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Abstract

The 2020 Decennial Census will be released with a new disclosure avoidance system in place,

putting differential privacy in the spotlight for a wide range of data users. We consider several key

applications of Census data in redistricting, developing tools and demonstrations for practitioners

who are concerned about the impacts of this new noising algorithm called TopDown. Based on a

close look at reconstructed Texas data, we find reassuring evidence that TopDown will not threaten

the ability to produce districts with tolerable population balance or to detect signals of racial

polarization for Voting Rights Act enforcement.
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1 Introduction

A new disclosure avoidance system is coming to the Census: the 2020 Decennial Census

releases will use an algorithm called TopDown to protect the data from increasingly feasible

reconstruction attacks [2]. Census data is structured in a nesting sequence of geographic

units covering the whole country, from nation at the top to small census blocks at the

bottom. TopDown starts by setting a privacy budget ε > 0 which is allocated to the levels of

a designated hierarchy, then adding noise at each level in a differentially private way [12].

When ε→∞, the data alterations vanish, while ε→ 0 yields pure noise with no fidelity to

the input data. The algorithm continues with a post-processing step that leaves an output

dataset that is designed to be suitable for public use.
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Redistricting is the process of dividing a polity into territorially delimited pieces in which

elections will be conducted. The Census has a special release – named the PL 94-171 after

the law that requires it – that reports the number of residents in every geographic unit

in the country by race, ethnicity, and the number of voting-age residents [9]. The 2020

release is slated to occur by September 2021, after which many thousands of district lines

will be redrawn: not only U.S. Congressional districts, but those for state legislatures, county

commissions, city councils, and many more.

Many user groups have expressed concerns about the effects of differential privacy on

redistricting. They largely but not exclusively concern two issues. First, “One Person, One

Vote” case law calls for balancing population across the electoral districts in a jurisdiction,

whether small like city council districts or large like congressional districts. Most states

balance congressional districts to within one person based on Census counts. Second, the

most reliable legal tool against gerrymandering has been the Voting Rights Act of 1965

(VRA), which requires a demonstration of racially polarized voting (RPV). This RPV analysis

is typically performed by statistical techniques that infer voting by race from precinct-level

returns. Many voting rights advocates worry that noising of Census data will confuse

population balancing practices, and others worry that it will attenuate RPV signals, making

it harder to press valid claims.

The Census Bureau has been commendably transparent about the development of

TopDown, making working code publicly available along with documentation and research

papers describing the algorithm. The complexity of the algorithm makes it extremely difficult

to study analytically, so many people have sought to run it on realistic data. However, since

person-level Census data remain confidential for 72 years after collection, detailed input data

for TopDown is not public. Data users who would like to understand its impacts are left with

two options: decades-old data or a limited demonstration data product.

In this paper, we get around the empirical obstacle by use of reconstructed block-level 2010

microdata for the state of Texas, and we try to understand the algorithm through theoretical

analysis of a much-simplified toy algorithm, ToyDown, that retains the two-stage, top-down

structure of TopDown but is much easier to analyze symbolically. We investigate three

questions about the count discrepancies created by TopDown in units of census geography

and “off-spine” aggregations like districts and precincts.

Hierarchical budget allocation. We derive easy-to-evaluate expressions for ToyDown errors

as a function of the privacy budget allocation. Error at higher levels of the geographic

hierarchy impacts lower-level counts with a significant discount, suggesting that bottom-

heavy allocations may be optimal for accuracy on small geographies. This is consistent with

the small-district errors in our experiments with TopDown. For larger districts, a tract-heavy

allocation gives greatest accuracy. Equal allocation over the levels is a strong performer in

both cases, making this a good choice from the point of view of multi-scale redistricting.

District construction. From there, we create further tests to study the impacts of district

design. We compare hierarchically greedy to geometrically greedy district-generation schemes,

where the former attempt to keep large units whole and the latter attempt to build districts

with short boundaries. We find that the ToyDown model gives errors very closely keyed to

the fragmentation of the hierarchy, but that spatial factors damp out the primary role of

fragmentation in the shift to the TopDown setting.
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Robustness of linear regression. Finally, we consider the unweighted linear regressions

commonly used to assess racial polarization in voting rights cases. We find that the noise

from both ToyDown and TopDown introduces an attenuation bias that seems alarming at

first. However, unweighted linear regression on precincts is already vulnerable to major skews

imposed by the inclusion of very small precincts. For any reasonable way of counteracting

that – trimming out the tiny precincts or weighting the regression by the number of votes

cast – the instability introduced by ToyDown and TopDown all but vanishes.

Our investigation is set up to answer questions about the status quo workflow in

redistricting. As usual with studies of differential privacy, a finding that DP unsettles the

current practices might lead us to call to refine the way it is applied, but might equally lead

us to interrogate the traditional practices and seek next-generation methods for redistricting.

In particular, it is clear that the practice of one-person population deviation across districts

was never reasonably justified by the accuracy of Census data nor required by law, and the

adoption of differential privacy might give redistricters occasion to reconsider that practice.

We make a similar observation about the way that racially polarized voting analysis is

commonly performed in expert reports. On the other hand, by focusing on decisions still to

be announced like the privacy budget and its allocation over the hierarchy, we are able to

make recommendations that can assist the Bureau in protecting privacy while attending to

the important concerns of user groups.

2 Background on Census and redistricting

2.1 The structure of Census data and the redistricting data products

Every ten years the U.S. Census Bureau attempts a comprehensive collection of person-level

data – called microdata – from every household in the country. The microdata are confidential,

and are only published in aggregated tables subject to disclosure avoidance controls. The

Decennial Census records information on the sex, age, race, and ethnicity for each member of

each household, using categories set by the Office of Management and Budget [8]. The 2020

Census used six primary racial categories: White, Black, American Indian, Asian, Native

Hawaiian/Pacific Islander, and Some Other Race. An individual can select these in any

combination but must choose at least one, creating 26 − 1 = 63 possible choices of race.

Separately, ethnicity is represented as a binary choice of Hispanic/Latino or not.

The 2010 Census divided the nation into over 11 million small units called census blocks

which nest in larger geographies in a six-level “central spine”: nation – state – county –

tract – block group – block. Counts of different types are provided with respect to these

geographies. This tabular data is then used in an enormous range of official capacities, from

the apportionment of seats in the U.S. House of Representatives to the allocation of many

streams of federal and state funding. The redistricting (PL 94-171) data includes four such

tables: H1, a table of housing units whose types are occupied/vacant; and four tables of

population, P1 (63 races), P2 (Hispanic, and 63 races of non-Hispanic population), and

P3/P4 (same as P1/P2 but for voting age population). Each table can be thought of as a

histogram, with each included type constituting one histogram bin. For instance, in table P1

there is 1 person in the t =White+Asian bin in the Middlesex County, MA, block numbered

31021002.

Treating the 2010 tables as accurate, it is easy to infer information not explicitly presented

in the tables. For instance, the same bin in the P3 table (race for voting age population) also

has a count of 1, implying that there are no White+Asian people under 18 years old in block

31021002. This is the beginning of a reconstruction process that would enable an attacker, in

principle, to learn much of the person-level microdata behind the aggregate releases.

FORC 2021
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2.2 Disclosure avoidance

Title 13 of the U.S. Code requires the Bureau to take measures to protect the privacy of

respondents’ data [1]. In the 2010 Census, this was largely achieved by an ad hoc mechanism

called data swapping: a Bureau employee manually swapped data between small census

blocks to thwart re-identification. In 2020, swapping is no longer considered adequate to

protect against more sophisticated (but mathematically straightforward) data attacks that

seek to reconstruct the individual microdata. An internal Census Bureau study concluded

that data swapping was unacceptably vulnerable: Census staff were able to reconstruct the

2010 Census responses of – and correctly reidentify – tens of millions of people.

With the reconstruction/reidentification threat in mind, the Bureau has developed an

algorithm called TopDown [2], which begins with a noising step that is differentially private,

following a mathematical formalism that provides rigorous guarantees against information

disclosure [12]. Differentially private algorithms obey a quantifiable limit to how much the

output can depend on an individual record in the input. The relationship of output to input

is specified by a tuneable parameter, ε, often called the privacy budget. When ε→∞, the

output approaches equality to the input (high risk of disclosure). When ε→ 0, the output

bears no resemblance to the input whatsoever (no risk of disclosure). Like a fiscal budget,

the privacy budget can be allocated until it is fully spent, in this case by spending parts of

the budget on particular queries and on levels of the hierarchy.

TopDown takes an individual-level table of census data and creates a “synthetic” dataset

that will be used in its place to generate the PL 94-171 tables. It can be thought of as

taking as input a histogram with a bin for each person type (i.e., a combination of race, sex,

ethnicity, etc.) and outputting an altered version of the same histogram. It proceeds in two

stages. First, it privatizes the input histogram counts: it adds enough random noise to get

the required level of differential privacy (according to the budget ε). At this stage, it also

allocates a portion of the total privacy budget for generating additional noisy histograms of

data of particular importance to the Census Bureau. Second, TopDown does post-processing

on the noisy histograms to satisfy a handful of additional plausibility constraints. Among

other things, post-processing ensures that the resulting histograms contain only non-negative

integers, are self-consistent, and agree with the raw input data on a handful of invariants

(e.g., total state population).

The overall privacy guarantees of TopDown are poorly understood. In this paper, we

design a simpler cousin of TopDown nicknamed ToyDown and we explore the properties of

both ToyDown and TopDown, primarily focusing on reconstructed Texas data from 2010.

2.3 The use of Census products for redistricting

The PL 94-171 tables are the authoritative source of data for the purposes of apportionment

to the U.S. House of Representatives, and with a very small number of exceptions also for

within-state legislative apportionment. The most famous use of population counts is to

decide how many members of the 435-seat House of Representatives are assigned to each

state. In “One person, one vote” jurisprudence initiated in the Reynolds v. Sims case of

1964, balancing Census population is required not only for Congressional districts within

a state but also for districts that elect to a state legislature, a county commission, a city

council or school board, and so on [17, 18, 3].

Today, the Congressional districts within a state usually balance total population extremely

tightly: each of Alabama’s seven Congressional districts drawn after the 2010 Census has

a total population of either 682,819 or 682,820 according to official definitions of districts
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and the Table P1 count, while Massachusetts districts all have a population of 727,514 or

727,515. Astonishingly, though no official rule demands it, more than half of the states

maintain this “zero-balancing” practice (no more than one person deviation) for Congressional

districts [16]. This ingrained habit of zero-balancing districts to protect from the possibility

of a malapportionment challenge is the first source of worry in the redistricting sphere. If

disclosure avoidance practices introduce some systematic bias – say by creating significant

net redistribution towards rural and away from urban areas – then it becomes hard to control

overall malapportionment, which could in principle trigger constitutional scrutiny. In the

end, redistricters may not care very much how many people live in a single census block, but

it could be quite important to have good accuracy at the level of a district.

The second major locus of concern for redistricting practitioners is the enforcement of the

Voting Rights Act (VRA). Here, histogram data is used to estimate the share of voting age

population held by members of minority racial and ethnic groups. Voting rights attorneys

must start by satisfying three threshold tests without which no suit can go forward.

Gingles 1: the first “Gingles factor” in VRA liability is satisfied by creating a demon-

stration district where the minority group makes up over 50% of the voting age population.

Gingles 2-3: the voting patterns in the disputed area must display racial polarization.

The minority population is shown to be cohesive in its candidates of choice, and bloc

voting by the majority prevents these candidates from being elected. In practice, inference

techniques like linear regression or so-called “ecological inference” are used to estimate

voting preferences by race.

Since the VRA has been a powerful tool against gerrymandering for over 50 years, many

worry that even where the raw data would clear the Gingles preconditions, the noised data

will tend towards uniformity – blocking deserving plaintiffs from a cause of action.

3 Census TopDown and ToyDown

3.1 Setup and notation

For the Census application, the data universe is a set of types: for instance, the redistricting

data (the PL 94-171) has the types T = TR × TE × TV A × TH , where TR is the set of 63

races, TE is binary for ethnicity (Hispanic or not), TA is binary for age (voting age or not),

and TH is the set of housing types. (The fuller decennial Census data has more types.)

A hierarchy H is a rooted tree of some depth d, so that every leaf has distance ≤ d− 1

from the root. We will usually assume the hierarchy has uniform depth, so that every leaf is

exactly d− 1 away from the root. For node h ∈ H, let n(h) ∈ N be the number of children

of h in the tree, and let ℓ(h) be the level of node h. A hierarchy is called homogeneous if

each node at level ℓ has the same number of children, denoted nℓ. Let Hℓ denote the set of

nodes at level ℓ, so that the set of leaves is Hd in the uniform-depth case. Label the root of

the tree h = 1. We adopt an indexing of the tree and refer to the ith child of h as hi; the

parent of any non-root node h is denoted ĥ. In Census data, the hierarchy represents the

large and complicated set of nested geographical units, from the nation at the root down to

the census blocks at the leaves. The standard hierarchy has the six levels (nation – state –

county – tract – block group – block) described above.

We associate with hierarchy H and types T a set of counts AH,T = ¶ah,t ∈ N♢h∈H,t∈T ,

where ah,t is the population of type t in unit h of census geography. We say AH,T is

hierarchically consistent if the counts add up correctly: for every non-leaf h and every t, we

require ah,t =
∑

i∈[n(h)] ahi,t. For a singleton T , we write AH = ¶ah♢. We set an allocation

(ε1, . . . , εd) breaking down the privacy budget ε =
∑

εi to the different levels of the hierarchy.

FORC 2021
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Our queries will always be counting queries, so that for instance qF,44(h) returns the

number of 44-year-old females in geographic unit h. This particular query is part of a “sex

by age” histogram Qsex,age = ¶qs,a : s ∈ TS , a ∈ TA♢, which partitions T into bins by sex

and age. In this language, qF,44 is a bin of the sex-by-age histogram. By slight abuse of

notation, we will use the same terminology for the queries and their outputs, so that the

histogram can be thought of as the collection of queries or the collection of counts. Similarly,

the “voting age by ethnicity by race” histogram consists of a query for each combination of

the 2× 2× 63 possible combinations of the three attributes.

3.2 ToyDown and TopDown

The Bureau’s TopDown and our simplified ToyDown are both algorithms for releasing

privatized population counts for every h ∈ H. That is, these algorithms protect privacy by

noising the data histograms. TopDown releases not just total population counts, but counts

by type. We will define single-attribute and multi-attribute versions of ToyDown that noise

AH and AH,T , respectively, where consistency must hold for each type t.

TopDown and ToyDown share the same two-stage structure. Starting with hierarchically

consistent raw counts a, the noising stage generates differentially private counts â. The

post-processing stage solves a constrained optimization problem to find noisy counts α that

are close to the â values while satisfying hierarchical consistency and other requirements.

TopDown is named after the iterative approach to post-processing: one geographic level at a

time, starting at the top (nation) and working down to the leaves (blocks). We sketch the

noising and post-processing here, and we describe them in Appendix A in more detail.

The simple ToyDown model can be run in a single-attribute version (only counts AH),

a multi-attribute version (counts by type AH,T ), or in multi-attribute form enforcing non-

negativity. The single-attribute version is easy to describe: level by level, random noise values

are selected from a Laplace distribution with scale 1/εℓ and added to each count, replacing

each ah with âh = ah + Lh. Then, working from top to bottom, the noisy âh are replaced

with the closest possible real numbers αh satisfying hierarchical consistency. Multi-attribute

ToyDown is defined analogously, but using AH,T instead of AH and requiring hierarchical

consistency within each type t ∈ T . Non-negative ToyDown adds the inequality requirement

that αh ≥ 0.

TopDown is structurally similar but much more complex, with more kinds of privatized

counts in the noising stage and a great many more constraints in the post-processing stage,

including integrality. The privatized counts computed by TopDown are specified by a collection

of histograms (or complex queries) called a workload W . For each bin of each histogram

in the workload and for each node h in the geographic hierarchy, TopDown adds geometric

noise to the count. The post-processing step finds the closest integer point that satisfies

the requirements given by hierarchical consistency, non-negativity, as well as additional

conditions given as invariants and structural inequalities. For example, any block with

zero households in the raw counts must have zero households and zero population in the

output adjusted counts. Together, the invariants, structural inequalities, integrality, and

non-negativity make this optimization problem very hard. The problem is NP-hard in the

worst case and TopDown cannot always find a feasible solution. There is a sophisticated

secondary algorithm for finding approximate solutions that is beyond the scope of this paper.

ToyDown is simple enough that solutions can often be obtained symbolically. ToyDown

simplifies the noising stage by fixing the workload to be the detailed workload partition

Qdetailed = ¶¶t♢♢t∈T consisting of all singleton sets and using the continuous Laplace

Mechanism instead of the discrete Geometric Mechanism. It simplifies the post-processing
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stage by dropping invariants, structural inequalities, integrality, and non-negativity. When

negative answers are permitted, multi-attribute ToyDown is equivalent to executing ♣T ♣
independent instances of single-attribute ToyDown on inputs AH,t = ¶ah,t♢h∈H for each

t ∈ T . As a result, many of our analytical results for single-attribute ToyDown extend

straightforwardly to multi-attribute ToyDown (allowing negative answers) by scaling by a

factor of ♣T ♣ in appropriate places.

4 Methods

We use both analytical and empirical techniques in this work. This section describes our

high-level empirical approach: what algorithms and raw data we used and how we used

them. See Appendix B for more details. We repeatedly ran TopDown and ToyDown in

various configurations on a reconstructed person-level Texas dataset created by applying a

reconstruction technique to the block-level data from the 2010 Census, following [15] based on

[11]. The reconstructed microdata records – obtained from collaborators – contain block-level

sex, age, ethnicity, and race information consistent with a collection of tables from 2010

Census Summary File 1.

We executed 16 runs of TopDown with each of 20 different allocations of the privacy budget

across the five lower levels of the national census geographic hierarchy: ε = ε2+ε3+ε4+ε5+ε6.

The 20 allocations consist of five different splits across the levels (Table 1) for each of four

total budgets ε ∈ ¶0.25, 0.5, 1.0, 2.0♢. TopDown operates on the six-level Census hierarchy

and requires specifying ε1. In our experiments, we ran TopDown with a fixed total privacy

budget εtotal = 10, with ε1 = 10 − ε. Because the nation-level budget is so much higher

than the lower level budgets, we omit further discussion of it. The TopDown workload was

modeled after the workload used in the 2018 End-to-End test release, omitting household

invariants and queries.

We also ran three variants of ToyDown (single-attribute, multi-attribute, and non-negative)

on a simplified version of the same data 2010 data. We executed 16 runs of each variant

with each of five different splits of the privacy budget across the five lower levels of the

census geographic hierarchy (Table 1), fixing the total budget for those five levels at ε = 1.

The data was derived from the reconstructed Texas data simplified to include only seven

distinct types: one for the total Hispanic population and one for each of six subgroups of

the non-Hispanic population based on race (White; Black; American Indian; Asian; Native

Hawaiian/Pacific Islander; and Some Other Race or multiple races). Post-processing for single-

attribute ToyDown was implemented in NumPy, while post-processing for multi-attribute

and non-negative ToyDown used a Gurobi solver.

5 Hierarchical budget allocation

The relationship of the hierarchical allocation (ε1, . . . , εd) to various measures of output

accuracy is not obvious. On one hand, it might seem that higher values of εd (the block-level

budget) will best promote accuracy at the block level, for a fixed ε. But on the other

hand, imposing hierarchical consistency forces lower levels to be consistent with the totals at

higher levels, which means that noise at higher levels can trickle down to lower levels. These

competing effects create tradeoffs that are hard to balance without further analysis.

FORC 2021
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Table 1 Names of designated budget splits used in

ToyDown and TopDown runs below, each with a budget of

ε1 = 9 on the nation and a total of 1 allocated below the

national level.

state county tract BG block
Split name ε2 ε3 ε4 ε5 ε6

equal 0.2 0.2 0.2 0.2 0.2
state-heavy 0.5 0.25 0.083 0.083 0.083
tract-heavy 0.083 0.167 0.5 0.167 0.083

BG-heavy 0.083 0.083 0.167 0.5 0.167
block-heavy 0.083 0.083 0.083 0.25 0.5

7
12

1
2

0 1

1
4

0 0 0 1

1

1 1

Figure 1 A district in a three-

level hierarchy. The 0/1 weight of a

leaf indicates its membership in the

district; each non-leaf weight is the

average of the node’s children.

5.1 ToyDown error expressions

▶ Definition 1 (District, weights, error). A district D ⊆ Hd is a subset of the leaves (blocks)

of the hierarchy H. For hierarchy H, a district D induces weights wh ∈ [0, 1] on the hierarchy

nodes, defined recursively as follows:

For each leaf h ∈ Hd, let wh = 1 if h ∈ D and wh = 0 otherwise.

For ℓ ≤ d− 1 and h ∈ Hℓ, let wh = 1
n(h) ·

∑
i∈[n(h)] whi

be the average of the weights of

the children.

In a homogeneous hierarchy, we can observe that each wh equals the fraction of the leaves

descended from h that belong to D. In particular, the root weight is w1 = ♣D♣/♣Hd♣ = 1/k if

there are k districts of equal population made from nodes of equal population.

For node h ∈ H, we record the error Eh = αh − ah introduced by ToyDown to the count

ah. The total error over district D is ED =
∑

h∈D Eh. Let ĥ denote the parent of node h.

▶ Theorem 2 (Error expressions). E1 = L1. For ℓ ∈ ¶2, . . . , d♢ and non-root node hi ∈ Hℓ,

and for every district D with associated weights wh on the nodes,

Ehi
= Lhi

+
1

n(h)


Eh −

∑

j∈[n(h)]

Lhj


 , ED = w1L1 +

∑

h∈H\¶1♢
(wh − wĥ)Lh. (1)

We make several observations. First, our intuition that error at higher levels trickles down

to lower levels is correct, but this effect is rather weak. The error at a child hi is determined

by the parent error Eh discounted by the degree n(h), the number of siblings. This suggests

that placing more budget at level ℓ is an efficient way to secure accuracy at that level, until

a fairly extreme level of error at higher levels overwhelms the degree-based “discount.”

Second, because the Lh are all independent random variables with E(Lh) = 0 and

Var(Lh) = 8/ε2
ℓ(h), the theorem provides the following expression for variance that we use

repeatedly.

▶ Corollary 3 (Error expectation and variance). For all D ⊆ Hd and associated weights wh,

the expected error and error variance produced by ToyDown satisfy E(ED) = 0 and

Var(ED) =
8w2

1

ε2
1

+

d∑

ℓ=2

(
8

ε2
ℓ

·
∑

h∈Hℓ

(wh − wĥ)2


. (2)

Third, we get a more explicit expression if restricting to homogeneous hierarchies H.

Consider the case of a singleton district ¶h♢ made of a single census block h ∈ Hd.
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relates a district’s fragmentation score to its error variance under ToyDown, and compares

the fragmentation of two simple district-drawing algorithms on homogeneous hierarchies and

simple geographies. Ultimately, we find that the explanatory value of the fragmentation

score decays as we move to more realistic deployment of TopDown. This discrepancy raises

important questions for future study: Which of the many additional features of TopDown

attenuates the fragmentation–variance relationship?

We define a score intended to capture the contribution to Var(ED) of the shape of the

district with respect to the hierarchy. Recall that ĥ denotes the parent of node h.

▶ Definition 5 (Fragmentation score). For D ⊆ Hd, let Frag(D) =
∑

h∈H

(wh − wĥ)2.

Because weights are in [0, 1], the score obeys 0 ≤ Frag(D) < ♣H♣ for all districts, with higher

scores indicating the presence of more units that are only partially included in D.

This fragmentation score is reverse-engineered from the expression for the variance of

district-level population errors when using ToyDown with privacy divided equally across levels

of the hierarchy (Corollary 3): namely, Var(ED) = 8d2

ε2

(
w2

1 + Frag(D)
)
. When the district

D itself is a random variable sampled from some distribution, the expected fragmentation

E(Frag(D)) is similarly related to Var(ED). Namely, using the law of total variation, when

each level gets ε/d privacy budget:

Var(ED) = E (Var(ED♣D))+Var (E(ED♣D)) = E(Var(ED♣D)) =
8d2

ε2
(E(Frag(D))+E(w2

1)).

When ε is allocated unequally across levels, as for the other splits in Table 1, the simple

analytical relationship between the fragmentation score and the error variance breaks down.

Observe that a hierarchy H does not capture all of the geometry relevant to district

drawing. In particular, H does not directly encode any information about block adjacency,

and therefore we can’t detect from H that a district is contiguous. For algorithms to generate

contiguous districts, we need to make use of the plane geometry associated to H. We restrict

our attention to the simplest case: homogeneous hierarchies (where every node on level ℓ < d

has exactly nℓ children) and square tilings. (where each unit on level ℓ is a square and has

nℓ children that cover it with a
√

nℓ ×
√

nℓ grid tiling).

We analyze the fragmentation score for two simple district-drawing algorithms (see

Appendix C). The Greedy algorithm builds a district from the largest subtrees possible, only

subdividing a subtree when necessary. It takes as input H and k ∈ N and returns a district

of size N = ⌊♣Hd♣/k⌋, assembled by starting with the largest available units at random and

adding units that are adjacent in the labeling sequence without passing size N , then allowing

one partial unit, and so on recursively at lower levels. Observe that Greedy depends only on

the hierarchy H. The Square algorithm takes as input a square, homogeneous hierarchy H

and k ∈ N such that the district size is a perfect square, ♣D♣ = ♣Hd♣/k = sd
2. It outputs a

uniformly random sd × sd square of blocks.

▶ Theorem 6. Let DG ∼ Greedy(H, k), D□ ∼ Square(H, k). For n1 · n2 · · ·nd−2 ≥ k ≥ 2,

let L = arg min¶ℓ : n1 · n2 · · ·nℓ ≥ k♢.

E(Frag(DG)) ≤ k − 1

k2

L∑

ℓ=1

nℓ+
1

4

d−1∑

ℓ=L+1

nℓ; E(Frag(D□)) ≥ 2

3

√
n1 . . . nd−1√

k
− 11

2

√
nd−1.
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Dallas County is nearly a perfect square shape, so it gives us an opportunity to set some

roughly realistic parameters to evaluate these bounds. There are 529 tracts in Dallas County,

with an average of 3.2 blocks groups per tract and 26.4 blocks per block group, yielding

44,113 total blocks. We can approximate these parameters by setting d = 4, using k = 4

as for the county commission districts, and setting (n1, n2, n3) = (484, 4, 25) which has a

reasonably similar 48,400 blocks (as a result, L = 1). The bounds in the theorem say that

E(Frag(DG)) ≤ 98 and E(Frag(D□)) ≥ 264. Note: for homogeneous hierarchies H with

equal-population leaves, the score Frag(DG) is independent of algorithm randomness and

can be computed exactly; for the above parameters Frag(DG) = 90.75. So the bound in the

theorem is fairly tight, at least in this case.

To interpret the theorem, it is helpful to think of Greedy as being hierarchically greedy

and Square as being geometrically greedy. That is, the former is oriented toward using the

biggest possible units and keeping them whole, so that spatial considerations are secondary;

the latter is oriented towards “compact” geographies with a lot of area relative to perimeter,

and unit integrity is secondary. The theorem shows that compactness alone (a function of the

plane geometry) does not keep down the fragmentation score (a function of the hierarchy),

and indeed the bounds get farther apart as the hierarchy gets larger and more complicated.

In Appendix C, we compare these theoretical results to empirical district errors, finding that

fragmentation tracks well with errors in ToyDown, but that the complexity of the TopDown

model weakens the relationship, suggesting a need for more sophisticated tools.

7 Ecological regression with noise

7.1 Inference methods for Voting Rights Act enforcement

When elections are conducted by secret ballot, it is fundamentally impossible to precisely

determine voting patterns by race from the reported outcomes alone. The standard methods

for estimating these patterns use the cast votes at the precinct level, combined with the

demographics by precinct, to infer racial polarization. Because the general aggregate-to-

individual inference problem is called “ecological” (cf. ecological paradox, ecological fallacy),

the leading techniques are called ecological regression (ER) and ecological inference (EI). It is

rare that EI and ER do not substantively agree, and we focus on ER here because it lends

itself to easily interpretable pictures.

ER is a simple linear regression, fitting a line to the data points determined by the

precincts on a demographics-vs-votes plot. A high slope (positive or negative) indicates a

likely strong difference in voting preferences, which is necessary to demonstrate the Gingles

2-3 tests for a VRA lawsuit.

The top row of Figure 5 shows standard ER run on the precincts of Dallas County,

with each precinct plotted according to its percentage of Hispanic voting age population or

HVAP (x-axis) and the share of cast votes that went to Lupe Valdez (y-axis). Strong racial

polarization would show up as a fit line of high slope. This process produces a point estimate

of Hispanic support for Valdez, found by intersecting the fit line with the x = 1 line, which

represents the scenario of 100% Hispanic population. The point estimate of non-Hispanic

support for Valdez is at the intersection of the fit line with x = 0.

7.2 Summary of Experiments

ToyDown and TopDown were both run on the full Texas reconstruction from 2010. We plotted

Dallas County votes from three contests: votes for Obama for president in 2012 general

election, votes for Valdez for governor in the 2018 Democratic Party primary runoff, and
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Table 3 Point estimates from ER for Dallas County in the Valdez/White primary runoff in 2018.

In the first table, estimates are made with (un-noised) VAP data from the 2010 Census. In the

filtered precincts case, precincts with fewer than 10 cast votes are excluded from the initial set of 827

precincts. In the weighted precincts case, precincts are weighted by the number of cast votes. The

ToyDown and TopDown estimates are made from VAP data from 16 runs with ϵ = 1 and an ϵ-budget

with all levels given equal weighting. Variance is the empirical variance over the repeated runs of

the noising algorithm and is in units of 10
−8, shown to two significant digits.

All precincts (827) Filtered precincts (626) Weighted precincts (827)

Race this group complement this group complement this group complement

Hispanic 0.869 0.480 0.848 0.596 0.866 0.588

Black 0.917 0.518 0.851 0.620 0.835 0.595

White 0.555 0.623 0.474 0.811 0.478 0.805

All (827) Filtered (626) Weighted (827)

Race Algorithm statistic group compl. group compl. group compl.

Hispanic ToyDown mean 0.715 0.541 0.848 0.595 0.867 0.588

Hispanic ToyDown variance 36000 7000 250 43 160 19

Black ToyDown mean 0.798 0.543 0.851 0.62 0.835 0.595

Black ToyDown variance 39000 2100 89 5.9 25 2.1

White ToyDown mean 0.476 0.674 0.473 0.811 0.478 0.805

White ToyDown variance 17000 8000 64 36 33 17

Hispanic TopDown mean 0.853 0.485 0.848 0.595 0.865 0.587

Hispanic TopDown variance 45000 6700 480 100 120 16

Black TopDown mean 0.91 0.52 0.85 0.62 0.835 0.595

Black TopDown variance 30000 1200 250 23 45 2.4

White TopDown mean 0.582 0.607 0.472 0.81 0.47 0.804

White TopDown variance 10000 3400 92 37 92 10

votes for Chevalier for comptroller in the 2018 general election. We chose these contests

because in each, ER finds evidence of strong racially polarized voting when using published

2010 census data. All three contests gave similar findings; we’ll choose the Valdez runoff

contest as our focus here.

For both ToyDown and TopDown, we vary how we handle the inclusion of small precincts in

the ecological regression. The options are All (every precinct is a data point in the scatterplot,

all weighted equally); Filtered (only including precincts with at least 10 votes cast in that

election); or Weighted (weighting the terms in the objective function in least-squares fit by

number of votes cast). Filtering and weighting are done using the exact number of cast votes,

not the differentially private precinct population totals, which is realistic to the use case.

For each noising run we have a block- or precinct-level matrix, M̂ of noised counts, with

height b, the number of geographic units (blocks or precincts), and width c, the number of

attributes for which there are counts recorded. We also have a corresponding matrix M of

un-noised counts. We can compute the L1 error by summing over the absolute value of every

entry in M − M̂ . ToyDown and TopDown were run 16 times for each configuration. Let Eavg

be the average L1 error across noising runs.

If we add Gaussian noise to each count instead, the expected L1 error is
∑

i,j E[♣Xi,j ♣],
where Xi,j ∼ N (0, σ2). This is the half-normal distribution, so E[♣Xi,j ♣] = σ

√
2√

π
. We

rearrange to find the standard deviation σ =
Eavg

√
π

bc
√

2
that defines the Gaussian distribution

(with µ = 0), so that adding a random variable drawn from it to each unit count will produce

an expected L1 error matching the average Eavg observed across the runs.
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7.3 The role of small precincts

Practitioners who use ER have raised two questions regarding the effect of differential privacy:

(1) How robust will the estimate be after the noising? (2) Will noising diminish the estimate

of candidate support from a minority population? We analyzed the effects of TopDown and

ToyDown on the 2018 Texas Democratic primary runoff election, where Lupe Valdez was a

clear minority candidate of choice in Dallas county.1

We begin by observing that of the 827 precincts in Dallas County, 201 have fewer than

10 cast votes from that election day – in fact, 99 precincts recorded zero cast votes. These

precincts are a big driver of instability under DP. This is not surprising; percentage swings

are much higher in small numbers even if the noise injected might be low. However, down-

weighting these small precincts makes the estimate almost always agree with the un-noised

estimate. Specifically, we assign weights to the precincts equivalent to the number of total

votes in the precinct. Figure 5 shows how the estimates vary by run type and data treatment.

8 Conclusion

The central goal of this study has been to take the concerns of redistricting practitioners

seriously and to investigate potential destabilizing effects of TopDown on the status quo. A

second major goal is to make recommendations, both to the Disclosure Avoidance team at

the Census Bureau and to the same practitioners – the attorneys, experts, and redistricting

line-drawers in the field. Texas generally, and Dallas County in particular, was selected

because it has been the site of several interesting Voting Rights Act cases in the last 20

years.2

Our top-line conclusion is that, at least for the Texas localities and election data we

examined, TopDown performs far better than more naive noising in terms of preserving

accuracy and signal detection for election administration and voting rights law. Perhaps

more importantly, we have created an experimental apparatus to help other groups conduct

independent analyses.

This work has led us to isolate several elements of common redistricting practice that lead

to higher-variance outputs and more error under TopDown. The first example is the common

use of a full precinct dataset, with no population weighting, in running racial polarization

inference techniques. The second major example is the use of the smallest available units,

census blocks, for building districts of all sizes, with no particular priority on intactness

for larger units of Census geography. In both cases, we find that these were already likely

sources of silent error. Filtering small precincts (or, better, weighting by population) and

building districts that prioritize preserving whole the largest units that are suited to their

scale are two examples of simple updates to redistricting practice. Besides being sound on

first principles, these adjustments can insulate data users from DP-related distortions and

help safeguard the important work of fair redistricting.

1 We also examined the general elections for President in 2012 and Comptroller in 2018, with similar
findings.

2 This is a large county with considerable racial and ethnic diversity. Follow-up work will consider smaller
and more racially homogeneous localities.
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A ToyDown and TopDown

ToyDown is described in Algorithm 2. It uses the Laplace distribution Lap(b) with scale

parameter b, i.e., the probability distribution over R with mean zero and probability density

function P[L] = 1
2b e−♣L♣/b. It has variance 2b2. TopDown uses the geometric distribution, a

discretized version of the Laplace distribution with integer support.

The inputs to TopDown are as follows. AH,T = ¶ah,t♢h∈H,t∈T , where ah,t is the number

of people in h of type t; W = (Q1, . . . , Q♣W ♣) is a workload consisting of a collection of

histograms Q; ε = (ε1, . . . , εd) is a hierarchical allocation of the privacy budget, with εℓ > 0
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at each level; B : W → [0, 1] with
∑

Q∈W B(Q) = 1 is a probability vector describing the

relative privacy budget on each histogram in the workload; invariants V ; and structural

inequalities S. We write ah = ¶ah,t♢t∈T (and αh analogously). For a query q, we write

q(ah) =
∑

t∈q ah,t (and q(αh) analogously).

In the first stage (lines 2-5), a geometric random variable is added to the raw counts a to

produce noised counts â. In the second stage (lines 6-8), the noised counts are adapted to

the nearest integer values that meet a collection of equality and inequality conditions. These

equalities and inequalities, over the real numbers, describe a convex polytope; therefore the

post-processing can be thought of geometrically as a closest-point projection to the integer

points in the convex body under L2 distance.

The noising stages of both ToyDown and TopDown are ε-differentially private for ε =∑d
ℓ=1 εℓ. In ToyDown, this stage can be viewed as generating a single histogram at each

level ℓ using budget εℓ. Following the Census Bureau, we use bounded differential privacy,

wherein the global sensitivity of histogram queries is 2. In TopDown, the budget at level

ℓ is further divided among the ♣W ♣ histograms Q in the workload, each receiving B(Q)εℓ

of the budget. Because ToyDown’s post-processing is data independent, ToyDown is ε-DP.

TopDown’s post-processing is not data independent: the invariants and structural inequalities

may depend on the original data.

Algorithm 1 TopDown, based on [2].

1: procedure TopDown(AH,T , ε1, ε2, . . . , εd, W , B, V , S)

2: for h ∈ H, Q ∈W , q ∈ Q do

3: β ← exp(−B(Q) · εℓ(h)/2)

4: Gh,q ← Geom(β) ▷ See [6]

5: âh,q ← q(ah) + Gh,q ▷ Geometric mechanism with

sensitivity 2, budget B(Q) · εℓ(h)

6: for ℓ = 1, . . . , d do

7: Compute hierarchically-consistent ▷ A sophisticated heuristic algorithm

non-negative integers ¶αh,t♢h∈Hℓ,t∈T out of scope for this work

minimizing
∑

h∈Hℓ

∑
q∈Wℓ

(q(αh)− âh,q)
2
,

subject to the invariants: v∗(αh) = v∗(ah) for all h ∈ Hℓ, v ∈ V

and structural inequalities: s(αh, ah) ≤ 0 for all h ∈ Hℓ, s ∈ S

8: return ¶αh,t♢h∈H,t∈T

B Detailed materials and methods

B.1 Primary data sources

2010 US Census demographic data was downloaded using the Census API, and the 2010

census block, block group, and tract shapefile for Dallas County were downloaded from

the US Census Bureau’s TIGER/Line Shapefiles. For our VRA analysis, we obtained both

statewide election results and a statewide precinct shapefile from the Texas Capitol Data

Portal, which we then trimmed to the precincts within Dallas County.3

3 Data comes from data.capitol.texas.gov/topic/elections and data.capitol.texas.gov/topic/
geography.

https://data.capitol.texas.gov/topic/elections
https://data.capitol.texas.gov/topic/geography
https://data.capitol.texas.gov/topic/geography
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Algorithm 2 ToyDown.

1: procedure ToyDown(AH = ¶ah♢h∈H , ε1, ε2, . . . , εd) ▷ (Single attribute)

2: for h ∈ H do

3: Lh ∼ Lap(2/εℓ(h))

4: âh ← ah + Lh ▷ Laplace mechanism with sensitivity 2, budget εℓ(h)

5: for ℓ = 1, . . . , d do

6: Compute hierarchically consistent ¶αh♢h∈Hℓ

minimizing
∑

h∈Hℓ
(αh − âh)2

7: return ¶αh♢h∈H

8: procedure MultiAttrToyDown(AH,T = ¶ah,t♢h∈H,t∈T , ε1, ε2, . . . , εd)

9: for h ∈ H, t ∈ T do

10: Lh,t ∼ Lap(2/εℓ(h))

11: âh,t ← ah,t + Lh,t ▷ Laplace mechanism with sensitivity 2, budget εℓ(h)

12: for ℓ = 1, . . . , d do

13: Compute hierarchically consistent

(optionally, non-negative) ¶αh,t♢h∈Hℓ,t∈T

minimizing
∑

h∈Hℓ,t∈T (αh,t − âh,t)
2

14: return ¶αh,t♢h∈H,t∈T

We use a person-level dataset obtained by applying a reconstruction technique to the

block-level data from Texas from the 2010 Census.4 The reconstructed microdata records

contain block-level sex, age, ethnicity, and race information consistent with a collection

of tables from 2010 Census Summary File 1. We note that this reconstruction follows

the same strategy used by the Census Bureau itself as the first step of its reidentification

experiment [15], based on [11].

The reconstructed data is far from perfect. Unlike the Bureau, we do not have access

to the ground truth data needed to quantify the errors. The Bureau’s own reconstruction

experiment reconstructed 46% of entries exactly, plus an additional 25% within ±1 year

error in age [15]. We note that our reconstructed data contains no household information,

because this was not present in the tables used in the constraint system. This is significant

because the TopDown configurations for the US Census Bureau’s 2010 Demonstration Data

Products [7] include household-based workload queries and invariants.

B.2 TopDown configuration

The exact configuration files and code for all the runs are available in this paper’s accompa-

nying repository [13]. The TopDown code used for this paper was modified from the publicly

available demonstration release of the US Census Bureau’s Disclosure Avoidance System

2018 End-to-End test release [4]. The input data fed to the algorithm was obtained by

restructuring the reconstructed 2010 block-level Texas microdata into the 1940s IPUMs

data format. Most importantly, the reconstructions allowed for 63 distinct combination of

races whereas the End-to-End release only allows for 6 races, so all multi-racial entries were

re-categorized as Other in our TopDown runs.

4 A team led by data scientist and journalist Mark Hansen at Columbia, including Denis Kazakov,
Timothy Donald Jones, and William Reed Palmer, designed an algorithm to solve for the detailed data,
which we describe in this section. Code is available upon request [14].
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Because TopDown’s post-processing is done level by level, the noisy counts in Dallas

County do not depend on the noisy counts at the tract-level or below in counties other than

Dallas. We modified the census reconstructed data to focus on Dallas county and minimize

the computation time spent processing the other 253 counties in Texas. Specifically, for every

non-Dallas county, we placed all of the population into a single block.

We do not enforce certain household invariants that the Census Bureau is planning to

enforce, and our workload omits household queries that are used in Census’s demonstration

data products. Our choice to omit household queries and invariants is result of our use of

reconstructed 2010 census microdata which does not include household information. We

did perform additional runs with household invariants and queries using crude synthetic

household data, the results of which are available in the data repository accompanying this

paper [13]. In those runs, the population in each block was grouped into households of size 5

with at most one group smaller than 5. Ultimately, we focused on the experiments that did

not require synthetic household data.

The TopDown runs without the household workload or invariants use a workload consisting

of two histograms: Qdetailed and Qva,eth,race with 10% and 90% of the budget respectively.

(The additional runs with households includes an additional households and group quarters

histogram in the workload assigned 22.5% of the budget, leaving 10% and 67.5% for Qdetailed

and Qva,eth,race respectively.) The End-to-End TopDown code reports a differentially private

estimate of the L1 error with ε = 0.0001 not included in privacy budget specified elsewhere

in the configuration file and discussed elsewhere in this paper.

C District fragmentation

Algorithm 3 Greedy.

1: procedure Greedy(H, k)

2: if k = 1 then

3: Return H

4: N ← ⌊♣Hd♣/k⌋, D ← ∅, h∗ ← h1

5: while N > 0 do

6: For h∗ and D, let S(h∗, D) be the set of

children h of h∗ that are disjoint from D.

7: while ∃h ∈ S(h∗, D) : ♣h♣ ≤ N do

8: D ← D ∪ h ▷ Associating h with the blocks descendent from it

9: N ← N − ♣h♣
10: Pick h∗ ∈ S(h∗, D)

return D

Algorithm 4 Square.

1: procedure Square(H, k)

2: sd ←
√
♣Hd♣/k ▷ Side length in blocks of the district

3: Sd ← √n1 · n2 · · ·nd−1 ▷ Side length in blocks of the region

4: Sample i, j ∈ ¶1, . . . , Sd − sd + 1♢ uniformly at random

5: return Di,j , the square district with top left corner at (i, j)
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In Section 6, we defined the fragmentation score and its relationship to error variance for

ToyDown, and analyzed the expected fragmentation score of districts produced by different

district drawing algorithms. Now we apply TopDown to examine the relationship between a

district’s population error and geometry, as captured by the fragmentation score.

We fix the a total budget and an equal allocation across levels: 0.2 = ε2 = ε3 = ε4 = ε5 =

ε6, as in Table 1. (We do not need to noise the nation because we are focusing on Texas; we

do need to noise Texas even though its total population is invariant, because its population

by race is allowed to vary.) We apply ReCom to build districts out of tracts, block groups,

and blocks – all of which are part of the census hierarchy – and add a realistic variant that

builds from whole precincts. These are about the same size as block groups and are more

commonly used in redistricting.

Figure 6 Do the building-block units of districts matter? Histograms of fragmentation score

(left column) and mean error magnitude (right column) are shown across four district-drawing

algorithms that prioritize compactness. (Dallas County, k = 4.) We see that using larger units leads

to significantly lower fragmentation and correspondingly low district-level error in ToyDown, but the

advantage erodes when we pass to TopDown.

Figure 6 plots the data from our experiments. Each of the 12 histograms displays 400

values, one for each district drawn by the specified district-drawing algorithm. The histograms

on the left plot the fragmentation score of each district; the histograms on the right plot the

mean observed district-level population error magnitude over 16 executions of the specified

hierarchical noising algorithm.

The size of the constituent units is observed to have a controlling effect on the fragmentation

score, as expected. As we would expect, this carries over to the simplest ToyDown (allowing

negativity). (Note that since the error has zero mean, higher variance drives up the mean
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