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ON THE TENSOR RANK OF THE 3 x 3 PERMANENT AND DETERMINANT*

SIDDHARTH KRISHNAT AND VISU MAKAM?

Abstract. The tensor rank and border rank of the 3 x 3 determinant tensor are known to be 5 if the characteristic is not
two. In characteristic two, the existing proofs of both the upper and lower bounds fail. In this paper, we show that the tensor
rank remains 5 for fields of characteristic two as well.
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1. Introduction. An alternate way of looking at the rank of a matrix A is as the smallest integer r
such that you can write A as a sum of r rank 1 matrices. The definition of tensor rank is a generalization of
this idea. We consider the tensor space V1 ® Vo ® -+ - ® V,,, where V; denote finite dimensional vector spaces
over a field K. Tensors of the form v; ® - - - ® v, with v; € V; are called simple (or rank 1) tensors.

DEFINITION 1.1. The tensor rank trk(T') of a tensor T € V1 @ Vo ® --- ® V,, is defined as the smallest
integer r such that T =Ty + - -- 4+ T,. for simple tensors T;.

Let Z, C V1 ® Vo ® --- ® V,, denote the subspace of tensors of rank < r. Unfortunately, Z, is not
Zariski-closed, giving rise to the notion of border rank. Let Z,. denote the Zariski-closure of Z,..

DEFINITION 1.2. The border rank brk(T) of a tensor T € V1 @ Vo ® - -+ ® V,, is the smallest integer r
such that T € Z,

The tensor and border rank of various tensors have been well studied. For example, the tensor and
border rank of the matrix multiplication tensor is intimately related to the speed of an algorithm for matrix
multiplication. Using this approach, Strassen gave an algorithm for matrix multiplication with a running
time of O(n'°827) (as opposed to the running time of O(n?) for the naive algorithm). Various improvements
have since been made, see for e.g., [17, 5, 3, 18]. We refer the interested reader to [2, 15] for an introduction
to the subject.

In this paper, we are interested in the determinant and permanent tensors. Let {¢; | 1 < i < n} denote
the standard basis for K™, and let X,, denote the symmetric group on n letters. The determinant tensor is

det,, = Z sgn(o)ea(l) Qer2) Q@ Qegm) € (K”)®n,
oEX,

where sgn(o) is the sign of the permutation o.
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Similarly, the permanent tensor is defined as

per, = Z 617(1) ® 60(2) Q- ® eg(n) S (Kn)®n
gEY,

The determinant and permanent tensors have been studied before, see [6] for known upper and lower
bounds for the tensor rank. For K = C, the tensor rank of dets and per; were precisely determined by Ilten
and Teitler in [13] to be 5 and 4, respectively. Using linear algebraic techniques, Derksen and the second
author showed in [9] that the border rank (and tensor rank) of dets and pers are 5 and 4, respectively, for
all algebraically closed fields of characteristic not equal to two.

Observe that in characteristic 2, the determinant and permanent tensors are equal. In this paper, we
remove the dependence on the characteristic of the field for the tensor rank of the determinant. The main
result of this paper is the following:

THEOREM 1.3. For any field K, the tensor rank of dets is 5.

This allows us to extend a result of Derksen in [6] to arbitrary characteristic.

COROLLARY 1.4. For any field K, we have brk(det,) < trk(det,) < (2) /38l

For a matrix whose entries are either 0 or 1, it can be viewed as a matrix over any field. It is easy to see
that the rank of such a matrix in positive characteristic is at most its rank in characteristic zero (it is easy to
construct examples where it is indeed smaller). However, this phenomenon does not extend to higher order
tensors, and the tensor pers; witnesses this phenomenon explicitly. Indeed by the above theorem, we have
trk(pers) = 5 in characteristic two, whereas we know that trk(pers;) = 4 in characteristic zero. Finally, we
remark that the tensor dets is the structure tensor for the skew-symmetric matrix-vector product (up to a
relabeling of coordinates) whose tensor rank was studied but not determined precisely [19, Proposition 12].
Theorem 1.3 fully resolves its tensor rank in all characteristics.

1.1. Organization. In Section 2, we present characteristic free decompositions of per; and dets as a
sum of 5 simple tensors. In Section 3, we prove tensor rank lower bounds for dets, and this completes the
proof of Theorem 1.3. Finally, in Section 4, we discuss some lower and upper bounds for the tensor rank of
the 5 x 5 and 7 x 7 determinant and permanent tensors in characteristic zero.

2. Upper bounds. An explicit expression for a tensor 1" in terms of simple tensors naturally gives us
an upper bound for tensor rank and border rank of T. Glynn’s formula (see [12]) for the permanent tensor
is

1
per, = Z (61+v162+-~-+vn—16n)®n~

n—1

ve{£1}n—1
In particular, this shows that

brk(per,,) < trk(per,) < 2" 1,

as long as characteristic is not two. For the determinant tensor, known upper bounds are much weaker. The
best known upper bound comes from Derksen’s formula (see [6]) for dets.
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1
detg = 5 ((63 + 62) X (61 — 62) & (61 —+ 62)

+ (e1 4+ €2) ® (e2 — e3) @ (e2 + e3)
+2e2® (e3 —e1) ® (e3 + e1)
+ (63 — 62) & (62 + 61) X (62 — 61)

+(e1—e2) ®(e3+e2) ® (es — 62)).

Unfortunately, both Glynn’s and Derksen’s expressions fail in characteristic two because they have
denominators that are multiples of two. Hence, the best known upper bound for the tensor rank of dets and
per; was 6, given by the defining expression.

We give expressions for both dets and per; as a sum of 5 simple tensors that are valid over any field K.
We have:

dets = (e2 +e3) ® e1 ® eg
—(e1+e3)Rea®@e
—ex® (e1 +e3) @ (e2 +e3)
+ (e2 —e1) ®e3 @ (e1 +e2 +e3)
+e1® (e2 +e3) ® (e1 + e3),

and

pers = (e2 +e3) R e; @ e
+(e1+e3)®ea®@er
+e2®@ (e1 +e3) ® (e3 —e2)
+ (e1 +e2) ®e3 ® (e1 + e2 — e3)
+e1®(ea+e3)®(e3 —eq).

COROLLARY 2.1. brk(dets) < trk(dets) < 5.

REMARK 2.2. Tensor rank over Z is in general an undecidable problem, see [16]. However, the expres-
sions above show that the tensor rank over Z of both dets and per; is < 5. On the other hand, Theorem 1.3
shows that the tensor rank over Z cannot be less than 5, and so trkz(dets) = trkz(pers) = 5.

3. Lower bounds. Rank methods are a popular technique to prove lower bounds on tensor rank.!
Young flattenings are rank methods that come from representation theory and are useful in giving the best
lower bounds we know. We refer the interested reader to [14, 8, 9]. The following result is straightforward
and well known, see for example [14, 8, 9].

PROPOSITION 3.1 (Rank method). Let ¢: V1 ®@Vo®---®V,, — Mat,, ., be a linear map. Suppose that
for all S € Z1 we have tk(¢(S)) < r, then for any tensor T € V1 @ Va ® -+ ®@ V,,, we have

rk(o(T
brk(T) > KT
T
LAn interesting line of research is to understand the power of rank methods (also known as lifting techniques) in proving
lower bounds. In this context, barrier results have been shown in [10, 11]. Further, new techniques that work around these
barriers have been developed in [4].
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We will only use a special case of a rank method that we will recall. The case we need is a generalization
of Strassen’s equations for 3-slice tensors (see, e.g., [2, Chapter 19]). Note that K™ ® K™ can be naturally
identified with Mat,, y,.

THEOREM 3.2 (Strassen). LetT = (e;® A+ ea® B+e3®C) € K2@ K™ ® K™ for A,B,C €
K™ ® K™ = Mat, . If A is invertible, then

bmawzm+%mwA*C—CA*By

In essence, Strassen’s Theorem says for any tensor T as above, if k is the rank of BA™'C' —C A~ B, then
the k x k minors of BA™'C — CA~! B vanish on tensors of border rank less than m + [k/2]. The following
proposition is a modern interpretation of a (slight generalization) of Strassen’s theorem (see Remark 3.4
below).

ProrosiTION 3.3. Let T, A, B,C be as in Theorem 3.2, then

1 0 A B
brk(T) > 3 k| -4 0o C
-B —-C 0

Proof. Consider ¢ : K> @ K™ @ K™ — Mats, 3m where

0 A B
¢(€1®A+62®B+63®0)= —A 0o C
-B —-C 0

We claim that tk(¢(S)) = 2 for any rank 1 tensor S € K3 ® K™ ® K™. There are many ways to see
this. For example, it follows from [8, Corollary 4.4]. Let us present a concrete approach. Any rank 1 tensor
S is of the form S = («, 8,7) ® X where (o, 3,7) € K3\ {0} and X € Mat,, ., = K™ ® K™ is of rank 1.
Thus,

0 aX pX
o(S)=| —aX 0 X
—B8X —X 0

Let us assume without loss of generality that a # 0 (the cases § # 0 and v # 0 are similar). Perform the
following block row and column transformations:

. 03H03—§C2+%01;
o Ry+s Ry — 2Ry + IRy,

This transforms

0 aoX pBX 0 aX 0
—aX 0 7 X ]| — | —aX 0 0
—pX —X 0 0 0 0

The latter matrix clearly has rank 2 since X is of rank 1, and block column and row transformations
preserve rank. Thus rank(¢(S)) = 2.

Applying Proposition 3.1, we get the required conclusion. 0
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REMARK 3.4. When A is invertible, the following (block) Gaussian elimination procedure shows that
we can recover Strassen’s result from Proposition 3.3:

0 A B . 0 I A'B
N e e S S . e
B —c o) "R \lp ¢ 0
C3—C3—Co(ATIB)+C1(AT10) 01 0
3 3 2 1 —I O O

oot Ol =Bl 0 0 CA-'B—BA-'C

3.1. Lower bounds for dets. In every characteristic other than two, a direct application of Proposi-
tion 3.3 gives us that rk(dets) > 5, see [9]. Let us recall the determinant tensor

dets = Z sgn(0)eq(1) ® €y(2) @ €q(3) € K@ K3 ® K3.
A<D

Identifying K® ® K? with Mats 3 via e; ® e; — E; ;, we identify K3 @ (K? @ K3) with K3 ® Mats 3.
Under this identification, we have

0 0 0 0 0 -1 0
dets =e;® [ 0 0 1] +e2® |0 O Of+es® | -1 0 O
0 -1 0 1 0 0 0 0

We briefly recall the proof of the following proposition from [9], as we will modify the proof to remove
the dependence on characteristic.

PROPOSITION 3.5 ([9]). If char K # 2, then trk(dets) = brk(dets) = 5.
Proof. Applying Proposition 3.3, we get that

00 o0lo 00| 0 o0l=i
00 o0lo ol 00 o0
00 0/0 -10] 10 0
00 0/0 00 01 0
brk(detg)zérk 00 —1/0 00/-10 o0
ot olo 00| 00 O
00 1]0 -1 0] 00 0
00 off 00| 00 0
Z'0 0|0 00| 00 o0

This matrix contains only 12 nonzero entries. Six of these entries (with gray background) are in a
0 —1 1
column or a row with no other nonzero entry, reducing our computation to a 3 X 3 minor | —1 0 -1
1 -1 0
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This minor has rank 3 as long as characteristic is not two, and hence we have brk(dets) > % = 4.5. But
since border rank is an integer, we have brk(dets) > 5. On the other hand, we have brk(det;) < 5 by the
expression in Section 2, giving us the required conclusion. 0

The problem with this argument in characteristic two is that the aforementioned 3 x 3 minor has rank
2 instead of 3. This only gives that trk(dets) > brk(dets) > 4. Nevertheless, we are able to modify the
argument to show that the tensor rank of the 3 x 3 determinant is 5. First, we need a simple lemma.

LEMMA 3.6. Let T € V=V Vo ®---®V,. Suppose trk(T — S) > r for every rank 1 tensor S € V,
then we have trk(T) > r + 1.

Proof. Suppose trk(T) < r, then we have T'= T} + - - - + T}, with k& < r, where T; are rank 1 tensors.
Now, take S = T3 to see that trk(T — S) < k — 1 < r — 1 contradicting the hypothesis. d

Now, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. We want to prove that trk(dets) > 5. By Lemma 3.6, it suffices to prove that
trk(detz —S) > 4 for every rank 1 tensor S. Observe that SL3 acts on K3 ® K3 ® K3 by g- (v1 ® vp @ v3) =
gu1 ® gua ® gus for g € SLz and v; € K3. The action of g € SL3 preserves tensor rank and border rank since
it is a linear map preserving the set of rank 1 tensors. There is also an action of Cj3, the cyclic group on three
letters that cyclically rotates the tensor factors. This action too preserves tensor rank and border rank, and
further it commutes with the action of SLs. Thus, we have an action of SLs x C5 on K3 ® K3 @ K3 that
preserves tensor rank and border rank. Further, the tensor dets is invariant under this action.

Now, let S = v; ® v3 ® v3 be a rank 1 tensor. We want to show trk(detz —S) > 4. There are 3 cases.

e Case 1: vy, vz,v3 are linearly independent. Then without loss of generality, we can assume S =
Ae1 ® es ® ez, by applying the action of an appropriate g € SLs. Now, apply Proposition 3.3 to
T = (dets —\e; ® e2 ® e3) to get

00 ojlo o 0] o o/ =1

00 0{0 0 1-Xx| 0 0 0

00 0[0 -1 0] 1.0 0

. 0 0 0ojo o o o1 o
brk(T) > k| 0 0 —14+A]0 0 0[-1 0 0
01 0jo o0 0 00 0

00 1/0 —1 0 00 0

00 o1 o 0 00 0

1 0 0jo0 o0 0 00 0

Once again observe that the 5 gray entries are in a column or row with no other nonzero entries,
reducing our computation to a 4 X 4 minor. This 4 X 4 minor clearly has rank > 2. So, this gives
brk(T) > [7/2] = 4 in all characteristic.

e Case 2: The span (v1,vs,v3) is 2-dimensional. In this case, without loss of generality, we can
assume S = e ® e ® (aey + beg), by using the action of SLs x C5. Now, apply Proposition 3.3 to
T = (dets —e; ® ea ® (aey + bea)) to get
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00 o] 0O 0O OO0 -1

00 O0|—-a —-b 1 00 0

00 0] 0 -1 0 1 0 0

00 o} 0O 0O 01 o0

brk(T") > %rk a b -1 0 0 O0|-1 0 O

01 0o} 0 OO OO O

00 1 0 -1 0| 0 O O

00 o0 1 0 0] 00 O

-10 0| 0 OO0 OO O

Applying the row transformation Rs +— Rs + aRg9 — bRg and the column transformations Cy —
Cs + bCs and Cy — Cy4 + aCy, we see that we are back to computing the rank of the matrix in
Proposition 3.5, which as we have seen is at least 8 in all characteristics. Hence, brk(T") > 8/2 = 4
as required.

e Case 3: The span (vy, v9, v3) is 1-dimensional. Once again, without loss of generality, we can assume
S = Xde; ® e ® e;. We are reduced to computing the rank of the matrix

0 0 0]-=X 0 0 0 -1
00 O 0 1 00 O
00 O 0 -1 0 1 0 O
A0 0 0 0 0 0 1 0
00 -1 0 0 0]-1 0 O
01 0 0 0 0 0 0 O
0 0 1 0 -1 0 0 0 O
00 O 1 00 00 O
-1 0 0 0 0 0 00 O

But again, the row transformations Ry — R4 + ARg and Ry — R; — ARg put us back to computing
the rank of the matrix in Proposition 3.5. The rest of the analysis is as in the previous case. ]

While we have successfully computed the tensor rank, the border rank still remains undetermined.

PROBLEM 3.7. What is the border rank of dets over an algebraically closed field of characteristic two?

4. 5 x 5 and 7 X 7 determinant and permanent tensors. In this section, we study the ranks of
the 5 x 5 and 7 X 7 determinant and permanent tensors. For this section, we assume that K is a field of
characteristic 0. From the results in [9], we know that dets has strictly larger tensor rank and border rank
than pers, i.e.,

brk(pery) = trk(pers) =4 < 5 = trk(dets) = brk(dets).

We would like to separate per,, and det,, for larger n. The upper bounds we know for the tensor rank
and border rank for per,, are stronger than the ones we know for det,,. On the other hand, the best known
lower bounds for both are the same, see [6]. Koszul flattenings are powerful enough to separate det; and

pers.
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4.1. Koszul flattenings. We will only recall the Koszul flattening we need and very briefly. Let /\Z K™
denote the i*" exterior power of K™. For any integer p, consider the map

Wy K2 Hom( )\ K27+ /\p+1 K2PH) = Mat zpi1y 201y

P ’ ( P )’( P )

where 1, (v) is the map that sends w € A” K??™! to v A w. Using 12, we define the following composite
map.

id
L: K5 & (K5 & KS) ® (K5 ® K5) = K5 ® Mat25)25 %&) Matl()’lo ® Mat25725 = Mat2507250.

Observe that dim A® K% = dim \® K% = 10, so Hom(A* K?, A® K®) = Maty.19. The last equality is in
the above is just the equality Matqg,10 ® Matgs 25 = Matasg 250 given by Kronecker product of matrices. It
follows from [8, Corollary 4.4] that trk(L(S)) = 6 for all rank 1 tensors in K®> ® K® ® K® @ K° ® K°. This
along with Proposition 3.1 gives the following:

LEMMA 4.1. For any tensor T € K® @ K° @ K° ® K° ® K, we have brk(T) > rk(L(T))/6.

Note that both dets and pers are in K° ® K° ® K° ® K°> ® K®. So, we get the following:

PROPOSITION 4.2. Assume char(K) = 0. Then, we have
13 < brk(per;) < trk(per;) < 16 < 17 < brk(dets) < trk(dets) < 20.

Proof. The upper bounds are due to Glynn and Derksen as mentioned in Section 2. The lower bounds
come from Lemma 4.1. This requires finding the rank of a large matrix, which we do with the help of a
computer. We omit the details, referring the interested reader to the Python code available at [1]. O

Using a similar argument, we get the following bounds for the tensor rank and border rank of per, and
det7.

PROPOSITION 4.3. Assume char(K) = 0. Then, we have
42 < brk(per;) < trk(per,) < 64,

and

62 < brk(det7) < trk(det7) < 100.

Koszul flattenings do not seem powerful enough to separate per, and det;. Moreover, we point out that
Koszul flattenings are helpful only for finding lower bounds for border rank of det,, and per,, when n is odd.
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