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Abstract | Beach nourishment — the addition of sand to increase the width or sand
volume of the beach — is a widespread coastal management technique to
counteract coastal erosion. Globally, rising sea levels, storms and diminishing sand
supplies threaten beaches and the recreational, ecosystem, groundwater and flood
protection services they provide. Consequently, beach nourishment practices have
evolved from focusing on maximizing the time sand stays on the beach to also
encompassing human safety and water recreation, groundwater dynamics and
ecosystem impacts. In this Perspective, we present a multidisciplinary overview of
beach nourishment, discussing physical aspects of beach nourishment alongside
ecological and socio-economic impacts. The future of beach nourishment
practices will vary depending on local vulnerability, sand availability, financial
resources, government regulations and efficiencies, and societal perceptions of
environmental risk, recreational uses, ecological conservation and social justice.
We recommend co-located, multidisciplinary research studies on the combined
impacts of nourishments, and explorations of various designs to guide these

globally diverse nourishment practices.

An estimated 15% of the world’s sandy
beaches have been retreating a metre
or more per year on average in the last
several decades'. More than 10% of the
global population lives within 10m of
the present sea level’, and this is expected
to grow to over a billion people by 2050
(REF.?), accelerating coastal development,
and demands for stable shorelines and
oceanfront recreational space. Moreover,
sea level rise is predicted to further reduce
beach width at many developed regions™".
Together, these trends create socio-economic
demands for mitigation measures aimed
at protecting existing coastal infrastructure,
habitat and recreation’.

A beach sand nourishment, also referred
to as a sand replenishment or beach fill,
is a coastal engineering and management
project that mechanically increases the
size of the above-water beach using off-site
sand°®. Sandy beach nourishment is widely
used in coastal communities to promote
tourism and protect infrastructure from

flooding and erosion® (FIC. 1). Additionally,
these nourishments may be used to increase
habitat for beach (foraging) species’™’, repair
storm damage'” and dispose of dredged
sediments, such as those from navigation
channels. Projects can be implemented
with the intent to grow or hold a shoreline
in place, or as part of a managed retreat
plan'! that aims to slow erosion to allow
for landward redevelopment'’. Sand can be
placed directly at the site of the identified
local need (FIG. 1a) or updrift as part of a
larger regional approach that utilizes natural
transport pathways to address sand needs
along the coast'>".

Nourishment can be preferred over
hard structural engineering, such as
jetties, seawalls, groynes and breakwaters,
as it is less disruptive of natural sediment
pathways'. Seawalls, for example, typically
reduce sand supplies from cliff bluff failures
and can drown the beach when constructed
on shorelines experiencing decadal
landward migration'>'. Jetties, groynes

and breakwaters alter current-driven sand
transport within the coastal cell, potentially
leaving adjacent beaches starved of sand"".
Sometimes, hard structures are combined
with nourishments (FIG. 1b,c), with the
intention to slow sand transport away

from the original placement region and/or
surrounding area'®'s%,

Sandy beach nourishment became
popular in the early 1900s*', when
opportunistic sources of sand (such as
from harbour development dredging)
were readily available. In places where
development has slowed, smaller,
non-opportunistic placements (~100 m?
per metre of alongshore beach*>**) are
most commonly used as a temporary
solution for localized erosion problems.
More recently, owing to the recognition
of the interconnectedness of regional
littoral cells and their sediment budgets*,
repetitive nourishments along the coast
are coordinated in regional sediment
management plans® using either newly
acquired sand or reusing dredged
sediments (such as from maintenance of
nearby harbours). Some novel individual
placements have been scaled to substantially
modify the regional sediment budget over
many years, such as in mega nourishments
(>500 m*® per metre alongshore”*-*%).

Recent advances in the fields of coastal
engineering, ecology and governance,
in combination with changed societal
demands, have called for more integrated
nourishment approaches. Monodisciplinary
approaches focused on the above-water
beach recreation or overtopping flood
prevention alone have become hard to
justify. Nourishment designs now often
consider in-water recreation, groundwater
dynamics (such as groundwater flood
prevention and the protection or expansion
of fresh groundwater supplies) and
ecosystem services (such as fisheries and
water filtration)®. As an example, several
recent (pilot) nourishment designs explicitly
include surfing along a sharp lateral edge,
sheltered bathing in a lagoon (FIC. 1d) and
the creation of multiple types of ecological
habitats (FIC. 1¢), while also providing the
above-water recreation and flood prevention
of more traditional designs. Furthermore,
new approaches take advantage of natural
dynamics and are designed to stimulate
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Fig. 1 | Beach nourishment projects. Nourishment sand bodies and additional hard structures indicated in black dashed and red lines respectively.
a| Beach nourishment placement in progress, San Diego (USA). b | Beach nourishment with groyne field, Coney Island, New York (USA). ¢ | Perched
beach nourishment with groyne field and submerged sill, Pellestrina (Italy). d | Beach and dune nourishment with lagoon, Hondsbossche Dunes
(the Netherlands). e | ‘Sand Engine’ mega nourishment intended to feed adjacent beaches with constructed lake and lagoon for additional types of recre-
ational and ecological habitats, Kijkduin (the Netherlands). Part a adapted with permission from REF.**, Elsevier. Part b credit: Getty images/Bloomberg.
Part c credit: Mauritius images GmbH/Alamy Stock Photo. Part d image courtesy of Royal Boskalis Westminster N.V. Part e image courtesy of Beeldbank
Rijkswaterstaat/Joop van Houdt.

natural elements®, harnessing the forces
of nature to reach project goals, rather
than working against natural dynamics
(synonymously referred to as Building
with Nature®, Engineering with Nature™
and Living Shorelines™, amongst others).
For example, large, artificial coastline
perturbations can intensify alongshore
transport gradients that redistribute sand
across a wider region (FIC. 1¢). Nourishment
projects including artificial dunes with
planted grasses and fencing are intended to
stimulate wind-blown dune growth that can
provide ecological habitat, as well as flood
and groundwater protection (FIG. 1d).

In this Perspective, we provide
an overview of the interconnected
multidisciplinary aspects of beach
nourishments in terms of sand redistribution;
groundwater considerations; ecological,
economic and recreational impacts; and sand
mining. The future of beach nourishment
practices will vary globally, depending
on local vulnerability, sand availability,
financial resources, government regulations
and efficiencies, and societal perceptions
of environmental risk, recreational uses,
ecological conservation and social justice.
We recommend research directions and

design approaches that will guide these
diverse nourishment practices.

Beach sand nourishment

Nourishments can be constructed using
various sediment types originating from
inland or marine sources (such as sand',
shingle™, cobbles® and/or cohesive clays'®*),
and can be placed on the above-water beach
(beach nourishment) or submerged nearshore
beach profile (shoreface nourishment)®'.
The sediment (fill material) is extracted from
a borrow site, either for the sole purpose

of nourishment or as a result of nearby
projects, such as excavation for development,
harbour channel deepening or removal of
excess sand near a coastal structure®. The
extracted sediment is transported to the
coast (typically by barge, pipeline or trucks)
and then pumped, sprayed or dumped onto
the placement site. Afterwards, bulldozers

or other machinery sculpt the sand into the
shape planned by the engineers.

Here, we focus on nourishments that add
sand (non-cohesive sediments in the size
range 0.062-2mm) to open, ocean-exposed
beaches, where the majority of the sand
volume is placed above the mean water line.
The sand can be positioned on the upper

beach including dunes and/or near the
waterline, and can (partly) extend onto the
underwater beach (FIC. 1). After placement,
the sand is sometimes tilled to attain desired
beach surface properties. Over time, waves,
currents and wind move the added sand
away from the original placement site, so
repetitive nourishments, typically placed
every few years, are often planned to
maintain sand volumes on the beach over
longer periods of time. Occasionally, hard
engineering structures are constructed to
enclose nourishment sand on the lateral or
offshore side'**** (FIC. 1b,c) or are erected
nearby in the littoral cell to partially trap
nourishment sand in adjacent regions.
Sandy beach nourishments are widely
practised globally'*'*'#17-2 and observed
lifetimes range from individual storms
(days) to decades'**~*. In this section, we
discuss the redistribution of sand, followed
by the monitoring and modelling of

sand dynamics.

Sand redistribution

The added sand steepens and widens the
beach, thereby altering currents, waves,
wind and sediment transport in and around
the placement area®. During the following
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months to years, nourishment sand moves
from the placement area in both cross-shore
(onshore or offshore) and longshore
directions (upcoast and downcoast), such
that the beach narrows and becomes less
steep, while the shape of the local coastline
smooths®* (FIC. 2a,b). Erosion of sand from
the initial placement area is fastest in the
months after construction, especially during
the first few storms***>*’. Notably, when
large volumes of sand are placed on the
above-water beach only, the unnaturally
steep profile results in large offshore
transports and a rapid decrease of the beach
width?***,

As nourishment sand is redistributed, it
becomes part of the larger sediment sharing
system, and, generally, the nourished site
experiences erosion after placement, with
sediment being transported to adjacent
beaches*’. Wave-driven offshore transport
of nourishment sand can form abnormally
large sandbars relative to natural sandbars
at the site*, potentially smothering
offshore reef ecosystems™ or acting as a
soft breakwater. This sand can later return
onshore during calmer wave conditions,
increasing beach width again*. Wind-driven
onshore transport of nourishment sand can
accrete dunes® but can also be a nuisance if
it blankets properties and infrastructure near
the beach™. Likewise, nourishment sand that
moves alongshore to adjacent beaches can be
beneficial (by widening the recreational and
protective beach'>*, for example) or harmful
(by infilling of nearby harbour entrance
channels or estuaries®).

Similarly designed nourishments
placed in the same geographic region and
exposed to similar forcing, but composed
of different grain sizes, have been observed
to have drastically different retention times
of the sand on the above-water beach™.
Nourishment using coarser grained sand is
expected to create and maintain a steeper
and wider beach, and may be selected to
increase the longevity of the nourishment
pad®. Conversely, sand that is much finer
than the native sand can be used in a
design to stimulate dune growth through
wind-blown transport™ but will also, in part,
be quickly, and often permanently, washed
offshore by waves*. Even when using
sands similar to native sand, the modified
hydrodynamics resulting from placement®
can exacerbate preferential transport of the
finer fraction of nourishment sand during
calm wave periods, altering grain size
distribution patterns in a region much larger
than the placement area™.

As the placement region erodes,
additional morphological features such

as spits, scarps and crowns can form

(FIG. 2¢—f). Scarps, near-vertical abrupt
height variations on the beach profile,

can be created by storm waves that erode,
but do not overtop, the nourishment crest™®
(FIC. 2d,e). Similar to dunes, beach scarps are
removed during storms when water levels
overtop the crest™. Scarp heights can reach
~2m, creating a hazard for beachgoers and
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is coarser than the native sand, scarps can
evolve into crowns as waves deposit sand

on the seaward side of the platform (FIC. 2f).
The local elevation maximum of the crowns
can cause water to pool in the backbeach™.
In the longshore direction, spit-like features
can form along the seaward ends of a
nourishment pad (FIC. 2a,c), due to large sand
transport gradients induced by coastline

angles at the upcoast and downcoast
edges®. Tapered edges are often designed

impeding turtle nesting®. At flat-topped
nourishments constructed with sand that
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Fig. 2 | Evolution of sandy beach nourishments. Morphological evolution of a sandy beach nourish-
ment in planform (bird’s-eye view) and profile (side view). a | As the nourishment pad retreats, sand is
redistributed laterally, with possible spit development along the edges. b | In the original placement
region, erosion of the pad coincides with a general decrease of the profile slope. c| At adjacent coastal
sections, nourishment sand delivered by spit features creates an elevated bump on the profile.
d| Erosion of the nourishment near the water line can result in the creation of scarps. e | Scarps can be
removed when high waves overwash the scarp crest. f| Crowns can form when overtopping waves
bring sediment on top of the nourishment pad. Advances in morphodynamic model predictionsiillus-
trated for the ‘Sand Engine’ nourishment, with the columns representing the initial (2011), 12-month
(2012) and 5-year bed levels (2016). g | Observed bed levels in 2011. h | Observed bed levels in 2012.
i| Observed bed levels in 2016. j| Model input. k | The uncalibrated 1-year ocean-forced (waves and
currents) model prediction. L| Eighteen-month calibrated, ocean-forced, extended 5-year prediction’’.
m| One-year calibrated, ocean-forced model output*’. n| Eighteen-month calibrated, extended 5-year
prediction including ocean-forced and wind-blown sand transport on the above-water beach®. Thick
black lines in g—n denote the mean sea level (MSL).
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to minimize spit development when sand
retention in the original placement area is
desired, although spit development has been
observed on nourishments with tapered
edges™. In contrast, spit development was
intentionally stimulated as part of the

‘Sand Engine’ mega-nourishment design

to create a sheltered lagoon and habitat for
juvenile flatfish and invertebrates® (FIG. 1¢).

Hard structures are sometimes used
in conjunction with nourishment works
to reduce beach volume losses from
the placement area'*'*-%, For instance,
approximately half of the sandy beach
nourishments on the Chinese coast
that were placed between 1994 and
2014 were combined with groynes
(shore-perpendicular structures that
extend from the beach into a portion
of the surf zone) and/or breakwaters'®.

The construction of permeable or notched
groynes and groyne fields (FIG. 1b,c) are
methods that attempt to attenuate downdrift
erosion problems while increasing sand
retention updrift. Shore-parallel structures
placed offshore (breakwaters) are used to
reduce the amount of wave energy in their
lee and to modify nearshore currents, such
that sand accumulates at the shoreline
onshore of the structure. However,

contrary to their design intent, many
submerged breakwater projects have caused
shoreline erosion®.

Similarly, natural or man-made
submerged detached sills in deeper water
can be used to create a perched beach
(FIC. 1¢), so that less sand volume is required
to achieve a desired constructed beach
width compared with a design without
a sill"*®2. The perched beach concept has
been practised worldwide®, but results on
the longevity of the nourishments are mixed
and there is limited understanding as to why
these projects are not always successful®.
Additional research on the effectiveness
of managing coastal sand resources using
nourishment combined with hard structures
is needed, and should also be assessed in
terms of the groundwater, ecological and
recreational impacts.

The ‘success’ of beach nourishment
projects, viewed in terms of how the sand is
redistributed by waves and wind, can be
difficult to assess accurately, as there is no
single set of widely agreed criteria, and
the success depends on the objective™.
Consequently, using retention time of sand
in the original placement region as the prime
criterion to assess success can lead to the
conclusion that the nourishment has failed,
especially if the objective was to locally
increase beach width for recreation’*® or

provide a temporary buffer to storm impacts
on landward infrastructure®. However,
movement of sand by waves, currents and
wind is an expected process, so many coastal
experts advocate for success criteria based
on a wider regional sediment budget when
the objective is to mitigate long-term coastal
erosion in a coastal cell*.

Monitoring sand redistribution at beach
nourishments. Monitoring the sand
redistribution of beach nourishments is
conducted to evaluate project performance
and impacts, and to increase general
understanding of coastal dynamics.
Optimal monitoring programmes tailored
to beach nourishment behaviour measure
both the underwater and the above-water
beach, preferably obtained simultaneously
to close the sediment balance®. On open
coast beaches, adjacent coastal sections
should also be included to trace dispersed
sediments and must be large enough to
encompass a reference area that remains
unaffected by the nourishment, such that the
sand level response can be assessed in the
context of natural variability in the forcing.
We recommend that monitoring should
extend for at least 500 m on either side of
the nourishment, with longer stretches
recommended for large nourishments and
beaches with highly energetic, oblique
incident waves, and include sediment
properties (grain size and distribution)
and local hydrodynamic data (waves,
currents and water levels). Furthermore, it is
important to survey the area immediately
after the works, which provides a clear
estimate of the deposited sand volume
in situ, rather than estimates from recorded
discharges in the dredging process™. After
this first survey, short time intervals between
consecutive surveys (for instance, weeks
apart and after each storm) can be necessary
to capture the rapid initial response. High
cross-shore (1 m or smaller) and alongshore
(100 m or smaller) resolution is needed to
capture the presence of scarps and spits™***".
Techniques to monitor nourishment
sand redistribution are evolving®® —
all-terrain vehicles equipped with survey
grade Global Navigation Satellite Systems,
real-time kinematic corrections and
inertial measurement units largely replaced
traditional rod and level surveys at the turn
of the last century®. These technologies
drastically increased spatial resolution and
span, while maintaining <10-cm horizontal
and vertical accuracy”™*. Above-water
mapping technologies are often combined
with sonar on boats and personal watercraft
for measurements of the underwater beach.

As bubbles and suspended sediment can
sometimes obscure the sonar signal in the
shallow-water surf zone, dollies pushed

to wading depths or large amphibious
vehicles are used to help ensure continuous
measurements across the profile’>*¢770,

In the past decade, remote sensing
imaging systems have further expanded
data collection capabilities. These can be
mounted on fixed (towers, rooftops)”’
or mobile (drones, airplanes, satellites)
platforms®. Monocular (single viewing
angle) imagery using optical cameras™’'~"
or cloud penetrating radar’ are used to
detect the horizontal location of the land-
water intersection of the nourishment and
adjacent beaches. These systems can provide
long time series at remote locations with
small operational costs, although, owing
to uncertainties (especially such as those
in estimating water levels’), this method
works best when shoreline migration is large
(many tens of metres for satellite systems’).
Newer remote imaging technologies that
measure the 3D beach surface provide more
accuracy than monocular imagery, which
relies on the detection of the land-water
intersection. For example, photogrammetric
methods (such as structure from motion)
reconstruct a 3D surface from multiple
photographs with different viewing
angles’*%. Laser scanning® (lidar) is
generally the most expensive and most
accurate remote sensing technique”*, and
can provide full waveform information
useful for resolving different surface layers
(such as vegetation on a dune®'). These 3D
datasets, including true colour information
of the surface, open new opportunities
to identify beach characteristics (such
as distinguishing between native and
nourishment sand® and cobble coverage®).

Observing bathymetry (underwater
topography) through remote sensing
remains challenging, but there has been
some success in clear waters, where
the seafloor is visible in optical camera
imagery™, or using laser altimetry with
sufficient power to record reflections of
the seafloor, despite the water—air interface
and the scattering of the (green) laser pulse
in the waterbody’*. These approaches
enable high-resolution mapping over large
spatial ranges. Alternative technology,
deriving bathymetry from remotely sensed
surf-zone wave speed and shape, is also
being developed®**’.

We envision that as the space-borne
photogrammetry and laser-altimetry
records grow, they will be especially
transformative for our field. Satellites are
providing time-continuous global coverage
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of sand levels with accuracy on the order of
centimetres’’*””, which will help map sand
redistribution, expand our understanding
of geomorphological processes and
enhance our ability to develop or calibrate
numerical models.

Modelling beach nourishments. Models

of sand redistribution help coastal
managers evaluate the impacts of different
nourishment design strategies. However,
understanding and forecasting nourishment
evolution is challenging — models must
account for changes in sand levels over
several years, which are often a delicate
balance between storm and recovery
processes®. Furthermore, these models
must encompass broad temporal (from
seconds, such as during an overtopping
event during a storm, to decades, as with
dune development or sea level rise) and
spatial scales (from individual grains to
littoral cells). Computational constraints
require these processes to be aggregated
through extensive parameterization®.
Sometimes, models that use different
resolutions can be coupled to resolve
multiple scales”, for example, by running
high-detail models for small spatial scales
and/or short timescales, in conjunction
with aggregated low-resolution models for
large spatial scales and/or long timescales.
Other approaches attempt to accelerate
model simulations by ‘compressing’ the
number of time steps”', by using only

the moments with the most impactful
forcing conditions*” or implementing
simplified but efficient lookup tables that
categorize the beach response to generalized
forcing conditions”.

Sand redistribution models range from
simple to complex. In their simplest form,
coastline models estimate the shoreline
position by schematizing the along-coast
sand redistribution as a diffusion (shoreline
smoothing) process, where the shoreline
orientation relative to the incident wave
conditions governs the alongshore
transports over time”. When calibrated,
these computationally fast models can
provide information on beach change on
the largest of scales (years, kilometres)™.
Hybrid models can improve upon coastline
model physics by accounting for the effect
of realistic, complex bathymetry (such as
nearshore canyons or rocky platforms) on
wave propagation. To represent multiple
specific details of the nourishment beyond
the shape of the coastline (like variations in
planform shape), and to provide information
needed for ecological and recreational
assessments (including sediment sorting

and spit formation), more complex models
are needed based on the upscaling of
processes (process-based modelling, for
example, REFS**). Process-based models
can be subdivided into profile models and
planform models.

Profile process-based models solve the
cross-shore sediment balance at multiple
vertical levels, but at only one alongshore
location”. Current state-of-the-art
cross-shore process-based models perform
best for predominantly offshore-directed
morphological development on timescales of
days, such as the large erosion of nourished
profiles during a storm”. When applied
to natural profiles and moderate waves,
model skill is significantly reduced up to the
point that a simulated development, when
compared with observed changes, can be
worse than a no-change prediction”.

Planform process-based models have a
domain that extends both alongshore and
cross-shore, but have limited resolution
in the water column’"'*. Recent planform
model computations are apt at reproducing
the multi-year evolution (both erosion and
accretive sand volumes) of a mega beach
nourishment**! (FIG. 2g—n). However, these
models have yet to be rigorously tested
in the peer-reviewed literature on beach
nourishments of a more typical size.

The latest process-based numerical
models have the ability to differentiate
between sediment of different grain sizes
at a project site. For example, these models
can be used to examine nourishments with
different grain sizes to the surrounding
(native) sand and may be able to reproduce
the coarsening of the sand as fines are
transported out of the area'”'. Sufficient
high-quality sediment composition data
are needed to further develop and test these
grain size-specific transports.

Uncertainties in model forecasts
arise from both the forcing (such as
wave, wind, water-level conditions) and
the model limitations. For instance,
at the well-monitored Sand Engine
mega nourishment, model parameter
uncertainty was found to be comparable
to the uncertainty in future wave-forcing
conditions (wind, waves, currents) for a
2.5-year calibrated coastline position model
that forecasted an additional 2.5 years'”.
For 50-year to 100-year predictions of
shoreline location on erodible coastlines,
the model framework for how the beach
responds to sea level rise dictates the
uncertainty in the modelling outcome
more than any other factor. In other
words, model choice outweighs the climate
change scenario, sea level rise, sand supply,
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vertical ground motions and wave-driven
shoreline response'” in determining the
output. Computational power has increased
such that, if model physics was improved,
probabilistic approaches with a large number
of (ensemble) forcing conditions could

help coastal planners navigate nourishment
decisions in the face of uncertain sea level
rise, and changing wave and weather
conditions'®. In the meantime, models

are only reliable when they have been
site-specifically calibrated and validated, and
when the forecasted conditions are similar
to those that were used in calibration and
validation”. As sufficient calibration data
are often lacking, nourishment designs are
still done in a pragmatic manner, relying

on both numerical model output and

expert judgment.

A promising development in
morphodynamic modelling of nourishments
is the inclusion of additional spatial domains
and disciplines, such as groundwater'* and
vegetation'* models. For example, connecting
wave-transport models with wind-transport
models has been important in long-term
predictions, as it accounts for transport of
sediment towards the dunes and aeolian
infilling of nourishment waterbodies™
(FIG. 2n). However, given the difficulty in
modelling sediment transport, numerical
models of nourishment response will likely
continue to be highly parameterized with
incomplete physics for some time. Therefore,
research comparing the performance of
more complex models to simple models
is needed to assess when the added
complexity and computational demands are
warranted'”, and observations will continue
to be essential for model testing.

Groundwater impacts
Changes to aquifers below beaches and
dunes are increasingly considered as part of
coastal zone management practices, as these
impact flooding and freshwater quantities.
For example, storms can cause groundwater
salinization'"*"""* — especially concerning
for low-lying islands with limited freshwater
supplies, such as the barrier islands along
subsiding coasts''" and Pacific atolls''>'"* —
and contribute to coastal flooding''*. For
example, a sea level-rise model assessment
for urban Honolulu, Hawaii (USA), at the
end of the century found that including
groundwater processes doubles the size of
the flood-prone area compared with when
considering marine inundation alone'">'*°.
The behaviour and dynamics of
groundwater near the land-ocean interface
are highly complex and variable, and, thus,
responses to nourishment are challenging
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to predict. Beach nourishments increase
coastal elevation of the beach and are,
therefore, likely to reduce the probability

of land-surface inundation, infiltration of
seawater and salinization. In addition,
beach nourishments increase the terrestrial
extent of the coast, leading to increased
trapping of precipitation and enhanced
groundwater recharge, resulting in increased
freshwater resources''”''® (FIG. 32). However,
expansion of the freshwater resources owing
to beach nourishments can be limited or

modulated by erosion of the added sands
during storms''®. Moreover, the elevated
nourishment pads can retain ocean water
in the added sediment, especially during
storms with large surge and wave-driven
set-up, even in the absence of inundation'”,
and the increased groundwater levels and
inland-propagating groundwater bulge'**'#,
can potentially contribute to inland
flooding>*'** (FIC. 3b,c). Moreover, seaward
seepage (FIG. 3¢) of the groundwater onto the
beach can reduce the wind-driven onshore

a Increased beach area results in increased freshwater resources

Nourishment

Ocean

Post-

Saline groundwater

NOUrishman: 7= = -

Precipitation

Fresh groundwater

b Infiltration during high storm-driven water levels and waves

c Flooding when groundwater exceeds land surface

Exfiltration

Fig. 3 | Groundwater processes related to nourishments. Fresh rainwater is trapped in the ground
(surface aquifer) above saline water that infiltrates from the ocean. a| Beach nourishments expand the
region that traps water, including precipitation, potentially expanding freshwater resources. b | During
large ocean surge and wave events, the beach and dune absorbs seawater, creating a groundwater
bulge that increases in magnitude with storm period. ¢ | Following a storm, the groundwater under
the dune exfiltrates onto the beach, potentially enhancing erosion or reducing onshore blowing sand
that could rebuild the dune. In addition, the groundwater bulge moves inland, potentially causing

flooding in low-lying areas.

transport that is needed to build dunes'”,
while also reducing the effective weight of
sediments submerged by waves, enabling
sands to be swept offshore more easily'*.
Groundwater flow in beaches is sensitive
to both cross-shore profile shape as well as
porosity and grain size'*, and these three
aspects can be (temporarily) altered after
nourishment®**>'*¢. It is presently unknown if
these aspects significantly impact freshwater
resources and groundwater-induced
flooding on recently nourished beaches, and
additional study is needed to understand
groundwater flow in nourished beaches
and its coupling with flooding, sediment
transport and vegetation.

Ecological impacts

Habitat attributes are the main determinant
of biodiversity and ecological structure

in beach ecosystems'”~'%. Sediment
properties (including texture, size, moisture
and organic matter), topography (slope
elevation, width and relief), hydrodynamic
forces (wave exposure, currents and tides)
and biological interactions (productivity,
carbon subsidies and predation) shape

the structure of beach ecosystems. These
ecosystems harbour diverse assemblages

of burrowing invertebrates and larger
animals that nest and feed in the surf

zone, the intertidal shore and the coastal
dunes (such as birds, sea turtles, rays and
sharks)'**-13 (FIC. 4a). Beach species are
adapted to high-energy environments with
rapidly changing conditions'’, yet, this
does not imply that they are resilient to
habitat changes and physical forces caused
by nourishments'*-'*, Indeed, many coastal
ecosystems are deteriorating'**~'"’, owing to
human activities in the coastal zone (FIC. 4b),
such as infrastructure, beach armouring,
off-road vehicle traffic and beach grooming,
and nourishment can compound ecological
stressors.

Detrimental impacts of nourishment'*-*°
largely concern the loss of ecological features
during nourishment construction. Most of
these reductions are in the number of species
and individuals, often for invertebrates
buried in the sand, but also for birds and
fishes. The mechanisms are varied (FIG. 4c-1),
but processes commonly identified during
construction include burial and suffocation
under a sand layer that exceeds the capacity
to burrow upward"*"**? and mechanical
crushing by heavy machinery, functionally
similar to the crushing effects by off-road
vehicles driven over beach invertebrates
buried in the sand'*""*.

Increased water turbidity from
nourishment operations that bring fine
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a Sandy beaches as living and biodiverse ecosystems
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b Sandy beaches at developed seashores

).(-E Burial and crushing of fauna

= Coarser sand

© Obstructs feeding in birds and fish

e Adverse effects of smaller-than-native grain size

@ Finer sand
0, Suffocates fauna
% Obscures prey in turbid waters

f Grain-size effects on invertebrates

Mismatched sediment
@ Disrupts recruitment
O Invertebrate larvae

Fig. 4 | Potential ecological changes during and following beach nourishment. a| Ocean beaches without significant human stressors are ecosystems
rich in species and individuals. b | Human activities at developed (eroding) seashores often result in a reduction in beach fauna. ¢ | Beach nourishment can
cause a range of changes to beach habitats and their fauna. These impacts can arise through direct mechanical impact. d | Excess coarse material, such as
shell hash, can make it difficult for predators to detect prey and to extract prey from the seafloor. e | High concentrations of silts and clays in suspension
can suffocate infauna, by clogging their gills. f | As invertebrates living in the sand have very specific requirements, changes to granulometry are often
inimical to beach fauna, including lower recruitment by larvae from the ocean. Note, the panels are conceptual sketches only, with organisms and human

activities not to scale.

material into suspension and the suspended
silt can clog the delicate feeding structures of
filter feeding invertebrates (such as clams)'*;
more turbid surf zone waters can also limit
prey detection, thereby impairing feeding

by fish'*! (FIC. 4e). These impacts can extend
beyond the immediate spatial footprint to
affect adjacent systems (including reefs and
seagrass meadows) several kilometres away
through turbidity plumes'”’.

After the nourishment has been
implemented, the altered cross shore profile
shape can create unfavourable conditions
for foraging, spawning or nesting'**'*’.
Moreover, a mismatch of sediment
properties between the added material and

the original sands'**-'? can impact habitat
conditions. For example, excess shell hash
can impede probing for clams by shorebirds
(FIG. 4d), and a change in sediment texture
can make the beach unsuitable for larval
settlement and adult survival (FIC. 41).

Hard structures used in combination
with nourishments can additionally impact
ecosystems. For example, groynes can trap
higher volumes of wrack (such as algae
and seagrasses) on the updrift side, while
reducing accumulations downdrift'*. Wave
sheltering provided by breakwaters can shift
communities from consumer-dominated
to producer-dominated systems'*’.
Furthermore, hard structures can create

barriers to the transport of mobile animals
living on the ocean floor and to the dispersal
of propagules'®.

From an ecological perspective, the best
nourishment would be the nourishment that
does minimal harm to the pre-nourishment
habitat, restores ecological values lost
due to previous human activities and,
depending on the local views on ecology,
creates new habitats'®. Information gaps
remain that limit our ability to design more
environmentally benign strategies or create
habitat opportunities with engineering
works. Primarily, the trajectories of recovery
and the thresholds of habitat change that
species and assemblages can biologically
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accommodate are unknown. Put another
way, what is the biological ‘dose-response
curve of beach engineering works?
Ecological impacts are often measured by
comparing (unimpacted) control regions
with impact areas. Understanding the
large-scale, long-term (natural) variation
in species (species richness, biomass

and abundance) and habitat (such as

water quality and turbidity) is vital for
contextualizing nourishment impacts.
Reported recovery times vary widely, from
weeks'”' to several years'*'*. There is little
consensus on impact and recovery, mainly
because almost all ecological studies are
much too short (generally, months), limiting
our ability to make robust inferences about
impacts and recovery'?’.

Changes to the design and timing of
beach nourishment can create opportunities
to develop practices with a smaller ecological
impact. For example, concentrated
nourishments with large volumes are
intended to slowly feed the adjacent coasts
with sand, as an alternative to multiple,
repeated nourishments along the coast™.
This method may minimize ecological harm
because of its localized placement footprint,
which reduces the alongshore stretch that
experiences the initial burial event. These
large placements also extend the time period
between successive nourishments, which
allows time for populations to partly recover,
as surviving or recolonizing organisms
reproduce'®. However, larger nourishment
volumes typically bury organisms under
a larger depth of sand, which potentially
makes initial ecological impacts in the
placement area more severe. Alternatively,
continuous and much smaller-scale
placements in thin layers or mosaics are
proposed to potentially reduce mortality
of fauna from deep burial and to enhance
chances for recolonization'*®'>>15165,

A comparative study of the ecological
impacts of these different strategies is
needed to advance this debate and connect
nourishment intervals, placement volumes
and shapes with recovery timescales. The
study should not only be compared with
the existing ecosystem at the coastal stretch
(FIG. 4b) but equally to the original natural
shoreline system (FIC. 42) and alternative
man-made interventions (such as armouring
and seawalls).

Many dune restoration projects have
prioritized ecological restoration'®; however,
nourishment projects lower on the beach
that prioritize ecological functioning
over other objectives are generally rarer
than other types of nourishment, and
there is a dearth of studies on the projects

that do have this priority. In the future,
attempts to create beach habitats that
mimic previously existing (site-specific)
wave-exposed shores (neither excessively
extended seaward nor unnaturally
elevated, and with biologically suitable
slope, relief and sediment composition)
should examine the full capability of using
nourishment for ecological restoration.

Broader impacts

To fully assess the impact of nourishments,
it is essential to also understand how
nourishment sands are extracted, how the
sand placed on the beach impacts recreation
and how the investment interacts with

the larger socio-economic setting of the
coastal zone.

Sand mining. The process of extracting and
transporting sand for beach nourishment
is an integral part of nourishment projects,
and partially determines their broader
environmental impact. Because sediment
properties can have important consequences
for the longevity of the nourished
beach*>**, the survival of beach fauna'*'-'*3,
groundwater flows'* and the satisfaction of
tourists'”’, sand needs to be carefully chosen,
and mined sand that resembles the native
is typically preferred'”’. However, there is
a predicted global shortage of sand due to
high demand for concrete, land reclamation
and coastal nourishments'”>'”*, and, owing
to a shortage of inland sand sources, marine
and coastal sands are increasingly mined for
concrete'”*. Extraction from riverbeds and
the nearshore system for building aggregates
removes sand that would naturally build
beaches, increasing nourishment demands,
while also reducing the availability of sand
for nourishment. Meanwhile, the need for
nourishment sands might increase by an
order of magnitude based on sea level-
rise projections — for example, by 2100,
nourishment volumes to maintain the
Dutch coast could be up to 20 times larger
than current volumes'”*. Sand availability
ultimately shapes the feasibility of a sandy
strategy, where mega nourishment designs
of over 20 million m? (FIC. 1d,e) might only
be feasible at locations with ample sand
supplies, such as the North Sea’s shallow
sandy shelf offshore of the Dutch coast.

The pressure on sand as a resource
is reflected in nourishment costs, which
are primarily governed by the distance
between the borrow (extraction) location
and the nourishment (placement) location,
as well as the nourishment execution
method and sand volume'”>"'””. In some
projects where borrow areas are close, such

as the shallow nearshore seabed and/or
nearby inlets or harbours that are dredged
frequently, the cost of sand can be lower
than US$5 per m® (BOX 1). At locations with
limited sand resources of a suitable size
(such as Florida, USA, or Singapore), long
travel distances may raise the price of sand
to US$200 per m®, making sand trading

a part of international disputes'”. Global
nourishment costs might reach hundreds
of billions of US$ per year before the end of
the century'’®. Government regulations and
contract type (such as Construct Only or
Design & Construct) can also drastically
influence sand pricing'”. For example, the
reported Dutch nourishment sand prices
are often based on construction costs

only, without having to acquire permits or
purchase the sand. In contrast, engineering
and environmental assessments required

to obtain a permit for sand extraction in
California can cost hundreds of thousands to
millions of US$, such that total nourishment
costs can be raised by ~40%'%.

New areas for sand mining could become
economically viable over the next decades
as sand prices continue to escalate and
melting ice caps open up new potential
mining sites, but the ecological harms
associated with mining distant sands need
careful evaluation and mitigation before
extraction takes place'®’. For example,
mining of marine sands affects marine
mammals via noise and light pollution'”’,
and invertebrate assemblages of the seafloor
could take years to recover'®’. ‘Landscaping’
the mining pits to create irregularities
in the mined seabed have been proposed
to facilitate fauna recolonization, and a
pilot study revealed a positive impact of pit
landscaping on demersal fish'®’, but the idea
requires further testing in the field to lower
the combined ecological harm caused by
seabed mining.

In addition to being directly ecologically
damaging through sand extraction,
constructing a sand nourishment has a
substantial CO, footprint related to sand
mining and transportation. For a project
using nearby marine sources, the emissions
per m® of disposed sediments are 2-5kg
of CO, (REFS'>'*%). The CO, footprint
increases with transport distance from the
mining site to the beach'”®, emphasizing
the need to identify nearby sand sources
that can be safely extracted. Moreover, the
type of dredging vessel and the disposal
method (such as pipeline transport through
pumping, spraying or dumping through
bottom doors without pumping) affect fuel
consumption and are important controls on
total emission quantity'”*'**. Calculations
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and comparisons of carbon footprint
are, therefore, site-specific and difficult
to compare to other coastal protection
alternatives.

Given the costs and the emissions
associated with sand mining at remote
locations, more local sources may need
to be considered in the future, even if
these are suboptimal from an ecological
or recreational standpoint'®. Using
sediments from nearby (shipping) channels
or estuaries reduces the disturbance of
untouched seafloors, restores natural
sediment pathways and might, where
possible, prove to be the most viable option
to sand mining from a sustainability
standpoint. New developments in efficient
nourishment placement strategies and vessel
(fuel) technology'® must also be explored
further to reduce the overall environmental
footprint of beach nourishment.

Recreational impacts. Nourished beaches
are often designed to enhance human
recreational space, both above and below
the water, especially in tourist areas. Broader
beaches can accommodate more visitors and
land-based activities and are, therefore, often
preferred to narrow beaches'’. However,
visitor appreciation studies in the USA

and Australia show that beaches perceived
to be excessively wide are unattractive to
visitors'®, as they make the ocean less
accessible for water-based activities, such

as surfing, swimming and scuba diving'®".
Altered beach slopes and the development
of scarps on the nourishment can create
hazards'® and impede lifeguards’ views

and vehicle access"’. Nourishments also
affect in-water recreation. Sharp bends in
the planform shape can generate strong
flows that impact bather safety’ and affects
sandbar patterns'”’, sometimes resulting in
stronger rip current flows'”. In the USA,
increased numbers of drownings and
accidents (up to 300%) have been reported
after several beach nourishments. Yet,
without statistics on concurrent variations
or altered beach usage'”, additional research
is needed to provide generic evidence on
the link between nourishment, rip currents
and altered swimmer safety'*”. The changes
in sandbar morphology and wave breaking
patterns can also alter the quality of surf
breaks'>'*>"**, Although implementing
nourishments with irregular outlines and
steep end sections can mitigate some of
these negative effects on surfing'*>'*, these
surfing-specific design features with strong
coastline curvatures are typically short-
lived (weeks to months) and can negatively
impact swimmer safety'*.

PERSPECTIVES

Box 1| Regional nourishment strategies

United States, San Diego County, Southern California

The Southern California coastal zone contains large cliffed sections, intersected with river and
estuarine valleys (panel a). Wide beaches in this region are primarily the result of large, opportunistic
nourishments between the 1940s and 1980s*.. More recently, smaller nourishments (order of
magnitude 200,000 m?)*** are typically placed to protect coastal infrastructure and bolster tourism,
impacting beach spawning fish***, shorebirds'*® and invertebrates'*’. Sands are obtained from a mix
of harbour dredge material'*® and offshore pits'*, with costs of US$12-25 per m® (REF.?%%). These
projects are financed by state and federal funds, with smaller contributions from the local cities.

Australia, South East Queensland

The southernmost part of the Queensland coastline contains large, low-lying sandy islands, backed
by lagoons and inlet systems (panel b) ?°. These beach systems host, amongst others invertebrates,
fish and larger scavengers******, Tourist beaches on this coastline have been nourished since the
1970s*”". Surfing conditions are engineered by an artificial reef in the nearshore zone””®. Local and
state government have invested in a continual programme that adds sand from a nearby estuarine
inlet to popular tourist beaches. The majority of the sand is dredged from nearby estuaries and
inlets, and a small percentage of the sands (15%) is obtained from offshore sources’”’. Costs are
~US$5 per m? (REF?*%). Sand supply is also enhanced by an estuarine bypass system, a continuous
beach nourishment system that redistributes sand from the updrift beach through a pipeline to
several outlets on beaches downcurrent of the estuarine inlet'”.

South Korea, east coast

The South Korean east coast is a rocky coastline with embayed sandy beaches?”® subjected to
multiple severe storm and typhoon events each year”*, and some parts suffer from structural
erosion. Urban areas along the east coast of South Korea typically consist of coastal infrastructure
fronted by a narrow beach (panel c), increasing the demand for coastal protection and space for
recreation using frequent beach nourishments*>?****!_ Even in these developed regions, the beach
ecosystem hosts a range of species, including various burrowing and tube-dwelling amphipods”*’.
Sand is mined from nearby rivers and estuaries or from offshore areas distant from the beach*.
Costs are US$35-45 per m’.

The Netherlands

The majority of the Netherlands is situated below mean sea level and is densely populated.

A narrow beach and dune ridge are the primary defence against flooding (panel d)***. High
potential for inundation damages have led to frequent nourishment interventions that are
backed by federal funding and with long-term nationwide planning. Annually, 10-15 million m?
of sand is used in nourishment projects along the sandy shoreline?’. Nourished sand is placed
on the beach but also in shallow waters (4-6-m water depth), with the intent that it will either
act as a breakwater sandbar or feed sand onshore. These nourishments are found to affect
macroinvertebrates, bivalves and migrating birds (amongst others)?**?*>. These sands are mined
5km offshore in shallow waters (~20-m water depth) from a wide continental shelf. Costs are
~US$5 per m? (REF.*). Federal planning allows for experimenting with new nourishment designs,
such as concentrated mega nourishments.
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Part a credit: Alamy Stock Photo/yury miller. Part b credit: Alamy Stock Photo/David Wall. Part c credit:
Alamy Stock Photo/Busan Drone. Part d image courtesy of Beeldbank Rijkswaterstaat/Joop van Houdt.
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Nourishment length alongshore

Alongshore uniform nourishments mitigate erosion for a
wide stretch of coast but also require the temporary
closure of large stretches of beach. Concentrated feeder
nourishments can be used to supply sediment to a larger
along-coast region, using natural forces to spread
sediment alongshore, but require regional coordination.

Nourishment outline
Smooth alongshore outlines limit new hazardous
currents for swimmers. Irregular outlines with

sharp edges can create spits and improve surfing
temporarily.

Nourishment width

Wide above-water beaches are
attractive for tourism, reduce flood
risk and can increase the freshwater
reservoir in the beach and dunes.

However, excessively wide beaches
are less attractive to beach goers, and
very large nourishments require
capital investments early in time.

Sediment size and type
Nearby and similar to native sands are often preferred.
Coarser sand may increase retention but may impact ecology negatively.
Sediment sources can be obtained from distant locations to match the native
sands better, but costs and CO, emissions increase with transport distance.

Layer thickness
Thin layers may benefit ecological colonization
but increases costs, as nourishments need to be
repeated more often.
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< Fig. 5| Integration of impacts into nourishment

design. a | Main design parameters impacting
coastal zone functions. b | Flow chart for design-
ing and evaluating beach nourishments. Nourish-
ment strategy examples (not comprehensive)
show the diversity in designs and their relation
to design choices. Actual designs could combine
several elements to reflect the nourishment
project goals.

Social and economic impacts. Increasing
beach width via nourishment is often
considered to be beneficial for above-water
recreation, tourism and coastal property
values from an economic standpoint'”’.
Economic evaluations typically contain
three main site-specific elements: changes
in coastal property value, changes in
tourism revenue, and the cost of the coastal
management works. The optimal beach
width can be translated to an estimated
optimal nourishment frequency and size
to maximize revenues'”. In these analyses,
larger values of beach width revenues,
property value or background erosion

rate result in increasing nourishment
frequency'”. When lateral spreading of
the nourished sand is taken into account,
though, achieving an optimal strategy
becomes more complex, as nourishment
losses from one town might benefit
another'”** and local versus regional
approaches to decision making can affect
the economic balance. Coupled coastline
economic models for nourishments
currently under development”” should

be expanded to account for groundwater
and ecological impacts, and the scarcity of
sand resources.

Although some coasts have high
estimated returns, such as for the Florida
coast (USA), where each US$ invested in
nourishments is estimated to have a US$700
return®”', nourishing an existing touristic
beach is not without risks for amenity values.
There are many factors that determine
beach visitor appreciation, such as vehicle
parking, facilities and water clarity'®%2%2,
and restricted beach access and machinery
can impact the visual aesthetics of the beach
during the months of construction, causing
temporary reduction in tourist revenues®”.
Moreover, nourishing with sand dissimilar
from the native mineralogical composition
can result in changes in beach sand colour,
which impacts visitor appreciation, with
light-coloured nourished sediment being
preferred by visitors in some cases, such as
seen in Cuba and Italy'”**". Comparisons
of natural and nourished beaches in Spain
showed that nourished beaches have distinct
different colours (quantified using the CIE

L*a*b* methodology), which can persist for
years after sand is added””.

Given limited sand resources, difficult
decisions will arise about which beach will
be saved by frequent nourishments'®.

With property values being higher behind
wider beaches (all else being equal)'”,
investments to restore and widen beaches
can presumably be higher in more affluent
beach communities'”®. Therefore, upholding
principles of social justice in democratic
systems calls for equitable regulated
approaches to decision making in beach
restoration”>””’. These approaches should
use valuation methods that are inclusive

of non-local beach users, who, in many
cases, cannot afford to live near the coast.
Inclusion can be implemented in the design,
for example, by requiring public access
every half mile after the construction of a
beach nourishment™®.

Furthermore, it is possible that some
beaches might be able to migrate landward
with sea level rise, but would drown when
backed by hard structures. Interesting
questions are thus posed about whether
to prioritize making way for the migrating
beach (often a public asset) or protecting
existing (often private) coastal infrastructure
in place. Nourishment could be useful for
either purpose’”, although more research
is needed to assess effectiveness and
feasibility. Communities might choose to
restore different local beaches for different
purposes, and designs could be optimized
accordingly, for instance, a nourishment
for surfing at one location, with another for
sunbathing elsewhere.

Integrating perspectives

The previous sections outline the progress
that has been made in nourishment impact
science and highlights the connectivity
between the various impacts such as
linkages between beach width variations and
economics; altered grain size and fauna
recovery; sand mining location and visitor
appreciation through sand type and

colour (FIG. 5a). Some of the requirements

are in direct contradiction and demand

a trade-off; for instance: the desire for
thin-layer nourishments for rapid ecological
recolonization is difficult to combine with
economical sand mining and placement,
which favours large quantities; coarser sand
to increase sand retention times on the beach
versus sand similar to native for healthy
ecological habitat; or smooth outline designs
for better swimmer safety versus an irregular
outline to enhance surfing (FIC. 5). Integrated
designs and approaches will, therefore, need
to look beyond sediment spreading and

PERSPECTIVES

dredging costs alone. Quantitative impact
analyses and thresholds for some of the
aspects are currently still lacking, requiring
an iterative procedure in the design process
(FIC. 5b). Modelling studies, combined with
site-specific calibration and validation,

can offer useful guidance throughout the
decision making process.

Assessments of beach nourishment
performance need to be as diverse and
nuanced as nourishment goals and impacts,
which is no small challenge. The traditional
monodisciplinary assessment of beach
nourishment performance, used across
the globe (for example, REFS?#63210-212),
typically focuses on geometrical aspects
alone (like beach width or beach volume).
Visitor appreciation surveys and economic
evaluations (in cost-benefit analysis*"?,
Travel Cost Method or Contingent Valuation
Method*", for example) are also used
widely, despite the often oversimplification
of nourishment impacts, especially
ecological impacts. Multidisciplinary
evaluations require extensive monitoring
plans that measure not only sand levels,
currents and granulometry but that also
include ecological surveys, such as species
abundance and water turbidity values,
groundwater, social and recreational
aspects (including surveys of beach
appreciation and lifeguard statistics) and
economic data (such as property values
and visitor spending)™®.

Instituting procedures to ensure
avoidance or mitigation of ecological harm
require social norms that embrace the
ecosystem nature of sandy beaches and
explicitly value the environmental services
they deliver, thereby balancing conservation
needs with other societal demands from a
beach system*”'*. An ecosystem-services
framework®>'*>?'> promises to capture many
of the impacts mentioned, yet an objective
approach is still difficult, as ecological
perceptions are varied. For example,
creating nourishments with a more complex
shape can lead to a wider variety of species
and new ecological communities compared
with the pre-nourished or adjacent coasts'®,
which can be viewed as a positive or
negative impact, depending on (cultural)
views on ecology and restoration’'®. In some
communities, ecosystem functions may
be a priority that dictates nourishment
design®?"”. New designs (thin layers,
mosaics, concentrated or continuous
drip-feeding nourishments, to name a
few) could foster healthier ecological
habitats than traditional rectangular beach
fills, but are yet to be rigorously tested
and compared.
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Future directions

Many of the world’s sandy beaches are
subjected to ‘coastal squeeze] trapped
between rising seas and increasing
development on land*'"’. As sand

supplies dwindle, sea levels rise and storm
characteristics transform, the effectiveness
of current engineered coastal adaptation
strategies, including beach nourishment, in
protecting vulnerable coastal communities
is uncertain®'***'. Regardless, beach
nourishment is likely to remain a popular
engineering solution in the foreseeable future
to support coastal tourism economies, lower
risks of coastal hazards**?, create habitat
zones’ and reuse sediment dredged from
inland waterbodies". Local erosion trends
and risks to infrastructure, projections of
local sea level rise, availability of sand and
societal values vary across the globe (BOX 1),
and future nourishment strategies must
reflect these differences. For some locations,
small-scale nourishments with lifespans of
a month might be preferred (for example,

at Dongsha beach, China®), whereas
large-scale nourishments are designed

to last decades at other locations (as with
the Sand Engine, the Netherlands®).

Impacts arising from beach nourishment
thematically reflect and intersect multiple
fields of science, emphasizing the need for
collaborative, multidisciplinary research.

A clear example is the effect of nourishment
on surface and subsurface processes

due to altered beach sediment size and
composition. Granulometry and mineralogy
determine multiple aspects of beach
ecosystems (morphology, seawater filtration,
sediment retention, groundwater flows,
organic matter content, habitat suitability for
invertebrates, feeding opportunities for fish
and birds, recreational value and perception,
amongst others), but the interactions and
feedback links that create additive and
synergistic drivers of broader environmental
and socio-economic impacts are rarely
identified or measured.

We identify three broad needs in coastal
nourishment science: a better quantitative
understanding of sediment-transport
processes, particularly the fluxes of sediment
in the cross-shore direction between
dunes and deep water; threshold levels
for ecological impacts, in other words,
the magnitude of habitat change above
which we regularly observe significant
ecological harm attributable to engineering
works; and the groundwater response
to changing beach profiles, including
expansion of freshwater resources and
impacts on inland flooding, sediment
transport (by exfiltration, for example) and

growth of vegetation (which can stabilize
dunes and other features'*). Moreover,
natural, engineered and sea level-rise
scenarios must be intercompared to inform
management decisions, where observations
are critical to assess models. Palaeoclimate
records and observations of beaches
experiencing unusually large relative sea
level rise could provide insight as to how
projected sea level rise is to affect different
beaches in the future, and should be further
integrated with modelled projections of
coastal response.

Continued research will be crucial to
inform the decisions ahead and to enable
us to use our sand resources effectively
and sensibly. Whilst the various impacts of
addressing beach retreat and erosion with
nourishment are outlined, we caution against
unmonitored adoption of nourishment
strategies, mainly because future forcing
conditions (such as storm variability, fossil
fuel emissions and sea level rise scenario) are
uncertain, and a solid foundation in properly
managing impacts with design is lacking.

In the face of uncertainty, we recommend
trigger based adaptation planning. Using
this method, when predetermined metrics
(triggers such as a narrow beach width

or low species abundance) are observed,
changes in planning pathways (such as
nourishment or retreat) will be initiated

to prevent harmful thresholds (such

as flooding or species loss) from being
crossed””. Trigger metrics should be
central components of ongoing monitoring
campaigns, and adaptation pathways can be
iteratively improved as lessons are learned
from monitoring and modeling coastal
management practices. New observation
techniques will need to be developed to map
impacts over a larger area. These studies
must result in numerical prediction tools
that can interpolate scarce observation
points and forecast nourishment impacts
under different circumstances. New pilot
projects to experiment and quantitatively
assess alternative nourishment approaches
are, furthermore, recommended to test and
develop operational capabilities in a fresh
framework that reflects the environmental
diversity and social aspirations of our coastal
‘beachscapes.
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