Pathway Bifurcations in the Activation of Allylic Halides by Palladium and Their Influence on the Dynamics of η^1 and η^3 Allyl Intermediates

Malkaye Kpante and Lawrence M. Wolf*

Cite This: https://doi.org/10.1021/acs.joc.1c00891

ABSTRACT: Transition-metal-catalyzed allylic substitution often exhibits complex product selectivity patterns, which have been primarily attributed to $\pi \leftrightarrow \sigma \leftrightarrow \pi$ isomerization of the η^1- and η^3-allyl intermediates. Product selectivity may be even further complicated if η^1- and η^3-allyls share a single transition state (TS), leading to their formation resulting in a post-transition-state bifurcation (PTSB). In this work, density functional theory calculations using ab initio molecular dynamics (AIMD) have been carried out that support the presence of a PTSB in Pd-catalyzed allylic halide activation directly influencing product selectivity. The AIMD results initiated from the TS predict the η^1-allyl to be favored in the gas phase and a low dielectric ($\epsilon < 2.5$) for trialkylphosphines, while the selectivity shifts toward the η^3-allyl in higher dielectrics. The minimum energy path is also predicted to shift in product preference, consistent with the dynamics predictions. The bifurcation in allylic chloride activation is predicted to largely favor the η^3-allyl at any solvent polarity. A PTSB was also discovered to be present in Ni and Pt allylic activation but with less bifurcation. These results offer a unique view into the mechanism of metal-catalyzed allylic substitution.

INTRODUCTION

Transition-metal-catalyzed bond activation and subsequent functionalization have revolutionized organic synthesis and method development since its inception. Among the most popular methods are derived from the Tsuji–Trost allylic alkylation reaction involving allylic bond activation on account of the weaker allylic bond strength. Critical to the reactivity and selectivity of allylic functionalization is the dynamic nature of the interconversion between the resulting η^3 and η^1 allyl intermediates. However, the intrinsic dynamics of this π-allyl intermediacy has not been explored with respect to the possible presence of post-transition-state bifurcations (PTSBs).

Allylic bond activation is a critical step in metal-catalyzed allylic substitution reactions and can be performed in an asymmetric manner using chiral ligands. Allylic C–H activation is also a key step in alkene isomerization. The relatively weak allylic bond strength is responsible for selective allylic functionalization.

The dynamics of allyl intermediates can have a profound effect on the stereoselectivity and the mechanism has been extensively investigated. Allyl complexes can readily isomerize through combinations of $\eta^1\rightarrow\eta^3\rightarrow\eta^1$ interconversions (Figure 1). The stereochemistry in the substrate can be partially or entirely degraded as a result of this $\eta^1\rightarrow\eta^3\rightarrow\eta^1$ isomerization. Normally, only the η^1-allyl intermediate is considered to be the initial oxidative addition product, which then may isomerize to the η^3-allyl. However, if a PTSB is present, the η^1-allyl could be formed through both direct oxidative addition/insertion or through isomerization from the η^3 allyl. The η^1 and η^3 allyl intermediates would thus share the same transition state.

This investigation aims at determining whether a PTSB is operative in these cases and how product selectivity is determined. For this to occur, a syn oxidative addition should be preferred, in which the X leaving group departs on the same face of the allyl bound to the metal. The substrate, metal, ligand, solvent, and the leaving group all determine whether the syn or anti oxidative addition mode is preferred. Nonpolar solvents and weakly donating ligands favor the syn pathway, while polar solvents and strongly donating ligands favor the anti pathway. In summary, the anti path is favored when conditions are conducive to a greater charge being transferred to the leaving group and the opposite is the case for

Received: April 17, 2021

https://doi.org/10.1021/acs.joc.1c00891
the syn path. This investigation is focused on conditions favoring the latter syn pathway.

Examples continue to emerge where interconverting intermediates or products share a single transition state for their formation and transition-state theory (TST) loses its predictive power. These cases are particularly prevalent in pericyclic reactions. Examples of PTSBs in transition-metal-catalyzed reactions are more rare, comprising mostly of gold and rhodium carbene intermediates, but given the rich and diverse chemistry of organometallic systems, there are likely many more cases yet to be discovered. Furthermore, it is possible that more than two products may share a single transition state, which has been realized in a trifurcated cycloaddition process. Metal-catalyzed cases where a shallow intermediate is dynamically bypassed are also increasingly more common. Recently, dynamics effects in the metal-catalyzed 1,4-hydride transfer have been explored in which an intermediate is dynamically bypassed between isomeric π-allyl intermediates.

In these cases, where TST is less predictive, one often must resort to the analysis of molecular dynamics trajectories for obtaining quantitative insight regarding product selectivity. To make matters more challenging, experimental confirmation of such phenomena is either exceptionally challenging or not practically feasible. Since TST cannot be applied in these cases, attempts have been made to predict product distributions by the shape of the potential energy surface (PES) as well as automated routes for their location and making predictions. Attempts have also been made to design new reactions that contain PTSBs. Such surfaces with PTSBs have the potential to lead to complex selectivity patterns or even selectivity degradation. A system that often exhibits complex selectivity patterns involves allyl-metal intermediates.

Allylic activation by transition metals has been mostly accepted as leading to an η1-like intermediate. The resulting η1 and η3 allyl intermediates undergo interconversion, via σ–π isomerization, while normally only the η3-allyl is proposed to exist on the minimum energy path (MEP) connected to the reactant. Our hypotheses from preliminary studies in allylic chloride activation suggests that both η1 and η3 allyl intermediates may share a single transition state in these systems (Figure 2). This further complicating perspective has the potential to impact the current mechanistic understanding of metal allyl chemistry if it can be definitively demonstrated.

Fluorine has also been shown to be a competent leaving group in transition-metal-catalyzed allylic functionalization despite its high bond strength to carbon. Metal-catalyzed allylic substitution of allylic fluorides was demonstrated using palladium and platinum complexes. Higher stereochemical integrity of the products was observed under platinum catalysis. Unusual ligand effects and stereochemical leakage were noted on the selectivity. Given the complex inherent dynamics in palladium allyl chemistry, PTSB-created effects will complicate the selectivity even further, particularly in acyclic systems with C–C bond rotations in the η1-allyl. Under the possibility of a PTSB in allylic chloride activation, allylic fluorides could exhibit similar behavior. Allyl fluorides appeared to be a good candidate for demonstrating the presence of PTSBs in metal-catalyzed allylic activation and was thus also explored computationally.

The aim of this investigation was to determine whether PTSBs are operative in Pd-promoted allylic activation, specifically of C–Cl and C–F bonds in a syn manifold (Figure 3), and whether product selectivity could be impacted. The scope of this study includes topological analysis of the potential energy surface, molecular dynamics simulations, and the probing of solvation effects to understand the complex nature of the syn path. This investigation is focused on conditions favoring the latter syn pathway.
of this system. The results could have broader implications in metal-catalyzed allylic activation involving \(\pi\)-allyl intermediates.

COMPUTATIONAL METHODS

All geometry optimizations were performed using the hybrid density functional B3LYP\(^{74,75}\) augmented by the D3 dispersion correction with BJ-damping (B3LYP-D3).\(^{76}\) The B3LYP functional generally performs satisfactorily for describing palladium-promoted bond activation processes from benchmark studies.\(^{77}\) The def2-SVPD\(^{78-80}\) basis set was used for geometry optimizations and energies reported in reaction energy profiles were obtained at the def2-TZVPPD level on the def2-SVPD-optimized geometries. The 28 inner-shell core electrons of the palladium atom were described by the def2 effective core potential and account for scalar relativistic effects (def2-ecp). The resolution-of-identity (RI) approximation \(^{81,82}\) was applied using auxiliary basis sets to approximate the Coulomb potentials. The COSMO model\(^{83,84}\) was used for modeling implicit solvation. Stationary points were characterized by evaluating the harmonic vibrational frequencies at the optimized geometries. Zero-point vibrational energies (ZPVE) were computed from the corresponding harmonic vibrational frequencies with a scaling factor of 0.99. The relative free energies (\(\Delta G\)) were determined at standard pressure (1 bar) and at the reaction temperature of 298 K. The thermal and entropic contributions were evaluated within the rigid-rotor harmonic-oscillator approximation. Ab initio molecular dynamics (AIMD) simulations were performed using the Frog module within Turbomole. All trajectories were initiated at a temperature of 300 K with atoms being assigned randomized velocities using randomized input seed numbers distributed using a Gaussian distribution with a temperature-dependent variance and propagated classically using the Verlet leapfrog algorithm for transforming the gradients into new positions and velocities. The trajectory step size was set to 0.5 fs with a total of 500 steps for the total lifetime of most productive trajectories. Intrinsic reaction coordinate (IRC) calculations were used to ensure that transition-
state structures (confirmed by frequency analysis) led to the assumed reactants and products and for locating the minimum energy path. The criterion used for determining the identity of the product of a trajectory was the Pd−C bond distance, where the carbon is bonded to the halogen (fluorine or chlorine). A trajectory is defined as leading to the η₁-allyl if d(Pd−C) > 3.2 Å and to the η₃-allyl if d(Pd−C) < 2.5 Å. Additional functionals including PBE0,85−88 M06-L,89 TPSS,90 and TPSSh,91 with and without a dispersion correction in some cases, were also explored to confirm whether the bifurcations were qualitatively general spanning a selection of functionals, which included minimum energy path (MEP) and MD analyses in both the gas and solution phases. DLPNO-CCSD(T)92−94 single-point energy calculations were performed on the B3LYP-D3-optimized geometries for the purpose of method validation using ORCA 4.2.1.95,96 Relaxed potential energy scans (PESs) were performed across either the C−F or C−Cl bond-breaking and Pd−C bond-forming coordinates. NCIPLOT97 was used for constructing non-covalent interaction (NCI) isosurfaces for highlighting the developing van der Waals contacts between the ionizing fluoride and the ligands to varying extents. Distances are given in angstroms (Å), and angles are in degrees (°). 3D renderings of stationary points were generated using CYLview 1.0.98 All calculations were performed using Turbomole v7.3.1.99,100

■ RESULTS AND DISCUSSION

Allylic Chloride Activation. Previous computational investigations into Pd-catalyzed allylic chloride activation had supported the presence of a PTSB in cases when the Pd atom adds in a syn fashion with the leaving group but was neither unambiguously demonstrated using molecular dynamics nor through a detailed exploration of the potential energy surface, which are both necessary for confirming the presence of PTSBs (Figure 4).13 The conclusion was based on careful inspection on the relation between the forming and breaking bonds included in both η₁ and η₃ intermediates and the TS leading to their formation. Thus, AIMD simulations were performed here to determine whether the presence of a PTSB was indeed plausible in the activation of an unsubstituted allyl chloride.

The mechanism for activation of allyl chloride by palladium was investigated in both the gas and solution phases. In solvent, the activation energy is lowered and the energetic preference shifts in the direction of the η₃ allyl consistent with η₃ being more polar than η₁. The PES was then constructed by scanning both the C−Cl breaking and Pd−C(α to Cl) forming bonds using the PH₃ ligand at the B3LYP-D3/def2-SVPD level in the gas phase (Figure 5). While PH₃ is not necessarily an accurate experimental ligand probe, the results provide insight into whether the pursuit of larger, more experimentally viable ligands would be worthwhile. The gas-phase PES demonstrates that a bifurcation is likely present by scanning the relevant bond-forming and -breaking coordinates with the minimum energy path (MEP) leading to the η₃ intermediate. From the region of TS1, there are diverging descending channels leading to both of the blue, low-energy wells occupied by η₁ and η₃ allyls, which interconvert via TS2, which is located at r₁(C−F) = 3.8 Å and r₂(Pd−C) = 2.7 Å. According to the MD simulations, 88% of the product trajectories lead to the η₁ product and 12% lead to the η₃ product. Approximately, 50% of the overall trajectories lead to the expected reactant. These results also support the presence of a PTSB. The branching however is minor, and outside of the gas phase in the presence of a low dielectric (ε = 2.0), nearly 92% product trajectories lead to the η₃ allyl. Given the high selectivity for η₃ in both the gas and solution phases, this
bifurcation may not have a great consequence from a synthetic standpoint. Since the Pd–Cl bond in the η³ form is largely ionic, the ionizing ability of the halogen should in principle influence the selectivity favoring η³. Fluoride is a leaving group with much poorer ionizing ability indicating possibly a less preference for η³ over η¹ and was thus pursued further as a system with greater potential for exhibiting dynamics-related effects over allyl chloride.

Allylic Fluoride Activation. The reaction profiles for allylic fluoride activation were investigated using PH₃, PMe₃, and PPh₃ as ligands. The corresponding profiles using PMe₃ are shown here (Figure 6). The point after the TS where the paths bifurcate is defined as the valley-ridge inflection (VRI) point. The other ligand profiles are available in the Supporting Information. The choice of dielectric constants was based on the MEP path switching, as determined from the IRC calculations discussed separately. The inclusion of solvation induces a shift in the profile toward lower energy for all points relative to the reactant. The path connecting η¹ to η³ via TS2 was confirmed by inspection of the IRC. The Pd–F bond in the η³-allyl is intermediate between covalent and ionic, with η³ being closer to covalent in lower dielectric and a coupled ion pair in higher dielectric media (Figure S17). The Pd–F bond is more polarized in both η¹ and η³ intermediates than the reactant C–F bond, causing a dielectric-dependent thermodynamic shift. A particularly noteworthy change with increasing dielectric is in the η¹ and η³ energetic preference. The η¹ allyl is preferred in each dielectric, but its preference is diminished with increasing dielectric; ΔG²⁻η¹⁻η³ = 5.6, 4.5, and 3.9 kcal·mol⁻¹ at ε = gas, 2.6, and 5.0, respectively. This
thermodynamic Hammond shift causes the position of TS2 to shift in the direction of the η^1 allyl as determined by inspection of the TS2 geometries, which may influence possible dynamic preferences.

Using the ligands discussed here, the syn pathway is predicted to be preferred over the anti pathway at ε ≤ 2.5 (Figure S22). The use of different substrates and more π-acidic ligands would broaden the dielectric range where the syn manifold would be operable.

Inspection of the structures for transition states TS1 and TS2 reveals interesting dielectric-dependent trends. The position of TS1 appears slightly earlier with increasing dielectric as determined by the increasing Pd–F bond length and to some extent the C–F bond length, consistent with the energetic shifts (Figure 7). The Pd–C bond remains relatively constant, which is a major coordinate connecting η^2 and η^1. In TS2, the same Pd–C bond elongates with increasing dielectric, shifting toward the η^2 product, consistent with the Hammond predictions from the energetic shifts. In summary, increasing dielectric shifts TS1 slightly toward the reactant side, while TS2 is shifted toward the η^1 allyl intermediate. These considerations will be important for rationalizing the MD results that follow.

A PTSB in allylic fluoride activation was explored by inspecting the PESs and by analysis of the dynamics (Figure 8). The dynamics was performed in a similar fashion as in the chloride case while exploring the ligands PH₃, PMe₃, and PPh₃. In stark contrast to the chloride case, the η^1 product is favored over the η^3 product as 98% of productive trajectories led to η^1 in the gas phase for PH₃ and 97% for PMe₃. Dissociating fluoride requires charge stabilization, which is obtained through the developing Pd interaction leading to η^1-allyl. As a dielectric is introduced, the trajectory distribution shifts in the direction of the η^3-allyl. Intriguingly, as the dielectric of the medium is increased further to 5.0, a more profound shift in preference for the η^3-allyl is manifested. IRC calculations are consistent with this preference switch as the product of the MEP agrees with the dynamics preference. The MEP switching...
point as determined from the IRC calculations was located at a
dielectric of \(\sim 1.8 \) for PH\(_3\) and \(\sim 2.6 \) (e.g., benzene or toluene)
for PMe\(_3\). According to our understanding, this would be a rare
example of a solvation-dependent minimum energy path in a
reaction with a PTSB.\(^{34} \) Furthermore, the changing dielectric
causes \(TS_1 \) to appear earlier while remaining unchanged along
the \(TS_2 \) Pd–C coordinate. Solvation only appears to affect the
relative positions of \(TS_1 \) and \(TS_2 \), and it could thus be a
convenient handle for exploring product ratios while keeping
\(TS_1 \) relatively constant with respect to a changing
\(TS_2 \), on the basis of the Hammond postulate.

The predicted branching ratios do exhibit some dependence
on the density functional. Additional functionals that perform
reasonably well for Pd-promoted bond activation\(^ {77} \) including
PBE0-D3, M06-L, TPSSh-D3, and TPSS-D3 were also used to
perform the MD simulations in both the gas phase and in a
dielectric of \(\epsilon = 2.6 \) using the PMe\(_3\) ligand to examine the
generality of the bifurcation (Table S1). In the gas phase, all
functionals predict \(>90\% \) preference for the \(\eta^1 \)-allyl excluding
PBE0. In using PBE0, the preference is dependent on whether
a dispersion correction is included with PBE0-D3 predicting
33\% \(\eta^1 \) and PBE0 predicting 78\% \(\eta^1 \). Benchmark studies
indicated that the D3 correction with PBE0 resulted in no
improvement in the mean absolute deviations in the energies
with respect to kinetics and only a small improvement (ca. 0.3
kcal mol\(^{-1} \)) in the thermodynamics, so the importance of the
D3 correction is inconclusive. For B3LYP, the results do not
change in the gas phase with \(\epsilon = 2.6 \) or with and without D3.

The MGGA functional M06-L predicts the greatest preference
for \(\eta^1 \) with 96\% \(\eta^1 \) in the gas phase and 57\% \(\eta^1 \) with \(\epsilon = 2.6 \).
TPSSh-D3 gives similar predictions as B3LYP. While the
precise branching ratios are subject to variability using DFT,
the qualitative conclusion for the existence of a PTSB still
holds with the presence of a solvent-dependent product
preference switching point being likely.

In contrast, the PPh\(_3\) ligand does not exhibit as strong
solvation effects, but a bifurcation is still clearly present. Similar
to the smaller ligands, only \(\eta^1 \) formed in the gas phase. As
solvation is introduced, \(\eta^3 \) begins to appear. A clear distinction
with the PPh\(_3\) case is that there is no product preference
switching point as was observed for PH\(_3\) and PMe\(_3\). The
product ratios level off approximately 80\% \(\eta^1 \) product
selectivity. Clearly, there is a strong preference for the \(\eta^1 \)
product with the PPh\(_3\) ligand. It appears that the steric e
ffects of the ligand prevent a peripheral phenyl group from
proceeding in close proximity to the \(\alpha \)-carbon (C–F), as the
\(\eta^3 \) product is generally more sterically encumbered than the
\(\eta^1 \) product. The aryl groups may also provide a stabilizing pocket
for the dissociating fluoride, preventing significant ionization
required for \(\eta^3 \) allyl formation. This preference for \(\eta^1 \) with
PPh\(_3\) is in spite of the slight thermodynamic preference for \(\eta^3 \)
at higher dielectrics, highlighting a disagreement between the
dynamically preferred and thermodynamically preferred
products (Figure S20).

At higher dielectrics, the anti pathway is predicted to be
favored over the syn pathway (\(\epsilon > 2.5 \)) using PPh\(_3\) (Table

Figure 9. Plots of ca. 100 product trajectories and ca. 100 reactant trajectories for allylic fluoride activation using Pt(PMe\(_3\))\(_2\) (top) and Ni(PMe\(_3\))\(_2\) (bottom) performed in the gas phase and at \(\epsilon = 2.6 \) (COSMO) at the B3LYP-D3/def2-SVPD level.
S21). At a dielectric of \(\varepsilon = 2.0 \), B3LYP-D3 predicts >99:1 \% \(\eta^1 \). The PBE0-D3 method, which appears to be biased toward the dynamics preference for \(\eta^3 \) at lower dielectrics using PMe\(_3\), also predicts >99:1 for \(\eta^3 \) at \(\varepsilon = 2.0 \). Therefore, within the dielectric range of \(2.0 < \varepsilon < 10.0 \), there is a point where the bifurcation begins to set in.

Allylic Fluoride Activation Using Ni and Pt. In an effort to determine whether this bifurcation was unique to Pd, other metals in Group 10 were also explored for possible PTSB-related effects (Figure 9). Allylic substitution using allylic fluorides with Pt(\(\text{PPh}_3 \))\(_4\) has also been demonstrated experimentally.\(^5\) The Pt-catalyzed substitution generally proceeds with higher selectivity than in Pd-catalyzed substitution. Dynamics simulations were carried out on Pt(\(\text{PMe}_3 \))\(_2\)(allyl)F to gauge how the metal influences the selectivity. While Pt normally favors the \(\text{anti} \) pathway in nonpolar and polar media, the \(\text{syn} \) path could in principle be biased under the appropriate combination of the solvent, ligand, and substrate. Ni(\(\text{PMe}_3 \))\(_2\)(allyl)F was also investigated for comparison. The dynamics results for Pt indicate that S3% of the product trajectories lead to \(\eta^3 \) in the gas phase (Figure 9). These results are quite different from the Pd case where the vast majority of trajectories led to \(\eta^1 \). The \(\eta^3 \) pathway is predicted to dominate in nonpolar media, in contrast to the Pd case (Figure 8). For Ni-catalyzed activation, the dynamics reveals that 83% of the product trajectories lead to \(\eta^3 \) allyl. It may be the case that the less diffuse 3d orbitals of Ni engage in poorer overlap with the departing fluoride required for \(\eta^1 \) formation. Ni also being less electron rich will disfavor partial ionization in the \(\eta^3 \) path. Ni should favor the \(\text{syn} \) pathway over a wider dielectric range than either Pd or Pt being less electron rich. Even more significant dynamics-related effects are thus expected under Ni-catalyzed allylic substitution using triarylphosphine ligands given the stronger preference for \(\text{syn} \) stereochemistry.

Minimum Energy Path Analysis. Inspection of the MEP as a function of the C–F and Pd–C bonds reveals some insights into the nature of the solvation dependence (Figure 10). The MEPs using PMe\(_3\) as the ligand with changing dielectric are given. In the gas phase, the C–F bond initially undergoes little change with energy until an energy of \(\Delta E = 7 \) kcal-mol\(^{-1} \) is reached after which a normal, unperturbed transition to the \(\eta^1 \) product is established. The Pd–C bond decreases as the energy increases from 0 to ~9 kcal-mol\(^{-1} \), which then increases slightly to the TS after which a steep decrease to the product occurs. From TS1, the path proceeds in the opposite direction of TS2 toward the \(\eta^3 \) allyl. With increasing solvation, the profiles are shifted lower in energy. As the dielectric is increased to \(\varepsilon = 2.5 \), the MEP along the C–F coordinate approaches closer to TS2 before making a sharp adjustment to avoid the slope upward in energy toward TS2. Interestingly, along the Pd–C coordinate at \(\varepsilon = 2.5 \), the path reaches TS1 from the reactant in a similar fashion as in the gas phase but changes directions toward the \(\eta^3 \) allyl at ca. 2.8 Å by decreasing the Pd–C bond length. The path then drastically changes course toward the \(\eta^3 \) allyl, as in the gas phase, thus avoiding TS2. Presumably, this would represent the region in the vicinity of the VR1 point, which is supported by the substantial change with only a slight increase in the dielectric constant from 2.5 to 2.6. Increasing the dielectric \(\varepsilon \) by only 0.1 to 2.6, the dynamics results predict a change in the product preference from \(\eta^1 \) to \(\eta^3 \), which is reflected in some notable alterations to the C–F and Pd–C energy profiles, and the MEP also leads now to the \(\eta^3 \) allyl. The C–F profile follows a similar path to that from the gas phase and \(\varepsilon = 2.5 \) through TS1 until at ca. 2.9Å, 8 kcal-mol\(^{-1} \), after which there is a sharp decrease followed by an increase to the \(\eta^3 \) allyl. The Pd–C profile also follows a similar path as the prior two paths until TS1 is reached and the bond continues to decrease to the \(\eta^3 \) allyl. At ca. 8 kcal-mol\(^{-1} \), a break in the slope of Pd–C decrease appears, the same energy as in the C–F coordinate, as the path approaches TS2. This point again is likely where the MEP begins to approach the VR1 region and veers toward the \(\eta^3 \) channel. At a dielectric of \(\varepsilon = 5.0 \), the MEP leads to the \(\eta^3 \) product. The analogous breaks in the profiles are less pronounced after the TS as compared with the clear breaks with dielectrics of 2.5 and 2.6. The diminishing break likely suggests that the MEP veers more toward the \(\eta^3 \) channel further from the region of the VR1 point, resulting in most of the trajectories leading to \(\eta^3 \).

The solvation dependence on the trajectories is intriguing, particularly in combination with the switch in the MEP

Figure 10. MEPs at varying dielectrics projected along the C–F (top, red) and Pd–C (bottom, black) coordinates using the PMe\(_3\) ligand. The relevant bond coordinate is highlighted (magenta) in the corresponding TS1 structures.
substrate using PPh₃, which permits the phenyl groups to
the greater dielectric, the
fl
fl
concomitant shift of the TS1
demanding process, which the majority of trajectories avoid.

group to associate with the Pd center. This is a sterically

TS2
stronger pull toward
η

paths of
allyl. It is clear that the VRI point is in between where the

VRI point of the PTSB independent of the MD
results. Inspection of the MEPs in solvent reveals interesting
trends, which are more apparent through inspection of the
MEPs plotted together (Figure 11). With increasing the
dielectric, the position of TS1 undergoes little change along
both the C–F and Pd–C bond coordinates. More influential
on the selectivity is the shift in the location of TS2 with
increasing solvation in the direction of the η¹ allyl on account
of stabilization of the η¹ allyl. As TS2 is pulled in the direction
of the η¹, the η³ reaction channel becomes increasingly
preferred. In the gas phase, TS2 is closest to the η¹ allyl, while
the path in the highest dielectric (ε = 5.0) is closest to the η³
allyl. It is clear that the VRI point is in between where the
paths of ε = 2.5 and 2.6 veer toward the η¹ and η³ allyls,
respectively. The shift never takes place in cases where the
PPh₃ ligand is used. In the gas phase, the Pd–C bond increases
more rapidly with changing C–F bond length leading toward
η¹ allyl using PPh₃ as compared to PMe₃, demonstrating a
stronger pull toward η¹ even in the gas phase using PPh₃.

Some level of understanding of why the use of PPh₃ does
not lead to a MEP switch with greater dielectric can be
obtained upon inspection of the van der Waals (vdW) contacts
dissociating fluoride and the CH arene bonds of a
PPh₃ ligand using a noncovalent interaction (NCI) analysis
(Figure 12). The η¹ path does not involve substantial vdW
contacts between the phenyl C–H bonds and the dissociating
fluoride, whereas the η³ path requires tilting of the ligand
phenyl groups toward the fluoride bearing carbon with a
concomitant shift of the fluoride toward the center of the allyl
group to associate with the Pd center. This is a sterically
demanding process, which the majority of trajectories avoid.
TS1 already includes contacts between the fluoride with the
arenes and would require more substantial contacts should it
access the η¹ channel. This vdW contact in TS1 with PMe₃ C–
H bonds is reduced from being more distal and does not
inhibit Pd–C bond formation with fluoride migration toward
the center of the allyl group to the same extent as with PPh₃. In
the greater dielectric, the fluoride can depart further from the
substrate using PPh₃, which permits the phenyl groups to
adopt the position required for η³ allyl formation in at least
20% of the trajectories. Additionally, the ligand arene C–H
bonds proximal to the ionizing fluoride appear to interact with

the fluoride electrostatically inhibiting the requisite degree of
dissociation for permitting Pd–C bond formation leading to
the η¹ allyl. Successful η¹ trajectories at a dielectric of ε = 10.0
exhibit substantial C–F bond dissociation. Thus, there appears
to be to some extent a competition between the arene C–H
bonds and solvent in stabilizing the developing charge on the
fluoride.

Overlaying the MEPs on the relevant PES with the
appropriate dielectric constant provides some insights into
the switching preference with the PMe₃ ligand (Figure 13).
The MEP in the gas phase is directed along the η¹ channel.
With solvation, TS2 is lowered in energy relative to TS1
(ΔŒTS₁−TS₂ = 11.4, 12.6, 13.7 kcal·mol⁻¹ for ε = gas, 2.6, 5.0,
respectively) and is shifted toward the η¹ allyl. Both alterations
suggest the presence of a PTSB independent of the MD
process. This switch in MEP product preference strongly
inhibits Pd
H bonds is reduced from being more distal and does not
DCl bonds. The
Cl bonds. The

TS1-PPh₃
TS1-PMe₃

Figure 11. MEPs plotted at varying dielectrics for PMe₃ (left) and PPh₃ (right) ligands. The paths increase in the dielectric constant from right to left.

Figure 12. NCI isosurfaces for TS1-PPh₃ and TS1-PMe₃ highlighting the developing van der Waals contacts between the ionizing fluoride and the ligands to varying extent.

Summary and Proposed PTSB Verification. The results in this investigation lend support for the presence of PTSBs as applied to metal-catalyzed allylic activation of C–F and C–Cl bonds but with less bifurcation with C–Cl bonds. The consequences on selectivity may be profound in cases where η¹ and η³ are formed in comparable amounts. A selectivity-solvent dependence was discovered for activation of allyl fluoride (Figure 14). Intriguingly, the MEP was found to be solvent-
dependent, which is without precedent on a bifurcating PES. The $\sigma \leftrightarrow \pi$ isomerization is often used to explain the loss in stereochemical integrity starting from substrates with a defined stereochemistry of either the alkene geometry or the configuration of the activated carbon, which is shown here to be compounded by initial formation of both allyl intermediates via a PTSB.

Confirming the presence of PTSBs experimentally can be particularly challenging, especially if the bifurcating step is prior to the product selectivity determining step, which is usually nucleophilic addition to the η^3-allyl, as may be the case here. Experimentally, allylic fluoride activation and subsequent substitution have been achieved and the mechanism was investigated using PPh$_3$ as the ligand with cyclic substrates.64 A stereochemical probe, which is affected by the $\eta^3(1) \leftrightarrow \eta^1 \leftrightarrow \eta^3(2)$ isomerization, could in principle be used to support the presence of a PTSB. An example of a labeling strategy for PTSB verification is provided (Figure 15). A diastereomerically defined alkene with a deuterium label could be used as the substrate in nonpolar solvent. The η^3-allyl is usually the expected initial product without considering a bifurcation. Supposing the rate of nucleophilic attack in the second step is much greater than the rate of isomerization to the η^1-allyl ($k_2 \gg k_1$), then products cis-A and B would be predicted to be the only observable products in nearly equal amounts, including secondary isotopic effects, which is likely an achievable condition given the predicted barrier for interconversion through k_1 is predicted to be ca. 9 kcal·mol$^{-1}$ (Figure S20).

Here, the nucleophile (Nu) could be a malonate anion or a more reactive nucleophile as needed. Alternatively, the η^1-allyl could also be formed initially, as demonstrated to be preferred from MEP analysis. The η^1-allyl is normally not susceptible to nucleophilic addition and would thus isomerize to the η^3-allyl-1 and η^3-allyl-2 intermediates equally, which would lead to equal amounts of cis-A and trans-A. If a PTSB is indeed present, then both the η^1-allyl and η^3-allyl-1 would initially form. The η^1-allyl could isomerize to η^3-allyl-1, leading to cis-A and B, or it can undergo a fast C–C bond rotation with subsequent reassociation with the π-bond to give η^3-allyl-2, which would form the trans-A product along with B.
Therefore, detection of both trans-A and cis-A would support the presence of a PTSB, whereas detection of only cis-A would support the absence of a PTSB.

CONCLUSIONS

The mechanism of the palladium-promoted activation of allylic halides has been investigated using AIMD simulations. The hypothesis for the presence of a PTSB in allylic activation, in which the η1 and η3 allyls are both direct products of the bond activation and share a TS, has been supported by analysis of the MEP and MD simulations initiated at the TS. The dynamics predicts that allylic chloride activation promoted by palladium favors formation of the η3 allyl in both the gas and solution phases, with bifurcation being present albeit in minor amounts. In contrast, allylic fluoride activation is predicted to favor formation of the η1 allyl in the gas phase and at low dielectrics (ε < 2.6) with a switch in preference to the η3 allyl in higher dielectrics, using a trialkylphosphine ligand. The MEP preference agrees with the product preference predicted by the dynamics predictions. These results counter the traditional assumption that the singular direct product of activation is the η1 allyl, and that η3 is only accessed from η1 via σ = π isomerization.

The stereochemical course of allylic substitution reactions has a complex dependence on the nature of the η1 and η3 relative populations and their interconversion. The results of this study suggest that η1 and η3 are both formed directly, without the need for a thermodynamic equilibrium to be reached. Under kinetic control, both η1 and η3 are predicted to form, which may have substantial implications for the stereochemical outcome of allylic substitution reactions. These findings challenge the current understanding of the mechanism of transition-metal-catalyzed allylic substitution, as well as other organometallic processes involving the intermediary of π-allyl intermediates. These conclusions merit further investigations into the general applicability to other allylic systems as well as toward the experimental verification thereof.

ASSOCIATED CONTENT

 Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/10.1021/acs.joc.1c00891.

Additional dynamics results, reaction energy profiles, IRCs, and coordinates (PDF)

AUTHOR INFORMATION

Corresponding Author
Lawrence M. Wolf — Department of Chemistry, Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States; orcid.org/0000-0002-8035-4137; Email: Lawrence_Wolf@uml.edu

Author
Malkaye Kpante — Department of Chemistry, Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.joc.1c00891

Funding
The authors are grateful for the financial support from the National Science Foundation (CHE-1808671).

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge the National Science Foundation for partial support of this research (CHE-1808671). We also gratefully acknowledge the University of Massachusetts Green High Performance Computing Cluster (MGHPCC) for access to supercomputing resources.

REFERENCES

(18) Quadrelli, P.; Romano, S.; Toma, L.; Caramella, P. Merging and bifurcation of 4+2 and 2+4 cycloaddition modes in the archetypal
The Journal of Organic Chemistry

