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Heegaard Floer homology and splicing

homology spheres

Çağri Karakurt, Tye Lidman, and Eamonn Tweedy

We prove a basic inequality for the d-invariants of a splice of knots
in homology spheres. As a result, we are able to prove a new rela-
tion on the rank of reduced Floer homology under maps between
Seifert fibered homology spheres, improving results of the first and
second authors. As a corollary, a degree one map between two
aspherical Seifert homology spheres is homotopic to a homeomor-
phism if and only if the Heegaard Floer homologies are isomorphic.

1. Introduction

The Heegaard Floer homology package, due to Ozsváth and Szabó [18],
[15], has become an extraordinarily valuable set of tools in the study of
3-manifolds, 4-manifolds, knots, and links. Although the Heegaard Floer
3-manifold invariants behave in a straightforward way with respect to the
operation of connected sum, it is much more difficult to determine how they
behave under the more general operation of splicing two 3-manifolds along
knots. Recall that for two knotsK0,K1 in homology spheres Y0, Y1, the splice
is the manifold obtained by gluing the exteriors of the Ki by identifying the
meridian of K0 with the longitude of K1 and vice versa. See [23] for a further
exposition on the splicing construction. In the current article, we study some
properties of the Heegaard Floer homology of a splice and apply this to the
Heegaard Floer homology of Seifert homology spheres.

We shall focus on two particular components of the Heegaard Floer ho-
mology package, the reduced Heegaard Floer homology HFred and the correc-
tion term d. For the weaker hat Heegaard Floer homology ĤF , the splice can
be studied using bordered Floer homology [12] - see, for instance, the work
of Hedden-Levine [7], Hanselman [5] and Hanselman-Rasmussen-Watson [6,
Figure 3] - but does not have the full power of the Heegaard Floer theory.
Throughout the present article we assume that Y is an integral homology
sphere, but the following Heegaard Floer constructions also work for ratio-
nal homology spheres. The reduced Heegaard Floer homology HFred(Y ) is a
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94 Ç. Karakurt, T. Lidman, and E. Tweedy

finitely generated module over F[U ], where F = Z/2Z, which is a quotient
of the plus Heegaard Floer homology module HF+(Y ); the dimension of
HFred over F can be viewed as some measure of the complexity of Y [18].
In particular, HFred(Y ) = 0 if and only if Y is an L-space, i.e. Y has the
same Heegaard Floer homology as a lens space. In this case, Y is obstructed
from admitting a co-orientable taut foliation or admitting a symplectic filling
with b+ > 0 [17]. It should be noted that the only Seifert fibered homology
spheres which are L-spaces are S3 and the Poincaré homology sphere with
either of its orientations, and it is not known whether there are other prime
L-space homology spheres aside from these.

The correction term or d-invariant d(Y ) is an even integer which can
be used to obstruct Y from bounding certain types of 4-manifolds [15].
In particular, d is a surjective homomorphism from the integer homology
cobordism group to 2Z and so if d(Y ) ̸= 0 one can conclude that Y is of
infinite order in homology cobordism. The d-invariants have been used in
many applications, including Dehn surgery problems, knot concordance, and
computing the unknotting numbers of knots. It is shown in [15] that the
following relationship holds among HFred, d, and Casson’s invariant λ:

(1)
d(Y )

2
+ λ(Y ) = χ(HFred(Y )).

If Y is merely a rational homology sphere, the d-invariant associates to
each Spinc structure on Y a rational number and these numbers are Spinc-
rational homology cobordism invariants.

The d-invariant is known to be additive under connected sum [15] in
general. However, it is not known how the d-invariant behaves with respect
to the operation of splicing homology spheres along knots, let alone gluings of
knot exteriors in general. Our first result is an estimate for the d-invariants
of certain gluings of exteriors of knots in homology spheres in terms of
the d-invariants of surgeries on those knots. To state the result, we fix our
terminology. If K is a knot in an integral homology sphere Y , let us denote
the result of 1/n-framed surgery on Y along K by Y (K; 1/n). Suppose K1

and K2 are knots in homology spheres Y1 and Y2, respectively. For integers
n1 and n2, let A be the matrix

A =

(
−n1 1

1− n1n2 n2

)
.(2)

Let Y (K1,K2,±A), denote the manifolds resulting from gluing the exterior
of K1 to the exterior of K2 by a map which identifies the first homology
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of the boundary tori by the matrix ±A, where the bases are given by the
usual meridian-longitude coordinates. Although Y1 and Y2 are suppressed
in the notation Y (K1,K2, A), they should be inferred from where K1 and
K2 are assumed to live in each instance. While it may seem like the gluing
matrices ±A are quite specific, they constitute precisely the set of gluings
of knot exteriors which result in homology spheres — this follows from [4,
Lemma 1]. When n1 = n2 = 0, the homology sphere Y (K1,K2, A) is the
splice of Y1 and Y2 along K1 and K2.

Theorem 1.1. We have

2∑

i=1

d(Yi(Ki; 1/(ni+1))) ≤ d(Y (K1,K2,±A)) ≤

2∑

i=1

d(Yi(Ki; 1/(ni−1))).

Recall that Rasmussen [19] and Ni-Wu [14] defined a family of invariants
Vk of a knot K ⊂ S3 which are in fact invariants of the doubly filtered chain
homotopy type of the knot Floer complex of K. In the case of gluing the
exteriors of two knots in S3, we can estimate and often directly calculate the
resulting d-invariants using the invariant V0 of the knots and their mirrors.

Proposition 1.2. Let K1 and K2 be knots in S3, let n1, n2 be integers, and
let A be the matrix in (2). Then the following hold:

(i) If ϵ±i denotes the sign of ni ± 1, then

(3) − 2

2∑

i=1

ϵ+i V0(ϵ
+
i Ki) ≤ d(Y (K1,K2,±A)) ≤ −2

2∑

i=1

ϵ−i V0(ϵ
−

i Ki).

(ii) In particular, if |n1|, |n2| ≥ 2, then

(4) d(Y (K1,K2,±A)) = −ϵ12V0(ϵ1K1)− ϵ22V0(ϵ2K2),

where ϵi denotes the sign of ni.

(iii) If K1 and K2 have the property that V0(Ki) = V0(−Ki) = 0, then
d(Y (K1,K2,±A)) = 0 for any values of n1,n2.

The condition involving V0 in part (iii) of Proposition 1.2 holds in par-
ticular when K1 and K2 are slice knots. It is interesting to compare this with
Gordon’s result [4, Corollary 3.1] which says that the gluing Y (K1,K2,±A)
in fact bounds a contractible 4-manifold if either both K1 and K2 are slice
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96 Ç. Karakurt, T. Lidman, and E. Tweedy

knots or for one of i = 1, 2, both Ki is slice and ni = 0. From this it im-
mediately follows that d(Y (K1,K2,±A)) = 0. Even though our proof using
Lemma 2.2 formally does not rely on Gordon’s result, it uses his observation,
namely Lemma 2.1 below, which first appeared in [4].

While the above results follow from a direct implementation of stan-
dard properties of d-invariants, we will also provide some novel applications
to Seifert fibered homology spheres. Recall that a collection a1, . . . , an of
n ≥ 3 pairwise coprime positive integers determines the Seifert fibered inte-
ger homology sphere Y = Σ(a1, . . . , an) as follows: There exist unique inte-

gers b1, . . . , bn and e satisfying a1 . . . an

(∑n
j=1

bj
aj

− e
)
= −1 and aj > bj ≥ 0

for all j = 1, . . . , n. Note that if aj = 1, then bj = 0. We start with an S1-
bundle over S2 with Euler number −e. Take n distinct fibers and perform
−aj/bj-framed Dehn surgery for j = 1, . . . , n to obtain Y . This manifold also
admits a natural S1-action the orbits of which are still called fibers. If aj > 1,
then the fiber through the longitude of −aj/bj-framed surgery has nontriv-
ial isotropy of order aj , and this fiber is called the singular Seifert fiber of
order aj . All other fibers are called regular fibers. If Y has fewer than three
singular fibers, then it is diffeomorphic to S3. Up to possible reversing orien-
tation, any Seifert fibered space which is a homology sphere can be obtained
in the above way. Note that our conventions are chosen so that Y bounds a
negative definite plumbed 4-manifold W and we call this the positive Seifert
orientation. See [11] for more details on this convention.

It was shown in [16] how d(Y ) can be obtained from an elementary calcu-
lation involving the intersection form on W . In addition to the applications
we now describe, in Section 4, this technique is used in conjunction with
the inequalities in Theorem 1.1 above to calculate the precise value of the
d-invariant of some graph manifold homology spheres.

Suppose now that Y is a splice of any two positively oriented Seifert
fibered homology spheres along knots which are Seifert fibers. In this case,
combining the right hand inequality of Theorem 1.1 with Proposition 3.1
below immediately results in the following:

Corollary 1.3. Let Y1 and Y2 be two positively oriented Seifert fibered
homology spheres and let Y denote the splice of Y1 and Y2 along Seifert
fibers of Y1 and Y2. Then, we have

(5) d(Y1) + d(Y2) ≥ d(Y ).

This has an immediate corollary using (1). Since χ(HFred(Yi)) =
− dimHFred(Yi) by our orientation conventions, and the Casson invariant
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is splice-additive [3], we deduce

χ(HFred(Y )) ≤ − dimHFred(Y1)− dimHFred(Y2).

Consequently, we have:

Corollary 1.4. Let Y1 and Y2 be two positively oriented Seifert fibered
homology spheres and let Y denote the splice of Y1 and Y2 along Seifert
fibers of Y1 and Y2. Then,

(6) dimHFred(Y ) ≥ dimHFred(Y1) + dimHFred(Y2).

This should be compared to the work of Hanselman-Rasmussen-Watson
[6], who prove that dim ĤF (Y ) ≥ dim ĤF (Yi) for an arbitrary splice. Note
that we do not require that Y be a Seifert fibered homology sphere. On the
other hand, when Y is a Seifert fibered homology sphere, we can make a
stronger connection between the Floer homology and the topology. In this
case, we have that

Y = Σ(a1, . . . , an)

and Y1 = Σ(a1, . . . , ak, ak+1 · · · an)

and Y2 = Σ(a1 · · · ak, ak+1, . . . an).

Note that there is a degree one map from Y to Y1 (respectively Y2) by
pinching the piece which is Seifert over D2(ak+1, . . . , an) (respectively
D2(a1, . . . , ak)) to a solid torus. Conversely, every degree one map between
aspherical Seifert fibered homology spheres is homotopic to a composition
of such maps by [20]. Along these lines, the first and second authors [10]
proved that if f : Y → Y0 is a non-zero degree map between Seifert homol-
ogy spheres, then

(7) dimHFred(Y ) ≥ |deg(f)| dimHFred(Y0).

Equation (6) yields a substantial improvement to this inequality in the case
that f is degree one. This should be reminiscent of hyperbolic volume: if
f : Y → Y0 is a non-zero degree map between hyperbolic 3-manifolds, then
vol(Y ) ≥ |deg(f)|vol(Y0). Further, in the case of hyperbolic volume, f is
homotopic to a covering if and only if equality holds. We can prove an
analogue of this for Seifert homology spheres. (For an analogue of volume
for Seifert manifolds see [21].)
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Theorem 1.5. Let f : Y → Y0 be a non-zero degree map between aspherical
Seifert fibered homology spheres. If dimHFred(Y ) = |deg(f)| dimHFred(Y0),
then f is homotopic to a fiber-preserving branched covering. In particular, if
dimHFred(Y ) = dimHFred(Y0), then f is homotopic to a homeomorphism.

Note that there exists a degree one map from Σ(2, 3, 5) to S3, both of
which have trivial HFred.

Remark 1.6. If f : Y → Y0 is a fiber-preserving branched cover, some-
times we have the equality dimHFred(Y ) = |deg(f)| dimHFred(Y0), such as
for Σ(2, 3, 35), which is a 5-sheeted cover branched over the singular fiber
of order 7 in Σ(2, 3, 7). (The dimensions of HFred are 5 and 1 respectively.)
However, this is not always the case, as for Σ(3, 5, 28), which is a 4-sheeted
cover branched over the singular fiber of order 7 in Σ(3, 5, 7). (The dimen-
sions are 14 and 3 respectively.)

Recall that Hendricks, Hom, and the second author [8] make use of the
constructions in [9] to define the connected Heegaard Floer homology HFconn,
which is isomorphic to a summand of HFred and is a homology cobordism
invariant.

Theorem 1.7. Suppose Y , Y1, and Y2 are as described in the statement of
Theorem 1.3. Suppose further that HFconn(Y1) = HFconn(Y2) = 0 and that
Y is Seifert. Then, HFconn(Y ) = 0.

By repeating the arguments below, one can also formulate a variant of
Proposition 1.2(ii) for the gluing of the exteriors of fibers in Seifert homology
spheres, but we leave this to the reader.

Outline

In Section 2 we prove Theorem 1.1 by way of two lemmas, and then prove
Proposition 1.2. In Section 3 we prove the results pertaining to Seifert homol-
ogy spheres. Finally, in Section 4, we provide some example computations
of d-invariants of splices.

2. d-invariants, splicing, and surgery

We begin this section with a proof of Theorem 1.1. However, before proving
the result in full generality, we will prove it for the special case of a splice.
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First we need a key fact from [23, p.10], see also [3], [4]. We include a Kirby
calculus proof for the benefit of the reader.

Lemma 2.1. The splice Y of (M,K) and (Z, J) can be described in the
following two ways: For ϵ ∈ {−1,+1}, let Mϵ = M(K; ϵ) and Zϵ = Z(J ; ϵ).
Then Y = (M−1#Z−1)(K̃#J̃ ; +1) = (M+1#Z+1)(K̃#r(J̃);−1) where K̃
and J̃ are the canonical longitudes of the two surgeries, and r(J̃) denotes
the reverse of the oriented knot J̃ .

Proof. From the definition, when we splice the homology spheres M and
Z along oriented knots K and J we glue M \K to Z \ J in such a way
that the meridian of K is identified with the longitude of J and vice versa.
Note further that the exterior of K can be seen by removing a meridian of
K after performing 0-surgery on K, and the Seifert longitude of K is then
described by a meridian of this meridian, and the same is true for J . Hence
the splice is represented by the surgery diagram on top of Figure 1, where we
additionally indicated the orientations on K and J . Then the two 0-framed
unknots in this diagram can immediately be canceled to get the surgery
picture in the second row. This agrees with the convention [23, Figure 1.4]

To obtain the description corresponding to ϵ = −1 we follow the vertical
moves on the left hand side of Figure 1. We blow-up with a −1-framed
unknot (red curve) to unlink K and J then slide it over both K and J to
get the final figure on bottom left. The red curve now is now isotopic to
K̃#J̃ in M−1#Z−1.

The description corresponding to ϵ = +1 follows from a similar argument
indicated on the right hand side. Note that by an isotopy we can turn the
+1 full twist between K and J into a −1 full twist, so we can unlink them
this time by blowing-up with a +1-framed unknot (blue curve). We slide it
over both K and J to get the required description. □

Lemma 2.2. Suppose K1 and K2 are knots in integral homology spheres
Y1 and Y2 respectively. Let Y be the splice of Y1 and Y2 along K1 and K2.
Then

2∑

i=1

d(Yi(Ki; +1)) ≤ d(Y ) ≤

2∑

i=1

d(Yi(Ki;−1)).

Proof. First, fix ϵ ∈ {−1,+1}. Recall from [15, Corollary 9.14] that if Z1 is
an integral homology sphere and if Z2 is obtained from Z1 by ϵ-surgery on
a knot L in Z1, then ϵd(Z2) ≤ ϵd(Z1). Now, suppose that Y is the splice of
(Y1,K1) and (Y2,K2). Immediately from Lemma 2.1 and the additivity of
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0 0 0 0

Handleslide and cancellation

0 0 0 0

Isotopy

K J

K J

−1 −1 −1 +1 +1

−1 −1 +1 +1

K

+1

+1

−1

Blow-up and Isotopy

−1−1

+1

+1+1

−1

K

Handleslides

K

K

K
J

K K

Isotopy

J

J

J

J

J

J

Figure 1: Surgery diagrams yielding equivalent descriptions of the splicing
operation. The framings are given relative to Seifert framings.

the d-invariant under connected sum, we get that for ϵ ∈ {−1, 1},

ϵd(Y ) ≤ ϵd(Y1(K1; ϵ)#Y2(K2; ϵ)) = ϵ(d(Y1(K1; ϵ)) + d(Y2(K2; ϵ))). □

With these lemmas in hand, we can easily prove Theorem 1.1.

Proof of Theorem 1.1. The gluing map with matrix A identifies µ1 + n1λ1

with λ2 and µ2 + n2λ2 with λ1. Note that µi + niλi (respectively λi) is
the meridian (respectively longitude) of the core K̃i in the surgered mani-
fold Yi(Ki; 1/ni). Therefore, we see that Y (K1,K2, A) is exactly the splice of
(Y1(K1; 1/n1), K̃1) and (Y2(K2; 1/n2), K̃2). We would like to apply Lemma 2.2.
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Note that the further surgered manifold Yi(Ki; 1/ni)(K̃i;±1) is simply
Yi(Ki; 1/(ni±1)). The result now follows from Lemma 2.2.

On the other hand, the gluing map with matrix−A identifies−µ1 − n1λ1

with λ2 and µ2 + n2λ2 with−λ1. Since−µ1 and−λ1 are the preferred merid-
ian and longitude of the reverse knot r(K1), we can see that in this case
Y (K1,K2,−A) is the splice of (Y1(r(K1); 1/n1), r(K̃1)) and (Y2(K2; 1/n2), K̃2).
Since the d-invariant of a surgery does not depend on string orientation of
the knot, the rest of the argument is identical to that in the first case □

Proof of Proposition 1.2. (i) By work of Ni and Wu [14, Proposition 1.6], for
any knotK in S3 and integer n it is the case that d(S3(K; 1/n)) = −2ϵV0(ϵK)
where ϵ denotes the sign of n. Inequality (3) then follows from Theorem 1.1
by taking the special case Yi = S3 for i = 1, 2.

(ii) If additionally |ni| ≥ 2, then notice that ni ± 1 both have the
same sign as ni. Therefore in this case, the upper and lower bounds for
d(Y (K1,K2,±A)) provided by (3) are both equal to −ϵ12V0(ϵ1K1)−
ϵ22V0(ϵ2K2) and (4) follows.

(iii) A consequence of [14, Theorem 2.5] is that if V0(Ki) = V0(−Ki) =
0, then d(S3(Ki; +1)) = d(S3(Ki;−1)) = 0. The result then follows from
(3). □

3. Splicing Seifert fibers

We now focus on the splicing of Seifert fibers in Seifert homology spheres to
prove the remaining results in the introduction. Let Y be a Seifert fibered
integral homology sphere and let W be the negative-definite plumbed 4-
manifold bounded by Y . The intersection form on W provides a unimodular
negative-definite integral lattice LW , and in this case d(Y ) can be interpreted
as an invariant of the lattice by work of Ozsváth-Szabó [16]. We briefly review
the formula.

Given any unimodular negative-definite integral lattice L, recall that
the characteristric coset of the lattice is the set of vectors χ ∈ L such that
⟨χ, y⟩L ≡ ⟨y, y⟩L (mod 2) for all y ∈ L. Then the lattice d-invariant is

d(L) = max

{
⟨χ, χ⟩L + rank(L)

4
: χ ∈ Char(L)

}
∈ 2Z.

It is straightforward to see that d(L) is additive under lattice direct sum
and that any diagonalizable lattice has d = 0. Ozsváth and Szabó prove
that d(Y ) = d(LW ).
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In light of Lemma 2.2, to analyze the d-invariants of a splice of Seifert
fibers, we must understand surgery on these knots. The following is con-
tained in work of the second and third authors [11, Proposition 4.4], but we
present a streamlined proof here.

Proposition 3.1. Let Y ′ be obtained by −1-surgery on a Seifert fiber in a
positively oriented Seifert homology sphere Y . Then d(Y ′) = d(Y ).

Proof. Consider the negative-definite star-shaped plumbed 4-manifold W
bounded by Y . Attach a −1-framed 2-handle to W along the Seifert fiber.
The resulting 4-manifold W ′ is a negative-definite plumbing bounded by Y ′.
Since the two-handle attachment is along the homology sphere Y , there is a
splitting of lattices LW ′

∼= LW ⊕ (−Z). It follows that

d(Y ′) = d(LW ′) = d(LW ) + d(−Z) = d(Y ).
□

Proof of Theorem 1.5. By work of Rong [20], a non-zero degree map between
aspherical Seifert homology spheres is homotopic to a composition of vertical
pinches, denoted g, followed by a fiber-preserving branched covering. By [21]
and [10, Proposition 8.3], g is obtained by a sequence of vertical pinches
of the form Σ(a1, . . . , an) to Σ(a1 · · · ak, ak+1, . . . , an), as described in the
introduction. We would like to show that equality in (7) implies that these
vertical pinch maps are trivial (i.e. k = 1), which implies that g is a fiber-
preserving homeomorphism, completing the proof.

If the total rank inequality in (7) is an equality, that means that it is
also equality for each of the vertical pinches. Recall that Z = Σ(a1, . . . , an) is
a splice of Z1 = Σ(a1 · · · ak, ak+1, . . . , an) and Z2 = Σ(a1, . . . , ak, ak+1 · · · an)
with the same orientation, spliced along the singular fibers of order a1 · · · ak
and ak+1 · · · an respectively. If dimHFred(Z) = dimHFred(Z1), then Z2 must
be an L-space by (6). Note that in order to have a non-trivial pinch map, we
must have n ≥ 4 and thus Σ(a1, . . . , ak, ak+1 · · · an) is not S3 or Σ(2, 3, 5),
which are the only Seifert L-space homology spheres [2]. Consequently, we
see that the pinch maps are trivial, so g is homotopic to a homeomor-
phism. □

Proof of Theorem 1.7. First, we recall from [1] that a positively oriented
Seifert manifold has d = −2µ and d = d, where µ denotes the Neumann-
Siebenmann invariant [13],[24] and d, d are the Hendricks-Manolescu invo-
lutive correction terms. Recall that d ≤ d ≤ d [9] and that HFconn = 0 if
and only if d = d by [8, Proposition 4.6]. If Y is a Seifert homology sphere
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obtained by splicing Seifert fibers in positively oriented Seifert manifolds Y1
and Y2, then by Corollary 1.3 and the splice-additivity of µ [22], we see

d(Y1) + d(Y2) = d(Y1) + d(Y2)

≥ d(Y ) ≥ −2µ(Y )

= −2µ(Y1)− 2µ(Y2)

= d(Y1) + d(Y2).

Since HFconn(Yi) = 0, we have d(Yi) = d(Yi), and thus d(Y ) = −2µ(Y ), i.e.
d(Y ) = d(Y ). This implies that HFconn(Y ) = 0. □

4. Examples

We illustrate Lemma 2.2 with a basic family of graph manifold examples.
For each i ∈ {1, 2}, pick a pair pi, qi of relatively prime positive integers.
Additionally, let m1,m2 be any two positive integers. For each i let Yi be the
positively oriented Seifert fibered integer homology sphere Σ(pi, qi, piqimi +
1) and let Ki ⊂ Yi be the singular fiber of order piqimi + 1.

It is well-known that Yi(Ki; +1) ∼= Σ(pi, qi, piqi(mi − 1) + 1) and that
performing −1-surgery on the singular fiber of order piqi(mi − 1) + 1 in this
latter manifold results in Σ(pi, qi, piqimi + 1) = Yi. Now we can see that
Proposition 3.1 above implies that d(Yi(Ki; ϵ)) = d(Yi) for each i ∈ {1, 2}
and for each ϵ ∈ {−1,+1}. Letting Y be the splice of Y1 and Y2 along K1 and
K2, we see that the upper and lower bounds in Lemma 2.2 are both equal to
d(Y1) + d(Y2) and so d(Y ) = d(Y1) + d(Y2). (This can also be deduced from
Proposition 1.2 applied to the torus knots Tpi,qi in S3.)

To extend the above example, consider a Seifert fibered homology sphere
Σ(a1, a2, . . . , an). Call the operation Σ(a1, a2, . . . , an) → Σ(a1, a2, . . . , an +
a1 . . . an−1) stabilization and its inverse destabilization of the singular fiber
of order r. We say that the singular fiber of order an is stabilized if an >
a1 . . . an−1. In this case −1- and +1-surgery on the singular fiber of order an
correspond to stabilization and destabilization of the same singular fiber, so
by Proposition 3.1 they do not change the d-invariant. Hence we can con-
clude that the d-invariant is splice additive if we splice two Seifert fibered
homology spheres along stabilized singular fibers. Note that the same argu-
ment also works even if we reverse orientations on either (or both) of the
Seifert homology spheres. As a result we can compute the d-invariant of
those graph homology spheres whose splice diagram contains two nodes and
spliced singular fibers are stabilized.
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13 17
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+ −
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Figure 2: Splice diagram of Y .

For example, let Y1 = Σ(2, 5, 13), with K1 the singular fiber of order
13, and let Y2 = −Σ(2, 5, 17), with K2 the singular fiber of order 17. Here,
Σ(2, 5, 13) has positive Seifert orientation (bounding a negative-definite
plumbing), while −Σ(2, 5, 17) is negatively oriented (bounding a positive-
definite plumbing). Let Y be the splice of Y1 and Y2 along K1 and K2. (See
Figure 2 for the splice diagram of Y .) Note that the associated plumbing is
neither positive-definite nor negative-definite. Nonetheless, we compute

d(Y ) = d(Y1) + d(Y2)

= d(Σ(2, 5, 13))− d(Σ(2, 5, 17))

= d(Σ(2, 3, 5))− d(Σ(2, 5, 7))

= 2− 0

= 2.

Note that stabilization is essential for the splice additivity. For example
Σ(3, 11, 13, 20) is the splice of Σ(33, 13, 20) and Σ(3, 11, 260) along singu-
lar fibers of orders 33 and 260 respectively. We have d(Σ(3, 11, 13, 20)) =
d(Σ(33, 13, 20)) = d(Σ(3, 11, 260)) = 2, so

d(Σ(3, 11, 13, 20)) ̸= d(Σ(33, 13, 20)) + d(Σ(3, 11, 260)).
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University Research Fund Grant Number 12482. TL was supported by NSF
grant DMS-1709702 and a Sloan Fellowship.

References

[1] I. Dai and C. Manolescu, Involutive Heegaard Floer homology and
plumbed three-manifolds, Journal of the Institute of Mathematics of
Jussieu (2017), 1–41.



✐

✐

“4-Tweedy” — 2021/4/11 — 1:34 — page 105 — #13
✐

✐

✐

✐

✐

✐

Heegaard Floer homology and splicing homology spheres 105

[2] E. Eftekhary, Seifert fibered homology spheres with trivial Heegaard
Floer homology, arXiv:0909.3975, (2009).

[3] S. Fukuhara and N. Maruyama, A sum formula for Casson’s λ-
invariant, Tokyo J. Math. 11 (1988), no. 2, 281–287.

[4] C. M. Gordon, Knots, homology spheres, and contractible 4-manifolds,
Topology 14 (1975), 151–172.

[5] J. Hanselman, Splicing integer framed knot complements and bordered
Heegaard Floer homology, Quantum Topol. 8 (2017), no. 4, 715–748.

[6] J. Hanselman, J. Rasmussen, and L. Watson, Bordered Floer homol-
ogy for manifolds with torus boundary via immersed curves arXiv:

1604.03466, (2016).

[7] M. Hedden and A. S. Levine, J. reine angew. Math. 720 (2016), 129–
154.

[8] K. Hendricks, J. Hom, and T. Lidman, Applications of involutive Hee-
gaard Floer homology, arXiv:1802.02008, (2018).

[9] K. Hendricks and C. Manolescu, Involutive Heegaard Floer homology,
Duke Math. J. 166 (2017), no. 7, 1211–1299.

[10] c. Karakurt and T. Lidman, Rank inequalities for the Heegaard Floer
homology of Seifert homology spheres, Trans. Amer. Math. Soc. 367
(2015), 7291–7322.

[11] T. Lidman and E. Tweedy, A note on concordance properties of fibers in
Seifert homology spheres, Canad. Math. Bull. 61 (2018), no. 4, 754–767.

[12] R. Lipshitz, P. S. Ozsvath, and D. P. Thurston, Bordered Heegaard Floer
homology, Mem. Amer. Math. Soc. 254 (2018), no. 1216, viii+279.

[13] W. Neumann, An invariant of plumbed homology 3-spheres, in: Lecture
Notes in Math., Vol. 788, 125–144, Springer, Berlin (1980).

[14] Y. Ni and Z. Wu, Cosmetic surgeries on knots in S3, J. reine angew.
Math. 706 (2015), 1–17.
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