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Abstract
In this paper we formulate a multi-scale nested immuno-epidemiological model of
HIV on complex networks. The system is described by ordinary differential equa-
tions coupled with a partial differential equation. First, we prove the existence and
uniqueness of the immunological model and then establish the well-posedness of the
multi-scale model. We derive an explicit expression of the basic reproduction number
R0 of the immuno-epidemiological model. The system has a disease-free equilibrium
and an endemic equilibrium. The disease-free equilibrium is globally stable when
R0 < 1 and unstable whenR0 > 1. Numerical simulations suggest thatR0 increases
as the number of nodes in the network increases. Further, we find that for a scale-free
network the number of infected individuals at equilibrium is a hump-like function of
the within-host reproduction number; however, the dependence becomes monotone if
the network has predominantly low connectivity nodes or high connectivity nodes.

Keywords HIV · Network · Age structured · Basic reproduction number · Epidemic
model

1 Introduction

The human immunodeficiency virus (HIV), which causes acquired immune deficiency
syndrome (AIDS), has been one of the major challenges for public health worldwide
for the last few decades. There were approximately 37.9 million people globally with
HIV/AIDS in 2018; an estimated 1.7 million individuals worldwide became newly
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infected with HIV in 2018; and an estimated 770,000 people died of AIDS and AIDS-
related illnesses by the end of 2018 (https://www.unaids.org/en/resources/fact-sheet).
HIV spreads via sexual contact, intravenous drug usage and vertical transmission, i.e.,
from mother to child. Therefore, the epidemic spread of HIV is mostly dependent on
human behavior and contact.

Researchers from different disciplines, e.g., Biology, Mathematics, Medicine, Pub-
lic Health and Pharmaceutical Industries, have been working on trying to eliminate or
suppress HIV. Extensive research has been carried out on the immunological impli-
cation of HIV infection (Perelson and Nelson 1999; Rong et al. 2007; Huang et al.
2012). Similarly, epidemiological models have been studied to understand the viral
dynamics of HIV within the population (Thieme and Castillo-Chavez 1993; Ruth and
Blower 1993; Gumel et al. 2006). The dynamics of HIV/AIDS occurs at multiple
scales, e.g., at the population level (transmission between humans) and the cellu-
lar level (within an infected human). However, research within the past decades has
focused mainly on either within-host or between-host interactions.While it is easier to
analyze disconnected (either between-host or within-host) models, certain questions
can only be answered by looking at a multi-scale model. Gilchrist and Sasaki (2002)
connected a simple within-host model in the nested fashion within a susceptible–
infected–recovered (SIR) between-host model, and since then, many articles have
followed a similar approach. Saenz and Bonhoeffer (2013) look at the way drug-
resistant and drug-sensitive HIV strains in the immunological scale have an effect on
the prevalence of those strains in the population. Martcheva and Li (2013) studied
superinfection and its effect on the population dynamics. Shen et al. (2015) used a
nested approach with partial differential equations to study the effects of antiretrovi-
ral therapy (ART) on viral load and the increase in prevalence of HIV. Lythgoe et al.
(2013) used a nested integro-differential equationmodel to study competition between
strains and its effect on HIV virulence. A similar approach was used in Doekes et al.
(2017) to investigate how the latent reservoir of CD4+ T cells affects the evolution
of HIV strains within and between host levels. Another approach has been to connect
immunological to epidemiological models when both are described by ordinary dif-
ferential equations (Cuadros and Garcia-Ramos 2012; Metzger et al. 2011), but in this
approach the timescales variable for the within-host and between-host system remains
the same.

The contact rate among individuals is not constant; some individuals may be in
contact with a lot of other individuals, while others may be in contact with only a
few. This is natural in a sexual or drug usage network. To describe this heterogeneity
of contact, modelers have used complex networks. Pastor-Satorras and Vespignani
(2001a) and Pastor-Satorras and Vespignani (2001b) used a complex network on an
epidemic SIS model. The SIRS model on complex networks was studied in Li et al.
(2014) and the SIRmodel inWang et al. (2015). In Yang et al. (2016), the authors look
into an age-since-infection SIS model integrated with a complex network. A similar
approach was used in Yang and Chen (2017), and an age-since-infection SIR model
on complex networks was investigated. A network of the small world type was used
in Vieira et al. (2010) to model dynamics of HIV.

Epidemic spread on a static network, that is, without demography, has been thor-
oughly studied (Pastor-Satorras andVespignani 2001b;Wang et al. 2012). For diseases
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with a fast run time and recovery period, such as influenza or childhood diseases a
static network can be appropriate, since the birth rate and death rate of individuals
are on a much larger timescale. But for HIV, since it is a lifelong disease, demogra-
phy does have a significant impact on disease dynamics. In such situations a dynamic
network in which the network structure changes and nodes get occupied or vacated is
considered (Zhang and Zhen 2011; Jin et al. 2014).

Here, we develop a multi-scale network model of HIV to address the question:
“How do different network structures coupled with the within-host dynamics affect
the between-host dynamics?” To our knowledge, no multi-scale model on a scale-free
dynamic network of HIV has been developed or studied.

The paper is organized as follows: In Sect. 2 we introduce the within-host and
between-host models and the parameters linking the two of them. In Sects. 3 and 4 we
show the boundedness and existence of solutions for both thewithin-host and between-
host model. In Sect. 5 we find the disease-free equilibrium and the threshold R0 and
analyze the stability of the disease-free equilibrium, both local and global. We follow
up in Sect. 6 with the existence and stability of the endemic equilibrium and establish
that under certain conditions the endemic equilibrium is locally asymptotically stable.
Finally, Sect. 7 contains simulations for our model. Section 8 summarizes our results.

2 AMulti-scale NetworkModel of HIV

In this section we develop a multi-scale network model of HIV. The model consist of
a within-host immunological model of HIV which is common for all individuals in
the population, regardless of their connection status. Furthermore, the model consists
of a network age-since-infection structured compartment in which the individuals are
separated into classes based on their connections.

2.1 Within-Host Model

The within-host model is a commonly used model in the literature (Nowak and May
2000) which tracks susceptible CD4+ cells T (t), infected CD4+ cells Ti (t) and the
number of virions V (t). The model takes the form:

T ′(τ ) = λ − kvT V − dT ,

T ′
i (τ ) = kvT V − μ0Ti ,

V ′(τ ) = πTi − cV .

(1)

The immunological reproduction number is Rhost
0 = λkvπ

μ0dc
. The immunological repro-

duction number gives the number of secondary viral particles that one viral particle
will produce in an entirely susceptible target cell population.We assume that Rhost

0 > 1
as HIV persists within host. Model (1) has been analyzed before. It is known that if
Rhost
0 < 1, it only has an infection-free equilibrium E0

host = ( λ
d , 0, 0)which is globally

asymptotically stable. When Rhost
0 > 1, the model also has an endemic equilibrium

E∗
host = (T ∗, T ∗

i , V ∗) where
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Table 1 Definitions of parameters and state variables of the within-host model

Notation Meaning

λ Production rate of healthy T-cells

kv Infection rate of healthy cells infected by virus

T Number of healthy cells

Ti Number of infected cells

d Natural death rate of healthy cells

V Number of virions

μ0 Death rate of infected cells

c Clearance rate of virions

π Virus production rate of infected cells

T ∗ = μ0c

kvπ
, T ∗

i = cd

kvπ
(Rhost

0 − 1), V ∗ = d

kv

(Rhost
0 − 1).

It is also known that if Rhost
0 > 1, the infection-free equilibrium is unstable and the

endemic equilibrium is globally stable (De Leenheer and Smith 2003). The immuno-
logical model parameters and state variables are defined in Table 1.

2.2 Linking Parameters

Linking parameters are epidemiological parameters that are expressed in terms of the
within-host parameters and dependent variables. Their purpose is to link the within-
host and the between-host models into a full immuno-epidemiological model. The
linking functions in this model are β(τ), “the transmission rate of HIV” and γ (τ),
“ the rate of progression of infected individuals to AIDS.” Typically, there are many
ways to define the linking functions (Gilchrist and Coombs 2006). We assume the
simplest linking functions, that is, β j (τ ) is proportional to the viral load at a given age
since infection τ , and so

β j (τ ) = β j V (τ ).

The transition rate γ (τ) is assumed to be

γ (τ) = γ0V (τ ).

2.3 Between-Host Model

We consider a dynamic network with total fixed number of vertices NT . Some of the
vertices are empty, but some are occupied by susceptible, infected orAIDS individuals.
For an epidemic network, the degree of a node is the number of contacts the node has
with other nodes. We assume that the network contacts are HIV-type contacts. That is,
an edge between any two nodes represents transmission of HIV, either through sexual
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contact or intravenous drug usage. For a network with maximal degree n, the average
network degree is given by

〈k〉 =
n∑

k=1

kp(k) ,

where p(k) is the probability that a randomly chosen node has degree k. Empirical
studies suggest that many real-life HIV networks have scale-free degree distribution
p(k) ∼ k−η, where 2 < η < 3 (Rotenberg 2009). A scale-free network is formed by
adding a new person to the network one at a time following a connection mechanism
that copies the natural formation of social contact (Keeling and Eames 2005). This
type of network contains a few nodes which are connected to a large number of the
other nodes (also called Hubs), and a majority of the nodes with very few edges. The
conditional probability p( j |k) is the probability that a node with degree k is connected
to a node with degree j , which is given by

p( j |k) = j p( j)

〈k〉 .

Let n be the maximal number of connections in the complex network. For k ∈
{1, 2, ..., n}, let Sk(t) be the number of susceptible vertices of degree k at time t ,
ik(t, τ ) stand for the density of infected vertices of degree k at time t and with infec-
tion age τ and Ak(t) be the number of AIDS vertices which transferred from the
infected class of degree k at time t . Nk(t) is the total active population size of degree
k at time t . We introduce an epidemiological model with infection in the host, as
follows:

dSk
dt

= �k − kλv(t)Sk(t) − μSk(t),

∂ik
∂t

+ ∂ik
∂τ

= −(μ + γ (τ))ik(t, τ ),

ik(0, t) = kλv(t)Sk(t),

dAk

dt
=

∫ ∞

0
γ (τ)ik(t, τ )dτ − (μ + α)Ak(t).

(2)

where k ∈ {1, 2, · · · , n}. The force of infection λv(t) is given by

λv(t) = 1

〈k〉
n∑

k=1

kp(k)
∫ ∞

0

βk(τ )ik(t, τ )

Nk(t)
dτ.

Further, γ (τ) is the transition rate at infection age τ from the infected class to the
AIDS stage class, and βk(τ ) is the transmission rate at infection age τ . The �k is the
recruitment rate of susceptibles, μ is the natural death rate of all classes, and α is the
disease-induced mortality rate. We consider the total active population size of degree
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k as:

Nk(t) = Sk(t) +
∫ ∞

0
ik(t, τ )dτ.

A shortcoming of this model due to the simple linking functions would be that all
individuals in the population experience the samewithin-host dynamics. This problem
could have been remedied if multiple groups of infected individuals were included in
the population. Such a multi-group multi-scale model is studied in Numfor et al.
(2016). But because of the network structure, the system is already complicated, and
addition ofmultiple groups of infection classeswould further complicate it.We believe
addition of infection classes would not give any different insights with the network
structures.

3 Existence and Boundedness of the Solution of Within-Host Model

The existence and boundedness of the solutions of the within-host model will be
necessary to prove the existence and uniqueness of the multi-scale system. We state
the following theorem without proof.

Theorem 1 (Thieme 2003) Let Rn+ = [0,∞)n be the cone of nonnegative vectors in
R
n. Let F : Rn+ → R

n be locally Lipschitz,

F(t, x) = (F1(t, x), · · · , Fn(t, x)), x = (x1, · · · , xn),

and satisfy

Fj (t, x) ≥ 0 whenever t ≥ 0, x ∈ R
n+, x j = 0.

Then for every x0 ∈ R
n+, there exists a unique solution of x ′ = F(t, x), x(0) = x0

with values in Rn+, which is defined on some interval [0, b), b > 0. If b < ∞, then

lim sup
t→b

n∑

j=1

x j (t) = ∞.

We apply Theorem 1 to system (1). Since the system equations are bilinear, the system
is locally Lipschitz. When (T , Ti , V ) ≥ 0, taking T (τ ) = 0, we have

T ′(τ ) = λ > 0.

Similarly, taking Ti (τ ) = 0,

T ′
i (τ ) = kvT V ≥ 0,
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and lastly taking V (τ ) = 0,

V ′(τ ) = πTi ≥ 0.

So system (1) satisfies the conditions of Theorem 1 and has a unique nonnegative
solution.

Now the following computation shows that T (τ ), Ti (τ ), V (τ ) are bounded.
For all τ

T ′(τ ) + T ′
i (τ ) = (T + Ti )

′(τ ) = λ − dT − μ0Ti
≤ λ − min{d, μ0}(T + Ti )

which implies

(T + Ti ) ≤ λ

min{d, μ0} + c0e
−min{d,μ0}τ ,

where c0 = T (0) + Ti (0) − λ
min{d,μ0} .

Since T + Ti is bounded, so is Ti . Let Ti ≤ C2. So

V ′(τ ) = πTi − cV ≤ πC2 − cV ,

which implies

V ≤ πC2

c
+ c1e

−cτ ,

where c1 = V (0) − πC2
c .

So,

lim sup
τ→∞

(T + Ti + V ) ≤ λ

min{d, μ0} + πC2

c
.

Hence, according to Theorem 1, (1) has a solution for the interval [0, b) when
b > 0. Since the solutions are bounded, we have that b = ∞. We get the following
theorem.

Theorem 2 Given Eq. (1) with positive initial conditions T (0) = T 0, Ti (0) =
T 0
i , V (0) = V 0, there exist constants C1,C2,C3 such that 0 ≤ T (τ ) ≤ C1, 0 ≤

Ti (τ ) ≤ C2, 0 ≤ V (τ ) ≤ C3 for all τ > 0.

4 Boundedness and Existence of Solutions

Using the method of integrating factors and the characteristics, we find a integral
formulation of Eq. (2). For the well-posedness of the between-host system, we use an
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approach similar to the one used in Numfor et al. (2014).

Sk(t) = Sk0e
−(α+μ)t + �k

μ + α
(1 − e−(α+μ)t )

+
∫ t

0
e−(μ+α)(t−s)Sk(s)

⎛

⎝α − k

〈k〉
n∑

j=1

j p( j)

N j (s)

∫ ∞

0
β j V (τ )i j (t, τ )dτ

⎞

⎠ ds,

ik(t, τ ) =
{

k
〈k〉 Sk(t − τ)π(τ)

∑n
k=1

j p( j)
N j (t−τ)

∫ ∞
0 β j V (τ )i j (t − τ, r)dr , if t ≥ τ

ik(τ − t, 0) π(τ)
π(τ−t) t < τ

(3)

where α ≥ nβC3, and β= max{β1, · · · , βn} and π(τ) = e− ∫ τ
0 (μ+γ (σ ))dσ .

To prove the existence and uniqueness, we define our state solution space as

X =
{
(X1 × X2)

n, X1 = R, X2 = L1(R), Sk(t) ≥ εk > 0, ik(t, τ ) ≥ 0,

lim sup Sk(t) < ∞ and lim sup
∫ ∞

0
ik(t, τ )dτ < ∞ for k = 1, 2, ..., n

}
,

where εk = min{Sk0, �k
μ+α

}.
Now we define a map

Lk : X → (X1 × X2),Lk(S, i) = (Lk1(S, i), Lk2(S, i)),

where

Lk1(S, i) = Sk0e
−(α+μ)t + �k

μ + α
(1 − e−(α+μ)t )

+
∫ t

0
e−(μ+α)(t−s)Sk(s)

⎛

⎝α − k

〈k〉
n∑

j=1

j p( j)

N j (s)

∫ ∞

0
β j V (τ )i j (t, τ )dτ

⎞

⎠ ds,

(4)

and

Lk2(S, i) =
{

k
〈k〉 Sk(t − τ)π(τ)

∑n
k=1

j p( j)
N j (t−τ)

∫ ∞
0 β j V (τ )i j (t − τ, r)dr , if t ≥ τ

i0k (τ − t) π(τ)
π(τ−t) t < τ.

(5)

The following assumptions are made:

• Sk0, μ,�k, βk are positive constants for all k = 1, 2, · · · , n,
• μ + γ0(s) is positive and Lipschitz continuous,
• i0k (τ − t) is nonnegative for all τ > t , for all k = 1, 2, · · · , n,
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• ∫ ∞
0 i0k (τ )dτ ≤ M and 0 < Sk0 ≤ M for all k = 1, 2, · · · , n,

• lim sup Sk(t) < M for all k = 1, 2, · · · , n.

Theorem 3 For T < ∞, there exists a unique nonnegative solution (S, i) to the
epidemiological system (2).

Proof First, we show Lk maps X into (X1 × X2).

|Lk1(S, i)|(t) ≤ |Sk0e−(α+μ)t |
+

∣∣∣∣
�k

μ + α
(1 − e−(α+μ)t )

∣∣∣∣ + α

∣∣∣∣
∫ t

0
Sk(s)e

−(μ+α)(t−s)ds

∣∣∣∣

+
∣∣∣∣∣∣

∫ t

0
e−(μ+α)(t−s)Sk(s)

k

〈k〉
n∑

j=1

j p( j)

N j (s)

∫ ∞

0
β j V (τ )i j (t, τ )dτds

∣∣∣∣∣∣

≤ M + �k

α + μ
+ α

α + μ
lim sup Sk(s) + kβC3

μ + α
lim sup Sk(s) < ∞.

Next we consider the second component.

∫ ∞

0
|Lk2(S, i)|(t, τ )dτ

=
∫ t

0

∣∣∣∣∣
k

〈k〉 Sk(t − τ)π(τ)

n∑

k=1

j p( j)

N j (t − τ)

∫ ∞

0
β j V (τ )i j (t − τ, r)dr

∣∣∣∣∣ dτ

+
∫ ∞

t
|i0k (τ − t)e− ∫ t

0 μ+γ0V (τ−t−s)ds |dτ
≤ kβC3T lim sup Sk(s) + M < ∞.

Now

Lk1(S, i)(t) ≥ Sk0e
−(μ+α)t + �k

μ + α
(1 − e−(μ+α)t ) ≥ εk > 0,

due to the convex combination of Sk0 and
�k

μ+α
. Also, Lk2(S, i)(t) ≥ 0 since Sk(t) ≥

εk > 0 and ik(t, τ ) ≥ 0. Hence, Lk maps X to X1 × X2.
Next, we show thatLk admits a unique fixed point.We define the following iterative

sequence:

(Sm+1
k (t), im+1

k (t, τ )) = (Lk1(S
m(t), im(t, τ )), Lk2(S

m(t), im(t, τ ))), (6)

where
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Sm+1
k (t) = Sk0e

−(μ+α)t + �k

μ + α

(
1 − e−(μ+α)t

)

+
∫ t

0
e−(μ+α)(t−s)Smk (s)

⎛

⎝α − k

〈k〉
n∑

j=1

j p( j)

Nm
j (s)

∫ ∞

0
β j V (τ )imj (t, τ )dτ

⎞

⎠ ds,

im+1
k (t, τ ) =

{
k

〈k〉 S
n
k (t − τ)π(τ)

∑n
k=1

j p( j)
Nn

j (t−τ)

∫ ∞
0 β j V (τ )inj (t − τ, r)dr , if t ≥ τ

i0k (τ − t) π(τ)
π(τ−t) t < τ.

We set S0k (t) = 0 and i0k (t, τ ) = 0. Then,

S1k (t) = Sk0e
−(μ+α)t + �k

μ + α

(
1 − e−(μ+α)t

)
,

i1k (t, τ ) =
{
0, if t ≥ τ

i0k (τ − t) π(τ)
π(τ−t) t < τ,

and define a sequence of total population as

Nm
k (t) = Smk (t) +

∫ ∞

0
imk (t, τ )dτ.

To show the sequence of functions (Sm+1
k (t), im+1

k (t, τ )) converges for all m ≥ 0,
we define the following notation

F
m
k (t) = |Sm+1

k (t) − Smk (t)|,
I
m
k (t) =

∫ ∞

0
|im+1
k (t, τ ) − imk (t, τ )|dτ, (7)

where

N
m(t) =

n∑

k=1

kp(k)(Fm
k (t) + I

m
k (t)).

We have F
0
k = Sk0e−(μ+α)t + �k

μ+α
(1 − e−(μ+α)t ) ≤ max{Sk0, �k

μ+α
}, I0k =

∫ ∞
0 i0k (τ )dτ and so N0 = ∑n

k=1 kp(k)(max{Sk0, �k
μ+α

} + ∫ ∞
0 i0k (τ )dτ).

For n = 1, we get

F
1
k(t) = |S2k (t) − S1k (t)|

=
∣∣∣∣∣∣

∫ t

0
e−(μ+α)(t−s)S1k (s)

⎛

⎝α − k

〈k〉
n∑

j=1

j p( j)

N 1
j (s)

∫ ∞

0
β j V (τ )i1j (t, τ )dτ

⎞

⎠ ds

∣∣∣∣∣∣

≤ max
{
Sk0,

�

μ + α

} (
α + nβC3

α + μ

)
, (8)
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and

I
1
k(t) =

∫ ∞

0
|i2k (t, τ ) − i1k (t, τ )|dτ

=
∫ t

0

k

〈k〉 S
1
k (t − τ)

n∑

j=1

j p( j)

∫ ∞
t β j V (s)i0k (s + τ − t) π(τ)

π(τ−s)ds

N 1
j (t − τ)

dτ

≤ KβC3

∫ t

0
S1k (t − τ)dτ = KβC3T max{Sk0, �k

μ + α
}. (9)

From (8) and (9) we get N1(t) = ∑n
k=1 kp(k)(F

1
k(t) + I

1
k(t)) ≤ CN

0.

F
m
k (t) = |Sm+1

k (t) − Smk (t)| ≤ α

∫ t

0
e−(μ+α)(t−ξ)|Smk (ξ) − Sm−1

k (ξ)|dξ

+
∫ t

0
e−(μ+α)(t−ξ) k

〈k〉
n∑

j=1

j p( j)β jC3

∫ ∞

0

∣∣∣Smk (ξ)
imj (ξ, τ )

Nm
j (ξ)

− Sm−1
k (ξ)

im−1
j (ξ, τ )

Nm−1
j (ξ)

∣∣∣dτ, (10)

where

n∑

j=1

j p( j)
∫ ∞

0

∣∣∣∣∣S
m
k (ξ)

imj (ξ, τ )

Nm
j (ξ)

− Sm−1
k (ξ)

im−1
j (ξ, τ )

Nm−1
j (ξ)

∣∣∣∣∣ dτ

≤
n∑

j=1

j p( j)

(
|Smk (ξ) − Sm−1

k (ξ)|
∫ ∞

0

imj (ξ, τ )

Nm
j (ξ)

dτ + Sm−1
k (ξ)

∫ ∞

0

∣∣∣∣∣
inj (ξ, τ )

Nm
j (ξ)

− im−1
j (ξ, τ )

Nm−1
j (ξ)

∣∣∣∣∣ dτ
)

≤
n∑

j=1

j p( j)

(
|Smk (ξ) − Sm−1

k (ξ)| + Sm−1
k (ξ)

∫ ∞

0
imj (ξ, τ )

∣∣∣∣∣
Nm−1

j (ξ) − Nm
j (ξ)

Nm−1
j (ξ)Nm

j (ξ)

∣∣∣∣∣ dτ
)

+
n∑

j=1

j p( j)
Sm−1
k (ξ)

Nm−1
j (ξ)

∫ ∞

0
|imj (ξ, τ ) − im−1

j (ξ, τ )|dτ)

≤
n∑

j=1

j p( j)

(
|Smk (ξ) − Sm−1

k (ξ)| + lim sup Sk
ε j

(|Sm−1
j (ξ) − Smj (ξ)| +

∫ ∞

0
2|imj (ξ, τ ) − im−1

j (ξ, τ )|dτ)

)
.

(11)

From (10) and (11), we get

F
m
k (t) ≤ (α + k)

∫ t

0
F
m−1
k (ξ)dξ + kK1

〈k〉
n∑

j=1

j p( j)
∫ t

0
(Fm−1

j (ξ) + 2Im−1
j (ξ))dξ.

(12)
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Thus,

n∑

k=1

kp(k)Fm
k (t) ≤ (α + n)

n∑

k=1

kp(k)
∫ t

0
F
m−1
k (ξ)dξ +

n∑

k=1

k2K1 p(k)

〈k〉

×
⎡

⎣
n∑

j=1

j p( j)
∫ t

0
(Fm−1

j (ξ) + 2Im−1
j (ξ))dξ

⎤

⎦

≤ K1

[
n∑

k=1

kp(k)
∫ t

0
(Fm−1

k (ξ) + I
m−1
k (ξ))dξ

]
. (13)

Next we consider the second component.

I
m
k (t) =

∫ ∞

0
|im+1
k (t, τ ) − imk (t, τ )|dτ ≤

∫ t

0

k

〈k〉π(τ)

n∑

j=1

j p( j)
∫ ∞

0

βC3

∣∣∣∣∣
Smk (t − τ)imj (t − τ, r)

Nm
j (t − τ)

− Sm−1
k (t − τ)im−1

j (t − τ, r)

Nm−1
j (t − τ)

∣∣∣∣∣ drdτ

≤ K2

[
n∑

k=1

kp(k)
∫ t

0
(Fm−1

k (ξ) + I
m−1
k (ξ))dξ

]
, (14)

where we used a similar method to the first component and used the substitution
ξ = t − τ . Combining (13) and (14) we notice the following recurrence relation

N
m(t) ≤ K

∫ t

0
N
m−1(ξ)dξ,

with N1(t) ≤ CN
0, where K = K1 + K2.

Now,

N
2(t) ≤ K

∫ t

0
N
1(ξ)dξ ≤ KCN

0t,

and

N
3(t) ≤ K

∫ t

0
KCN

0ξdξ ≤ CN
0K

2t2

2
.

Thus by induction, it follows that

N
m(t) ≤ CN

0K
m−1tm−1

(m − 1)! ≤ CN
0K

m−1Tm−1

(m − 1)! .
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Next we see that

∣∣∣Sl+m
k (t) − Smk (t)

∣∣∣ ≤
l+m∑

j=m+1

N
j (t) ≤ CN

0
∞∑

j=m+1

K j−1T j−1

( j − 1)! → 0, as m → ∞

Also,

∫ ∞

0

∣∣∣i l+m
k (t, τ ) − imk (t, τ )

∣∣∣ dτ ≤
l+m∑

j=m+1

∫ ∞

0
|i jk (t, τ ) − i j−1

k (t, τ )|dτ

≤
l+m∑

j=m+1

N
j (t) ≤ CN

0
∞∑

j=m+1

K j−1T j−1

( j − 1)! → 0, as m → ∞

It can be concluded that the sequence {Smk (t), imk (t, τ )} generated by (6) is a Cauchy
sequence in X1 × X2, and is convergent since X1 × X2 is complete. Thus, there exists
(Sk(t), ik(t, τ )) in X1 × X2 which is the limit of the given sequence, and a fixed point
of the operator Lk . Therefore, there exists a solution to the between-host model for
all T < ∞.

To prove uniqueness, we assume there are two solutions (Sk(t), ik(t, τ )) and
(Sk(t), i k(t, τ )), which satisfy the following equations,

(Sk(t), ik(t, τ )) = (Lk1((Sk(t), ik(t, τ ))), Lk2((Sk(t), ik(t, τ )))),

and

(Sk(t), i k(t, τ )) = (Lk1((Sk(t), i k(t, τ ))), Lk2((Sk(t), i k(t, τ )))).

We substitute (Sk(t), ik(t, τ )) and (Sk(t), i k(t, τ )) in place of (Smk (t), imk (t, τ )) and
(Sm−1

k (t), im−1
k (t, τ )), respectively, in the proof of existence of solution above, and

set

F̂k(t) = ∣∣Sk(t) − Sk(t)
∣∣ and Îk(t) =

∫ ∞

0

∣∣ik(t, τ ) − i k(t, τ )
∣∣ dτ.

From the recurrence relation, we get

N̂(t) ≤ K
∫ t

0
N̂(ξ)dξ,

so that by Gronwall’s inequality in integral form N̂(t) = 0. Thus,
∑n

k=1 kp(k)(F̂k(t)+
Îk(t)) = 0. Since F̂k(t) ≥ 0 and Îk(t) ≥ 0 and

∑n
k=1 kp(k)(F̂k(t) + Îk(t)) = 0, there

can be two cases, either p(k) = 0, in which case there are no vertices with degree k, or
both F̂k(t) and Îk(t) are equal to 0 for all t > 0. Hence, the solution (Sk(t), ik(t, τ ))

to the epidemiological model is unique.
�
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5 The Disease-Free Equilibrium

5.1 Existence and Stability of the Disease-Free Equilibrium

Equilibria are time-independent solutions of the system. We look at the equilibria of
this system, and we set the differentials with respect to t equal to zero.

�k − kλvSk − μSk = 0,

∂ik
∂τ

= −(μ + γ (τ))ik(τ ),

ik(0) = kλvSk .

(15)

At the disease-free equilibrium ik(τ ) is zero for all k. So ε0 =
(

�1
μ

, 0, · · · , �n
μ

, 0
)
.

To determine the stability of the disease-free equilibrium and the immuno-
epidemiological reproduction number, we linearize around the disease-free equilib-
rium. We take Sk(t) = S0k + xk(t), Nk(t) = N 0

k +nk(t) and ik(t, τ ) = yk(t, τ ). Then,
linearizing Eq. (15) takes the following form:

dxk
dt

= −kλv(t)S
0
k − μxk(t),

∂ yk
∂t

+ ∂ yk
∂τ

= −(μ + γ (τ))yk(t, τ ),

yk(0, t) = kλv(t)S
0
k ,

λv(t) = 1

〈k〉
n∑

k=1

kp(k)
∫ ∞

0

βk(τ )yk(t, τ )

N 0
k

dτ.

(16)

where N 0
k = S0k = �k

μ
. We look for solutions of the form xk(t) = xk0eλt , yk(τ, t) =

yk(τ )eλt and obtain the following eigenvalue problem,

0 = −(λ + μ)xk0 − kλv(yk(τ ))S0k ,

∂ yk
∂τ

+ λyk(τ ) = −(μ + γ (τ))yk(τ ),

yk(0) = kλv(yk(τ ))S0k .

(17)

Solving the second equation of (17) we get

yk(τ ) = yk(0)π(τ)e−λτ . (18)

Substituting (18) in the third equation of (17) we obtain,

yk(0) = kλv(yl(λ))S0k , (19)
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where λv(yl(λ)) = 1
〈k〉

∑n
l=1 lp(l)

∫ ∞
0

βl (τ )yl (0)π(τ)e−λτ

N0
l

dτ . Simplifying we have:

yk(0) = kS0k
1

〈k〉
n∑

l=1

lp(l)
∫ ∞

0

βl(τ )π(τ)e−λτdτ

N 0
l

yl(0),

yk(0)

S0k
= k

1

〈k〉
n∑

l=1

lp(l)
∫ ∞

0

βl(τ )π(τ)e−λτdτ

N 0
l

yl(0).

(20)

Note that
S0k
N0
k

= 1. Multiplying both sides of (20) by 1
〈k〉

∑n
l=1 kp(k)

∫ ∞
0

βk(τ )π(τ)e−λτdτ and then adding together, we have

1

〈k〉
n∑

l=1

lp(l)
yl(0)

N 0
l

∫ ∞

0
βl(τ )π(τ)e−λτdτ = 1

〈k〉
n∑

k=1

k2 p(k)
∫ ∞

0
βk(τ )π(τ)e−λτdτ

n∑

l=1

lp(l)
∫ ∞

0

βl(τ )π(τ)e−λτdτ

N 0
l

yl(0),

λv(yk(λ)) = 1

〈k〉
n∑

k=1

k2 p(k)
∫ ∞

0
βk(τ )π(τ)e−λτdτλv(yl(λ)).

(21)

If λv(yk(λ)) = 0, then yk(τ ) = 0 which is not the case for all ks.
Canceling out λv(yk(λ)) from both sides of (21) we get,

1 = 1

〈k〉
n∑

k=1

k2 p(k)
∫ ∞

0
βk(τ )π(τ)e−λτdτ. (22)

We define

R0 = 1

〈k〉
n∑

k=1

k2 p(k)
∫ ∞

0
βk(τ )π(τ)dτ. (23)

The formulation of between-host reproduction number R0 is dependent on βk(τ )

and γ (τ), since

π(τ) = e− ∫ τ
0 (μ+γ (σ ))dσ .

We compute R0 when the within-host model is at equilibrium. In such a situation
transmission rate βk(τ ) and transition into AIDS rate γ (τ) become,

βk(τ ) = βkV (τ ) = βk
d(Rhost

0 − 1)

kv

, and γ (τ) = γ0
d(Rhost

0 − 1)

kv

.
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With this setting π(τ) can be computed as

π(τ) = e−(μ+γ0
d(Rhost0 −1)

kv
)τ

.

Since

R0 = 1

〈k〉
n∑

k=1

k2 p(k)
∫ ∞

0
βk(τ )π(τ)dτ,

when the within-host system is at equilibrium, then R0 equals to

R0 = 1

〈k〉
n∑

k=1

k2 p(k)
βkd(Rhost

0 − 1)

μkv + γ0d(Rhost
0 − 1)

.

R0 is explicitly dependent on Rhost
0 and the other between-host parameters. In general

R0 is dependent on within-host dynamics as well.
Next we prove the following theorem.

Theorem 4 If R0 < 1, then the disease-free equilibrium is locally asymptotically
stable. IfR0 > 1, it is unstable.

Proof Suppose

G (λ) = 1

〈k〉
n∑

k=1

k2 p(k)
∫ ∞

0
βk(τ )π(τ)e−λτdτ

Then, we notice that G (0) = R0, limλ→∞ G (λ) = 0
We claim that ifR0 < 1, then the disease-free equilibrium is locally asymptotically

stable, that is, all the roots of (22) have negative real parts. To show this, we proceed
by way of contradiction. Suppose (22) has a root λ0 with �(λ0) ≥ 0. Then,

1 = |G (λ0)| = |G (�λ0)| ≤ |G (0)| ≤ R0

This is a contradiction. Hence, ε0 is locally asymptotically stable when R0 < 1.
Now let us supposeR0 > 1. Then since G ′(λ) < 0, G (λ) is a decreasing function,

with G (0) = R0 > 1 and limλ→∞ G (λ) = 0. Then, (22) has at least one positive
root, and therefore, ε0 is unstable ifR0 > 1.

�


5.2 Global Stability of the Disease-Free Equilibrium

We use the Fluctuation Lemma to establish the global stability of the disease-free
equilibrium. The following notation is used,

f ∞ = lim
t→∞ sup f (t),
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and

f∞ = lim
t→∞ inf f (t).

Then, the Fluctuation Lemma (Thieme 2003) is given as follows:

Lemma 1 (Fluctuation Lemma) Let g : R+ → R be a bounded and continuously
differentiable function. Then, there exist sequences {sn} and {tn} such that sn → ∞ ,
tn → ∞, g(sn) → g∞, g′(sn) → 0, g(tn) → g∞ and g′(tn) → 0 as n → ∞.

Lemma 2 Suppose f : R+ → R+ is a bounded function and h(t) ≥ 0. Then,

lim
t→∞ sup

∫ t

0
h(θ) f (t − θ)dθ ≤ f ∞

∫ ∞

0
h(s)ds

Using integration along the characteristic lines, ik(t, τ ) satisfies the following
Volterra formulation:

ik(t, τ ) =
{
Bk(t − τ)π(τ), if t ≥ τ

ik(τ − t, 0) π(τ)
π(τ−t) t < τ

(24)

where Bk(t) = kSkλv(t) for k = 1, ..., n.

Theorem 5 If R0 < 1, then the disease-free equilibrium is globally asymptotically
stable.

Proof Theorem 4 shows that the disease-free equilibrium ε0 of system (2) is locally
stable if R0 < 1. To use the Fluctuation Lemma, we substitute the expressions of
ik(t, τ ), to get

Bk(t) = kSkλv(t) = kSk(t)
1

〈k〉
n∑

j=1

j p( j)
∫ ∞

0

β j (τ )i j (t, τ )

N j (t)
dτ,

Qk(t) = Bk(t)

Nk(t)
= k

Sk(t)

Nk(t)

1

〈k〉
n∑

j=1

j p( j)

N j (t)

(∫ t

0
β j (τ )Bj (t − τ)π(τ)dτ + Fj (t)

)

≤ k
1

〈k〉
n∑

j=1

j p( j)

N j (t)

(∫ t

0
β j (τ )Bj (t − τ)π(τ)dτ + Fj (t)

)
,

(25)

where

Fj (t) =
∫ ∞

t
β j (τ )i j (τ − t, 0)

π(τ)

π(τ − t)
dτ,

with limt→∞ Fj (t) = 0.
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Choose the sequence t1n → ∞ such that Qk(t1n ) → Q∞
k . We recall that Fj (t) → 0

as t → ∞. With the help of Lemmas 1 and 2, it follows from (23)

Q∞
k ≤ k

1

〈k〉
n∑

j=1

j p( j)Q∞
j

∫ ∞

0
β j (τ )π(τ)dτ. (26)

Multiplying both sides of Eq. (26) with kp(k)Kk , where Kk = ∫ ∞
0 βk(τ )π(τ)dτ ,

and summing from 1 to n, we get

n∑

k=1

kp(k)KkQ
∞
k ≤ 1

〈k〉
n∑

k=1

k2 p(k)Kk

n∑

j=1

j p( j)Q∞
j

∫ ∞

0
β j (τ )π(τ)dτ. (27)

Then, (27) reduces to

Q ≤ R0Q where Q =
n∑

k=1

kp(k)KkQ
∞
k .

SinceR0 < 1, Q = 0 , that is, Q∞
k = 0 which in turn implies B∞

k = 0. It follows
from (24) we have that limt→∞ ik(t, τ ) = 0

Next we show that limt→∞
∫ ∞
0 ik(t, τ )dτ = 0. To show that we use (24) again and

see that

∫ ∞

0
ik(t, τ )dτ =

∫ t

0
Bk(t − τ)π(τ)dτ +

∫ ∞

t
ik(τ − t, 0)

π(τ)

π(τ − t)
dτ

≤
∫ t

0
Bk(t − τ)π(τ)dτ + e−μt

∫ ∞

t
ik(τ − t, 0)dτ.

(28)

Using Lemma 2, we get

lim sup
t→∞

∫ ∞

0
ik(t, τ )dτ ≤ B∞

k

∫ ∞

0
π(s)ds ≤ 1

μ
B∞
k = 0.

This implies limt→∞
∫ ∞
0 ik(t, τ )dτ = 0

Since βk(τ ) is a bounded function, the last result also implies limt→∞ λv(t) = 0.
Using Lemma 1, there exists a sequence t2n such that as n → ∞, t2n → ∞,

Sk(t2n ) → S∞ and S′
k(t

2
n ) → 0.

It follows from

dSk(t2n )

dt
= �k − μSk(t

2
n ) − K Sk(t

2
n )λv(t

2
n ) (29)

that

0 = �k − μSk∞ �⇒ Sk∞ = �k

μ
. (30)
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Now, we know that

dNk

dt
= dSk

dt
+

∫ ∞

0

∂ik
∂t

dτ

= �k − ik(0, t) − μSk(t) − μ

∫ ∞

0
ik(t, τ )dτ −

∫ ∞

0
γ (τ)ik(t, τ )dτ −

∫ ∞

0

∂ik
∂τ

dτ

= �k − μNk(t) −
∫ ∞

0
γ (τ)ik(t, τ )dτ.

(31)

Then, N∞
k ≤ �k

μ
and so S∞

k ≤ �k
μ
. This implies limt→∞ Sk(t) = �k

μ
. This completes

the proof. �


6 Existence and Stability of the Endemic Equilibrium

Nowwe assumeR0 > 1. Then, the disease-free equilibrium of system (2) is unstable.
We look for at least one positive endemic equilibrium E ∗ = (S∗

1 , i
∗
1 , · · · , S∗

n , i
∗
n ).

Consider the system for the endemic equilibria,

�k − μS∗
k − kS∗

k λv(i
∗) = 0,

∂i∗k
∂τ

= −(μ + γ (τ))i∗k (τ ),

i∗k (0) = kS∗
k λv(i

∗),

(32)

where

λv(i
∗) = 1

〈k〉
n∑

k=1

kp(k)
∫ ∞

0

βk(τ )i∗k (τ )

N∗
k

dτ.

From the first equation of (32) we get S∗
k = �k

μ+kλv(i∗) and from the second equation
we get, i∗k (τ ) = i∗k (0)π(τ). Let

∫ ∞

0
βk(τ )π(τ)dτ = Kk .

Then,

λv(i
∗) = 1

〈k〉
n∑

k=1

kp(k)
i∗k (0)Kk

N∗
k

= 1

〈k〉
n∑

k=1

k2 p(k)
S∗
k

N∗
k
λv(i

∗)Kk .

(33)
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Now,

N∗
k = S∗

k + i∗k (0)
∫ ∞

0
π(τ)dτ = S∗

k + kS∗
k λv(i

∗)
∫ ∞

0
π(τ)dτ

= S∗
k

(
1 + kλv(i

∗)
∫ ∞

0
π(τ)dτ

)
, (34)

that implies

S∗
k

N∗
k

= 1

1 + kλv(i∗)�
,

where

� =
∫ ∞

0
π(τ)dτ.

λv(i∗) = 0 is a solution to (33) which gives the disease-free equilibrium. Then for an
endemic equilibrium, λv(i∗) > 0 is a root of f (λv), where

f (λv) = 1

〈k〉
n∑

k=1

k2 p(k)
1

1 + kλv(i∗)�
Kk − 1.

As λv increases f decreases. limλv→∞ f (λv) = −1. But f (0) = R0 − 1 > 0.
Then, f (λv) has a unique zero, giving us a unique endemic equilibrium for the system.

To establish the stability of the endemic equilibrium E∗ we need to linearize sys-
tem (2) around the endemic equilibrium and then analyze the characteristic equation
obtained by it. An important part of that stability result (Martcheva and Li 2013) is
the assumption that

βk(τ ) = βk

γ0
γ (τ)

which is satisfied by some linking functions, including the ones we have assumed for
this article.

Let Bj = ∫ ∞
0 β j (τ )i∗j dτ . Then,we obtain the following sufficient but not necessary

condition for the endemic equilibrium.

Theorem 6 Suppose R0 > 1 and Bkγ0
N∗
k βk

< kλv(i∗) for all k. Then, the endemic equi-
librium E∗ of system (2) is locally asymptotically stable.

Proof We linearize system (2) at the endemic equilibrium E∗, that is, we set Sk(t) =
xk(t) + S∗

k , ik(t, τ ) = yk(t, τ ) + i∗k and Nk(t) = nk(t) + n∗
k . The systems for the

perturbations becomes:

dxk
dt

= −k

〈k〉
n∑

j=1

j p( j)

N∗
j

[S∗
k

∫ ∞

0
β j (τ )y j (τ, t)dτ − S∗

k
n j

N∗
j
B j + xk B j ] − μxk,
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∂ yk
∂t

+ ∂ yk
∂τ

= −(μ + γ (τ))yk(t, τ ),

yk(0, t) = k

〈k〉
n∑

j=1

j p( j)

N∗
j

[S∗
k

∫ ∞

0
β j (τ )y j (τ, t)dτ − S∗

k
n j

N∗
j
B j + xk B j ], (35)

where Bj = ∫ ∞
0 β j (τ )i∗j dτ .

Nk(t) = nk(t) + N∗
k = (xk(t) + ∫ ∞

0 yk(t, τ )dτ) + (S∗
k + ∫ ∞

0 i∗k dτ), giving us

nk(t) = xk(t) +
∫ ∞

0
yk(t, τ )dτ.

We look for solutions of the form xk(t) = xkeλt , yk(t, τ ) = yk(τ )eλt . So

nk(t) = eλt
(
xk +

∫ ∞

0
yk(τ )dτ

)
= nke

λt ,

where nk = xk + ∫ ∞
0 yk(τ )dτ .

We now obtain the following eigenvalue problem,

λxk = −−k

〈k〉
n∑

j=1

j p( j)

N∗
j

[S∗
k

∫ ∞

0
β j (τ )y j (τ )dτ − S∗

k
n j

N∗
j
B j + xk B j ] − μxk,

λyk + ∂ yk
∂τ

= −(μ + γ (τ))yk(τ ),

yk(0) = k

〈k〉
n∑

j=1

j p( j)

N∗
j

[S∗
k

∫ ∞

0
β j (τ )y j (τ )dτ − S∗

k
n j

N∗
j
B j + xk B j ]. (36)

Now, y j (τ ) = y j (0)
∫ ∞
0 e−λtπ(τ)dτ , which gives us

n j = x j + y j (0)�(λ),

where �(λ) = ∫ ∞
0 e−λtπ(τ)dτ . If we rewrite the equation for xk as λxk = −yk(0) −

μxk , we get

xk = −yk(0)

λ + μ
.

Then,

n j = y j (0)

[ −1

λ + μ
+ �(λ)

]
.
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First we notice that all yk(0) have the same sign for all k. Indeed,

yk(0) = k

〈k〉 S
∗
k

n∑

j=1

j p( j)

N∗
j

[∫ ∞

0
β j (τ )y j (τ )dτ − n j

N∗
j
B j

]
+ xkλv(i

∗).

Hence, with the relation between xk and yk(0) we have:

yk(0) = k

〈k〉 S
∗
k

λ + μ

λ + μ + λv(i∗)

n∑

j=1

j p( j)

N∗
j

[∫ ∞

0
β j (τ )y j (τ )dτ − n j

N∗
j
B j

]
.

We see that the sign of yk(0) depends on the last two terms but neither of them
depends on k. Hence, yk(0) has the same sign for all k.

Using values for xk and nk , the equations of eigenvalue problem reduce to,

yk(0) = k

〈k〉 S
∗
k

n∑

j=1

j p( j)

N∗
j

[
Bj y j (0)

N∗
j (λ + μ)

− Bj

N∗
j
y j (0)�(λ) + y j (0)K j (λ)

]
− k

yk(0)

λ + μ
λv(i

∗)

�⇒ (1 + kλv(i∗)
λ + μ

)yk(0) = k

〈k〉 S
∗
k

n∑

j=1

j p( j)

N∗
j

y j (0)

[
Bj

N∗
j (λ + μ)

− Bj

N∗
j
�(λ) + K j (λ)

]

�⇒ yk(0) = k

〈k〉 S
∗
k

λ + μ

λ + μ + kλv(i∗)

n∑

j=1

j p( j)

N∗
j

y j (0)

[
Bj

N∗
j (λ + μ)

− Bj

N∗
j
�(λ) + K j (λ)

]
.

(37)

where Kk(λ) = ∫ ∞
0 βk(τ )e−λτπ(τ)dτ . In the next step we multiply both sides of

the equation by kp(k)
N∗
k

(
Bk

N∗
k (λ+μ)

− Bk�(λ)
N∗
k

+ Kk(λ)). To avoid introducing roots to the

characteristic equation, we will assume that λ is such that kp(k)
N∗
k

(
Bk

N∗
k (λ+μ)

− Bk�(λ)
N∗
k

+
Kk(λ)) �= 0 for every k. Summing over 1 to n,

n∑

k=1

yk(0)
kp(k)

N∗
k

(
Bk

N∗
k (λ + μ)

− Bk�(λ)

N∗
k

+ Kk(λ)

)

=
n∑

k=1

1

〈k〉
k2 p(k)S∗

k (λ + μ)

N∗
k (λ + μ + kλv(i∗))

(
Bk

N∗
k (λ + μ)

− Bk�(λ)

N∗
k

+ Kk(λ)

)

n∑

j=1

j p( j)

N∗
j

y j (0)

[
Bj

N∗
j (λ + μ)

− Bj

N∗
j
�(λ) + K j (λ)

]
. (38)

Because all yk(0) have the same sign and from our assumption above that λ is
such that kp(k)

N∗
k

(
Bk

N∗
k (λ+μ)

− Bk�(λ)
N∗
k

+ Kk(λ)) �= 0 for every k, we have that for λ with

�λ ≥ 0,
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n∑

k=1

yk(0)
kp(k)

N∗
k

(
Bk

N∗
k (λ + μ)

− Bk�(λ)

N∗
k

+ Kk(λ

)
�= 0.

We cancel that expression, and then, Eq. (38) reduces to

1 =
n∑

k=1

1

〈k〉
k2 p(k)S∗

k (λ + μ)

N∗
k (λ + μ + kλv(i∗))

(
Bk

N∗
k (λ + μ)

− Bk�(λ)

N∗
k

+ Kk(λ

)

=
n∑

k=1

1

〈k〉
k2 p(k)S∗

k

N∗
k (λ + μ + kλv(i∗))

(
Bkγ0

N∗
k βk

+ λ + μ

)
Kk(λ).

(39)

Assume the above equation has rootswith nonnegative real part. Sincewe have Bkγ0
N∗
k βk

<

kλv(i∗), and �λ ≥ 0 Eq. (39) satisfies,

1 =
∣∣∣∣∣
1

〈k〉
n∑

k=1

k2 p(k)S∗
k

N∗
k (λ + μ + kλv(i∗))

(
Bkγ0

N∗
k βk

+ λ + μ

)
Kk(λ)

∣∣∣∣∣

=
∣∣∣∣∣∣
1

〈k〉
n∑

k=1

k2 p(k)

1 + kλv(i∗)�

⎛

⎝
Bkγ0
N∗
k βk

+ λ + μ

(λ + μ + kλv(i∗))

⎞

⎠ Kk(λ)

∣∣∣∣∣∣

≤ 1

〈k〉
n∑

k=1

k2 p(k)

1 + kλv(i∗)�

∣∣∣∣∣∣

⎛

⎝
Bkγ0
N∗
k βk

+ λ + μ

(λ + μ + kλv(i∗))

⎞

⎠

∣∣∣∣∣∣
|Kk(λ)|

<
1

〈k〉
n∑

k=1

k2 p(k)

1 + kλv(i∗)�
K j (0) = 1.

(40)

This is a contradiction. Hence, the endemic equilibrium E∗ is locally asymptotically
stable when R0 > 1. �


7 Simulations

7.1 Simulation of the Dynamical Model

We write a MATLAB code to simulate the model. We focus on scale-free networks,
that is, networkswhose degree distribution follows a power law, at least asymptotically.
Such network is pictured in Fig. 1.

We use such a network as a foundation of the HIV model. The network describes
the HIV contacts between the individuals represented by the nodes of the network.
The code computes p(k) as

p(k) = Nk∑n
j=1 N j

.

123



18 Page 24 of 29 C. Gupta et al.

Fig. 1 A scale-free network with 20 nodes (Color figure online)

This approach to the computation of the p(k)s modifies somewhat our original
model, but the general concept remains the same. Simulations with the model are
included in Fig. 2.

Simulations suggest that the nodes with the maximal number of individuals have
the same connectivity among the susceptible and AIDS individuals as in the total
population. The maximal number of individuals in these classes have 11 connections.
This is somewhat unexpected, particularly forAIDS individuals. However, the infected
nodes that dominate the group of infected individuals have 6 connections. Simulations
further show that if we increase the number of nodes to a 100, the properties of the
solution remain the same, except the reproduction number which increases to 2.

7.2 Simulation of the Equilibria

In this subsection we assume that the within-host model is at equilibrium. That makes
the linking coefficientsβk andγ independent of τ and the between-hostmodel becomes
an ODE. Looking at the equilibrium values of susceptible and infected individuals we
obtain:

Sk = �k

kλv + μ
Ik = kλv�k

(μ + γ )(kλv + μ)

where λv is the solution of the equation:

1 = 1

< k >

n∑

k=1

k2 p(k)
βk

μ + γ + kλv

.
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Fig. 2 Simulations with the network model. In this simulation the average degree is 6.4 andR0 = 1.3173.
The number of nodes is 200. The maximal degree is 63, but there are no occupied nodes with degree 1, 3
(Color figure online)

To understand the impact of the within-host reproduction number on the equilibrial
population level of infected individuals and their interactionwith the network specifics,
we define γ (Rhost

0 ) and βk(Rhost
0 ), that is, the linking parameters βk and γ as func-

tions of the within-host reproduction number. In a similar way we define the force of
infection λv(Rhost

0 ) and Ik(Rhost
0 ). We define the total equilibrium infected population

by I = ∑n
k=1 Ik , and we plot it in Fig. 3 for different network scenarios.

Simulations in Fig. 3 suggest several things. First, under “regular” distribution of
the nodes connectivity, that is, most nodes have few connections and few nodes have
many connections, the total number of infected I at equilibrium is a non-monotone
function of the within-host reproduction number (red curve). For small Rhost

0 , the total
number of infected in the population increases as Rhost

0 increases. However, if Rhost
0 is

larger, then increase in Rhost
0 decreases the total number of infected in the population.

The non-monotone nature of the dependence is somewhat expected as for small Rhost
0

the prevalence increases as the within-host viral load increases, but when the within-
host viral load becomes large, too many people are progressing to AIDS and the
HIV prevalence decreases with further increase in Rhost

0 . However, this non-monotone
relationship seems to depend on the network. If the network consist of nodes with low
connectivity only, then the total prevalence only increases with Rhost

0 (blue curve). In
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Fig. 3 Simulations with the equilibria of the network model. Each curve shows I as a function of the
within-host reproduction number Rhost

0 . For the red curve most nodes have degree 1 and a few nodes have
higher degree. For the green curve all nodes have high degree. For the blue curve all nodes have low degree.
The changes on the graph are small enough that Mathematica cannot detect the difference on the Y-axis
(Color figure online)

fact decrease does occur under this scenario but for much larger, possibly unrealistic,
values of Rhost

0 . In contrast, if the network consists of nodes of high connectivity only,
then the prevalence is a decreasing function of the Rhost

0 (green curve). The decreasing
dependence of the prevalence on Rhost

0 is a sign of “too much” pathogen in the system,
and too fast progression of individuals to AIDS. Interestingly, this property can be
also captured by the connectivity in the network, even if all other properties of the
within-host viral load are the same. Finally, the connectivity of the network leads to
tiny differences in the prevalence of HIV on population level. The highly connected
network leads to higher prevalence than the “regular” network (green curve is above
red curve) and they are both higher than the blue curve (not pictured).

8 Discussion

We formulate a within-host model linked with a dynamic network epidemiological
modelwith demography, through epidemiological parameters. The system is described
by ordinary differential equations coupled with partial differential equations in a
nested fashion. First, existence and uniqueness results of the immunological system
are proved. Next, well-posedness of the epidemiological system is established using
functional analytic approach which we adapt from article (Numfor et al. 2014). We
derive an explicit expression of the basic reproduction number R0 of the immuno-
epidemiologicalmodel. The immuno-epidemiologicalmodel always has a disease-free
equilibrium. When R0 < 1, the disease-free equilibrium is locally asymptotically
stable. We use the Fluctuation Lemma to prove that the disease-free equilibrium is
also globally asymptotically stable. When R0 > 1, the disease-free equilibrium is
unstable and a unique endemic equilibrium exists. We show that the endemic equilib-
rium is locally asymptotically stable, provided the linking functions have a specific
simple form, and the population size of degree k’s large enough. Compared to article
(Martcheva and Li 2013), the networkmodel needs an additional condition for stability
which bounds the population size of each degree from below and requires population
sizes of smaller degree to be larger. In general, the question of stability of the endemic
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equilibrium remains open, but simulations with the network lead consistently to stable
endemic equilibrium.

Numerical simulations using scale-free networks suggest that given parameters
fixed, the basic reproduction number R0 increases with the increase in number of
nodes. When the number of nodes is 20, R0 is close to but greater than one, whereas
increasing the number of nodes to 100, R0 is close to or greater than two.

We also use simulations considering thewithin-host system at equilibrium, defining
the prevalence in terms of Rhost

0 . Simulations suggest that prevalence is a non-
monotone hump-like function of Rhost

0 , the immunological reproduction number, when
a scale-free network is considered. With high network connectivity, the prevalence
decreases with Rhost

0 , but with very low network connectivity of the network the
prevalence increases with Rhost

0 . These observations suggest that lowering the within-
host reproduction number, e.g., by using medications, can have very different effects
on population level, depending on the HIV network and its connectivity. The non-
monotone dependence of the prevalence on the within-host reproduction number is
perhaps not unexpected. Such non-monotone dependence occurs in multi-scale mod-
els with homogeneous mixing (Gulbudak et al. 2017) where it is believed to be a
consequence of the trade-off between transmission and virulence of pathogens. How-
ever, here the non-monotone dependence of prevalence in terms of Rhost

0 occurs as
a consequence of the network connectivity, which in turn may be magnifying the
trade-offs between transmission and virulence. A similar scenario where a hump-like
dependence of prevalence on connectivity and the reproduction number also occurs in
multi-patch models in which increasing migration rates de facto increase connectivity
of the patch network (Acevedo et al. 2015).

Our simulation also shows that the higher the connectivity, the higher the preva-
lence. Therefore, control measures may focus on the following directions, applied
simultaneously:

• Behavioral change via limiting number of partners, usage of condoms and PREP
therapy. Limiting number of partners would bring down the connectivity in the
social network, usage of condoms and PREP therapywould lower the transmission
rate of HIV.

• Lower R0 below 1 by lowering the viral load via ART and combination medica-
tions. This will also lower the transition rate to AIDS stage.

Control measures should be applied with the understanding of the possible non-
monotone dependence of prevalence on the within-host reproduction number.
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