we have

P
(
YN

1

∣∣∣ Θ̂(`+1)
)
≥ P

(
YN

1

∣∣∣ Θ̂(`)
)

(3)

where Θ̂(`) is the parameter set estimate from the `th iteration [12]. The EM algorithm

guarantees convergence to a local maximum, and most of the work on escaping the

undesirable local maxima in EM theory have focused on providing an informed
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initialization of the algorithm [63,64]. As explained in the Model Parameter Settings

subsection of the Methods, we use the fixed-interval smoothed estimates based on a

Gaussian model to choose Θ̂(0) and initialize the algorithm.

Let H =
{
ZK1 ,X

N
1

}
denote the set of latent variables in the SSM, which includes

the states and the labels of active mixture component in each window. The EM

algorithm performs the following two steps at the (`+ 1)th iteration and repeats them

until convergence to a parameter estimate Θ̂:


E-step : Q

(
Θ
∣∣∣ Θ̂(`)

)
= EH

{
log P

(
YN

1 ,H
∣∣∣Θ
) ∣∣∣YN

1 , Θ̂
(`)
}

M-step : Θ̂(`+1) = arg maxΘQ
(

Θ
∣∣∣ Θ̂(`)

) (4)

where the surrogate function Q
(
Θ
∣∣ Θ̂(`)

)
is a lower bound on the data log-likelihood.

The expectation in the E-step is over the conditional density of H |YN
1 , Θ̂

(`). As all of

the following expectations are also conditioned on YN
1 and Θ̂(`), we drop the

conditioning in the notation for convenience, but keep the expectation subscript to

denote the random variable with respect to which the expectation is taken. Also,

hereafter the subscript (i, j) represents the time index of the jth sample in the ith

window, i.e., n = (i− 1)W + j for brevity. The EM algorithm in Eq. (4) in our setting

can be expressed as follows:

E-Step: The surrogate function in the SSM is computed as

Q
(
Θ
∣∣ Θ̂(`)

)
= EH

{
log P

(
ZK1

∣∣Θ
)

+ log P
(
XN

1

∣∣ ZK1 ,Θ)}+ c1

=
K∑
i=1

M∑
m=1

EH

{
1{zi=m}

(
log pm +

W∑
j=1

log π(i,j),m

)}
+ c2, (5)

where 1{.} denotes the indicator function, c1 and c2 are terms not dependent on Θ, and

π(i,j),m is defined as

π(i,j),m := P
(
x(i,j)

∣∣ x(i,j91), zi = m,Θ
)
, (6)

which is computed based on the Gaussian density for w(i,j) in Eq. (1) when zi = m. If

we decompose the conditional expectation in Eq. (5) into two iterated conditional

expectations with respect to XN
1 |Y

N
1 , Θ̂

(`) and ZK1 |X
N
1 , Θ̂

(`) (where YN
1 is dropped

in the latter due to conditional independence), this equation can be written as
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Q
(

Θ
∣∣∣ Θ̂(`)

)
=

K∑
i=1

M∑
m=1

EX

{
ε̂
(`)
i,m

(
log pm +

W∑
j=1

log π(i,j),m

)}
+ c3, (7)

where c3 is a constant and ε̂
(`)
i,m is the membership probability and can be expressed

using Bayes’ rule as:

ε̂
(`)
i,m := P

(
zi = m

∣∣∣XN
1 , Θ̂

(`)
)

=
p̂

(`)
m
∏W
j=1 π̂

(`)
(i,j),m∑M

m′=1 p̂
(`)
m′
∏W
j=1 π̂

(`)
(i,j),m′

, (8)

The variable π̂
(`)
(i,j),m is defined similarly to (6) but for Θ = Θ̂(`), which makes ε̂

(`)
i,m a

constant with respect to Θ.

M-Step: In this step, we maximize the log-likelihood lower bound with respect to

Θ. Differentiating (7) with respect to Θ, enforcing the condition
∑M
m=1 pm = 1, and

invoking the dominated convergence theorem to change the order of expectation and

differentiation, we obtain the following parameter updates for m = 1, . . . ,M :

p̂(`+1)
m =

1

K

K∑
i=1

EX

{
ε̂
(`)
i,m

}
, µ̂(`+1)

m =

K∑
i=1

EX

{
ε̂
(`)
i,m

W∑
j=1

v(i,j)

}

W
K∑
i=1

EX {ε̂(`)i,m}
, (9)

Σ̂(`+1)
m =

K∑
i=1

EX

{
ε̂
(`)
i,m

W∑
j=1

v(i,j)v
>
(i,j)

}

W
K∑
i=1

EX {ε̂(`)i,m}
9 µ̂(`+1)

m

(
µ̂(`+1)
m

)>
, (10)

where v(i,j) := x(i,j) − f(i,j)

(
x(i,j91)

)
.

Remark 1. If the covariance matrix R of the Gaussian observation noise in (1) also

needs to be estimated from YN
1 , it can be included in the parameter set Θ. The update

formula for R̂(`+1) in the EM framework then becomes [65]

R̂(`+1) =
1

N

N∑
n=1

EX

{
(yn − gn(xn)) (yn − gn(xn))

>
}
. (11)

In addition, if the function fn(·) is only known in parametric form, it is in principle

possible to estimate it via the same EM framework. As an example, which we use for

TRF modeling, consider fn(x) = αx, where α is an unknown constant. Then, the
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coordinate descent update for α takes the form [13]:

α̂(`+1) =

K∑
i=1

EX

{
ε̂
(`)
i,m

W∑
j=1

x>(i,j−1)Σ̂
(`+1)−1
m x(i,j−1)

}
K∑
i=1

EX

{
ε̂
(`)
i,m

W∑
j=1

x>(i,j−1)Σ̂
(`+1)−1
m

(
x(i,j) − µ̂

(`+1)
m

)} . (12)

In the definition of ε̂
(`)
i,m in Eq. (8), both the numerator and the denominator include

exponential functions of the states. Therefore, the conditional expectations in Eq. (7)

and in the update equations above are intractable even if the joint smoothing density of

XN
1

∣∣YN
1 , Θ̂

(`) is known in closed-form [29]. In this work, we use two different

approaches to address this challenge: In Approach 1, we use Monte Carlo

Approximations for computing the aforementioned expectations. While this approach is

rather straightforward to implement, the resulting algorithm is computationally

intensive. In Approach 2, we instead derive closed-form approximations to the densities

required for computing the expectations. The underlying parameters can be updated

recursively, which makes the resulting algorithm scalable with the problem dimension.

The details of these approaches are given in S1 Appendix.

Dynamic Estimation of the TRF

Consider a cocktail party setting [45], in which a subject is listening to two speakers

simultaneously, but only attending to one of the speakers. While the subject is

performing this task, the neural response is recorded using MEG. Let yt ∈ R denote the

auditory component of the neural response at time t ∈ {1, . . . , T}, extracted from

multichannel MEG recordings via the Denoising Source Separation (DSS)

algorithm [22,66]. Also, let s
(q)
t be a speech feature of speaker q ∈ {1, 2} at time t, e.g.,

the acoustic envelope, and denote by s
(q)
t = [s

(q)
t , . . . , s

(q)
t−L−1]> ∈ RL the vector

containing the previous L features up to (and including) time t. In this work, we

consider s
(q)
t to be the acoustic envelope in log scale, which is known to be a reliable

predictor of the neural response [47]. Other features such as phoneme representations,

word frequency measures, and semantic composition have also been considered in the

literature [52–54], and can also be included in s
(q)
t . A widely-used linear

stimulus-response model is given by:

yt = s>t τ̃t + vt, (13)
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where τ̃t =
[
τ̃

(1)
t ; τ̃

(2)
t

]
∈ R2L is the concatenation of τ̃

(1)
t and τ̃

(2)
t as the TRFs at time

t corresponding to speakers 1 and 2, respectively. Also, st =
[
s

(1)
t ; s

(2)
t

]
∈ R2L is the

concatenation of the speech feature vectors at time t, and vt represents the observations

noise. In light of this model, and as mentioned in the Introduction, the TRF τ̃
(q)
t can

be thought of as the impulse response of a linear, but time-varying, system representing

the neural activity and taking as input the speech features of speaker q, for q = 1, 2.

We assume vt ∼ N (0, σ2) and define the nominal observation SNR as

10 log10

(
Ē/σ2

)
, where Ē is the average of the signal component in Eq. (13) over the

trial of length T . It is common to consider a piecewise-constant approximation to the

TRFs over consecutive non-overlapping time windows of length t0, which is comparable

to the length of the TRF L. In other words, τ̃t = τn for t ∈ {(n− 1)t0 + 1, . . . , nt0} and

n ∈ {1, . . . , N} where N = T/t0 is assumed to be an integer without loss of generality.

We then define yn = [y(n91)t0+1, . . . , ynt0 ]>, Sn = [s(n91)t0+1, . . . , snt0 ], and

vn = [v(n91)t0+1, . . . , vnt0 ]>.

TRF Estimation via Regularized RLS

First, the TRFs are represented over a dictionary G, i.e, τ
(q)
n = Gx

(q)
n , in order to

enforce smoothness in the lag domain and to mimic static TRF estimates [48,49]. The

dynamic TRF estimation framework of [47] can be stated as:
x̂n = arg minx∈R2L

n∑
i=1

λn−i
∥∥∥yi − S>i G̃x

∥∥∥2

2
+ γh (x)

τ̂n = G̃x̂n

(14)

where λ ∈ (0, 1) is the forgetting factor, γ is the regularization coefficient, h(.) can either

be an `1 or `2 penalty [57], and G̃ = diag(G,G) is a block diagonal matrix with G

containing the dictionary atoms. Similar to [11,47], we consider a Gaussian dictionary

G ∈ RL×D where the D columns of G are shifted Gaussian kernels. The parameter λ in

Eq. (14) induces a trade-off between adaptivity and robustness of TRF estimation.

TRF Estimation via MSAR Modeling

While the RLS estimates of the TRF capture the dynamics via the forgetting factor

mechanism, they are not capable of capturing abrupt and/or recurring state dynamics.

MSAR models, on the other hand, explicitly model such dynamics and are thus a
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suitable class of models for TRF estimation. Given that the TRF is not directly

observable, the conventional MSAR models are not readily applicable. In addition, the

SSM extensions of MSAR models do not admit simple parameter estimation procedures.

We thus consider the regularized least squares (LS) estimates of the TRFs, i.e., the RLS

estimates with λ = 0, as a surrogate of the true TRFs, which can then be modeled as an

MSAR process.

To this end, let x̂n be the regularized LS estimates of the TRF. To capture the

dynamics of x̂n, we consider a first-order Markov-switching process with J states. The

underlying HMM is parameterized by the initial probabilities πi, i = 1, 2, · · · , J and

transition probability matrix Pij , i, j = 1, 2, · · · , J . Let sn ∈ {1, 2, · · · , J} denote the

state at time n. Then, we have:

x̂n = αj x̂n−1 + wj,n, if sn = j, j = 1, 2, · · · , J, (15)

where αj is the rate of change of the TRF in state j, and wj,n ∼ N (µj ,Qj) is the i.i.d.

sequence of process noise in state j, j = 1, 2, · · · , J . The parameters to be estimated are

M :=
{
{πi}Ji=1, {Pij}

J,J
i,j=1, {αj ,µj ,Qj}Jj=1

}
. Let ωj,n denote P [sn = j|{x̂m}nm=1,M].

Then, the MSAR estimates are given by:

x̂(MSAR)
n :=

J∑
j=1

ωj,n (µj + αj x̂n−1) , n = 1, 2, · · · , N. (16)

In S1 Appendix, we provide an EM-based algorithm for estimating the parameters M

and recursively computing ωj,n.

TRF Estimation via State-Space Models

The RLS estimate in (14) is a filtering estimate by design and is suited for real-time

estimation of TRFs. For a more precise dynamic analysis of the TRFs in an off-line

fashion, SSMs have the advantage of providing smoothed estimates and directly

modeling the evolution of the TRFs through the state equation. We use the SSM below

to represent the TRF dynamics and its relation to the neural response:
xn = αxn−1 + wn

τn = G̃xn

yn = S>n τn + vn

(17)
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where α ∈ (0, 1) controls the nominal rate of change of the TRF, similar to the effect of

the forgetting factor λ in Eq. (14) for the RLS framework. In [67], a correspondence

between α and λ has been discussed which can result in the same filtering estimates of

the SSM in Eq. (17) with Gaussian noise and the RLS model in Eq. (14), without any

penalization. The parameter α can either be estimated in the EM framework as in Eq.

(12) [13], or it can be set based on the domain-specific knowledge of the problem to

provide a target adaptivity-robustness trade-off, akin to choosing the forgetting factor

in the RLS algorithm. The estimated TRFs in (17) are computed from the smoothing

estimates as τ̂n = G̃x̂n|N .

By assuming a GM density for wn in Eq. (17), we can similarly obtain smoothing

estimates of the TRFs, by using the two approaches discussed in the preceding section.

Model Parameter Settings

The following subsections provide detailed information on the choice of the various

model parameters used in the simulation study and application to

experimentally-recorded data from the Results section.

Parameter Settings of the Simulation Study

For the simulation study, we use a sampling rate of Fs = 100 Hz and a length of 250 ms

for the TRFs, i.e., L = 0.25Fs. Let G be a dictionary consisting of five Gaussian atoms

with variances of 0.018 s2 whose means are separated by 50 ms increments starting from

a lag of 0 ms to 200 ms. This results in G ∈ R25×5 and xn ∈ R10 in Eqs. (14) and (17).

We consider a piecewise-constant model for the TRFs over windows of length 300 ms

resulting in N = 300 TRF samples over the trial for each speaker.

We consider W = 5, i.e., the TRF dynamics are governed by one mixture component

in each window of length Wt0/Fs = 1.5 s. For simplicity, we consider Σ1:M to be

diagonal, which makes the parameter update formulas of Eqs. (21) and (23) in S1

Appendix to also take diagonal forms. The number of mixture components is chosen as

M = 5 using the AIC criterion and log-likelihoods computed using Eqs. (37) and (38)

given in S1 Appendix. The number of states J in the MSAR model can also be chosen

via AIC, but we here take J to be the same as M for fairness of comparison with the

SSM model with GM process noise.
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We also set the parameters of Algorithm 2 given in S1 Appendix as

ΓF = ΓB = ΓS = M . To initialize the EM algorithm, we use two methods: 1) initializing

with p̂
(0)
1:M = 1

M , random means µ̂
(0)
1:M close to zero, and Σ̂

(0)
1:M equal to the estimated

process noise covariance in the linear Gaussian SSM, and 2) setting Θ̂(0) as the GM fit

to the empirical samples of process noise in the linear Gaussian SSM, which are

computed from the smoothed state estimates. In other words, a GM is fit on the state

residuals, i.e., empirical process noise samples, ŵn = x̂
(s)
n − αx̂

(s)
n−1 where x̂

(s)
n denotes

the smoothed states using a linear Gaussian SSM. The state residuals here do not

necessarily exhibit a clear multimodal histogram due to the Gaussian assumption in the

model and the inaccuracies in state estimation. Nevertheless, a GM fit on the state

residuals serves as a reasonable initialization for the EM algorithm in our experience.

Note that in the simulation studies, we have used the first initialization strategy to

show that under reasonable SNR conditions, the algorithm is able to initialize with

large covariances, i.e., based on the linear Gaussian SSM estimates, and subsequently

retrieve the concentrated mixture components. This is analogous to particle smoothing

methods where the initial samples are drawn from a broad density and through

consecutive weighting and resampling, the particles can eventually capture the

underlying densities. In our experience, the second initialization strategy results in

faster convergence, especially under poor SNR conditions, due to the extra information

extracted from the residual estimates from the linear Gaussian SSM. Thus, for the real

data analysis, we have used the second initialization strategy.

For the forgetting factor λ in RLS, an effective estimation length [47] of 2 s is chosen

to result in comparable TRF estimates to those of the SSM with α = 0.99. Also, γ in

Eq. (14) for an `2 penalty is tuned through two-fold cross-validation. For the Gaussian

SSM and the SSM with GM process noise, diagonal process noise covariance matrices

are considered, and both the process and observation noise parameters as well as the

states are estimated simultaneously for each trial run.

We have considered a total of U = 2000 particles in Algorithm 1 given in S1

Appendix to approximate densities of dimension 2D(W + 1) = 60, so that state

estimates are comparable to those obtained by the closed-form approximation. Note

that the choice of the number of particles is critical for the performance of particle

smoothing, as the number of particles required for stable estimation grows exponentially
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in the dimension of the densities.

Parameter Settings of the Experimentally-Recorded Data Analysis

We set the TRF length to 300 ms and consider TRFs to be piece-wise constant over

windows of length 400 ms. Also, we choose W = 5 to enforce that the TRF dynamics

are governed by one mixture component in each window of length 2 s. We represent the

TRFs over a Gaussian dictionary with means separated by 20 ms starting from 0 to 280

ms, and variances of 8.5× 10−3 s2. The parameters λ and α are set to 0.92 and 0.97,

respectively, to achieve comparable TRF estimates from Eqs. (14) and (17). The `2

penalty γ in (14) is determined via two-fold cross-validation. We consider diagonal

covariance matrices for the process noise to reduce the dimension of Θ, and estimate the

observation noise σ2 in the EM framework. The forgetting factor in Eq. (14) enforces a

temporal continuity in TRF estimates and increases robustness to noise and artifacts.

The same effect can be replicated in the SSM of Eq. (17) by considering α close to one

and restricting the dynamic range of the process noise wn.

To enforce the latter, we consider IG conjugate priors [61] on the diagonal elements

of the process noise covariance matrices. For the Gaussian SSM with wn ∼ N (0,Q)

and Q = diag ([q1, . . . , q2D]), the log-prior takes the form

κ log P (Q) = 9κ
∑2D
d=1

(
(α̃d + 1) log qd + β̃d/qd

)
+ c4, (18)

where
{
α̃d, β̃d

}2D

d=1
are the parameters of the IG prior and c4 includes terms not

dependent on qd’s. The log-prior is then added to the surrogate Q-function of the EM

algorithm, and κ determines the strength of the prior with respect to the complete data

log-likelihood. We choose κ = N for the linear Gaussian case and κ = N/M for the

linear SSM with GM process noise, to correct for the number of mixture components.

We tune the IG parameters using empirical samples of the process noise from the RLS

estimates, computed as ŵn = x̂
(RLS)
n − αx̂

(RLS)
n91 . Thus, the process noise variance is

controlled by the IG prior, which prohibits drastic temporal changes in the TRF. For

the SSM with GM process noise, we also bound the elements of µ̂
(`)
1:M in each EM

iteration such that the variance of the estimated GM process noise along each

dimension is not larger than those of the linear Gaussian case, i.e., estimated qd’s using

the EM algorithm. Note that in the absence of such priors, the EM algorithm would
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likely result in TRFs that are highly variable in time and with no meaningful

morphological structure.

Subjects, Stimuli, and Procedures

We have used data from two separate attention switching experiments in this work,

which we refer to as the at-will and instructed attention switching experiments.

Neuromagnetic signals were recorded at a sampling frequency of 2 kHz using a

157-sensor whole-head MEG system (Kanazawa Institute of Technology, Nonoichi

Ishikawa, Japan) in a dim magnetically shielded room.

The at-will attention switching dataset is a subset of recordings in [51], where the

participants included five younger-adult (22-33 years old) native English speakers with

normal hearing recruited from the University of Maryland. Only one of the subjects

exhibited a meaningful auditory neural response (i.e., auditory DSS rotation matrix; see

MEG Data Preprocessing subsection for details) with a reliable behavioral report. Two

stories were presented diotically to subjects’ ears, one narrated by a male speaker and

the other one by a female speaker. The stimuli consisted of two segments from the book,

The Legend of Sleepy Hollow by Washington Irving. Subjects listened to trials of the

same speech mixture (each 90 s in duration), and were instructed to start attending to

the male speaker first, and then to switch their attention between the two speakers at

their own will for a minimum of one and a maximum of three times during each trial.

Subjects were also given a switching button that they were instructed to press every

time they decided to switch attention. For each subject, 3 trials were recorded. Prior to

the experiment, a single-speaker pilot study was performed where subjects listened to

three 60 s trials with similar stimuli. Further experimental details can be found in [51].

The instructed attention switching dataset is from the recordings in [50], where

participants included seven normal hearing young adults (20-31 years old). The stimuli

consist of four segments from the book A Child’s History of England by Charles

Dickens narrated by a male and female reader. Two different 60 s-long speech mixtures

of the two speakers were generated, and each mixture was presented to subjects

diotically for three trials. In each trial, subjects were instructed to focus on one speaker

in the first 28 s of the trial, switch their attention to the other speaker after hearing a 2

second pause (between 28 s and 30 s time stamps), and maintain their focus on the
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latter speaker through the end of the trial. After completing the trials for each mixture,

subjects answered comprehensive questions related to the passages they attended to.

The MEG recording and preprocessing setup for this experiment is similar to that of the

at-will attention switching experiment, and more details can be found in [50].

MEG Data Preprocessing

Three reference channels were used to measure and cancel the environmental magnetic

field by using time-shift PCA [21]. All MEG channels and speech envelopes were

band-pass filtered between 2 Hz and 8 Hz (delta and theta bands), corresponding to the

slow temporal modulations in speech [46,48], and downsampled to Fs = 100 Hz. Similar

to [47,50,51], we used the DSS algorithm [22] on pilot trials to decompose the MEG

data into temporally uncorrelated components. By using an averaging bias filter for

promoting consistency across trials, we ordered the DSS components according to their

trial-to-trial phase-locking reliability and chose the first component as the auditory

neural response.

Data Availability

The experimental data used in this paper are publicly available in the Digital

Repository at the University of Maryland at http://hdl.handle.net/1903/26351

(at-will attention switching experiment) and http://hdl.handle.net/1903/26352

(instructed attention switching experiment).
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66. de Cheveigné A, Wong DD, Di Liberto GM, Hjortkjaer J, Slaney M, Lalor E.

Decoding the auditory brain with canonical component analysis. NeuroImage.

2018;172:206–216.

67. Ljung L. General structure of adaptive algorithms: adaptation and tracking. In:

Adaptive system identification and signal processing algorithms. Prentice-Hall,

Inc.; 1991. p. 58–83.

68. Klaas M, Briers M, De Freitas N, Doucet A, Maskell S, Lang D. Fast particle

smoothing: If I had a million particles. In: Proceedings of the 23rd International

Conference on Machine Learning. ACM; 2006. p. 481–488.

69. Fearnhead P, Wyncoll D, Tawn J. A sequential smoothing algorithm with linear

computational cost. Biometrika. 2010;97(2):447–464.

70. Wong R. Asymptotic approximations of integrals. SIAM; 2001.

71. Runnalls AR. Kullback-Leibler approach to Gaussian mixture reduction. IEEE

Trans on Aero and Elec Sys. 2007;43(3):989–999.

72. Crouse DF, Willett P, Pattipati K, Svensson L. A look at Gaussian mixture

reduction algorithms. In: 14th International Conference on Information Fusion.

IEEE; 2011. p. 1–8.

73. Ding J, Tarokh V, Yang Y. Model selection techniques: An overview. IEEE Sig

Proc Mag. 2018;35(6):16–34.

74. Figueiredo MAT, Jain AK. Unsupervised learning of finite mixture models. IEEE

Trans on Patt An & Mach Int. 2002;(3):381–396.

75. Biernacki C, Celeux G, Govaert G. Assessing a mixture model for clustering with

the integrated completed likelihood. IEEE Trans on Patt An & Mach Int.

2000;22(7):719–725.

August 14, 2020 40/52



76. Mehrjou A, Hosseini R, Araabi BN. Improved Bayesian information criterion for

mixture model selection. Pattern Recognition Letters. 2016;69:22–27.

77. De Jong P. The likelihood for a state space model. Biometrika.

1988;75(1):165–169.

78. Boyd S, Vandenberghe L. Convex optimization. Cambridge University Press;

2004.

August 14, 2020 41/52



S1 Appendix: Supplementary Methods

In this appendix, we provide: (i) detailed derivations of the two approaches used for

computing the expectations in Eqs. (9), (10), and (11), (ii) the criteria for model order

selection, and (iii) details of the MSAR estimation procedure. In what follows, we use

the notation Yn2
n1

to denote the set of observations from n1 to n2, i.e., yn1:n2
, and

similarly define Xn2
n1

and Zi2i1 for xn1:n2 and zi1:i2 , respectively.

Approach 1: Monte Carlo Approximations

One way to approximate the expectations in the update equations of the M-step is to

utilize Monte Carlo methods. Let x
(u)
(i,0):(i,W ) for u = 1, . . . , U denote a total of U

sample paths, i.e., particles, with corresponding weights of ω
(u)
i inside the ith window to

approximate the joint smoothing density of X (i,W )
(i,0) |Y

N
1 , Θ̂

(`) for i = 1, . . . ,K. Using

this particle approximation, the update equations of the M-step become:

p̂(`+1)
m =

1

K

K∑
i=1

U∑
u=1

ω
(u)
i ε̂

(`,u)
i,m , (19)

µ̂(`+1)
m =

K∑
i=1

U∑
u=1

ω
(u)
i ε̂

(`,u)
i,m

W∑
j=1

v
(u)
(i,j)

W
K∑
i=1

U∑
u=1

ω
(u)
i ε̂

(`,u)
i,m

, (20)

Σ̂(`+1)
m =

K∑
i=1

U∑
u=1

ω
(u)
i ε̂

(`,u)
i,m

W∑
j=1

(
v

(u)
(i,j) 9 µ̂

(`+1)
m

)(
v

(u)
(i,j) 9 µ̂

(`+1)
m

)>
W

K∑
i=1

U∑
u=1

ω
(u)
i ε̂

(`,u)
i,m

, (21)

where v
(u)
(i,j) = x

(u)
(i,j) − f(i,j)

(
x

(u)
(i,j91)

)
, and ε̂

(`,u)
i,m is defined similarly to ε̂

(`)
i,m in (8) with

π̂
(`)
(i,j),m’s evaluated at X (i,W )

(i,0) = x
(u)
(i,0):(i,W ) and Θ = Θ̂(`) in Eq. (6). Particle smoothing

approaches are SMC methods that provide the sample paths x
(u)
(i,0):(i,W ) and their

respective weights ω
(u)
i [16]. The class of algorithms using SMC within EM for SSMs

are referred to as SMCEM [42]. A forward-backward particle smoothing algorithm is

presented in Algorithm 1 as an example of how the approximating particles can be

computed.

Remark 2. In general, particle smoothing approaches are computationally intensive,

especially for high-dimensional problems, which limits their application compared to
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particle filtering methods. In our setting, densities of dimension dx(W + 1) have to be

approximated by particles. The forward-backward method in Algorithm 1 simply

re-weights the filtering particles according to future observations and incurs an O(U2)

cost. The two-filter particle smoother [68] samples the particles in the smoothing step

but has a similar computational cost. In [68], an approximation based on spatial-index

methods is introduced to reduce the computational cost to O(U logU). Finally, a

particle smoothing method with O(U) cost (similar to that of particle filtering) is

developed in [69]. However, it operates under the assumption of minimal posterior

dependence between xn−1 and xn+1 when sampling for the smoothing density of xn.

Approach 2: Closed-Form Approximations

In this section, we consider a linear SSM, i.e., fn(xn−1) = Anxn−1 and gn(xn) = Cnxn

in (1), to exploit the GM formulation of the smoothing densities [29]. Techniques such

as the extended Kalman filter [1] or the unscented Kalman filter [62] are often used to

approximate the general state-space model of Eq. (1) with a linear model. We introduce

an approximation to the expectations in the M-step which allows to employ GM

smoothing densities for computing the updated parameters in EM. This is akin to the

application of EM in linear Gaussian SSMs [13]. Then, we construct an algorithm to

efficiently compute the required smoothing densities in closed-form for our setting. As a

Algorithm 1. A Forward-Backward Particle Smoothing Alg.

Input: state-space model in (1) and parameter estimate Θ̂(`).

Output: sample paths x
(u)

(i,0):(i,W ) and their weights ω
(u)
i .

1: Initialize x
(u)
0 and their filtering weights ω̄

(u)
0 = 1/U .

2: for i = 1 : K do
3: Sample z

(u)
i according to p̂

(`)
1:M .

4: Sample x
(u)

(i,0):(i,W ) using x
(u)

(i,0) as the starting point and z
(u)
i as the active Gaussian

component.

5: ω̃
(u)
i =

∏W
j=1 P

(
y

(u)

(i,j)

∣∣∣ x(u)

(i,j)

)
.

6: Normalize the weights such that
∑U
u=1 ω̄

(u)
i = 1.

7: Resample x
(u)

(i,W ) for next window according to ω̄
(u)
i .

8: end for
9: Initialize the smoothing weights ω

(u)
K = ω̃

(u)
K .

10: for i = K − 1 : 1 do

11: ω
(u)
i = ω̃

(u)
i

U∑
u′=1

P

(
x
(u′)
(i+1,1)

∣∣∣ x(u)
(i,W )

,Θ̂(`)

)
ω
(u′)
i+1

U∑
u′′=1

P

(
x
(u′)
(i+1,1)

∣∣∣ x(u′′)
(i,W )

,Θ̂(`)

)
ω̃
(u′′)
i

.

12: end for

August 14, 2020 43/52



result, the computational cost of the M-step would be comparable to performing parallel

instances of fixed-interval smoothing, each corresponding to a component of the GM

process noise.

We first consider a 0th-order Taylor expansion for ε̂
(`)
i,m in the update formulas of

(9)-(10) around the mean of the smoothing densities. In other words, ε̂
(`)
i,m ≈ ε̄

(`)
i,m where

ε̄
(`)
i,m is computed similarly to (8) with π̂

(`)
(i,j),m’s evaluated at XN

1 = x̄1:N := EX {x1:N}

and Θ = Θ̂(`) in Eq. (6).

Remark 3. Note that this approximation is valid when the GM smoothing densities

(over which the expectations are computed) do not exhibit multimodal behavior with

mixture components far from each other. Otherwise, the 0th order approximation must

be carried out at the mean of each mixture component separately (rather than at the

mean of the smoothing density). Under high enough observation signal-to-noise ratio

(SNR), the GM smoothing densities are expected to mainly consist of mixture

components with similar means, so the resulting density exhibits a unimodal morphology

concentrated on the ML estimate of the states. Therefore, approximation of ε̂
(`)
i,m by its

value at the mean of the smoothing density would not introduce significant error at high

SNRs. It is worth noting that higher order approximations to ε̂
(`)
i,m can be considered at

the cost of more computational cost, which would also result in higher moments of GM

smoothing densities appearing in the M-step update equations. As we will demonstrate

in the Results section, the 0th order approximation suffices for our applications.

It is known that for a linear SSM with Gaussian mixture noise, the filtering and

smoothing densities also take Gaussian mixture forms [26,29]. Let

P
(
Xn
n91

∣∣∣YN
1 , Θ̂

(`)
)

=

ΓS∑
γ=1

ρ(s,γ)
n N


xn91

xn

 ;µ(s,γ)
n ,Σ(s,γ)

n

 (22)

be the one-step joint smoothing density at time n, where the superscript s identifies

smoothing parameters, and ΓS is the number of mixture components forming the

smoothing density. Taking ε̄
(`)
i,m out of the expectations, the M-step update equations

become:

p̂(`+1)
m =

1

K

K∑
i=1

ε̄
(`)
i,m, µ̂(`+1)

m =

K∑
i=1

ε̄
(`)
i,m

W∑
j=1

Ã(i,j)

ΓS∑
γ=1

ρ
(s,γ)
(i,j)µ

(s,γ)
(i,j)

W
K∑
i=1

ε̄
(`)
i,m

,
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Σ̂(`+1)
m =

K∑
i=1

ε̄
(`)
i,m

W∑
j=1

Ã(i,j)

ΓS∑
γ=1

ρ
(s,γ)
(i,j)

(
Σ

(s,γ)
(i,j) + µ

(s,γ)
(i,j)

(
µ

(s,γ)
(i,j)

)>)
Ã>(i,j)

W
K∑
i=1

ε̄
(`)
i,m

− µ̂(`+1)
m µ̂(`+1)>

m , (23)

where Ã(i,j) = [9A(i,j), Idx ] with Idx denoting the identity matrix of dimension dx.

Note that the update rule for R in Eq. (11) takes the form:

R̂(`+1) =
1

N

N∑
n=1

yny>n −
K∑
i=1

M∑
m=1

ε
(`)
i,m

W∑
j=1

ΓS∑
γ=1

{
y(i,j)

(
µ

(s,γ)
(i,j)

)>
2

C>n + Cn

(
µ

(s,γ)
(i,j)

)
2
y>n −Cn

(
Σ

(s,γ)
(i,j)

)
2,2

C>n

}
.

(24)

Similarly, the coordinate descent update rule for α in Eq. (12) takes the form:

α̂(`+1) =

K∑
i=1

M∑
m=1

ε
(`)
i,m

W∑
j=1

ΓS∑
γ=1

Tr

{
Σ̂

(`+1)−1
m

(
Σ

(s,γ)
(i,j)

)
1,1

}
K∑
i=1

M∑
m=1

ε
(`)
i,m

W∑
j=1

ΓS∑
γ=1

Tr

{
Σ̂

(`+1)−1
m

((
Σ

(s,γ)
(i,j)

)
2,1
−
(
µ

(s,γ)
(i,j)

)>
1
µ̂

(`+1)
m

)} . (25)

where (Z)a,b and (z)a denote the (a, b)th block and ath block of the matrix Z and vector

z, respectively. In the TRF model of Eq. (17), we have Cn = S>n G̃.

Another approach to approximately compute the expectations in the update

equations (9)-(10) is to use the Laplace approximation [70]. This approach, however,

requires the computation of the GM joint smoothing density of X (i,W )
(i,0)

∣∣YN
1 , Θ̂

(`) and is

more computationally intensive than the current approximation, which only requires the

one-step smoothing covariances regardless of the choice of W .

The smoothing density parameters in Eq. (22), i.e.,
{
ρ

(s,γ)
n ,µ

(s,γ)
n ,Σ

(s,γ)
n

}
, have to

be estimated for n = 1, . . . , N in the E-step. In Section II.D of [29], a forward-backward

recursion is used to obtain closed-form solutions for smoothing densities under a linear

SSM with GM noise components. The dimension of the underlying matrices and matrix

inversion costs, however, grows with n as the recursions proceed, which limits the utility

of the algorithm for practical applications even with moderate observation duration.

In [26], the two-filter formula is adopted to compute the GM smoothing densities by

transforming the smoothing problem to a filtering one. An underlying assumption

in [26] is that either Cn is invertible or consecutive observations can be concatenated

such that the effective measurement matrix is invertible. As this assumption does not

hold in general, we instead develop a recursive algorithm based on the two-filter formula
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Fig 9. Schematic depiction of forward/backward updates for Eq. (28).

in our setting to compute the smoothing parameters in (22) in closed-form. Since all of

the following densities are conditioned on Θ̂(`) similar to Eq. (22), we hereafter drop

the conditioning in our notation for convenience.

Let the filtering density at the end of the (i− 1)st window be

P
(
x(i,0)

∣∣∣Y(i,0)
1

)
=

ΓF∑
γ=1

ρ
(f,γ)
(i,0) N

(
x(i,0);µ

(f,γ)
(i,0) ,Σ

(f,γ)
(i,0)

)
, (26)

where superscript f identifies forward filtering parameters and ΓF is the number of

mixtures forming the filtering density at the end of each window. Also, let the

unnormalized backward information filter [26] at the end of the ith window be

P
(
YN
iW

∣∣∣ xiW) ∝ ΓB∑
γ=1

β
(γ)
iW exp

{
−1

2
x>iWB

(γ)
iWxiW + x>iWb

(γ)
iW

}
, (27)

where ΓB is the number of exponential components forming the information filter at the

end of each window. Note that Eq. (27) is not a density in x. Considering the

independence of zi and Y(i,0)
1 , the two-filter formula for window i in our switching GM

process noise model can be written as

P
(
X (i,j)

(i,j91)

∣∣∣YN
1

)
=

1

P
(
YN

(i,1)

∣∣∣Y(i,0)
1

) M∑
m=1

p̂(`)
m P

(
x(i,j91),Y

(i,j91)
(i,1)

∣∣∣Y(i,0)
1 , zmi

)
×

P
(
x(i,j)

∣∣∣ x(i,j91), z
m
i

)
P
(
YN

(i,j)

∣∣∣ x(i,j), z
m
i

)
, (28)

where zmi stands for the event {zi = m}. Our main objective here is to find a recursive

update rule for the joint density of Eq. (28). To this end, we derive recursive formulas

for propagating the forward and backward filters, i.e., the components in the summand

of Eq. (28), within each window (See Fig. 9 for a schematic depiction of this procedure).

The leftmost term in the summand of Eq. (28) is the forward filter and represents

an unnormalized filtering density, which we express as:
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P
(
x(i,j),Y

(i,j)
(i,1)

∣∣∣Y(i,0)
1 , zmi

)
=

ΓF∑
γ=1

ρ
(f,γ)
(i,j),mN

(
x(i,j);µ

(f,γ)
(i,j),m,Σ

(f,γ)
(i,j),m

)
(29)

for j = 1, . . . ,W and compute it through the following unnormalized forward recursion

in j:

P
(
x(i,j),Y

(i,j)
(i,1)

∣∣∣Y(i,0)
1 , zmi

)
=

∫
P
(
y(i,j)

∣∣ x(i,j)

)
P
(
x(i,j)

∣∣ x(i,j91), z
m
i

)
×

P
(
x(i,j91),Y

(i,j91)
(i,1)

∣∣∣Y(i,0)
1 , zmi

)
dx(i,j91).

The recursion is initialized by the filtering density in Eq. (26) at window i. This

results in the following forward filter parameter updates:

µ̃ = A(i,j)µ
(f,γ)
(i,j91),m + µ̂

(`)
m

Σ̃ = A(i,j)Σ
(f,γ)
(i,j91),mA>(i,j) + Σ̂

(`)
m

H = Σ̃C>(i,j)

(
C(i,j)Σ̃C>(i,j) + R

)−1

µ
(f,γ)
(i,j),m = µ̃ + H

(
y(i,j) −C(i,j)µ̃

)
Σ

(f,γ)
(i,j),m =

(
I−HC(i,j)

)
Σ̃

ρ
(f,γ)
(i,j),m = ρ

(f,γ)
(i,j91),mN

(
y(i,j); C(i,j)µ̃,C(i,j)Σ̃C>(i,j) + R

)

(30)

and the filtering density at time (i, j) is computed as

P
(
x(i,j)

∣∣∣Y(i,j)
1

)
∝

M∑
m=1

p̂m P
(
x(i,j),Y

(i,j)
(i,1)

∣∣∣Y(i,0)
1 , zmi

)
. (31)

Next, we represent the unnormalized backward information filter

P
(
YN

(i,j)

∣∣ x(i,j), z
m
i

)
in Eq. (28), as

ΓB∑
γ=1

β
(γ)
(i,j),m exp

{
−1

2
x>(i,j)B

(γ)
(i,j),mx(i,j) + x>(i,j)b

(γ)
(i,j),m

}
, (32)

where we enforce the normalization
∑ΓB

γ=1

∑M
m=1 β

(γ)
(i,j),m = 1. Note that this

normalization is applied to avoid numerical instabilities while performing the recursions

and does not change the final smoothing density of Eq. (28), which has to be eventually

normalized. The backward filter in Eq. (32) can be computed through the following

recursion [26]:

P
(
YN

(i,j)

∣∣∣ x(i,j), z
m
i

)
=

∫
P
(
y(i,j)

∣∣ x(i,j)

)
P
(
x(i,j+1)

∣∣ x(i,j), z
m
i

)
×

P
(
YN

(i,j+1)

∣∣∣ x(i,j+1), z
m
i

)
dx(i,j+1) (33)
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and is initialized by Eq. (27) at the end of window i. This results in the following

backward filter parameter updates:

Σ = Σ̂
(`)
m

(
I + B

(γ)
(i,j+1),mΣ̂

(`)
m

)
µ = Σ̂

(`)
m b

(γ)
(i,j+1),m + µ̂

(`)
m

B
(γ)
(i,j),m = C>(i,j)R

91C(i,j) + A>(i,j+1)

[(
Σ̂

(`)
m

)91

−Σ
91
]

A(i,j+1)

b
(γ)
(i,j),m = C>(i,j)R

91y(i,j) −A>(i,j+1)

(
Σ̂

(`)
m

)91

µ̂
(`)
m + A>(i,j+1)Σ

91
µ

β
(γ)
(i,j),m ∝ β

(γ)
(i,j+1),m

√
|Σ̂(`)
m |
|Σ| exp

{
9 1

2

(
µ̂

(`)
m

)> (
Σ̂

(`)
m

)91

µ̂
(`)
m + 1

2µ
>Σ

91
µ

}
(34)

and the overall backward filter in the beginning of window i can be computed from Eq.

(32) as

P
(
YN

(i,0)

∣∣∣ x(i,0)

)
=

M∑
m=1

p̂
(`)
M P

(
YN

(i,0)

∣∣∣ x(i,0), z
m
i

)
. (35)

Using Eqs. (29) and (32), the parameters of the joint GM smoothing density in Eq.

(28) are computed as:

γ′′ = (γ − 1)MΓB + (m− 1)ΓB + γ′

S11 =
(
Σ

(f,m)
(i,j91),γ

)91

+ A>(i,j)

(
Σ̂

(`)
m

)91

A(i,j)

S12 = S>21 = −A>(i,j)

(
Σ̂

(`)
m

)91

S22 = B
(m)
(i,j),γ′ +

(
Σ̂

(`)
m

)91

Σ
(s)
(i,j),γ′′ =

S11 S12

S21 S22


91

u1 =
(
Σ

(f,m)
(i,j91),γ

)91

µ
(f,m)
(i,j91),γ −A>(i,j)

(
Σ̂

(`)
m

)91

µ̂
(`)
m

u2 =
(
Σ̂

(`)
m

)91

µ̂
(`)
m + b

(m)
(i,j),γ′

µ
(s)
(i,j),γ′′ = Σ

(s)
(i,j),γ′′

u1

u2


ρ

(s)
(i,j),γ′′ ∝ ρ(f,m)

(i,j91),γ p̂
(`)
m β

(m)
(i,j),γ′

√
|Σ(s)

(i,j),γ′′ |

|Σ̂(`)
m ||Σ(f,m)

(i,j91),γ |

× exp

{
9 1

2

(
µ

(f,m)
(i,j91),γ

)> (
Σ

(f,m)
(i,j91),γ

)91

µ
(f,m)
(i,j91),γ

}
× exp

{
9 1

2

(
µ̂

(`)
m

)> (
Σ̂

(`)
m

)91

µ̂
(`)
m + 1

2

(
µ

(s)
(i,j),γ′′

)> (
Σ

(s)
(i,j),γ′′

)91

µ
(s)
(i,j),γ′′

}

(36)

where we have γ ∈ {1, . . . ,ΓF}, m ∈ {1, . . . ,M}, and γ′ ∈ {1, . . . ,ΓB}. This brings the
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total number of mixture components in the joint smoothing density of Eq. (28) to

ΓF ×M × ΓB. As the number of mixture components grows exponentially in SSMs with

GM noise components [25], limiting them is a crucial step for practical purposes. To

this end, in forming the density of Eq. (22), the number of mixture components

obtained from Eq. (28) is reduced to ΓS prior to updating the parameters in the M-step.

In this work, we choose ΓS components from the density of Eq. (28) with the largest

mixture probabilities for simplicity. However, more accurate mixture reduction

algorithms are available and developed in [25, 71, 72], but with additional computational

costs. It is worth noting that calculations corresponding to the weights ρ(f)’s in Eq.

(30), β’s in (34), and ρ(s)’s in (36) should be performed in log-scale to avoid numerical

errors in practice. Algorithm 2 summarizes the steps for calculating the smoothing

density parameters in Eq. (22) for n = 1, . . . , N . Note that when the observation noise

covariance matrix R is unknown, the smoothing densities of Eq. (22) can be replaced in

Eq. (11) to provide a closed-form update for R̂(`+1).

Algorithm 2. Two-Filter Gaussian Mixture Smoothing Alg.

Input: linear state-space model in (1), parameter estimate Θ̂(`), and component limits ΓF,
ΓB, and ΓS.

Output: smoothing density parameters ρ
(s)
n,γ , µ

(s)
n,γ , Σ

(s)
n,γ in (22) for n ∈ {1, . . . , N} and

γ ∈ {1, . . . ,ΓS}.
1: Initialize the filtering density in (26) at n = 0 as the prior on x0.
2: for i = 1 : K do
3: Run forward recursions of (30) for m = 1, . . . ,M in window i starting from (26) and

store the parameters.

4: Compute the filtering density at n = iW from (31).
5: Out of ΓF ×M mixture components in the filtering density, keep ΓF with the largest

probabilities as initialization for window i+ 1.
6: end for
7: Initialize the backward filter as P

(
yN
∣∣ xN), i.e., βN,1 = 1, BN,1 = C>

NR91CN , and

bN,1 = C>
NR91yN .

8: for i = K : 1 do
9: Run backward recursions of (34) for m = 1, . . . ,M in window i starting from (27).

10: Run smoothing algorithm of (36) in window i using backward filtering parameters and
the stored forward filtering parameters.

11: Out of ΓF×M×ΓB smoothing mixture components, store ΓS with the largest probabilities
for smoothing densities of (22) in window i.

12: Compute the backward filter at n = (i− 1)W from (35).
13: Out of ΓB ×M backward filtering components, keep ΓB corresponding to the most

significant mixture components of P
(
X (i,1)

(i,0)

∣∣∣YN
1

)
as initialization for window i− 1.

14: end for
15: Output the computed smoothing parameters of (22).
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Model Order Selection

An important issue in applications of GMs for clustering is the choice of the number of

mixtures M . Various model selection criteria have been used in the literature of

Gaussian mixtures, including the Akaike Information Criterion (AIC), Bayesian

Information Criterion (BIC), and Integrated Completed Likelihood (ICL) [73–76], most

of which require the computation of data log-likelihood. In Approach 1, the

log-likelihood can be approximated using the unnormalized particle filtering weights

ω̃
(u)
i ’s in Algorithm 1 as

log P
(
YN

1

)
≈
∑K
i=1 log

(∑U
u=1 ω̃

(u)
i

)
. (37)

In Approach 2, using the unnormalized filtering densities in closed-form

approximation, the log-likelihood in our model can be computed based on [77] as

log P
(
YN

1

)
=
∑K
i=1 log

(∑M
m=1 p̂

(`)
m P

(
Y(i,W )

(i,1)

∣∣∣Y(i,0)
1 , zmi

))
≈
∑K
i=1 log

(∑M
m=1 p̂

(`)
m

(∑ΓF

γ=1 ρ
(f,γ)
(i,W ),m

))
(38)

where the last line is derived from integrating the unnormalized filtering density in Eq.

(29).

Details of the MSAR Estimation Procedure

As in the case of SSMs with GM process noise, we consider a Markov switching process

in which the states are constant over consecutive windows of length W indexed by

k = 1, 2, · · · ,K, where K := N/W . Recall that the parameters to be estimated are

M :=
{
{πi}Ji=1, {Pij}

J,J
i,j=1, {αj ,µj ,Qj}Jj=1

}
. For simplicity, we assume that Qj is

diagonal. For notational convenience, we denote the Gaussian density with mean µ and

covariance Q evaluated at x by N (x;µ,Q). Finally, we denote {x̂n}(k−1)W+l
n=(i−1)W+j by

X̂ (k,l)
(i,j) .

The parameters can be estimated using an instance of the EM algorithm as follows:
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The E-step

Let M(`) :=
{
{π(`)

i }Ji=1, {P
(`)
ij }

J,J
i,j=1, {α

(`)
j ,µ

(`)
j ,Q

(`)
j }Jj=1

}
be the parameter estimates

at iteration `. We define:

ε
(`)
j,k := P

[
sk = j

∣∣∣X̂ (K,W )
(1,1) ,M(`)

]
, ξ

(`)
i,j,k := P

[
sk = j, sk−1 = i

∣∣∣{X̂ (K,W )
(1,1) ,M(`)

]
.

(39)

It can be shown that:

ε
(`)
j,k =

a
(`)
j,kb

(`)
j,k

J∑
i=1

a
(`)
i,kb

(`)
i,k

, ξ
(`)
i,j,k =

a
(`)
i,k−1P

(`)
ij b

(`)
j,k

W∏
w=1
N
(
x̂(k,w) − α

(`)
j x̂(k,w−1);µ

(`)
j ,Q

(`)
j

)
J∑
l=1

J∑
m=1

a
(`)
l,k−1P

(`)
lm b

(`)
m,k

W∏
w=1
N
(
x̂(k,w) − α

(`)
m x̂(k,w−1);µ

(`)
m ,Q

(`)
m

) ,
(40)

where a
(`)
j,k and b

(`)
j,k are the forward and backward filters, respectively, defined as:

a
(`)
j,k := P

[
sk = j, X̂ (k,W )

(1,1)

∣∣∣M(`)
]
, b

(`)
j,k := P

[
X̂ (K,W )

(k+1,1)

∣∣∣sk = j, x̂(k+1,0),M(`)
]
. (41)

The forward and backward filters can be recursively computed via the following

recursions:

a
(`)
j,k =

J∑
i=1

a
(`)
i,k−1P

(`)
ij

W∏
w=1

N
(
x̂(k,w) − α

(`)
j x̂(k,w−1);µ

(`)
j ,Q

(`)
j

)
, (42)

with initialization a
(`)
j,1 = π

(`)
j

W∏
w=1
N
(
x̂(1,w) − α

(`)
j x̂(1,w−1);µ

(`)
j ,Q

(`)
j

)
, j = 1, 2, · · · , J .

And,

b
(`)
j,k =

J∑
i=1

b
(`)
i,k+1P

(`)
ji

W∏
w=1

N
(
x̂(k+1,w) − α

(`)
i x̂(k+1,w−1);µ

(`)
i ,Q

(`)
i

)
, (43)

with initialization b
(`)
j,K = 1, j = 1, 2, · · · , J .

Remark 4. Note that a direct implementation of the recursions in Eqs. (42) and (43)

is likely to result in numerical instabilities, given that the Gaussian density product

generates notably small values. Given that the expressions for ε
(`)
j,k and ξ

(`)
i,j,k are scale

invariant with respect to a
(`)
j,k, a

(`)
j,k−1 and b

(`)
j,k, one can implement the recursions of Eqs.

(42) and (43) in an unnormalized fashion by rescaling the forward and backward filters

after each iteration as:

a
(`)
j,k ←

a
(`)
j,k∑J

i=1 a
(`)
i,k

, b
(`)
j,k ←

b
(`)
j,k∑J

i=1 b
(`)
i,k

. (44)
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It is straightforward to verify that Eq. (40) remains unchanged as a result of this

rescaling procedure. The log-sum-exp approximation can also be used to further avoid

numerical instabilities in computing the Gaussian density products [78].

The M-step

The Markov chain parameters can be updated as follows:

π
(`+1)
j =

ε
(`)
j,1

J∑
i=1

ε
(`)
i,1

, P
(`+1)
ij =

K∑
k=2

ξ
(`)
i,j,k

J∑
l=1

K∑
k=2

ξ
(`)
i,l,k

. (45)

The state-space parameters can be updated via coordinate descent as follows:

(
µ

(`+1)
j

)
m

=

K∑
k=1

ε
(`)
j,k

W∑
w=1

(
(x̂(k,w))m − α(`)(x̂(k,w−1))m

)
W

K∑
k=1

ε
(`)
j,k

, (46)

(
Q

(`+1)
j

)
m,m

=

K∑
k=1

ε
(`)
j,k

W∑
w=1

(
(x̂(k,w))m − α(`)(x̂(k,w−1))m − (µ

(`+1)
j )m

)2

W
K∑
k=1

ε
(`)
j,k

, (47)

for m = 1, 2, · · · , dx, j = 1, 2, · · · , J , and

α
(`+1)
j =

K∑
k=1

ε
(`)
j,k

dx∑
m=1

1(
Q

(`+1)
j

)
m,m

W∑
w=1

(x̂(k,w−1))m

(
(x̂(k,w))m − (µ

(`+1)
j )m

)
K∑
k=1

ε
(`)
j,k

dx∑
m=1

1(
Q

(`+1)
j

)
m,m

W∑
w=1

(x̂(k,w−1))2
m

. (48)

The EM algorithm proceeds until a convergence criterion is met at iteration L0,

upon which the MSAR estimates can be computed as:

x̂
(MSAR)
(k,w) :=

J∑
j=1

ω
(L0)
j,k

(
µ

(L0)
j + α

(L0)
j x̂(k,w−1)

)
, n = 1, 2, · · · , N, (49)

where

ω
(L0)
j,k := P

[
sk = j

∣∣∣X̂ (k,W )
(1,1) ,M(L0)

]
=

a
(L0)
j,k∑J

i=1 a
(L0)
i,k

. (50)
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