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Abstract Mathematical models implemented on a com-
puter have become the driving force behind the acceler-
ation of the cycle of scientific processes. This is because
computer models are typically much faster and econom-
ical to run than physical experiments. In this work, we
develop an empirical Bayes approach to predictions of
physical quantities using a computer model, where we
assume that the computer model under consideration
needs to be calibrated and is computationally expen-
sive. We propose a Gaussian process emulator and a
Gaussian process model for the systematic discrepancy
between the computer model and the underlying phys-
ical process. This allows for closed-form and easy-to-
compute predictions given by a conditional distribution
induced by the Gaussian processes. We provide a rig-
orous theoretical justification of the proposed approach
by establishing posterior consistency of the estimated
physical process. The computational efficiency of the
methods is demonstrated in an extensive simulation
study and a real data example. The newly established
approach makes enhanced use of computer models both
from practical and theoretical standpoints.
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1 Introduction

With the advancements of computer architectures in
the 21*" century, mathematical models implemented
on a computer (computer models) heavily contributed
to the rapid speed-up of the cycle of scientific pro-
cesses. This is because computer models are generally
much faster and economical to run than physical exper-
iments. For instance, experiments conducted in high-
energy particle colliders require budgets in billions of
dollars and multinational collaborations. Additionally,
many experiments related to natural events such as ex-
treme weather phenomena, including tropical cyclones
or tornadoes, are practically impossible to conduct.
Computer models, despite being an invaluable com-
ponent of the process of scientific discovery, are imper-
fect representation of physical systems with each model
evaluation often taking many hours. In this paper, we
present an empirical Bayes approach for fast and sta-
tistically principled predictions of physical quantities
using imperfect computer models that need to be cali-
brated with experimental observations. We particularly
aim at those scenarios where computer models under
consideration are complex and computationally too ex-
pensive to be used directly for predictions with quan-
tified uncertainties. Our approach builds on the frame-
work for computer model aided inference developed by
Kennedy and O’Hagan (2001) that establishes the con-
nection between experimental observations, computer
model, and the systematic discrepancy (error) between
the model and the physical process. The systematic dis-
crepancy is modeled nonparametrically using a Gaus-
sian process (GP) and the computer model is replaced
by an emulator based also on a GP. This framework has
reached high popularity over the past two decades with
many applications in nuclear physics (Higdon et al.,
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2015; King et al., 2019), climatology (Sexton et al.,
2012; Pollard et al., 2016), and engineering (Williams
et al., 2006; Plumlee et al., 2016; Zhang et al., 2019).
There have been also various extensions of the origi-
nal framework from both methodological and compu-
tational perspective. For example, Higdon et al. (2008)
consider computer models with high-dimensional out-
put. Plumlee (2017) and Gu and Wang (2018) study
specific GP modeling choices to improve the predictive
accuracy of the framework. Kejzlar and Maiti (2020)
develop variational inference based approach for ap-
proximation of posterior densities. Tuo and Wu (2015),
Plumlee (2019), and lately Xie and Xu (2020) show the-
oretical properties of the framework under some modi-
fications.

Despite these efforts, some of the practical chal-
lenges for computer enabled predictions with GPs re-
main. First, implementation of the framework Kennedy
and O’Hagan (2001) is never straightforward and typi-
cally requires considerable effort and experience, espe-
cially under some of the extensions listed in the previous
paragraph. Second, a fully Bayesian approach becomes
quickly computationally demanding with the increasing
sample size, model complexity, and number of parame-
ters. Third, in the absence of correct prior distributions,
the full Bayesian models could be sensitive to the choice
of hyperparameter values. To avoid these complications,
we consider an empirical Bayes approach, which can be
viewed as an approximation to the fully Bayesian treat-
ment. This approximation principle is well established
for standard statistical models. We validate this in the
context of calibrated computer models. Following are
the specific contributions of this work:

a) Our methodology utilizes the statistical properties
of GPs to establish easy-to-implement, closed-form,
and fast-to-compute predictions of physical quanti-
ties using computationally expensive computer mod-
els that are calibrated with experimental observa-
tions. This includes a proposal of two estimators for
plug-in model parameters with negligible loss of un-
certainty on predictions that can be readily obtained
using standard numerical solvers.

b) We offer a fresh perspective on the framework of
Kennedy and O’Hagan (2001) and provide its equiv-
alent representation as a hierarchical model. As a
consequence, we derive new theoretical properties of
this framework and show that our proposed method-
ology estimates the values of underlying physical
process consistently. Our theoretical analysis is based
on an original extension of Schwartz’s theorem for
nonparametric regression problems with GP priors
and an unknown but consistently estimated vari-
ance.

c) We provide an extensive simulation study and demon-
strate the computational efficiency of the proposed
methodology compared with the Metropolis-Hasting
algorithm (fully Bayesian implementation). We also
conduct a sensitivity study of the fully Bayesian so-
lution to prior selection and show that our method-
ology is preferred in the absence of proper and mean-
ingful prior distributions. Additionally, we illustrate
the opportunities provided by our method on an
analysis of experimental nuclear binding energies. A
fully documented Python code with our algorithm
and examples is available at https://github.com/
kejzlarv/EB_Calibration.

1.1 Outline of this paper

In Section 2, we review the general framework for Bayesian
inference with computer models. Section 3 defines two
plug-in estimators for GP model parameters and a con-
sistent estimator of a noise variance component. Then,
in Section 4, we discuss the theoretical properties of our
approach and establish its statistical consistency. Sec-
tion 5 contains a simulation study that validates the
methodology in this paper empirically. A real data ap-
plication is also included in Section 5.

2 Bayesian model for inference with computer
models

Let us consider observations y = (y1, ..., yn) of a phys-
ical process ((t) depending on a known set of inputs
t;, i =1,--- ,n taking values in a compact and convex
set £2 C RP, p > 1, following the relationship

inC(ti)—f—UEi, 1=1,...,n, (1)

where o represents the scale of observational error, typi-
cally ¢; bt N(0,1). Our aim is to establish statistically
principled predictions y* = (yj,...,y%) of the physical
process ¢ at new, yet to be observed, inputs (¢,...,t%)
using y and a computer model f,, defined as a mapping
(t,0) — fin(t,0). As we can see, the computer model
depends on an additional set of inputs 8 € © C R?
that we call calibration parameters. These are consid-
ered fixed but unknown quantities common to all the
observations y; and all the instances of the physical
process that we intend to predict using calibrated com-
puter model. The calibration parameters represent in-
herent properties of the physical process that cannot
be directly measured or controlled in an experiment.
In the most rudimentary form, one can think of the
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calibration parameters as parameters in standard re-
gression problems. To this extent, we suppose the rela-
tionship between the observations y, physical process (,
and the computer model f,, as proposed by Kennedy
and O’Hagan (2001):

Yi = fm(ti,0) +3(t;) + oei, (2)

where 0(t;) represents an unknown systematic error be-
tween the computer model and the physical process.
While 6(¢;) is intrinsically deterministic, a nonpara-
metric approach using a GP prior model is typically
imposed for Bayesian inference.

GPs are a convenient way of placing a distribution
over a space of functions. By definition, we say that
0(t) has a GP distribution, if for every i = 1,2,3...
the joint distribution of d(¢1),...d(¢;) is multivariate
normal. It is fully described by its mean and covariance
functions that characterizes the relationship of the pro-
cess at different inputs.

Typically, the mean function is chosen to be zero or
some dense family of basis functions (wavelets, Fourier,
polynomials) across the input domain:

ms(-) = h(-)"B, 3)

where h(-) = (h1(*),...h.(:)) are the basis functions
and 3 is a hyperparameter. A typical choice for the
covariance function is a stationary covariance function
that depends on the inputs through ¢ — ¢'. For exam-
ple, a Gaussian kernel covariance function (also called
squared exponential or radial basis function kernel) takes
the form

ks(t,t') = nexp ( — %(t —thTM(t - ﬂ)), (4)

where M corresponds to a positive definite diagonal
matrix of hyperparameters. We refer to the case of
M = Z%I, for some ¢ > 0, as an isotropic version of
the kernel, because it is invariant to the rotation. The
case of M with different diagonal terms is called an
anisotropic version of the kernel. Other popular choices
for stationary covariance functions are Matérn kernels,
polynomial kernels, or exponential kernels (Rasmussen
and Williams, 2006).

It is important to note that one first needs to pro-
vide an estimate of the unknown parameter 8 accord-
ing to the relationship (2), before making any predic-
tions. The process of estimation of such parameter is
called model calibration. In Bayesian sense, it corre-
sponds to obtaining a full posterior distribution of 6
given data. Unfortunately, the calibration parameter
0 is non-identifiable in general. Several authors have
pointed this out and proposed various methods to mit-

igate the problem including (Bayarri et al., 2007; Bryn-
jarsdottir and O’Hagan, 2014; Plumlee, 2017; Tuo and
Wu, 2015, 2016). Our main goal here, nonetheless, is not
the correct identification of 8, but a prediction. Thus
the problem can be thought of as a “black-box” based
prediction such as the prediction based on neural net-
works or deep networks where parameters are part of
the nonparametric models.

It is often the case that the evaluation of computer
model f,, is too expensive in terms of both time and
space (memory). Common practice is to reduce the
number of necessary computer model evaluations by
considering a GP prior model. We use the following
notation:

fm(t,0) ~ GP(mys(t,0),ks((t,0),(t,0)).

In this setup, the data also include set of model evalua-
tions z = (21,. .., 2) over a grid {(£1,61), ..., (ts, 05)}.
These are usually selected sequentially using some space-
filling design such us uniform or Latin hypercube design
(Morris and Mitchell, 1995), which is a design that has
a good coverage of the space with evenly distributed
points in each one-dimensional projection. The com-
plete dataset d in the case of computationally expen-
sive models consists of n observations y; from the phys-
ical process ¢ and s evaluations z; of the computer
model f,,, i.e. d = (dy,...,dnts) = (y,z). We shall
denote the set of unknown parameters as (6, ¢, o) with
¢ €= CRY denoting the set of hyperparameters of
GPs’ mean and covariance functions. Consequently, the
distribution of the complete dataset d conditioned on

(6,9,0) is

df,¢,0 ~ N(M(0, ), K(0,¢,0)), ()

where

MOD =\ (e ©

(Mf (7,,(0)) +%<Ty>>
M (T,(0)) is a column vector with §* element m (¢, 0),
M,(T,) is a column vector with j*® element mys(t;),
and M(T.(6)) is a column vector with j*" element

my(t;,0;). The covariance matrix of the multivariate

normal distribution (5) is

K(0,¢,0) =

K (T (6), Ty(8)) + K5 (Ty. Ty) + 0 In K ;(T(6),T=())\
K(T2(0),Ty(8)) K (T:(0),T=())

(M)

Here K;(T,(0),T,(0)) is the matrix with (i, j) element

k¢ ((t;,0),(t;,0)), Ks(T,,T,) is the matrix with (4, 7)
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element ks(t;,t;), and Kf(TZ(HN),TZ(g)) is the matrix
with (4,7) element kf((ﬂ,él),({j,gj)) We can define
the matrix K ,(7,(0),T. ()) similarly with the kernel
k.

Under a fully Bayesian treatment, the predictions
of y* are specified by the posterior predictive distribu-
tion p(y*|d). It is obtained by integrating the condi-
tional density p(y*|d, 8, ¢, o), which is a multivariate
normal density given by the statistical model (1) and
the specification of GPs, against the posterior density
p(0, ¢, 0ld). Analogical relationship holds for the pre-
dictions of new realizations of the physical process ¢*.
The posterior density p(0, ¢, o|d), however, does not
have a closed-form in general and one needs to resort
to either Markov chain Monte Carlo (MCMC) methods
for approximation or use variational techniques. This
can be a non-trivial task to implement and requires
some practical experience. Additionally, the nature of
the marginal likelihood p(d|@, ¢, o) makes the problem
harder to scale due to the complex structure of the co-
variance matrix K (0, ¢, o), see Kennedy and O’Hagan
(2001) and Kejzlar and Maiti (2020) for further discus-
sion.

To avoid these difficulties, we propose an empirical
Bayes approach which instead of placing a (prior) distri-
bution on (0, ¢, o) estimates these parameters directly
form the data. One can therefore utilize the convenience
of GPs to obtain closed-form, simple, and fast predic-
tions given by the conditional distribution p(y*|d, 8, ¢, o)
(or p(¢*|d, 0, ¢,0)). The proposed approach can be con-
ceptualized as an approximation of the fully Bayesian
treatment that neglects some of the uncertainty associ-
ated with the unknown parameters.

3 Prediction and parameter estimation

One of the main benefits of the empirical Bayes ap-
proach is that once we estimate the unknown param-
eters (6, ¢,0), we can obtain a closed-form predictive
distribution given these estimates. The framework addi-
tionally yields a principled approach for the inference of
physical process ( that is statistically consistent (shown
below in Section 4).

Here we formally derive the algorithm for predic-
tion of physical quantities. Let us consider a set of new
inputs (t},...,t%) at which we want to obtain predic-
tion according to the model (2). The joint normality
between d and y* implies that the conditional distri-
bution p(y*|d, 8, ¢, o) is a multivariate normal distri-
bution with the mean vector

My*(e,(ﬁ, U) = (8)
Mg (Ty (0)) + Ms(Ty) + C.K(8,¢,0) ' (d— M(8, ¢)),
and the covariance matrix
Ky* (05 ¢a G) =
K (T;(0),T;(0) + Ks(Ty,Ty) + 0’1y — CuK(6,¢,0)"'CL,
9)
where
Cy =
(K4 (T5(0),T,(0)) + K5 (T3, Ty) K 4(T3(0),T-(6)))
(10)

M(0,¢) and K(0,¢,0) is the mean vector and the
covariance matrix of the data likelihood p(d|@, ¢, o),
K, (T;(0),T,(0)) is the matrix with (i, j) element be-
ing k 7((¢7,0),(t;,0)), K:(T,(0),T,(0)) is the matrix
with ( ,J) element being k¢ ((t7,0), (t;,0)), Ks(T,;,T,)
is the matrix with (i, j) element ks (], t}), and K4(T;, T,)
is the matrix with (7, j) element k;5(¢;, ;). We can sim-
ilarly define the matrix K ;(7;(0), T, (5)) with the ker-
nel k; and the mean Vectors M (T, (0)) and My(T) as
in the case of the likelihood (5 ) Analogical rela‘monbhlp
holds for the conditional distribution of the new realiza-
tions from the physical process p(¢*|d, 8, ¢, o), where
the mean vector M- (0, ¢, o) is identical with (8), and
the covariance matrix is

KC* (ead)? U) =

i , , o e D
K (T;(0),T,(8)) + Ks(Ty, o™,

T,)—C.K(0,¢,0)

The Algorithm 1 summarizes the procedure for pre-
dictions of physical quantities using imperfect and com-
putationally expensive computer models.

3.1 Parameter estimation

As we have all closed-form expressions for the condi-
tional distributions in Algorithm 1, the computation
avoids Monte Carlo sampling, hence negligible time is
required compared to the sampling based approxima-
tions. This is assuming plugged-in parameter estimates.

To this extent, we propose the following estimator
of the noise scale:

Zz 1 yH—l )2
(n—1) ’
where y; are the observations from the physical process
under the model (1). The advantage of considering &,

(12)
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Algorithm 1: Empirical Bayes algorithm for
predictions of physical quantities using com-
puter models

Input: Data d = (y, z), mean and covariance
functions for GPs, and new inputs
(&, ..., t%).
1 Use the experimental observations y to
compute the estimate of noise scale &,
2 Use d to obtain the estimates of GPs’

hyperparameters (BA”JFS7 ¢A>n+s)

3 Compute My*(én_m,(]gn_s_s,frn) and
Ky* (0n+sl¢n+sl 671) or M(* (0n+sa ¢n+sv a—n)
and K¢« (0p1s, Pnts, 0pn) respectively to get
the posterior predictive distribution

of this form is twofold. First, the estimator requires
minimal computational effort. Second, &, is in fact a
strongly consistent estimator (see Corollary 1 in Section
4) which turns out to be a crucial assumption for the
theoretical validation of the empirical Bayes framework
conducted in the following section.

3.2 Estimation of hyperparameters

Marginal data likelihood We first consider estimates of
(0, ¢) as minimizers of a loss function that is remi-
niscent of the standard maximum likelihood approach,
namely

L]\/ILE(07 ¢) = - 10gp(d|0, ¢a &n)a

with the negative log-likelihood being

- Ing(d|0> ,0,) =
S M(6,6) K(0,6,5,)(d ~ M(6,6)

1

(13)

n+s

log 2.

We can interpret the minimizer of Ly, g as a trade-off
between the data-fit 1(d — M(6,¢))"K(0,¢,6,)(d —
M(60,¢)) and the model complexity penalty given by
%log|K(0, ¢, 5,)| that depends only on model parame-
ters and the variable inputs.

Predictive likelihood with K-fold cross-validation An-
other viable approach of estimating the parameters (0, ¢)
is to base these on a model’s predictive performance on
unseen data. Cross-validation is a popular and robust
approach to estimate this predictive performance that
has been utilized across many statistical applications.
See Sundararajan and Keerthi (2001); Rasmussen and

Williams (2006); Martino et al. (2017) for applications
with Gaussian processes. Here, we consider a K-fold
cross-validation where the basic idea is to randomly
partition the training dataset into K subsets of roughly
equal size. We then select K —1 subsets for training and
consider the remaining set as a proxy for estimating the
predictive performance. This is then repeated until we
exhaust all the K subsets for the purpose of validation
with typical choices for K being 3, 5, 10, or n (leave-
one-out cross-validation).

Formally, let y; represent the i subset of the ob-
servations y and y_; = y \ y;. The negative predictive
log-likelihood under the K-fold cross-validation is

K
LCV(K)(eﬂ d)) = Zlogp<y’b|y727 z, 07 ¢7 6—7’7,)7

3

(14)

The cross-validation should be more robust against the
model miss-specification and overfitting (Wahba, 1990).

4 Theoretical analysis and posterior
consistency

Below we represent the Bayesian model described in
Section 2 hierarchically using a set of prior distribu-
tions for a systematic exploitation of conjugacy. This
representation of the model is crucial for the theoretical
results obtained in Section 4.1. It reframes the Bayesian
model as a version of a nonparametric regression prob-
lem with a GP prior for ((¢) and an additive noise.
Namely, we define the model for data d = (dy, ..., dnts) =

(y,2):

yZZC(ti)+U€z 1=1, Iz
Z]:fm('E,OJ), ]:17 757
o RN (.07,

where z;’s are the realizations of computer model f,, (¢, 6)
at pre-selected design points (fj,gj), and y;’s are the
experimental observations from the underlying physi-
cal process. Additionally, we consider the following GP
priors:

C(t)lfm(t’ 0)) 5(t) ~ fm(t’ 0) + 5(t)7

5(t) ~ GPs(ms(t), ks(t,t')),
fm(t’ 9) ~ gpf(mf (t’ 0)7 kf((tv 0)7 (t/v 0/)))
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Under this model, the conditional likelihoods for y; and
Zj are

P(uilC(t).0) = ‘C“”) (15)

1 exp < _ (yi
oV22r 202

Pl @00 =1, (), (16)

where p(zj|fm({j,§j)) is a likelihood with the point
mass at z; = fm(fj, 51) Consequently, the equivalence
of the hierarchical formulation here and the model de-
scribed in Section 2 is given through the equality be-
tween the likelihood (5) and the following integral, which
shows that both model representations yield the same

(marginal) data likelihood.
L[ r€ dud0.0.0)0fnac =

/< /f D(dIC, s 8,6, 0)p(C, Fonl0, ) A dC =

L/f Hp(yiKi’J)Hp(zj|fm,j)p(47fm‘0ﬂ ¢)dfde=

/CHp(yi|Ci7o)p(C,z|0,¢))dg7

WheI'S C~: (C(tl)? e ~(tn)) = (Cla .. 7Cn) and f~m =
(fm(tlv al)a R fm(ts, 05)) The likelihood p(Ca Z|0, ¢)
is the multivariate normal distribution with the mean

M(0, @) (see (6)) and the covariance

Kp(ea ¢) =
(Kf@y(e),Ty(e» + K5 (T, T,) Kf<Ty<e>,Tz<§>>> '

Kf(Tz(e)’Ty(e)) Kf(Tz<9)sz(0))

We leave the details of the integral computation for
Appendix A. Using this equivalent representation, we
can gain a further insight into the role of the set of
model runs z. Let us consider a function space F and
a subset F C F, then

¢ e Fd0.6.)x [ T]oulc.om(¢l=0.0)dc.
a7)

One can therefore interpret the model runs z as an
additional information provided by the computer model
fm that enhances the GP prior distribution p(¢|z, 0, ¢)
over the physical process (, having the mean function

me(t) = my(t, 0) + ms(t)

3w [k(2.0). (5.8, [~ my .80

,j=1

and the covariance function

kC(tv t/) = kf((t’ 0)7 (t/’ 0)) + k6(ta t/)

3 [ (0.0, 6.6 1 (.80, (2.0
i,j=1

(19)

where £;; is the (j,i) element of the inverse matrix
K, (T.(0),7-(6)) .

4.1 Posterior consistency

The revealing consequence of the previous discussion
is that the Kennedy and O’Hagan (2001) framework
is equivalent to the nonparametric regression model of
an unknown function ((t) with the prior distribution
p(¢|z, 0, ¢). This is not only a new perspective on the
popular framework, but also happens to be the key step
that allows us to validate our empirical Bayes approach
theoretically and establish the posterior consistency of
the physical process when the prior p(¢|z, 8, ¢) satisfies
certain properties. To this end, rather than considering
parametric forms of covariance kernels, the following
results assume appropriate minimal smoothness of the
GP prior over (. This additionally means that any ker-
nels with a smoothness parameter (e.g. Matérn kernels)
are considered to have the parameter fixed. Since the
empirical Bayes estimator of smoothness parameter is
not part of our procedure, the optimality of posterior
concentration rate cannot be guaranteed. However, the
focus of our asymptotic analysis is not on contraction
rates but on consistency. We discuss the concrete ex-
amples of kernel functions that are sufficiently smooth
at the end of this section.

In what follows, we suppose that the true underly-
ing physical process (y is a continuously differentiable
function on the compact and convex set £2 C RP. With-
out loss of generality, we take £2 = [0, 1]?. Finally, we
shall assume the plug-in estimates of the hyperparam-
eters (OA,,H, (;ASHH) take values in some compact subset
T C © x =. This is a mild general condition that is sat-
isfied by the hyperparameter estimators in Section 3, as
long as the minimization of loss functions is constrained
within some compact set. Analogous conditions have
been considered recently by Teckentrup (2020) in a GP
regression setting similar to this paper. For any v > 0,
we aim to establish, under suitable conditions, the fol-
lowing:

P(C S Ilvlgn‘lfl yeeeYns 2, én«kﬁg ¢;'rz,+.s‘~, (Afn) T> 0 as. PO-

(20)
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where P denotes the joint conditional distribution of
{yi}$2, given the true (o and the true noise scale oy,
6, is a strongly consistent estimator of ¢, and
Won={¢: [K® -Gl <vf,
with @, being the empirical measure on the design
points given as Q,(t) =n"1 > | 1y, (E).

In Theorem 1, we first present a general result on
the consistency of nonparametric regression problems
and subsequently discuss the theorem’s conditions in
the context of the model described in Section 2. This is
based on the extensions of Schwartz’s theorem for in-
dependent but non-identically distributed random vari-
ables given by Choi (2007) and Choi and Schervish
(2007), where the authors assume o is included in W, ,,,
and the posterior consistency is derived jointly for ¢ and
0. On the other hand, the consistency of  conditioned
on G, as stated in (20), requires a non-trivial modifi-
cation of their original results. The proof of Theorem 1
is provided in Appendix B.

Theorem 1 Let {y;}52; be independently and normally
distributed with mean ((t;) and standard deviation o
with respect to a common o-finite measure, where ¢ be-
longs to a space of continuously differentiable functions
on [0,1] denoted as F, and o > 0. Let (o € F and let
Py denote the joint conditional distribution of {y;}52,
given true (o and og. Let {U,}22, be a sequence of
subsets of F. Let ¢ have a prior I1(-|@, ¢) where (0, ¢)
take values in a compact set T. Then, under assump-
tions (A1)-(A3) (provided in Section 4.1.1 below),

sup p(¢ € US|, -

(0.6)eT 7yna0a d)a a-n) T> 0 a.s. Po.
,P)e

For the purpose of generality of Theorem 1, we do
not explicitly condition on the set of model runs z. It is
clear from our previous discussions (see (17) in particu-
lar) that the model runs play the role of fixed constants
in the prior distribution over (. The dependence on z in
(20) arises by setting IT(¢|0, ¢) := p({|z, 0, @), which is
the GP prior distribution with the mean function (18)
and the covariance function (19).

4.1.1 Assumptions for Theorem 1

As a matter of convenience, for any 0 < € < 1 and
Co(ti) = Co,i define
A ] P(yil€0.i5 00)
(o, 0) = le p(YilGiy o0(1 — €))’
Ki(<07 C) = ECO»UO (AZ(<07 C))7
‘/'L'(C07 C) = Var(o,do (Al(COa C))

The following paragraph lists all the necessary con-
ditions of Theorem 1:

(A1) Suppose there exists a set B with I1(B|6,¢) > 0
for any (6,¢) € T, and for any A > 0 a constant
0 < €; < 1, so that for any € < €;:
(i) 22, Vil « o0, v¢ € B,
(ii) I(BN{¢: Ki(¢,¢) < A for all i}|0,¢) > 0.
(A2) Suppose there exist tests {@,}52, sets {Fn}>2,
and constants Cy,Ci,cq > 0 and 0 < €3 < 1 so
that:
(i) 2211 ]ECO,U()@" <0
(i) supg,gyer I (F:10.¢) < Cre™
(iii) There exists a constant ¢z > 0 such that for any
0 < € < € the inequality cp +1log(1l—¢) —log(1+
€) > 0 holds and

sup ¢ o146 (1 — @) < Coe™ ",
CeUSNF,

(A3) 6, is strongly consistent, i.e 5, —— o¢ a.s. Pp.
n

We now discuss (A1)—(A3) in the context of the
model described in Section 2. These fall into three gen-
eral categories; the first one addresses prior positivity
conditions ((Al) and (ii) of (A2)), second category is re-
lated to the existence of test functions @,, ((i) and (ii)
of (A2)), and the last condition (A3) requires strong
consistency of the noise scale estimator.

To verify conditions (A1) of Theorem 1 for prior
distributions, it is sufficient to show that the GP prior
for ¢ assigns positive probability to the following set for
any w > 0:

B, ={C:[ { =G0 [|o< w},

where || - |l denotes the supremum norm. For any
0 < € < 1, a short calculation leads to

(22)

Ki(¢o,¢) =
1 1 [Co(t:) — C(B)]?
log(l—e)—2(1—(1_€)2>—|— 0208(1_5)2 <
1 1 | ¢o— ¢ IIZ
log(l—e)—§ (1— (1_6)2> + 203 A =€)

Let a(e) = log(1—€)—1/2+1/[2(1—¢€)?], it is easy to see
that a(e) is positive and continuous at € = 0. Therefore,
for every A > 0, there exist w > 0 and 0 < & < 1 so
that K;((o,¢) < A for all ¢ and any e < €.

Additionally, for any € < é; and any w > 0

< oo uniformly in 7,

%(CO) C) =
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and as a result, for all ¢ € By, Y o, % < 0.

The prior condition (ii) of (A2) for the sieve F;, (23) is
addressed in Lemma 1, see Appendix C for proof.

Lemma 1 Let the mean function m¢(-) of the GP prior
for ¢ defined on [0,1]P be continuously differentiable,
and the covariance function k¢(-,-) has mized partial
derivatives up to order 4 that are continuous. Define,

po(0,¢) = sup Var (((t)[2,0, ),
te(o,1]p
2 0 .
P (0a¢) = Ssup Var 7C(t) Z,0,¢ ) 2:1""ap'
tefo, 1) ot;

Suppose that p? are continuous functions of (0, @) for
all (8,¢) € T, i =0,..., p, for any compact set 1.

Then there exist constants C,c > 0 such that

sup p(FC|z,0,¢) < Ce ",
(6,9)eT

where F, are the sieves defined in (23).

Our approach to establish the existence of test func-
tions {®,,}°2 ; that satisfy the conditions (i) and (iii) in
Theorem 1 is similar to that of Theorem 2 in Choi and
Schervish (2007). We consider a sieve JF,, which grows
to the space of continuously differentiable functions on
[0, 1]P. Namely, let

Fo =

0 .
{6 NE I My 1 gl My i =100 )
(29

where M, = O(n®) for some o € (3,1). Each test
is defined as a combination of tests over finitely many
elements in the covering of F,. The existence of tests
in the case of W,, ,, is given in Lemma 2 with proof in
Appendix D.

Lemma 2 Let F,, be the sieves defined in (23). For
any v > 0 there exist tests {$,}°2, and constants C
and 0 < € < 1 so that:

(i) 23;1 E¢y,00Pn < 00

(ii) There exists a constant ¢ > 0 such that for any 0 <
€ < € the inequality ¢ + log(1 —€) —log(1 +¢€) > 0
holds and

sup B¢ o146 (1 — @) < Ce™ "
CEWE NF,

As we have suggested in Section 3, the estimator &,
defined in (12) is in fact strongly consistent estimator
of the true scale parameter .

Theorem 2 Suppose (o(t) represents the true physical
process and of be the true value of the experimental
error variance, where t € 2 is a compact and con-
vex subset of RP and (o is continuously differentiable
on §2. Let Py denote the joint conditional distribution
of {y:}32, given true (o and of. Also assume that the
following holds about the design points t;:

sup ltiv1,; — tij| — 0, (AD)
i€{1,...,n},j€{1,...,p} "
then
62 —— 02 as P. (24)

n

The proof of Theorem 2 is given in Appendix E. The
continuous mapping theorem directly implies the fol-
lowing.

Corollary 1 Under the assumptions of Theorem 2,

On = (3'721 —> 0g a.s. Po. (25)
n

Remark 1 The assumption (AD) is satisfied by a design

that contains at least one point in each hypercube H

in £2 with its Lebesgue measure A(H) > 7, for some

constant 0 < K < 1. This is, for example, the case of

equally spaced design.

Below we present Theorem 3 whose corollary is, un-
der the additional assumption of (é”%.qﬁnﬁ) taking
values in some compact set 7", the almost sure consis-
tency result (20).

Theorem 3 Let Py denote the joint conditional dis-
tribution of {y;}52, given true (o and oo. Let me¢(-)
and k¢ (-, ) be the mean and covariance functions of the
GP prior for ( satisfying the conditions of Lemma 1.
Assume that for any compact set T and any w > 0,
p(By|z,0,¢) >0, where (0,¢) € 1. If 6,, is a strongly
consistent estimator of oq, then for any v > 0

sup p(¢ € U"’lfjny\gjl ..... Yn,2,0,0,6,,) —— 0 a.s. Pp.

(6,9)eT "
(26)

Theorem 3 is a direct consequence of Lemmas 1 and
2, and Theorem 1.

Prior conditions: concrete examples The key sufficient
condition for the convergence of empirical Bayes pos-
terior (20) is the prior positivity condition requiring
p(Bylz,0,¢) > 0 for any w and (60,¢) € 7 which
was extensively studied by Ghosal and Roy (2006) and
Tokdar and Ghosh (2007). Specifically, Theorem 4 of
Ghosal and Roy (2006) states that this condition is
satisfied for a GP with continuous sample paths and
continuous mean and covariance functions, as long as
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Co and m¢ belong to reproducing kernel Hilbert space
(RKHS) of the covariance function k.. First, the con-
tinuity of GP’s sample paths is given by the applica-
tion of Theorem 5 in Ghosal and Roy (2006) which
requires the same smoothness conditions as Lemma 1
in this section. It should be clear from (18) and (19)
that m¢ is continuous on [0,1]?, and k¢ has continuous
mixed partial derivatives up to 4*" order on [0, 1]?, as
long as the same holds about m; and ms (commonly
used mean functions including polynomials are analytic
functions) and respectively k; and ks. For example, the
product of one-dimensional Matérn kernels with fixed
smoothness parameter A > 2 (tensor-product Matérn
kernel) and the squared exponential kernel are suffi-
ciently smooth (Williams et al., 2006). Second, Tokdar
and Ghosh (2007) show that the RKHS of k. spans the
space of continuously differentiable functions on [0, 1]7,
if k¢ is a product of p isotropic and integrable univari-
ate covariance functions with continuous mixed partial
derivatives up to order 4. The squared exponential ker-
nel and the tensor-product Matérn kernel with smooth-
ness A > 2 satisfy these requirements, including the
continuity of p? for i =0,...,p.

This, of course, does not directly imply that such
choices for ky and ks result in the conditional covari-
ance k; whose RKHS spans the space of continuously
differentiable functions. However, our numerical study
show that with increasing number of computer model
evaluations s — obtained using a space filling design
the covariance function ks quickly dominates (see Ap-
pendix G for details). Such behaviour is not unexpected
since the increasing number of runs s effectively reduces
the uncertainty about emulated computer model. This
indicates that ks and ks behave asymptotically same,
with respect to the s. Additionally, the simulation study
conducted in Section 5 strongly suggests that choosing
the squared exponential kernel leads to consistent pre-
dictions.

5 Numerical analysis and applications

The main objective of this section is to establish the
efficiency of the empirical Bayes method in Algorithm
1 and to support the consistency result presented in
section 4. All this while sacrificing minimally in terms
of the fidelity of UQ as compared to the fully Bayesian
treatment. To this extent, we consider a simulation study
where we compare our method (under both Ly and
Ley (k) to a fully Bayesian treatment with the poste-
rior samples obtained using the standard Metropolis-
Hastings algorithm (Gelman et al., 2013). We also con-
duct a prior sensitivity analysis of the fully Bayesian
treatment to further the practical advantages of the

empirical Bayes. Finally, we demonstrate the opportu-
nities provided by our method for science practitioners
through predictions of nuclear binding energies using
the Liquid Drop Model.

5.1 Simulation study: Transverse harmonic wave

Let us consider a simple computer model represent-
ing a periodic wave disturbance that moves through
a medium and causes displacement of individual atoms
or molecules in the medium. This is called a transverse
harmonic wave, where the displacement f,,((t, z),8) of
a particle at location x over time t is given by

fm((t,3),0) = 61 sin (kx — 02t + ), (27)

where 61 represents the amplitude of the wave, and 65
is the frequency of the wave. The model also depends
on the wave number k, which is reciprocal to the wave
length, and the phase constant 1. For the purpose of
this example, we shall consider these to be known values
with £ = 5 and ¥ = 1, and define the model inputs
(t,x) over the space [0,1]? (we assume that the length
and time units are all equal to one). The true physical
process is modeled according to

Co(t,x) = fm((t,x),0)+d(t, x) = 0y sin (5x—92t+1)+ﬁ,
(28)

where 8 = 1 is a constant systematic error of the model
and @ = (0,05) are arbitrarily set to be (1.2, 1.8).

5.1.1 Data generation and design

We generate the experimental observation according to
the model (2) with the true value of the observation
error scale o9 = 0.2, where the model inputs (¢, x) are
chosen using the Latin hypercube design over the full
space [0,1]2. The space filling properties of the design
guarantee decreasing bias of the estimator 6,, with an
increasing sample size. Additionally, we assume that
the computer model for the periodic wave disturbance
is computationally expensive and generate the set of
model runs z using, again, the Latin hypercube de-
sign, now over [0,1]2 x [0,2]2. In each of the subsequent
scenarios, the amount of experimental observations is
equal to the number of computer model runs, i.e. n = s.
We define the GP priors for f,,, and § to have zero means
and the covariance functions
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kp({t, =, 0}, {t",2",0'}) =

. ,exp(_l\t*t’IIQ Nzl 16— 6111 [I62 — 05
! 202 262 22 202,
ks({t,a},{t',2}) =

[t =% _ llz— ||
M5 - exp ( 57 22 ):

The hyperparameters in this scenario are therefore ¢ =
(g, Le, L, Lo, Lo, , M5, Ve, Vg). For the fully Bayesian treat-
ment, we choose inverse gamma priors with shape and
scale parametrization for (o, Iz 7s), gamma priors with
shape and rate parametrization for the length scales,
and independent normal distributions for the calibra-
tion parameters (61, 62). As we demonstrate below, the
performance of the MCMC-based fit can vary greatly
with different prior selections. To asses this effect, we
consider the following prior variations: inverse gamma
distributions with the shape fixed at 3 and the scale tak-
ing values in {0.5,1,2,4,8}, gamma distribution with
the rate equal to 3 and the shape taking values in
{1,5}, and the normal distribution with the mean pgy €

{0,1,1.5} and the standard deviation oy € {0.25,0.5,1,2}.

These choices reflect both fairly informative priors (e.g.
up = 1.5 and oy = 0.25) and non-informative priors,
given the spans of both the input space [0, 1]? and the
parameter space [0,2]2.

5.1.2 Results

Figure 1 shows the root mean squared errors (RMSEs)
of predictions of new realizations from the true physical
process (28) evaluated on a testing datasets of 225 real-
izations over a uniform grid on [0, 1]2. The predictions
are taken to be the posterior predicative means under
each method. Each box-plot in Figure 1 represents the
distribution of RMSEs obtained through the MCMC-
based fits for given values of puy and oy. We consider
the estimates of hyperparameters using the Ly, g loss
and the predictive likelihood loss function with 10-fold
cross-validation under the empirical Bayes approach.
The noise scale parameter was estimated using the con-
sistent estimator &,, defined in Section 3.

In general, the proposed empirical Bayes approach
performs comparably with the fully Bayesian treatment
and monotonously decreases with the increasing size of
the dataset. In particular, the RMSE under the Ly (10)
loss is larger than the other methods for the smallest
size of training dataset considered, however, the RMSE
under the Ly g loss is the smallest for the larger train-
ing sets. The likely reason for the slightly better perfor-
mance of the empirical Bayes is that the parameter esti-
mates given by the minimization of Ly g and Loy (10

)

are purely data driven, whereas the fully Bayesian ap-
proach needs to account for prior uncertainties. This
observation is consistent with the sensitivity of the pre-
dictions to the prior selection clearly visible in Figure 1.
A choice of strongly informative prior that is far from
the underlying truth, such as gy = 0 and oy = 0.25,
can yield especially poor fit even for large training sets.
Thus, in the absence of proper and meaningful prior dis-
tributions, an empirical Bayes approach may be prefer-
able besides its other advantages as discussed in this
article. Overall, the empirical Bayes fit can be readily
obtained in several minutes using standard numerical
solvers while sampling from posterior distributions can
take hours.

It took approximately 2 hours to obtain 10* sam-
ples in the scenario with the largest sample size on a
standard PC with 4 cores. For completeness, we also
show the estimates of calibration parameters and the
noise scale under each method in Figure 2 and Table 1.
Posterior means were taken as the estimates under the
fully Bayesian solution. We can see a reasonable match
between the approximate empirical Bayes method and
the Metropolis-Hastings algorithm for many of the prior
choices. The first notable difference is a series of out-
lying estimates of the calibration parameters under the
MCMC-based fit. These are the consequence of the afore-
mentioned strongly informative priors. The second dif-
ference is in terms of the noise scale estimate &,,. This is
expected since the estimate is unbiased asymptotically.

|n =125, s =125 |n =250, s = 250 | n = 500, s = 500

|Lmre Lov@aoy|Lmre Levaoy | Lure Levio)

01| 1.197 1.217 1.160 1.251 1.207 1.206
02| 1.781 1.787 1.805 1.799 1.792 1.818
o 0.328 0.259 0.228

Table 1: The estimates of calibration parameters and
the noise scale under the empirical Bayes approach.
The values used to generate the simulation data were
(01,92) = (12, 18) and op = 0.2.

Figure 3 and Figure 4 show the loss in terms of
UQ is negligible under the empirical Bayes approach
as compared to the fully Bayesian treatment for all
practical purposes. For clarity, we display only the re-
sults of inverse gamma priors with shape 3 and scale
1, gamma priors with shape 1 and rate 3, and normal
priors with mean 0 and standard deviation 2. These are
fairly non-informative priors. We can see that the em-
pirical Bayes approach slightly overestimates the uncer-
tainty for smaller sample size, but this quickly dimin-
ishes as the sample size increases. This is likely the con-
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Fig. 1: The RMSE of the empirical Bayes approach and the fully Bayesian treatment. The results are grouped
according to the values of prior means py and standard deviations oy used in the Metropolis-Hastings algorithm.
The box-plots represent the distribution of RMSE values obtained with the MCMC-based fits across the prior
combinations described in Section 5.1.1. The GP hyperparameters for the empirical Bayes approach were estimated

using Algorithm 1.
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Fig. 2: The distribution of posterior means of the calibration parameters and the noise scale obtained with the
Metropolis-Hastings algorithm. Unlike in Figure 1, the box-plots were aggregated over all the prior choices. The
values used to generate the simulation data were (61, 602) = (1.2,1.8) and oo = 0.2.

sequence of the inflation of the noise scale given by the
bias of 6, which diminishes with the increasing sample
size as expected. See Appendix H for additional figures
of the empirical Bayes fit at the time locations ¢ = 0,
t=043,t=0.71,and t = 1.

5.2 Liquid Drop Model for nuclear binding energies

Nuclear physics is one of many fields that has recently
experienced a surge in the applications of Bayesian statis-
tics due to its intuitive way to describe uncertainties
probabilistically. GP modeling and its variants have
been prominently used in the context of computation-
ally expensive theoretical mass models for either emu-
lation or modeling of systematic discrepancies to pro-
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Fig. 3: Details of 95% credible bands of posterior predictive distributions under the empirical Bayes approach and
the fully Bayesian approach of Metropolis-Hastings algorithm. These were plotted at ¢t = 0.21.
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Fig. 4: Comparison of the convergence to the true physical process (y(¢,x) under the empirical Bayes approach
and the fully Bayesian implementation given by the Metropolis-Hastings algorithm. The dashed line represents the
true process (g, and the solid line corresponds to the mean of posterior predictive distributions under respective
method. The curves with 95% credible intervals (shaded area) are plotted at t = 0.21.

duce precise and quantified predictions of nuclear ob-
servables (Higdon et al., 2015; Neufcourt et al., 2018,
2019; Schunck et al., 2020).

To illustrate our framework for computer enabled
predictions on a real data example, we shall consider
the 4-parameter Liquid Drop Model (LDM) (Myers and
Swiatecki, 1966; Kirson, 2008; Benzaid et al., 2020) of
nuclear binding energy, which is the minimum energy

needed to break the nucleus of an atom into free protons
and neutrons. It is equivalent (energy-mass equivalence
explained by E = mc?) to the mass defect that corre-
sponds to the difference between the mass number of
a nucleus and its actual measured mass. This differ-
ence is caused by the energy released in the event of
atom’s creation. The LDM is a simple yet reasonably
accurate description of the atomic nucleus given by the
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semi-empirical mass formula:

Eg(N, Z) =
(N - 2)
A

Z(Z —1)
Al/3

avolA - asurfA2/3 - gsym - 9(3

(29)

The LDM is a function of the proton number Z and
the neutron number N (A = Z 4+ N is the mass num-
ber) that depends on a set of calibration parameters
0 = (Ovol, Osurf, Bsym, Bc). These have physical mean-
ing that represent the volume, surface, symmetry and
Coulomb energy (see Krane (1987) for details). The
semi-empirical mass formula is particularly suitable ex-
ample, because it provides a good fit for heavy nuclei
and somewhat poor fit for light nuclei. This clearly
points to the existence of a systematic model discrep-
ancy that is also supported in the literature (Reinhard
et al., 2006; Yuan, 2016; Kejzlar et al., 2020).

We now present an analysis of 595 experimental
binding energies of even-even nuclei from the AME2003
dataset (Audi et al., 2003) (publicly available at http:
//amdc.impcas.ac.cn/web/masstab.html) randomly
divided into a training set of 450 nuclei and a testing
set of 145 nuclei, see Fig. 5.

110 110
100 Training = 100
90| WM Testing e’ 90 L1500
80 el C 80
70 f‘-ﬁ'ﬂ- a 70 s
60 sl 60 L 10002
=
N 5o ._n."..,.d N 50 2
40 2= A 40 w
0 30
30 el % 500
201
o] o 10
ol 0

20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
N N

Fig. 5: Binding energies of even-even nuclei in AME2003

dataset divided into the testing and training datasets.

We consider the statistical model (2) and model
the systematic discrepancy ¢ with zero mean GP and
the isotropic squared exponential covariance function.
For the purpose of this example, we also assume that
the LDM is computationally expensive (or not directly
accessible) and regard it is an unknown function of
(Z,N) and 0. Similarly to the discrepancy 4, we as-
sign a GP prior to Eg(N, Z) with zero mean and the
isotropic squared exponential covariance function. To
this extent, we additionally generated a set of 900 model
evaluations using the Latin hypercube design over the
space spanning all reasonable values of the parameters
6 as given by the nuclear physics literature (Weizsécker,
1935; Bethe and Bacher, 1936; Myers and Swiatecki,
1966; Kirson, 2008; Benzaid et al., 2020). Correspond-
ing nuclear configurations, the inputs (Z, N), were ran-

domly assigned to the generated values of 6 from a set
of two times duplicated training nuclei. We also want
to point out that this is not the first application of
GP modeling in the context of the LDM. See Bertsch
and Bingham (2017) for instance. We conducted a sim-
ilar study previously using a fully Bayesian approach
with posterior distributions approximated through vari-
ational inference Kejzlar and Maiti (2020).

5.2.1 Results

The predictions of nuclear binding energies were com-
puted as the means of the posterior predictive distri-
bution (8) conditioned on the estimates of the calibra-
tion parameters 8, GP’s hyperparameters ¢, and the
noise scale ,. The estimates for (6, ¢) were obtained
numerically as the minimizers of Ly/pr and Loy (10)-
The priors for the GP hyperparameters in the case of
the fully Bayesian treatment are discussed in Appendix
F.

| Parameter estimates | Testing error

‘ avol esurf esym Oc ‘ RMSE (MGV)
Lyvre 15.07 15.58 22.00 0.68 1.16
Levoy | 15.08 16.08 21.19 0.67 1.26
M-H 15.32 16.09 22.09 0.70 1.16

Table 2: The RMSEs of the predictions evaluated on 145
even-even nuclei from the AME2003 dataset. The pa-
rameter estimates are also listed. The posterior means
are shown in the case of the Metropolis-Hastings algo-
rithm.

Table 2 gives the RMSE values calculated on the
testing set of 145 even-even nuclei for the empirical
Bayes approach and also the Metropolis-Hastings al-
gorithm. The calibration parameter estimates are also
provided with values that do not significantly differ be-
tween the methods considered. The resulting RMSEs
are 1.1 — 1.3 MeV which is a consistent result with
our previous study in Kejzlar and Maiti (2020) that
was conducted on a larger dataset, however, under a
fully Bayesian stetting. Overall, this is quite a remark-
able result given the considerable effort that needs to
be put forth to implement the fully Bayesian solution.
We were able to obtain the empirical Bayes predic-
tions under 10 minutes using the standard optimization
modules in Python, while the Metropolis-Hastings al-
gorithm needed close to 8 hours to generate 1.5 x 10%
samples.
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6 Conclusion

We presented and studied an empirical Bayes approach

to prediction of physical quantities using computer model,

where we assumed that the computer model under con-
sideration needs to be calibrated and is computation-
ally too expensive to be used directly for inference. To
this extent, we proposed a GP emulator and utilized
the structural convenience of GPs to formulate closed-
form and easy-to-compute predictions of new observa-
tions from a physical process. These predictions are ob-
tained through conditional predictive distributions with
plugged-in estimates of calibration parameters, GP hy-
perparameters, and experimental noise scale. A strongly
consistent estimator for the noise scale and two sensi-
ble estimators for the remaining parameters (defined as
minimizers of two alternative loss functions) were pro-

vided.

Theoretical study and justification of the proposed
methodology were also given: we revisited hierarchi-
cal models and established an equivalent representation
of the framework of Kennedy and O’Hagan (2001) as
a nonparametric regression model with GP prior for
an unknown function corresponding to the underlying
physical process. Consequently, we derived a non-trivial
extension of Schwartz’s theorem for nonparametric re-
gression problems. The application of this results shows
that our method consistently estimates the underlying
true physical process, assuming smoothness of the mean
and covariance functions of GP priors and the existence
of a strongly consistent estimator of the noise scale. To
the best of our knowledge, this is the first such posterior
consistency result under the original model of Kennedy
and O’Hagan (2001). Nonetheless, our theoretical study
is by no means exhaustive. For example, the asymp-
totic analysis in this work does not focus on posterior
concentration rates. The derivation of optimal minimax
rates on the contraction of the posterior requires fur-
ther extensively study on the RKHS properties of Gaus-
sian process priors as in van der Vaart and van Zan-
ten (2008) and we thereby leave it as future work. We
also assumed that any covariance kernels with smooth-
ness parameter have the parameter fixed. We refer the
reader to Belitser and Enikeeva (2008); Florens and Si-
moni (2012); Szabé et al. (2013); Sniekers and van der
Vaart (2015); Knapik et al. (2016); Rousseau and Szabo
(2017); Serra and Krivobokova (2017), for discussion
about posterior consistency in non-parametric regres-
sion related problems with smoothness estimator.

A simulation study that empirically supports the
consistency result was given in Section 5. The speed and
efficiency of the empirical Bayes approach was demon-
strated in comparison to the fully Bayesian approach

of Metropolis-Hastings algorithm. Both methods yield
comparable results in terms of UQ and quality of the
predictions, however, the Metropolis-Hastings algorithm
is significantly slower and its implementation requires
considerable effort. Additionally, our sensitivity study
strongly suggests that the empirical Bayes approach
may be preferable in the absence of proper and mean-
ingful prior distributions. Finally, to show the oppor-
tunities given by our method for practitioners, we ana-
lyzed a dataset of experimental binding energies using
the Liquid Drop Model.

The general framework presented in this paper can
be wived as a fast and computationally efficient ap-
proximation to the sampling based fully Bayesian ap-
proach for calibration of computer models that neglects
some uncertainty of unknown parameters. Our empiri-
cal studies show that this loss becomes quickly negligi-
ble with the increasing size of datasets.
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Appendix A Equivalency of hierarchical

model K[1/2

021, 12| K, [/
To establish the equivalency between the Bayesian model ~ |Cay| 121044 4 0?1, — C1a 02_21 Cop |1/2
given by the data likelihood p(d|0, ¢, o) and the hierar- o |021,|1/2|Cas|1/2|C1y — C1oCy Cop|1/2

chical model (see Section 4), we need to show that the

Ci1 + 021, — C13C5' Co ['/2
following equality holds _1Guto 1205 Cai|

B |021,|Y/2|Cy1 — 01202_21021|1/2

. A+ B|\/? 1
d0, s :/ i 1Gi s ,Z07 d s 30 = | =
p(d|6, ¢,0) clin(y G o)p(¢, 210, 4)d¢, (30) AT = TARAEAT B
1
where ¢ = ((t1),...,C(tn)) = (C1,-.-,¢n) and the den- = (A—T[B-1[|A+ B|)-1/2
sity p(¢, 2|0, ¢) is the multivariate normal distribution 1
with mean the mean M (6, ¢) (see (6)) and the covari- = A B A+ A BB
ance )
TJATIB A+ ALz
Kp(0,6) = - :
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For the ease of notation, let us now assume M (8, ¢) — where we used the Schur complement identity for de-
T 3 TNT ’ ’ terminants in the first equality and
(M, , M;)". Then
A =0y — C12C55' Cay,
n B = O'QIn.
[ TTptwilc a1pc.=16.6) d¢
[SF)

Lastly, considering the notation

:/Cm@(p(— ORI R SRR S) e (Cﬂ sz)
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SCHICRIEARE we have
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x exp(f 5@ B MJ> K, 1@ B MJ>> where C}; = Cy1 — C12C55'Cy and b is a constant
1y — MAT y— M column vector. This shows that integral is indeed equal
X eXP(§<z B Mz> K1 (z B Mz>> d¢ to 1 as stated, and the equality (30) holds.
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= (Qﬁ)(n+s>/2|K|1/2eXp(f§(Z_Mz) K (Z_Mz) '

The integral is equal to 1 since it is an integration of =~ Appendix B Proof of Theorem 1

multivariate normal probability density function over ¢

with covariance ((021,,)~! + (C1y — 0120521021)_1)_1. Note that for any € > 0, the posterior probability of in-
Namely terest p(¢ € US|y1, ..., Yn, 0, ¢,6,) can be bound from
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the above as
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ISn(yh”'vynvO:(b’&n) ISn(y17~~~vyn79:¢7a’n)

Since the assumption (A3) implies that 1 |2 1‘> Y
0 a.s. Py, it is enough to show that there ex1sts e>0
so that

sup @, — 0 as. P, (31)
(6,0)€T n
sup eﬁlnlln(ylw"7yna07¢76n76) — 0 as. POa
(6.¢)eT "
(32)
sup eﬁanZn(yla'"7yn707¢)7&n76) — 0 as. POa
CRISS "
(33)
inf e® I3, (y1,.. ., Yn, 0, 0,6,) — s. Py,
(9-1(})1),\;# an (Y1, Y ®,0n) L ooas. 1o
(34)

for some B4, B2, 83 > 0 where 3 < min{f1, 52}.

The rest of the proof follows the general steps of the
proof of Theorem 1 in Choi and Schervish (2007) and
Theorem 9 in Choi (2007) with some non-trivial treat-
ment of the constant e. Similarly to Choi (2007), we
assume that the covariance function is smooth enough
so that the supremum of the variance of the Gaussian
process is continuous with respect to (6, ¢) on the com-
pact set 7. We shall provide step by step details below.

Step 1) By Markov inequality, for any p > 0

ZPosﬁ >p) < ZIEM "

n1

which due to the condition (i) of
Borel-Cantelli Lemma yields

(A2) and the first

&, — 0 a.s. Fy.
Since this does not depend on (8, ¢), it implies (31).

Step 2) By Fubini’s theorem and for any 0 < € < &

7yn707¢3 &n,e))

p(yilCi,on)
ven, i P(illo.i,00) {2

]ECmO'O (Iln(yl, e
~ By (1= ) o ey ACI0.0)

1 P(yilGis o)
:/ /(1—@71) PYilGis On 1.,
venF, L p(yilco.s,00) {52~

0'0(1—5))_n/

< (-9 Ee o (1ae[(1—

- <Uo(1+€) U,°nF, ¢anatoll
su o e @

S\1+. ceUf% nEc, o(14e€) n

1—e\™ " _ o
< Cae™ 2" = Cae™ %",
“\1l+e€

1<) dPo dII(¢|6, ¢)

@) dII(C6, ¢)

where ¢ = ¢o + log(1 — €) — log(1 + €) together with

condition (iii) of (A2) implies é > 0. Thus

PO{Iln(yh cesYn, 97 ¢7 OA'WJ 6) Z eéeg} S 02666%676671
= CQG_E‘%.

Therefore, for any € > 0 so that ¢ < €& there exists
a constant ¢, for which the first Borel-Cantelli Lemma
implies

eée%lln(yla cee 7yn70, ¢,&n76) T> 0 a.s. P0~

Since this does not depend on (8, @), it implies (32).

Step 3) If we proceed as in the step
theorem implies

2), the Fubini’s

yYns 07 ¢76n7 6))

. p(lelﬂé—n)
=E¢o o / ——1 s, dIr
o O[ U;O.Fnil;[p(yiKO,i,UO) {)To*1|36}

= (M) /U CnFC EC’Uo(lJFE)[” dH(C|0’¢)

1—e\ " c
<(137) moe.),

f (A2) and the first Borel-Cantelli
—c1
1+e_‘1 :

ECQ,O‘Q (IQTL(y17 M

(€16, 9)

The condition (ii) o
Lemma implies that for any € <

Fon
sup e’ 11y, (y1,. ..

( ) 7yna0a¢aa-n’€)—>0a.s. Po,
0,0)eT n

where k. = ¢1 + log(1 — €) — log(1 + ).



20

Vojtech KejzlarhT et al.

Step 4) To prove (34), given any 0 < p < 1, we first
observe the following:

I3n(y17 e aynaeaqb?&n)
> I3n(y1, cee aynvev(pv&n)lq@,l‘gp}

= (155) LIG oo,

Let us now define log , ()
—min{0, log(z)} as well as

P(YilCo,i5 90)
Wi=logy pWilGi, o0(1 = p))’
p(ilCo,i, 00)
P(YilGi, o0(1 — p))
P(yil€o.i> 00)
p(wilGi, o0(1 — p))

K (¢0.¢) = /P(%|Co,i700)10g+ dyi,

K; (¢o,¢) = /p(yiKo,qu)lOg_ dy;.

Then we get

Var(o ) (W ) ECO oo (W2)
< ]EC(MTU (WzQ) - {Ki(<07 )}2
S ]ECO,UO (Wzg)

o P(Yi|Co,i, 0) )2 .
+ /p(yleo,z,ao) (1og_ p(wilCiyo0(1 — p)) du
—{Ki(¢. 0)}?

(il<o,i» 00)

2
— - ; i : A
— [ pluilinicon) (log (il oa(l = p>>> w

—{Ki (¢, )}
= Vi(¢o, €)-

Hence, by condition (i) of (A1) for any p < é&; and ¢ € B

{KT(COa C)}2

o0

Z’ Vare, oo (W) Vi(o, €)
— K g < 00,
/_ ~ D) o0

1=1 1=1

and by the Kolmogorov’s strong law of large numbers
for independent non-identically distributed random vari-
ables (e.g. Shiryaev (1996), Chapter 3),

— K:_(COaC)) :—) 0 a.s. Po.

= max{0, log(x)} and log_ (z) =

As a result, for every ¢ € B, with P, probability 1

lin_1>inf < Zl P(ili 70(1 = p)))

yzKO i»00)
%fggf( Z

yz|<u 00(1 - p)))

p(YilCo,i» 00)
Llﬁ&f( > yzé’;'iié’ff)p»)
_hﬁsolip< zn: yzél,lfrzl(ﬁ) )))
’hisogp < Z (¢o, ¢ )
_hmsup< z": Ki(S0, 5 +7112": Kl(gog)>
e =1 i=1

The fourth line follows from the almost sure conver-
gence proved in the previous paragraph, and the second
to last line follows from Amewou-Atisso et al. (2003).
We now make use of the condition (ii) of (Al). Let us

a4 B

consider 8 > 0 and select A so that A + <3

and also C = BN{¢ : K;(¢o,¢) < A forall i}. By
(A1) there exists €; so that for all 0 < p < €; implies

II1(C|0, ¢) > 0. Therefore, for each ¢ € C
o L~ p(yili, o0(1 = p))
liminf | — log
n—o0 (ng P(¥ilCo.i, 00)
1 1 K;
> —limsup *ZK} (€0, ¢) — M
n—reo n i=1 n i=1 2

—<A+@>,

since 37" | K;((o,¢) < A for all ¢ € C. Finally, for
-5
¥

—e 8

any p < min{é, 1 7
e

> Yn, 0,0,60)
P(yilCi, o0(1 — p))

(112) /lill P(yilo,is00)
> Tim jnf 6222 (1—;}) / ﬁ P(ilGi, 000 = P)) 41701, )

n—o0o - p(yilCo,i,00)

>/ liminfezzﬁ< )" p(yilCi, o0(1 — p))
- C n— 00 1+p

1 p(y:lCo,500)
= oo.

2np3
liminfe s Izn(y1,..
n— oo

> lim 1nfe s
n—r 00

dI1(¢10, ¢)

::]:\

dI1(¢10, ¢)

)
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Note that the actual bound on Ign does not depend on
(0, ¢). Taking € < mln{eg, 1+ — } concludes the proof.

Appendix C Proof of Lemma 1

Theorem 5 of Ghosal and Roy (2006) implies that there
exist positive constants C,dy,...,d, so that for i =

1,...,p

M2
d n
.8

P( sup [¢(¢)] > M,
te[0,1]

P | sup
teo,1]p

The continuity of p?(0, ), for i = 0,---,p, on a
compact set 1" implies that they are uniformly bounded.
Therefore, there exist universal constants (cy.1,c02), -,
(¢p.1,¢po) such that for i =0,--- ,p,

z797¢7> §C67

M2
—d; n
e (1eZ0.8)

0
%C(t)’ > Mn|z707¢7> S C

0<e¢ 1 < o) < cio.

sup |0 (6,

(8,)eT
Hence, for : =0,--- ,p,

2
My

—d
2797¢7> SC@ 0%20.1

sup P ( sup [((t)] > M,
(6,9)eT tel0,1]p

2
M2

0
at;

sup P | sup
(8,9)€Y tef0,1]P

Appendix D Proof of Lemma 2

We shall first define some notation. Let 0 < r < %
and t = 7. Let Ny = N(t, Fp,|| - [lo) be the covering
number of F,,. In Theorem 2.7.1, van der Vaart and
Wellner (1996) show that there exist a constant K so
that log N; < Kt]\f" and therefore Ny = O(M,,), where

= O(n®) for a € (3,1) according to the definition
of the sieves. Let us consider 7 € (£, 1) and define ¢,, =
n" so that log(N;) = o(c?). Moreover, let ¢*,... (Nt €
Fn, be finitely many elements of the sieve so that for
every ¢ € F, there is i € {1,..., N;} satisfying | ¢ —
(" ||loo< t. This implies that if ¢ € F,, such that [ |¢(£)—
Co(8)|AQu(t) > v, then [ [CH(2) — Co(®)] dQu(t) >

The next step in the proof is to construct a test
for each (* with the resulting functions @,, defined as
a combination of the individual tests and showing that
the probabilities of type I and type II errors satisfies the
properties of the lemma. Let us recall that ¢; = ((t;)
and (o; = (o(t;). For an arbitrary ¢ € F,, such that
| ¢ = ¢ |lo< t, let us define ¢; ; = ¢¥(t;) and b; = 1 if
C1,; > Co,; and —1 otherwise. For any v > 0, let ¥,[(, v/

(t)’ > M’nl'z797¢v> S Ce_d’iw"l .

be the indicator of set A defined as follows

> b, ( C‘”) > 2en/n
j=1
The test functions @,, are then

&, = @, [, 2],
n= max U [C,]

Type I error) The Mill’s ratio implies

Yj — Co,j
=Py Zb (UO >>2cn\/ﬁ

1- 45(26n)

]ECO#TO

L e

< — e
T 2e,V 27

2
< 6_26" .

The function @(-) is the CDF of the standard normal
distribution. Consequently, we have

ECO,UO (én) < Z ECO;UO (Wn

Type II error) It is sufficient to find ¢ for which the
probability of type II error of ¥, [(?, ], given an arbi-
trary ¢ in W,fnﬂ]-'m is sufficiently small. This is because
the probability of type II error for the composite test
@, is no larger than the smallest of ¥,[¢*, 4]. Note that
here we assume [ |((t) (t)|dQn(t) > v, and then
J1¢HE) — Co(®)] dQn(E ) . For every r < %, Choi
(2005) show that

§a

n
Z 1,5 — Co,j] > rn.

j=1

Let n be large enough so that 4o¢c, < r/n, then
forany 0 <e<1
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v
EC,UO(1+€)(1_W7L[<@7§])
n y;j —C 3
= Pt og(14¢) {ij (Jioj) < 2Cn\/ﬁ:|
i=1 70
IR Y — G I G —Cj
=P, o | — b R by | 22— >2d
C‘“(1+){ n]z_:lj( oo + njz::lj oo
1 & —Co,j
+72 C1,5 — Co,j <2Cn]
ni4 g0
~ ry/n  ryn
< P, e < —— 4+ 2¢n
¢, o<1+>{ g ( ) 100 oo +

\FJZH: <ao(1+<]e)> = _405(\1/ﬁ+ B)

:¢( 400(1+€)>

40’0(1 + 6)
rv2mn

< Peoog(1+€)

2
\5202(1+ )2

To establish the part (ii) of the lemma, we need to
show that there exists 0 < € < 1 so that for any € < €

() s

3202(1+ 02 ' B\1+e

Take k = % and define b(€) to be the left hand side
0

of (35),

-+ (ike ()

The function b(e) is clearly continuous at € = 0. Hence,
for each k > 0, there exists € such that for all 0 < € < €,
b(e) > 0.

(35)

Appendix E Proof of Theorem 2

First, we show that 62 is asymptotically unbiased. Note

that
El(yir1 — 1:)°] = [Co(tiv1) — Co(t:)]* + 00E[(€i41 — €)7]
= [Co(tit1) — Co(t:)]* + 203,
because ¢; K" N(0,1). Consequently
o (Big1) — Co(t:)]2
E(é_i) — Zz:l [Coz((n-i-l)l) CO( )] +0_8 (36)

Since (y is continuously differentiable on the compact
and convex set §2, it is also (globally) Lipschitz on 2
(e.g. Schaeffer and Cain (2016), Corollary 3.2.4), and

there exist a real constant K so that

p

[Coltirs) = Co(t:)| < KD [tira, — til.
j=1

Therefore, due to the design assumption (AD)

0 < Yo [o(tia) — Go(t:)]?
- 2(n—1)
K22 2
< [ sup [tiv1; —tijl| ——0,
2 lie{l,.n}je{l,..p} n
(37)
and the combination of (36) with (37) implies
E(67) — o} (38)
To show the almost sure convergence of 62, let us

now denote x; = (y;+1 — y;)? and rewrite the estimator

62 as a sum of two estimators, each consisting of a sum

of independent variables:

n—1 n—1
2 _ %22:21 L2 %Zjil L2j—-1 =62 442
P G RIS B

o

Without loss of generality, we assumed that n is an odd
integer. Lastly note that Var(z;) < C' < oo uniformly
in ¢. This is because the differences (o(t;+1) — Co(t;)
are uniformly bounded on the compact set §2 due to
the continuity of (5. Additionally, y; 11 — y; are normal
and have bounded moments. We can now apply the
Kolmogorov’s strong law of large numbers for indepen-
dent non-identically distributed random variables (e.g.
Shiryaev (1996), Chapter 3),

. 1
0,21,6 —— —02 as. Py
n 2
2 1 2 P
On. ,0 —) 20'0 a.s. I

and as a result

£2 _ 42 £2 2
0p=0nc+ 00, —0p as. Py.

Appendix F The LDM calibration

The analysis of the LDM follows our previous study
in Kejzlar and Maiti (2020). Here we provide a concise
discussion regarding the choices of prior distributions
for and the GP’s specification.

GP specifications. For the computer model Eg(Z, N),
we consider the GP prior with the mean zero and the
covariance function
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(z-2z')> (N=N')?>  (6vor —0,,))°

21/% 21/12\, 21/12
_ (esurf - eéurf)z _ (Osym _ eéym)2 _ (00 — 0’0)2
21/% 21/§ 21/2

nE - exp(—

We also assume the GP prior for the systematic discrep-
ancy 0(Z, N) with mean zero and covariance function
Z—Z/>2 (N_NI)Q

(
15 - exp(— - )-
202 212,

Prior distributions The prior distributions for the cal-
ibration parameters 6 are chosen to be wide enough to
cover the space of all their reasonable values:

Ovor ~ N (15.42,0.203),

Osurt ~ N(16.91,0.645),

Baym ~ N (22.47,0.525),
fc ~ N(0.69,0.015).

The prior distributions for the hyperparameters ¢ were
selected as Gamma(a, §) with the shape parameter «
and scale parameter 8. They are chosen to be weakly
informative so that they correspond to the scale of these
parameters given by the literature on nuclear mass mod-
els (Weizséicker, 1935; Bethe and Bacher, 1936; Myers
and Swiatecki, 1966; Fayans, 1998; Kirson, 2008; Mc-
Donnell et al., 2015; Kortelainen et al., 2010, 2012,
2014; Benzaid et al., 2020; Kejzlar et al., 2020). In par-
ticular,

o ~ Gamma(2,1),
ns ~ Gamma(10, 1
(10,1

In ~ Gamma(10,1
(

(

(

)

ly ~ Gamma(l

)

vy ~ Gamma(10, 1

)
vy ~ Gamma(10,1),

)
)
)
)
)
)

v; ~ Gamma(10,1), 1=1,2,3,4.

Since the majority of the masses in the training
dataset are larger than 1000 MeV. We consider the fol-
lowing prior for 7y to reflect this notion

ny ~ Gamma(110,10).

Appendix G Numerical study of the
conditional covariance k¢

Here we present the numerical investigation of our con-
jecture about the asymptotic behaviour of the condi-
tional covariance k.. We show that with increasing num-

).

ber of model evaluations s (assuming some space filling
design) the covariance function ks quickly dominates
which strongly points out to similar asymptotic behav-
ior of k¢ and ks with respect to s. Our rational is that by
informing the prior distribution for ¢ with more model
evaluations, we effectively reduce the uncertainty about
the computer model.

G.1 Study design

We consider a simple scenario with the joint space of
model and calibration inputs over [0,1]2. The input
pairs (fj, éj) were generated using the space filling Latin
hypercube design. The true value of calibration param-
eter was chosen to vary between 6 = {0.3,0.5,0.8}.

G.2 Results

Figure 6 and Figure 7 show the values of |k¢(t;,15) —
ks(ti,t;)| as a function of model runs in the case of
squared exponential covariance kernels for both k; and
ks. The hyperparameter values were fixed to ny = n; =
1 with varying values for the length scales so that Iy =
ls.

Analogically, Figures 8 and 9 correspond to the case
of tensor-product Matérn kernels with the standard choice
of smoothness parameter A\ = 2.5 which is sufficient ac-
cording to the theory discussed in Section 4.1.1. The
remaining hyperparameters are same as in the case of
squared exponential kernel.

We can see that both choices of kernel functions for
ks and ks exhibit the hypothesised dominance of ks
with the increasing number of model runs. This hap-
pens irrespective of the choice of kernel function, model
inputs ¢, calibration parameters 6, and the length scales.
Particularly in the case of squared exponential kernel,
the absolute difference between k¢ and ks quickly de-
creases and reaches the limits of numerical stability. On
the other hand, the rate of convergence is considerably
slower for the Matérn kernel which is likely related to
the limited smoothness of the kernel.

Appendix H Additional results for simulation
study: Transverse harmonic wave

The following figures shows additional results of the
empirical Bayes fit under the transverse harmonic wave
simulation study at the time locations ¢t = 0,¢ = 0.43,t =
0.71, and t =1 (Fig. 10, 11, ...,17).
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Fig. 6: The absolute difference between the conditional kernel k¢ and ks for the model inputs ¢; = 0.2 and t; = 0.4
and the value of true calibration parameter § = {0.3,0.5,0.8}. This is the squared exponential kernel case.
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Fig. 7: The absolute difference between the conditional kernel k¢ and ks for the model inputs ¢; = 0.3 and ¢t; = 0.7
and the value of true calibration parameter § = {0.3,0.5,0.8}. This is the squared exponential kernel case.
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Fig. 8: The absolute difference between the conditional kernel k¢ and ks for the model inputs ¢; = 0.2 and t; = 0.4
and the value of true calibration parameter § = {0.3,0.5,0.8}. This is the tensor-product Matérn case.
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t,=0.3,t=0.7,6=0.3 t,=0.3,t=0.7,0=0.5 =0.3,4=0.7,0=0.8
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Fig. 9: The absolute difference between the conditional kernel k¢ and ks for the model inputs ¢; = 0.3 and ¢t; = 0.7
and the value of true calibration parameter § = {0.3,0.5,0.8}. This is the tensor-product Matérn case.
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Fig. 10: Comparison of the convergence to the true physical process (o(¢,x) under the empirical Bayes approach
and the fully Bayesian implementation given by the Metropolis-Hastings algorithm. The dashed line represents the
true process (g, and the solid line corresponds to the mean of posterior predictive distributions under respective
method. The curves with 95% credible intervals (shaded area) are plotted at ¢ = 0.00.
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Fig. 11: Comparison of the convergence to the true physical process (o(¢,z) under the empirical Bayes approach
and the fully Bayesian implementation given by the Metropolis-Hastings algorithm. The dashed line represents the
true process (p, and the solid line corresponds to the mean of posterior predictive distributions under respective
method. The curves with 95% credible intervals (shaded area) are plotted at t = 0.43.
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Fig. 12: Comparison of the convergence to the true physical process (o(¢,z) under the empirical Bayes approach
and the fully Bayesian implementation given by the Metropolis-Hastings algorithm. The dashed line represents the
true process (g, and the solid line corresponds to the mean of posterior predictive distributions under respective
method. The curves with 95% credible intervals (shaded area) are plotted at ¢t = 0.71.
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Fig. 13: Comparison of the convergence to the true physical process (o(t,z) under the empirical Bayes approach
and the fully Bayesian implementation given by the Metropolis-Hastings algorithm. The dashed line represents the
true process (p, and the solid line corresponds to the mean of posterior predictive distributions under respective
method. The curves with 95% credible intervals (shaded area) are plotted at t = 1.00.
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Fig. 14: Details of 95% credible bands of posterior predictive distributions under the empirical Bayes approach
and the fully Bayesian approach of Metropolis-Hastings algorithm. These were plotted at ¢t = 0.00.
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Fig. 15: Details of 95% credible bands of posterior predictive distributions under the empirical Bayes approach
and the fully Bayesian approach of Metropolis-Hastings algorithm. These were plotted at t = 0.43.
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Fig. 16: Details of 95% credible bands of posterior predictive distributions under the empirical Bayes approach
and the fully Bayesian approach of Metropolis-Hastings algorithm. These were plotted at ¢t = 0.71.
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Fig. 17: Details of 95% credible bands of posterior predictive distributions under the empirical Bayes approach
and the fully Bayesian approach of Metropolis-Hastings algorithm. These were plotted at ¢ = 1.00.
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