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The computational efficiency of a sampling based nonlinear Kalman filtering process is
mainly conditional on the number of sigma/sample points required by the filter at each
time step to effectively quantify statistical properties of related states and parameters.
Efficaciously minimizing the needed number of points would therefore have important
implications, especially for large n-dimensional nonlinear systems. A set of minimum num-
ber of n + 1 sigma points is necessary in each filtering application in order to provide mean
and nonsingular covariance estimates. Incorporating additional sigma points than this
minimum set improves the accuracy of the estimates and can take advantage of a richer
information content that can possibly exist, but at the same time increases the computa-
tional demand. To this end, by adding one more sigma point to this minimum set, and
assigning general, well defined weights and scaling factors, a new Scaled Spherical
Simplex Filter (S3F) with n + 2 sigma points set size is presented in this work, and it is the-
oretically proven that it can practically achieve in all cases the same accuracy and numer-
ical stability as the typical 2n + 1 sigma points Unscented Kalman Filter (UKF), with almost
50% less computational requirements. A comprehensive study of the suggested filter is pre-
sented, including detailed derivations, theoretical examples and numerical results, demon-
strating the efficiency, robustness, and accuracy of the S3F.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

System identification in the form of dynamic states and parameters inference through available measurements plays an
important role for condition assessment, performance prediction, and adaptive control, among others [1,2,3,4]. This work
focuses on sigma points based nonlinear Kalman filtering, a time domain, model-based, Bayesian probabilistic technique that
can tackle difficult problems of a broad range in a unified formulation, such as linear and nonlinear systems, dual state esti-
mation and parameter identification, linear and/or nonlinear observation equations, online estimations, and sparse measure-
ment data. The Kalman Filter [5] is well known to provide unbiased, minimum variance optimal estimates of the state vector
for linear dynamic systems and is widely used in numerous relevant applications. In nonlinear cases however, either as they
emerge due to the need for parameters estimation or due to inherent nonlinearities, one of the most popular filters that can
be employed, with a long history, is the Extended Kalman Filter (EKF), e.g. [6]. Going beyond the first-order approximations
and gradient evaluation requirements in EKF, other nonlinear filtering alternatives have been developed, such as the
d n + 2
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Unscented Kalman Filter (UKF) [7] and the Particle Filter (PF) [8], among others. In the PF a large number of particles is prob-
abilistically sampled, while in the UKF a predefined set of sigma points is deterministically obtained, in order to eventually
quantify the final output statistics. The uncertainty quantification and propagation accuracy and effectiveness attained
through a predefined set of sigma points, as in the case of UKF, makes sigma point based filters a viable option in many set-
tings, from a computational perspective [9].

Consequently, numerous researches have been dedicated regarding appropriate sigma points selection, to capture statis-
tical properties of the prior distribution. A symmetric set of 2n + 1 sigma points for UKF has been derived by Julier and Uhl-
mann and co-workers [10,11,12], to capture the mean and covariance of a n-dimensional random variable following any
distribution, and the first three moments for any symmetric distribution, such as the Gaussian one. By increasing the number
of sigma points, higher order accuracy can be achieved, as for example in skewed/third moment approaches, conjugate
Unscented Transform or higher order filters [13,14,15], albeit by also drastically increasing the computational demand of
the filtering process. Since the computational cost of the filtering methodology is proportional to the number of sigma/
sample points, there is a strong incentive to minimize the number of points required for uncertainty propagation, especially
for computationally expensive models.

Along these lines, a minimum-skew simplex sigma points filter is introduced by Julier and Uhlmann [16], utilizing n + 2
points to match the first two moments and to minimize third moment (skew) errors for a n-dimensional random variable,
where n + 1 points form the vertices of a simplex. In the suggested approach in [16], however, the spread of the points
increases exponentially with the state-space dimension, resulting in potential numerical stability problems even for relatively
low dimensionality. Julier [17] introduced an alternate strategy for the n + 2 sigma points selection and transformation,
named as spherical simplex Unscented Transform, where n + 1 points are now located on a hypersphere with radius propor-
tional to

p
n. In both [16,17], the sigma points are asymmetrically distributed about the origin, and therefore some symmetric

distribution higher moment effects, especially for the skew and the other odd moments, are not captured now by the sigma
points. To be able to limit the spread of the sigma points to some extent, in order to utilize the approach in [16] which can
minimize third moment errors, the scaled Unscented Transformation is presented by Julier in [18], through the introduction
of the scaling parameters a and b. The scaling factor a determines the spread of the sigma points and can suppress higher
moments errors, whereas the scaling factor b is used to incorporate potential distribution information relating to its 4th

moments. This scaled transformation approach has been eventually formalized by Wan and van der Merwe in [19,20] for
the 2n + 1 sigma points UKF [10,11,12], and a robust, general methodology is presented for appropriate sigma points selection,
weight allocations, and the implementation of the scaling factors a and b. The UKF version in [19,20] is currently the most
popular UKF version and it is considered as the standard, state-of-the-art implementation. In this work, we are revisiting these
issues and we are formally introducing and generally formalizing the Scaled Spherical Simplex Filter (S3F), which, as we prove,
combines all the best attributes of the previous approaches and can achieve an equivalent accuracy and numerical stability
with the state-of-the-art 2n + 1 UKF, for all distribution cases, despite using a decreased n + 2 sigma points set size.

The 2n + 1 UKF version is currently widely used and has proven successful in a diverse range of applications for nonlinear
systems, because of its ease of implementation, accuracy, computational stability, and efficiency. Only some notable exem-
plifying works are mentioned here, with more emphasis on structural mechanics applications. The UKF implementation for
softening single degree-of-freedom structural systems is shown by Mariani and Ghisi [21], while Wu and Smyth [22] applied
the filter for online parametric system identification of hysteretic models with degradation and pinching. Cheng and Feng
[23] utilized large-scale experimental and actual field data for two- and three-span bridges, while Chatzi et al. [24] employed
the UKF to obtain the most relevant hysteretic model based on the available experimental data. A parallel UKF implemen-
tation is discussed in Azam et al. [25], and Omrani et al. [26] applied the UKF to identify the inelastic seismic response of a
single-story building. Xie and Feng [27] applied an iterative UKF version for nonlinear system identification, while in Song
and Dyke [28] real-time hysteretic model updating of an experimental shear-type steel structure is shown. Papakonstanti-
nou and Shinozuka [29] used UKF outside a traditional dynamic context, for parameter optimization of a computational
model in an inverse setting, while Schenkendorf and Mangold [30] presented an online model selection approach based
on UKF. Asgarieh et al. [31] applied UKF for nonlinear identification of a seven-story shear wall building, and Al-Hussein
and Haldar [32] applied the UKF in applications with unknown inputs. Kontoroupi and Smyth [33] used UKF for online noise
identification in joint state and parameter estimation problems, and Chatzis and Chatzi [34] suggested a discontinuous UKF
to tackle problems related to observability and identifiability [35] in non-smooth dynamic problems. Astroza et al. [36,37]
integrated the UKF with high-fidelity mechanics-based nonlinear finite elements, to estimate unknown material parameters
in frame-type structures, Erazo and Hernandez [38] thoroughly compared different filter types for damage assessment, and
in Olivier and Smyth [39,40] various nonlinear filters are explored and compared. The impact load and its location are iden-
tified by Yan et al. [41] using UKF, and in [42] Song suggested a UKF approach for joint input-state-parameter estimation.
Calabrese et al. [43] investigated constrained approaches for UKF, Dertimanis et al. and Lei et al. [44,45] devised UKF schemes
for the identification of nonlinear systems and unknown inputs, and Song et al. [46] proposed an adaptive UKF version for
model updating and noise identification. Other UKF applications can also be seen in relation to simultaneous localization and
mapping (SLAM), robotics, target tracking, autonomous vehicles, dynamic positioning, image processing, and many more.
Lastly, among various other applications, the filters can be directly integrated with the recently introduced, flexible, fully
parametrized, state-space based hysteretic finite element models in Amir et al. [47,48,49], as presented in Amir et al.
[50], and can be also combined with Partially Observable Markov Decision Processes (POMDP) techniques for optimal
stochastic control [51,52,53,54].
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Motivated by the numerous UKF applications in multiple scientific and engineering fields, the objective of the present
work is to formally introduce the Scaled Spherical Simplex Filter (S3F) that can be unrestrictedly utilized in all general appli-
cations where UKF can be used, while achieving in all cases an equivalent accuracy and numerical stability for all distribution
types, however, with a ~50% reduced computational effort. This is achieved through a reduced sigma points uncertainty
propagation mechanism, requiring only n + 2 weighted sigma points, in contrast to the 2n + 1 used in the typical Unscented
Transformation. The relevant derivations and the resulting S3F development are discussed in detail and a general, straight-
forward approach is presented for the selection of the sigma points and their associated weights. The minimum possible
number of sigma points needed to provide mean and nonsingular covariance estimates is n + 1, but such a filter cannot
achieve the same order of accuracy and robustness as the UKF. By adding one more sigma point to this minimum set,
and assigning well defined weights and scaling factors, the suggested n + 2 sigma points S3F can instead preserve all the
important features of the UKF. Detailed theoretical proofs are provided to indeed demonstrate that the suggested S3F with
appropriate scaling factors can practically achieve the same UKF accuracy of third moment for symmetric prior distributions,
such as the Gaussian ones, and second moment in general. Several theoretical examples are also shown, by comparing the
estimated mean and covariance outputs of nonlinear functions, assuming bivariate input cases described by correlated Gaus-
sian and lognormal random variables, as well as an arbitrarily defined joint density function. Finally, numerical examples
with increasing level of complexity are presented, to showcase the capabilities and advantages of the suggested approach,
for problems associated with dual state and parameter estimation, considering systems with hysteresis, sparsity of measure-
ments, large observation and input noises, and time-variant and invariant parameters, among others.

2. Uncertainty propagation and sequential probabilistic inference

Sequential probabilistic inference in the context of this paper is the problem of estimating the hidden states of a nonlinear
dynamic system given a set of noisy and sparse observations. Representing the system as the simplest dynamic Bayesian
network in a first order hidden Markov model format with continuous states, as in Fig. 1, enables the use of Bayesian esti-
mation algorithms which recursively update the system state posterior density as new observations become available. The
hidden system state x in Fig. 1, having an initial distribution pðx0Þ, evolves over time according to the conditional probability
density pðxkjxk�1Þ, with k being the discrete time index. The observed data uk are conditionally independent given the system
state and follow the probability density function pðukjxkÞ. The system dynamics can be also expressed as:
xk ¼ f xk�1;qk;vk; hð Þ ; uk ¼ h xk; rk;vk; hð Þ ð1Þ

where f is the nonlinear state transition function, q is the process noise, v is the exogenous input, h is the parameter vector
that parametrizes f and h, the nonlinear observation function, and r is the observation noise. The state transition probability
density pðxkjxk�1Þ is fully described by f and pðqkÞ, the process noise distribution, and the observation likelihood pðukjxkÞ is
fully specified by h and pðrkÞ, the observation noise distribution.

The posterior density pðxkju1:kÞ of the system state, given all the observations u1:k ¼ u1;u2; . . . ;uk

� �
is the complete

sought solution to this inference problem. To recursively update the posterior density in a Bayesian context, the following
classical relationship is used:
p xkju1:kð Þ ¼ p ukjxkð Þp xkju1:k�1ð ÞR
p ukjxkð Þp xkju1:k�1ð Þdxk

ð2Þ
with pðxkju1:k�1Þ given by propagating the previous posterior pðxk�1ju1:k�1Þ in time:
p xkju1:k�1ð Þ ¼
Z

p xkjxk�1ð Þp xk�1ju1:k�1ð Þdxk�1 ð3Þ
For linear, Gaussian systems, Kalman derived the closed-form solution of these integral equations, in what is currently well
known as the Kalman filter [5]. Unfortunately, for general nonlinear systems, the closed-form solutions to these multi-
dimensional integrals are intractable and approximate methods can only be used, such as the Extended Kalman Filter
(EKF) [6] and the Unscented Kalman Filter (UKF) [7], among others, where only the conditional mean x̂k ¼ E xkju1:k½ � and
covariance Pk are tracked. In the case that the posterior density is a Gaussian distribution, these two moments can fully
describe the posterior density.
Fig. 1. A hidden Markov model.
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The EKF linearizes the nonlinear equations at each step through a Taylor-series expansion and then analytically propa-
gates the associated mean and covariance through the filter. To illustrate, let x ¼ dxþ x; where the zero mean random vari-
able dx has the same covariance Pxx as x. Expanding a function f about x results in:
y ¼ f xð Þ ¼ f xð Þ þ rfdxþ 1
2
r2fdx2 þ 1

3!
r3fdx3 . . . ð4Þ
where rifdxi is the ith term in the multidimensional Taylor series, as explained in the subsequent sections and expanded in
Eq. (9). The mean and covariance used in the EKF are obtained by a first and second moment approximation, respectively, as:
f xð Þ ¼ y � f xð Þ; Pyy � rfPxxrfT ð5Þ

The nature of this approximation often introduces significant errors and leads to poor performance of the filter in meaning-
fully nonlinear problems.

2.1. The Unscented Transformation for UKF

Assuming a n-dimensional random variable, c, with zero mean, 0, and identity covariance, I, any n-dimensional random
variable x with mean x and covariance Pxx can be obtained by the affine transformation x ¼ xþ ffiffiffiffiffiffiffi

Pxx
p

c. Consequently, with-
out loss of generality, the UKF sigma points and weights can be first derived in the c-space and then translated to the x-space.
The standard UKF uses a 2n + 1 symmetrical set of sigma points, as illustrated in Fig. 2 for a 3-dimensional state-space, i.e.
n = 3, that are identified by solving a system of moment equations, and are appropriately placed and weighted so as to com-
pletely capture the mean and covariance of x. By slightly reformulating the expressions by Wan and van der Merwe [19], the
sigma points Xi for i ¼ 0;1; :::;2n½ � and the corresponding weights Wi for a scaled UKF are given as:
X0 ¼ x

Xi ¼ x þ a
ffiffiffi
n

p� � ffiffiffiffiffiffiffi
Pxx

p� �
i�column

i ¼ 1; :::;n

Xi ¼ x � a
ffiffiffi
n

p� � ffiffiffiffiffiffiffi
Pxx

p� �
i�column

i ¼ nþ 1; :::;2n

W ðmÞ
0 ¼ 1� 1

a2

W ðcÞ
0 ¼ 1� 1

a2 þ ð1� a2 þ bÞ

W ðmÞ
i ¼ W ðcÞ

i ¼ 1
2a2n

i ¼ 1; :::;2n ð6Þ
where the superscripts (m) and (c) stand for mean and covariance respectively, and a
ffiffiffi
n

p
is the radius of the hypersphere

where the sigma points in the c-space are distributed. Hence, the value of a determines the spread of the sigma points,
and the scaling parameter b incorporates prior knowledge of the distribution x, as also explained subsequently. The set of
points propagates through the function y ¼ fðxÞ to obtain a new set of sigma points Yi, which are then employed to evaluate
the updated mean and covariance of the transformed random variable y as follows:
Yi ¼ fðXiÞ

y ¼
X2n
i¼0

W mð Þ
i Yi ; Pyy ¼

X2n
i¼0

W cð Þ
i Yi � y½ � Yi � y½ �T ð7Þ
where y and Pyy are the estimated mean and covariance of the transformed random variable y.
Fig. 2. Sigma points locations on a sphere of radius a
ffiffiffi
3

p
, at the 3-dimensional c-space, for both UKF (left) and S3F (right).
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3. The Scaled Spherical Simplex Filter (S3F)

This section presents in detail the general S3F derivations and implementation, and analyzes the selection strategy for the
asymmetric sigma points, their associated weights, and the effect of the scaling factors. Comparisons with respect to Taylor
series expansion and the 2n + 1 Unscented Transformation scheme of the UKF are provided, and lastly the overall recursive
filter estimation method is shown.

Keeping the same notation as in Eq. (4), it can be proved that the mean and covariance of a scaled random vari-
able x through a function f, with the scaling parameter a, can be expanded as [7,18]:
f xð Þ ¼ y ¼ fðxÞ þ 1
2
r2f E dx2	 
þ 1

6
r3f aE dx3	 
þ . . .

Pyy ¼ rf PxxrfT þ a
1
2

r2f E dx2dxT
	 
rfT þ rf E dx dx2T	 
r2fT

� �

þ a2 1
4
r2f E dx2dx2T	 
� E dx2	 


E dx2	 
T� �
r2fT

þ a2 1
6

r3f E dx3dxT
	 
rfT þrf E dx dx3T

	 
r3fT
� �

þ . . . ð8Þ
wherer is the first-order gradient in the form of a row-vector,rkf gives the kth order gradient of the function f, whererk is
a row-vector of size nk consisting of all possible kth order gradients for a n-dimensional system, obtained through the Kro-
necker product of r performed k-times, dx is a column vector of size n, such that the ith element with i 2 ½1; :::;n� is given as
dxi ¼ xi � E½xi�, dxk is the column vector of size nk obtained by the k-times Kronecker product of vector dx, and E½dxldxmT � is the
(l +m)th central moment of x, arranged in the appropriate matrix of size (nl; nm), where superscript T represents vector/matrix
transpose. Mathematically, all the terms can be thus expressed as:
r ¼ @

@x1

@

@x2
� � � @

@xn

� �
; rkf ¼ r�r� � � � r|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

k times

�f

������
x¼x

¼ @rk�1

@x1

@rk�1

@x2
� � � @r

k�1

@xn

( )
� f

�����
x¼x

; dx ¼
dx1

..

.

dxn

8><>:
9>=>;

dxk ¼ dx� dx � � � � dx|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
k times

¼
dx1dxk�1

..

.

dxndxk�1

8>><>>:
9>>=>>;; k 2 1;2; � � �

dxldxmT ¼ fdx� � � � � dxg|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
l times

fdx� � � � � dxg|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}T
m times

; l;m 2 0;1;2; � � � ð9Þ
where � is the Kronecker product. Since the UKF set of sigma points captures only the first two moments of the random
variable x , the scaling factor a, also seen in Eq. (6), is required to suppress the errors present in the third and higher
moments. As such, the estimations in Eq. (8) are, for any nonlinear function, accurate to the second moment in general,
and to the third moment for symmetric priors and symmetric sigma points sets, due to odd moments being zero in both
cases.

To reduce the number of used sigma points in Eqs. (6)-(7), which are the ones that dictate the computational cost of the
filter for a given n-dimensional system, an alternative filter implementation is suggested in this work, named as the Scaled
Spherical Simplex Filter (S3F). Fewer than n + 1 points in n-dimensions provide a singular covariance, since the points will
always lie on a subspace of less than n-dimensions. As a result, the minimum set of sigma points that can be used by any
filter of this kind forms a simplex of n + 1 vertices. In order to preserve important features of the classical UKF implemen-
tation, one more central point is added to the minimum points set, to take advantage of the scaling parameters a and b, and
just as in the scaled UKF case, the rest of the points can be then placed on a hypersphere of radius a

ffiffiffi
n

p
in the c-space with

zero mean and identity covariance matrix, as mentioned earlier. Apart from being at equal distance from the origin, the n + 1
points that form the simplex are also equidistant from each other in this suggested formation. In Fig. 2, the sigma points
locations in the c-space for the UKF and the S3F filters can be observed and compared.
5
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Similar to Eqs. (6)-(7), the S3F evaluates sigma points Xi in the original space, which are then utilized to estimate the
mean and covariance of the output distribution. Therefore, equivalently to the UKF case, the uncertainty quantification
and propagation is expressed as:
Xi ¼ xþ
ffiffiffiffiffiffiffi
Pxx

p
C

� �
i
for i 2 0;1;2; :::;nþ 1½ �

Yi ¼ f Xi½ �

y ¼
Xnþ1

i¼0

WiYi

Pyy ¼
Xnþ1

i¼0

Wi Yi � y½ � Yi � y½ �T þ 1� a2� �
Y0 � y½ � Y0 � y½ �T ð10Þ
where C is a matrix of n + 2 sigma points in the c-space, shown in detail in Eq. (12), and Wi are the associated weights, for
which the derivations can be seen subsequently. Note that a term related to (1-a2) is present in the covariance estimate, to
properly account for the scaled transformation f xþ aðx� xÞ½ � and to achieve a similar scaling effect in the mean and covari-
ance estimates as in the Taylor series expansion of Eq. (8) [18].

3.1. The Scaled Spherical Simplex Unscented Transformation

The Scaled Spherical Simplex uncertainty propagation mechanism for the S3F is analyzed in detail in this section, follow-
ing a reduced sigma points Unscented Transform (UT) approach that requires only n + 2 sigma points, in contrast to the typ-
ical 2n + 1 points.

3.1.1. Selection of sigma points, weights and scaling factors
As mentioned, a given random variable x can be transformed to and from a random variable c, in the standard normal c-

space, with zero mean, 0, and identity covariance, I, as follows:
c ¼
ffiffiffiffiffiffiffi
Pxx

p� ��1
x� xð Þ ; x ¼ xþ

ffiffiffiffiffiffiffi
Pxx

p
c ð11Þ
In the S3F case, n + 2 sigma points are selected, C ¼ C0 . . . Cnþ1½ �, to capture the statistical properties of the random variable c,

where Ci ¼ c1;i c2;i . . . cn;i
� �T is a n-dimensional vector representing the ith sigma point, given i 2 ½0;1; . . . ;nþ 1�. Note

that the point C0 is located at the center, and the remaining n + 1 points form the vertices of the simplex. The sigma points
matrix for the n-dimensional system is thus formulated as:
C ¼

c1;0 c1;1 � � � c1;nþ1

c2;0 c2;1 � � � c2;nþ1

..

. . .
.

cn;0 cn;1 � � � cn;nþ1

266664
377775

ðnÞ�ðnþ2Þ

¼

0 �q1
1 q1 0 � � � 0 0 0 0

0 �q2
2 �q2

2 q2 � � � 0 0 0 0
0 �q3

3 �q3
3 �q3

3 � � � 0 0 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

. ..
. ..

.

0 �qn�2
n�2 �qn�2

n�2 �qn�2
n�2 � � � �qn�2

n�2 qn�2 0 0
0 �qn�1

n�1 �qn�1
n�1 �qn�1

n�1 � � � �qn�1
n�1 �qn�1

n�1 qn�1 0
0 �qn

n �qn
n �qn

n � � � �qn
n �qn

n �qn
n qn

26666666666664

37777777777775
where q1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2WiR0
p ; qt ¼

t qt�1ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1

p for t 2 ½2;3:::;n� or qt ¼
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tðt þ 1ÞWiR0
p for t 2 ½1;2:::;n� ð12Þ
and WiR0 gives the same assigned weights for all points except the central one with i = 0. All the weights are determined by:
Wi ¼ W1 ¼ 1
a2ðnþ 1Þ for i 2 1;2; :::;nþ 1½ � ; W0 ¼ 1� 1

a2 ;
Xnþ1

i¼0

Wi ¼ 1 ð13Þ
and the scaling parameter a appropriately determines the central weight and the spread of the sigma points away from the
center, lying again on a hypersphere of radius a

ffiffiffi
n

p
, as also shown in Fig. 2 for a three-dimensional space. For the suggested

S3F approach, the parameter a should be set to a small positive value (~0.001), as explained subsequently.

3.1.2. Effect of the parameter a. The equivalent accuracy of the 2n + 1 UKF and the n + 2 S3F is demonstrated in this section,
through the parameter a and the scaled Taylor series in Eq. (8). Without loss of generality, a 2-dimensional space is used here
for both UKF and S3F cases.

UKF case: For a n = 2 system, the set of 5 (2n + 1) sigma points in the standard normal c-space, as shown in Fig. 3, is
obtained as:
C2�5 ¼ c1;0 c1;1 c1;2 c1;3 c1;4
c2;0 c2;1 c2;2 c2;3 c2;4

� �
¼ 0 p 0 �p 0

0 0 �p 0 p

� �
ð14Þ
6



Fig. 3. Sigma points location at the 2-dimensional c-space for both UKF (left) and S3F (right).
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where ð0;0Þ, ðp;0Þ, ð0;�pÞ, ð�p;0Þ, and ð0; pÞ are the coordinates of the five sigma points, p ¼ a
ffiffiffi
2

p
and associated weight

W1 = 1/(4a2). Based on the selected sigma points, the first moments are obtained as:
S1 ¼ W0c1;0 þW1 c1;1 þ c1;2 þ c1;3 þ c1;4ð Þ ¼ W0 0ð Þ þW1 p� pð Þ ¼ 0
S2 ¼ W0c2;0 þW1 c2;1 þ c2;2 þ c2;3 þ c2;4ð Þ ¼ W0 0ð Þ þW1 �pþ pð Þ ¼ 0

ð15Þ
Thus, accurately matching the standard normal space zero mean. The second moments are similarly obtained as:
S11 ¼ W0c21;0 þW1 c21;1 þ c21;2 þ c21;3 þ c21;4
� �

¼ W0ð0Þ þ 1
4a2 a

ffiffiffi
2

p� �2
þ �a

ffiffiffi
2

p� �2� �
¼ 1

S22 ¼ W0c22;0 þW1 c22;1 þ c22;2 þ c22;3 þ c22;4
� �

¼ W0ð0Þ þ 1
4a2 �a

ffiffiffi
2

p� �2
þ a

ffiffiffi
2

p� �2� �
¼ 1

S12 ¼ W0c1;0c2;0 þW1 c1;1c2;1 þ c1;2c2;2 þ c1;3c2;3 þ c1;4c2;4ð Þ ¼ W0 0ð Þ þW1 4ða
ffiffiffi
2

p
Þð0Þ

� �
¼ 0 ð16Þ
Hence, the condition for identity covariance matrix in the standard normal space is also satisfied. In addition, due to the sym-
metry of the sigma points all the odd moments are zero, and the fourth moments can be computed similarly as:
S1111 ¼ W0c41;0 þW1 c41;1 þ c41;2 þ c41;3 þ c41;4
� �

¼ W0ð0Þ þ 1
4a2 a

ffiffiffi
2

p� �4
þ �a

ffiffiffi
2

p� �4� �
¼ 2a2 � 0 ð17Þ
with a being a small positive value (~0.001). Accordingly, any kth moment is proportional to aðk�2Þ for k ¼ 4;6;8:::½ �, and hence
all higher moment terms become negligible with a being small.

Overall, the UKF sigma points are accurately capturing the first two moments in the standard normal space, and conse-
quently in the original space as well, while suppressing the errors in the higher moment terms by applying the appropriate
scaling factor a. They are thus offering second moment accuracy for any given prior distribution and third moment accuracy
for symmetric prior distribution, due to their own symmetry.

S3F case: For the S3F in a 2-dimensional space case, as shown in Fig. 3, the C matrix, consisting of four sigma points now
(n + 2), is obtained based on Eq. (12) as:
C2�4 ¼ c1;0 c1;1 c1;2 c1;3
c2;0 c2;1 c2;2 c2;3

� �
¼ 0 �q1 q1 0

0 �q2
2 �q2

2 q2

" #
; where W1 ¼ 1

3a2 ; q1 ¼ a
ffiffiffi
3
2

r
; q2 ¼ a

ffiffiffi
2

p
ð18Þ
and similar to the UKF the radius of the circle in this case is again given by a
ffiffiffi
2

p
. To verify the equivalent UKF accuracy of the

S3F methodology, the first moments based on the selected sigma points are now obtained as:
S1 ¼ W0c1;0 þW1 c1;1 þ c1;2 þ c1;3ð Þ ¼ W0 0ð Þ þW1 �q1 þ q1ð Þ ¼ 0

S2 ¼ W0c2;0 þW1 c2;1 þ c2;2 þ c2;3ð Þ ¼ W0 0ð Þ þW1 � q2

2
� q2

2
þ q2

� �
¼ 0 ð19Þ
while the second moments are given as:
S11 ¼ W0c21;0 þW1 c21;1 þ c21;2 þ c21;3
� �

¼ W0 0ð Þ þ 1
3a2 �a

ffiffiffi
3
2

r !2

þ a
ffiffiffi
3
2

r !2
0@ 1A ¼ 1

S22 ¼ W0c22;0 þW1 c22;1 þ c22;2 þ c22;3
� �

¼ W0 0ð Þ þ 1
3a2 �a

ffiffiffi
1
2

r !2

þ a
ffiffiffi
1
2

r !2

þ a
ffiffiffi
2

p� �20@ 1A ¼ 1

S12 ¼ W0c1;0c2;0 þW1 c1;1c2;1 þ c1;2c2;2 þ c1;3c2;3ð Þ ¼ W0 0ð Þ þW1
q1q2

2
� q1q2

2
þ 0

� �
¼ 0 ð20Þ
7
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satisfying both zero mean and identity covariance matrix conditions with this reduced set of sigma points. However, con-
trary to the UKF, due to the asymmetric distribution of points here, the odd moments are non-zero, and third and fourth
moments are thereby evaluated as:
S111 ¼ W0c31;0 þW1 c31;1 þ c31;2
� �

¼ W0ð0Þ þW1 �q1ð Þ3 þ q1ð Þ3
� �

¼ 0

S122 ¼ W0c1;0c22;0 þW1 c1;1c22;1 þ c1;2c22;2
� �

¼ W0ð0Þ þW1 �q1q
2
2

4
þ q1q

2
2

4

� �
¼ 0

S222 ¼ W0c32;0 þW1 c32;1 þ c32;2 þ c32;3
� �

¼ W0ð0Þ þ 1
3a2 �a

ffiffiffi
2

p

2

 !3

þ �a
ffiffiffi
2

p

2

 !3

þ a
ffiffiffi
2

p� �30@ 1A ¼ affiffiffi
2

p

S112 ¼ W0c1;0c22;0 þ 2W1c21;1c2;1 ¼ W0ð0Þ þ 2
1

3a2 a
ffiffiffi
3
2

r !2

�a
ffiffiffi
2

p

2

 !
¼ � affiffiffi

2
p

S1111 ¼ W0c41;0 þW12c41;1 ¼ W0ð0Þ þ 1
3a2 ð2Þ a

ffiffiffi
3
2

r !4

¼ 3a2

2
ðOne of the 4th momentsÞ ð21Þ
Accordingly, any kth moment is proportional to aðk�2Þ for k ¼ 4;6;8:::½ �, and proportional to aðk�2Þ or 0 for k ¼ 3;5;7:::½ � because
some of the odd moments are exactly zero, due to the sigma points symmetry about one axis. Therefore, all the third and
higher moment terms are inherently zero, or become zero due to the small value of the scaling factor a.

Thus, similar to the UKF and the scaled Taylor expansion in Eq. (8), the S3F sigma points also offer up to second moment
accuracy for any given prior distribution and up to third moment accuracy for any symmetric prior distribution, mainly due to
the small value of the scaling factor a, that also nullifies all higher moments effects.

3.1.3. Effect of the parameter b. Theeffect of the scalingparameterb in the S3F is again similar to thatof theUKF [18,19,20],which
is to capture some of the fourthmoments of the Taylor series expansion. The b parameter can be only included in the covariance
term, Pyy, to approximate the following fourth moment term of the Taylor series at no additional computational effort:
A4 ¼ 1
4
r2f E dx2dx2T

	 
� E dx2
	 


E dx2
	 
T� �

r2fT ð22Þ
where A4 is the third term of the Taylor expansion in Eq. (8), without the scaling effects. Since the sigma points transforma-
tion only captures the first two prior moments, certain algebraic manipulations are performed to capture the A4 effect in the
final output covariance expression. With Y0 ¼ fðX0Þ ¼ fðxÞ, the following expressions are obtained for the central term:
y � Y0 ¼ fðxÞ þ 1
2
r2f E dx2	 
þ 1

6
r3f E dx3	 
þ . . .

� �
� fðxÞ ¼ 1

2
r2f E dx2	 
þ 1

6
r3f E dx3	 
þ . . . ð23Þ

Y0 � yð Þ Y0 � yð ÞT ¼ 1
4
r2f E dx2	 


E dx2	 
Tr2fT þ ::: ð24Þ
Therefore, the central covariance term in Eq. (10) can be further scaled to partially capture fourth moments, and the resulting
covariance estimate now becomes:
Pyy ¼
Xnþ1

i¼0

Wi Yi � y½ � Yi � y½ �T þ 1� a2� �
Y0 � y½ � Y0 � y½ �T þ b Y0 � y½ � Y0 � y½ �T|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Added for fourth moment effects

ð25Þ
The error in the A4 and the fourth moment term is thus obtained as:
DA ¼ A4 � b Y0 � y½ � Y0 � y½ �T ¼ 1
4
r2f E dx2dx2T

	 
� bþ 1ð ÞE dx2
	 


E dx2
	 
T� �

r2fT ð26Þ
and b can be determined accordingly tominimizeDΑ, if relevant information is available. For the case of a normal density func-

tion, for example, the optimal value of b is 2, since E dx2dx2T
	 
 � 3E dx2

	 

E dx2
	 
T

: Note that the approximate sign is used herein
since not all terms in the matrices satisfy the aforementioned relationship in a general multivariate case. Taking both scaling
parameters a and b into account, the modified weights and the posterior mean and covariance matrix are now obtained as:
W ðmÞ
0 ¼ 1� 1

a2 ; W ðcÞ
0 ¼ 1� 1

a2 þ ð1� a2 þ bÞ

W ðmÞ
i ¼ W ðcÞ

i ¼ 1
a2ðnþ 1Þ ; i ¼ 1; :::; ðnþ 1Þ

y ¼
Xnþ1

i¼0

W mð Þ
i Yi ; Pyy ¼

Xnþ1

i¼0

W cð Þ
i Yi � y½ � Yi � y½ �T ð27Þ
8



Table 1
Sigma points selection for UKF and S3F.

UKF S3F

Sigma points weights

WðmÞ
0 ¼ 1� 1

a2

WðcÞ
0 ¼ 1� 1

a2 þ ð1� a2 þ bÞ

WðmÞ
i ¼ W ðcÞ

i ¼ 1
2a2n

i ¼ 1; :::;2n

WðmÞ
0 ¼ 1� 1

a2

WðcÞ
0 ¼ 1� 1

a2 þ ð1� a2 þ bÞ

WðmÞ
i ¼ WðcÞ

i ¼ 1
a2ðnþ 1Þ i ¼ 1; :::;nþ 1

Sigma points for n-dimensional random variable x, with mean x and covariance matrix Pxx

C ¼ C0 � � � C2n½ �n�ð2nþ1Þ; C0 ¼ 0 0 0 � � � 0 0f gT
C1 ¼ p 0 0 � � � 0 0f gT ::: Cn ¼ 0 0 0 � � � 0 pf gT
Cnþ1 ¼ �p 0 0 � � � 0 0f gT ::: C2n ¼ 0 0 0 � � � 0 � pf gT
where p ¼ a

ffiffiffi
n

p
Xi ¼ xþ ffiffiffiffiffiffiffiffi

Pxx
p

C
� �

i i ¼ 0; :::;2n

C ¼
0 �q1 � � � 0
..
. ..

. . .
. ..

.

0 �qn
n

� � � qn

2664
3775
n�ðnþ2Þ

where qt ¼ a
ffiffiffiffiffiffiffiffiffiffiffi
tðnþ1Þ
tþ1

q
; t 2 ½1;2;3:::; n�

Xi ¼ xþ ffiffiffiffiffiffiffiffi
Pxx

p
C

� �
i i ¼ 0; :::; nþ 1

See Eq. (12)

Value of parameter a is small, for example in the range of 0.01 to 0.0001, and parameter b can be determined based on Eq. (26) or else b =2, if no relevant
fourth moment information is available.
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where (m) stands for the mean and (c) for the covariance. A concise overview for the final sigma points selection for both
scaled UKF and S3F is provided in Table 1.

3.2. S3F without central point: The Spherical Simplex Filter (S2F)

As seen in Table 1, with a = 1 and b = 0, the central point is no longer used and only the absolute minimum set of n + 1
points is now utilized. This is a byproduct of the presented S3F formulation, that leads to the filter variant, referred to here as
the Spherical Simplex Filter (S2F). The S2F has therefore the exact same logic as the S3F, with the important difference that

W ðmÞ
0 ¼ W ðcÞ

0 ¼ 0 and the exclusion of the central sigma point. All the relevant equations in Table 1 still apply in this case but
the S2F does not necessarily have all of the odd moments equal to zero in the absence of any scaling effects, with a = 1,
because of the asymmetry in the sigma points distribution. As such, S2F exhibits, in general, a lower approximation accuracy
in comparison to the UKF and S3F.

3.3. Filtering methodology

The Xk�1 sigma points at the (k-1)th time step, selected based on the random variables with mean bxk�1 and covariance
matrix Pk�1, estimated either through the UKF or the S3F (Table 1), propagate through the function f of Eq. (1) and the
updated mean and covariance can be estimated as:
Xkjk�1 ¼ f Xk�1;vk; h½ �

bx�
k ¼

XL
i¼0

W mð Þ
i Xi;kjk�1

P�
k ¼PL

i¼0
W cð Þ

i Xi;kjk�1 � bx�
k

	 

Xi;kjk�1 � bx�

k

	 
T þ Q k ð28Þ
where L ¼ 2n for the UKF and L ¼ ðnþ 1Þ for the S3F, and Qk is the process noise covariance for the case of additive zero mean
noise qk.

To incorporate this effect of the additive process noise, the Xkjk�1 sigma points are redrawn based now on the current
mean and covariance estimates ðx̂�

k ;P
�
k Þ, and are subsequently used as inputs in the observation function h of Eq. (1), in order

to calculate the appropriate mean vector and covariance matrices, as:
Ukjk�1 ¼ h Xkjk�1;vk; h
� �

bu�
k ¼

XL
i¼0

W mð Þ
i Ui;kjk�1

Pukuk ¼
XL
i¼0

W cð Þ
i Ui;kjk�1 � bu�

k

	 

Ui;kjk�1 � bu�

k

	 
T þ Rk

Pxkuk ¼
XL
i¼0

W cð Þ
i Xi;kjk�1 � bx�

k

	 

Ui;kjk�1 � bu�

k

	 
T ð29Þ
9
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where Rk the observation noise covariance, for the case of additive zero mean noise rk. Finally, when an observation uk

becomes available, the posterior mean bxk and covariance Pk for this time step are updated through the Kalman gain Kk,
as [20]:
Table 2
Compar

y = x

Exac

Tayl

Exac

Tayl

UKF

S3F

S2F
Kk ¼ PxkukP
�1
ukukbxk ¼ bx�

k þ Kk uk � bu�
k

� �
Pk ¼ P�

k � KkPukukK
T
k ð30Þ
4. Theoretical analysis and examples

4.1. Theoretical example 1

In this example, for a given random bivariate input x ¼ x1
x2

� �
; with x ¼ E x½ � ¼ l1

l2

� �
; Pxx ¼ m11 m12

m12 m22

� �
, the mean

and variance of the output random variable, y ¼ f ðxÞ ¼ x1x2 is obtained. Two cases are analyzed, first when x follows a Gaus-
sian distribution (GRV), and second when it is lognormally (LN) distributed. Appropriate moment generating functions are
employed to obtain the higher moments required for the analysis herein. Detailed derivations can be seen in the Appendix.
Note that for the GRV, all the odd moments of dx ¼ x� x are zero, while for LN they have non-zero values. The results are
summarized in Table 2.

As seen in Table 2, the Taylor series and filter approaches in this example are accurate to the second moment for the mean
estimates, and given that the analyzed function has zero 3rd and higher order gradients, the estimated mean coincides with
the true mean in all cases and is not dependent on the scaling factors. The obtained variance in the GRV scaled Taylor series
case is correct up to the third moment estimates, since the fourth moment terms are suppressed due to the small a value. In
the LN case, the scaling effect suppresses the third and higher moment terms in the Taylor series estimate of the variance,
thereby resulting in accuracy to the second moment. The complete expressions can be seen in the Appendix. Again, for small
a, i.e. 0.001, both UKF and S3F provide the same accuracy, i.e. up to third moment if the prior is symmetric and up to second
moment otherwise, while the parameter b partially captures the fourth moment terms. Note that the parameter b is not
applicable in the Taylor series expansion of Eq. (8). When no scaling is present, as seen in the S2F case, estimates may diverge
in some cases due to the introduced error by the higher moment terms.

4.2. Theoretical example 2

In this example, the mean and variance of a random variable y ¼ x2sinðx1Þ is obtained, given the joint probability density

function f X1X2
ðx1; x2Þ ¼ 4x1

p3 3x1 þ 2x2pð Þ ; where x1 2 0 p=2½ � ; x2 2 0 1½ �. The first moments of the input random variables

are obtained using the following integrals:
lX1
¼ R1

x2¼0

Rp=2
x1¼0

x1 f X1X2
ðx1; x2Þdx1 dx2 ¼ 17p

48
¼ 1:1126

lX2
¼ R1

x2¼0

Rp=2
x1¼0

x2 f X1X2
ðx1; x2Þdx1 dx2 ¼ 7

12
¼ 0:5833 ð31Þ
ison of mean and covariance estimates for Gaussian (GRV) and lognormal (LN) distribution cases.

1x2 Mean Variance

t (GRV) l1l2 þ m12 l2
2m11 þ 2l1l2m12 þ l2

1m22 þm2
12 þm22m11

or (Eq.(8)) (GRV) l1l2 þ m12|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}1st & 2nd moments
l2
2m11 þ 2l1l2m12 þ l2

1m22
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}2nd moments

þ a2 m2
12 þm22m11

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}4th moments

t (LN) l1l2 þ m12 l2
2m11 þ 2l1l2m12 þ l2

1m22 þ ð3rdand highermomentsÞ . . .See Appendix
or (Eq. (8)) (LN) l1l2 þ m12 l2

2m11 þ 2l1l2m12 þ l2
1m22 þ a ð3rd momentsÞ þ a2 ð4th momentsÞ . . .See Appendix

l1l2 þ m12 l2
2m11 þ 2l1l2m12 þ l2

1m22 þ bm2
12 þ a2m2

12

l1l2 þ m12
l2
2m11 þ 2l1l2m12 þ l2

1m22 þ bm2
12 � a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 m11m22�m2

12ð Þ
m11

r
m11l2 þm12l1

� �þ a2
2m11m22

l1l2 þ m12
l2
2m11 þ 2l1l2m12 þ l2

1m22 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 m11m22�m2

12ð Þ
m11

r
m11l2 þm12l1

� �þ 1
2m11m22

10
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For the scaled Taylor series approximation in Eq. (8), higher centralized moments are evaluated as:
E dxl1dx
m
2

	 
 ¼ E ðx1 � lX1
Þlðx2 � lX2

Þm
h i

¼
Z1
x2¼0

Zp=2
x1¼0

ðx1 � lX1
Þlðx2 � lX2

Þmf X1X2
ðx1; x2Þdx1 dx2 ð32Þ
where l +m gives the order of the moment. All moments up to fourth order are provided in the Appendix. The true mean and
variance of the random variable Y can be obtained as:
lY ¼
Z 1

x2¼0

Z p=2

x1¼0
y f X1X2

ðx1; x2Þdx1 dx2 ¼ 2ð�18þ 13pÞ
3p3

rY ¼
Z 1

x2¼0

Z p=2

x1¼0
ðy� lY Þ2f X1X2

ðx1; x2Þdx1 dx2 ¼ 15p6 þ 72p4 � 5;408p2 þ 14;976p� 10;368
72p6 ð33Þ
The results for the UKF and S3F transformations, as well as the scaled Taylor series estimates are summarized in Table 3,
where the values in the parentheses give the % error for the estimated mean and variance as compared to the exact values. As
seen in the table, the Taylor series approximations are slightly different from the exact values, since the scaled Taylor series
achieves accuracy up to the second order moment due to the scaling factor a. The S3F with a = 0.001, b = 0 also results in the
same mean and variance values with the Taylor expansion, since the exact same effects of suppressing the third and higher
moments are included in the S3F. Lastly, the S3F and UKF with a = 0.001, b = 2 provide improved accuracy for the variance
estimates, in comparison to the Taylor series and S3F with b = 0 cases, because the parameter b now partially captures some
fourth moments terms as well. As thoroughly explained, the UKF and S3F provide the exact same estimates with the given
scaling parameters, for both the mean and variance.

The effect of different scaling factor values for the S3F is further examined in Table 4. The value of b is not affecting the
mean, while both a and b are considered for the variance estimate. To control the introduced error by the higher moment
terms, the small value of 0.001 should be used for a, and the default value of b = 2 can be generally used for partially cap-
turing the fourth moments, as already indicated in Table 1.
Table 3
Comparison of mean and variance estimates for theoretical example 2.

y ¼ x2sinðx1Þ Mean Variance

Exact 0.4911 0.0685
Taylor (Eq.(8)) (a = 0.001, b = N/A) 0.4896 (0.3%) 0.0669 (2.3%)
S3F (a = 0.001, b = 0) 0.4896 (0.3%) 0.0669 (2.3%)
S3F (a = 0.001, b = 2) 0.4896 (0.3%) 0.0691 (0.9%)
UKF (a = 0.001, b = 2) 0.4896 (0.3%) 0.0691 (0.9%)

1 1,d d

1m

2 2,d d

2m

3 3,d d

3m

12 12,d d

12m

13 13,d d

13m

1 1 1( , , )z k c 2 2 2( , , )z k c 3 3( , )k c 13 13( , )k c

� � � � �

Fig. 4. Nonlinear hysteretic model.

Table 4
The effect of scaling factors on the mean and variance estimates.

y ¼ x2sinðx1Þ Mean Variance

Exact 0.4911 0.0685
S3F (a = 0.001, b = 2) 0.4896 (0.3%) 0.0691 (0.9%)
S2F (a = 1, b = 0) 0.5004 (1.9%) 0.0715 (4.4%)
S3F (a = 0.001, b = 10) 0.4896 (0.3%) 0.0781 (14.0%)
S3F (a = 1, b = 10) 0.5004 (1.9%) 0.0766 (11.8%)
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5. Numerical examples

To examine the performance of the presented S3F filter in comparison to the standard UKF implementation, several
numerical examples with different levels of complexity are presented, based on a 13-degree of freedom (13-DOF) mass-
spring-dashpot nonlinear dynamic system, as illustrated in Fig. 4. For the examples presented here, the first and second DOFs
are associated with a Bouc-Wen hysteretic component, as also seen in Fig. 4. The equation of motion and the state-space
formulation governing the system dynamics are given similarly to the 3-DOF expressions in [9] and succinctly presented
here as:
M€dþ C _dþ KdþHz ¼ P tð Þ ;
_d
€d

( )
¼ 0 I 0

�M�1K �M�1C �M�1H

� � d
_d
z

8><>:
9>=>;þ 0

M�1P tð Þ
� �

_h ¼ _c _k _bBW _cBW
_nBW

n oT
¼ 0; _z ¼ f _d; z

� �
;

_zi ¼ _di � cBWi
zij jnBWi _disgn zi _di

� �
� bBWi

zij jnBWi _di

x ¼ dT _d
T

zT hT
n oT

ð34Þ
whereM, C, K are the mass, viscous damping and stiffness matrices respectively, and H is a hysteretic matrix associated with
the nonlinear DOFs (as all provided in the Appendix), I and 0 are identity and null matrices respectively, d is the displace-
ment vector, z is the vector of the hysteretic component of the relevant displacements, x is the overall state-parameter vector
to be identified, and P(t) is the excitation vector related to the input ground acceleration. The Bouc-Wen parameters, bBW, cBW
and nBW, and all stiffness, k, and damping terms, c, are assumed unknown and have been augmented in the state vector in
this case, as seen in Eq. (34), in order to be identified by the filtering process in the dual state and parameter estimation
examples presented herein. This dual estimation process, together with the nature of the system dynamics in Eq. (34), con-
stitute the particular examples in this section highly nonlinear.

The dimension of the augmented state-parameter vector x in Eq. (34) is n = 71, and hence the number of sigma points
required for the UKF are 143 (=2n + 1), whereas S3F employs only 73 sigma points (=n + 2) in this case, thereby improving
the numerical efficiency by ~50%. A scaled Chi-Chi acceleration record has been used for all examples, as seen in Fig. 5(a),
available in the NGA-West2 PEER database [55]. The Heun’s (modified Euler’s) method is successfully used to solve Eq.
(34) in time, after examining its accuracy with a highly accurate (but rather slow) variable-step, implicit, 6th order
Adams-Moulton solver.

For illustration purposes, all numbers have been normalized accordingly. Allmasses are considered known and equal to 0.9.
The correct damping and Bouc-Wen parameters are the same for all numerical examples and are summarized in Table 5. The
initial stiffness values are also the same for all examples, however different cases are examinedwith andwithout time variant
values. For all numerical examples, the scaling factors values of a = 0.001 and b = 2 are used, for both UKF and S3F, based on
Table 1, unless otherwise specified. For the estimation process, in all the examples, the observation noise and process noise
at each time step k are generically assumed to be zeromean Gaussian white noises with Rk = R = 0.003I,where I is the identity
matrix of size equal to the number of observedmeasurements, and Qk is assumed to have all its elements zeros, except for the
diagonal elementsqii ¼ ð0:0001vkÞ2,with i 2 ½14;15; :::;26� and vk the acceleration input. The initial covariancematrixP0 is also

a diagonal matrix with its diagonal entries equal to pjj ¼ ½ð0:2x̂j0Þ
2 þ 0:001�, where j 2 ½1;2; :::;n� and x̂j0 is the j

th element of the

assumed initial state vector bx0. All initial unknown parameter values are provided in Figs. 5-8, accordingly for each example.
5.1. Example 1: Dual state-parameter estimation for nonlinear system

In this first example, acceleration measurements are available for all DOFs of the nonlinear system in Fig. 4. A notable 5%
signal-to-noise ratio (SNR) is assumed, that contaminates both the acceleration input and the observed acceleration mea-
surements at all DOFs. All the damping, stiffness parameters, and Bouc-Wen parameters are assumed to be time invariant
with their exact values listed in Tables 5 and 6. Initial values of the unknown parameters are indicated in Fig. 5, presenting
initial errors in the range of 30%-83%. Note that such large errors in the initial values and the significant noise levels are
selected to analyze and validate the robustness of the suggested filter under these settings.

As seen in Fig. 5, both filters are performing extremely well in this case and S3F is achieving an identical performance with
the UKF for all states and parameter estimates, albeit at a ~50% reduced computational time as compared to the UKF, due to
its decreased sigma points set size. Fig. 5(a) showcases the base excitation the system is subjected to, without any added
noise, Figs. 5(b-c) illustrate representative dynamic state estimations, and Figs. 5(d-h) show the online parameters identifi-
cation. In all Figs. 5(b-h) exact values are also shown for comparison, along with the S3F and UKF estimates. In particular,
Fig. 5(b) provides the displacement time history of the first DOF, and Fig. 5(c) displays the variation of the hysteretic defor-
mation with respect to the displacement, again for the first DOF. Figs. 5(d-e) show the damping and stiffness identification
for all DOFs, and Figs. 5(f-h) exhibit the Bouc-Wen parameters related to the nonlinear DOFs. All figures indicate that the
12



Fig. 5. Parameter and state estimation using S3F and UKF for 13-DOF nonlinear system with 5% SNR and acceleration measurements for all DOFs.

Table 5
Exact damping and Bouc-Wen parameter values for the 13-DOF nonlinear system.

Damping parameters Bouc-Wen parameters

Parameters c1 � c4 c5 � c8 c9 � c12 c13 bBW cBW nBW

Exact values 0.3 0.4 0.5 0.6 1 2 2
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dynamic states are correctly identified, and all the damping, stiffness, and Bouc-Wen parameters are converging to their
respective true values largely within the first 20 s of the excitation.

5.2. Example 2: Dual estimation for nonlinear system with time-variant parameters

To further increase the complexity of the analyzed example, the stiffness parameters, which have been kept constant in
the previous example, are now changing with time, as shown in Table 7, where it is indicated that the stiffness parameters
13



Fig. 6. Parameter and state estimation using S3F and UKF for 13-DOF nonlinear system with stiffness drop in the first six DOFs, 5% SNR, and acceleration
measurements for all DOFs.
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for the first six DOFs are instantaneously reduced at the 20th second of the seismic excitation. The rationale of the example is
based on the assumption that the system may undergo damage and loss in stiffness which was not expected and modeled
apriori with appropriate nonlinear formulations, similar to the ones used for DOFs 1 and 2. The damping and Bouc-Wen
parameters still remain the same as in the previous example, and their values can be seen in Table 5, while acceleration mea-
surements are again observed for all DOFs, and their values, as well as the ground acceleration, are contaminated with 5%
SNR. Initial parameter values are also considered to be the same as in the previous example, again indicating significant
errors in the initial parameter assumptions.

To simulate the target dynamic response, two different models are employed here based on different parameter values at
different time instants. For the first 20 s, the responses are obtained with the zero-initial state conditions and the stiffness
parameters listed in the second row of Table 7. After 20 s, the model uses the parameters of the third row, with the initial
conditions given by the final state outputs of the first model. The results are presented as the exact data in Fig. 6. For the fil-
tering process, the same model is used as in the previous example, without accounting for this stiffness change effect. There-
fore, besides the complexity increase of the identification process in relation to time variant parameters, this example also
studies modeling discrepancy effects, as different modeling assumptions are now made for simulation and identification.
14



Table 6
Exact stiffness parameter values for 13-DOF nonlinear system for numerical examples 1 and 4.

Stiffness k1; k2; k3 k4; k5; k6 k7; k8; k9 k10; k11; k12 k13

Exact values 18 16 15 14 13

Table 7
Exact stiffness parameter values for the 13-DOF nonlinear system for numerical examples 2 and 3.

Stiffness k1; k2; k3 k4; k5; k6 k7; k8; k9 k10; k11; k12 k13

Exact values (0–20 sec) 18 16 15 14 13
Exact values (20 sec onwards) 16 14 15 14 13

Fig. 7. Parameter and state estimation using S3F and UKF for 13-DOF nonlinear system with stiffness drop in the first six DOFs, 5% SNR, and acceleration
measurements for DOFs 1–6-8–13.
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Fig. 8. Parameter and state estimation using S3F, S2F, and the n + 2 filter in [17] for 13-DOF nonlinear system with 5% SNR, and acceleration measurements
for DOFs 1–6-8–13.
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The UKF and S3F responses for the dynamic state estimations are shown in Figs. 6(a-c), and parameter identification
results can be seen in Figs. 6(d-h). Both filters are again performing very well, however, their performance has slightly dete-
riorated as compared to the previous example, due to the increase in the complexity of the problem. Again, the exact same
behavior is observed for both UKF and S3F at each and every time instant. In Fig. 6(e) it can be observed that in the first 20 s
the filters are accurately estimating the true stiffness before the drop. After 20 s, the stiffness estimates are evolving, to again
predict the new reduced stiffness of the system. As such, the time at which damage is induced can also be properly identified.

5.3. Example 3: Dual estimation with sparse measurement data and time-variant parameters

Increasing the complexity of the problem even further, now only the accelerations at the DOFs 1, 6, 8 and 13 are observed
(i.e. O: 1–6-8–13), instead of all DOFs, and again 5% SNR is added for all observations and the input ground excitation. The
same model as in the previous example is adopted, where the stiffness parameters are changing over time. The true param-
eter values can be seen in Tables 5 and 7, and the initial assumed values again remain significantly distant from the true
ones, as can be also seen in Fig. 7. Due to the further increase in the complexity of the problem, some of the parameters
16
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are not converging to the exact true values now, contrary to the previous two examples, however, they are still providing
good estimates, as shown in Fig. 7, with only four measurements. Note that the displacement and hysteretic responses
and filtering estimates of the second DOF are again shown in Fig. 7(c), a DOF which is however completely unobserved in
this case. Many more arrangements with various combinations of four acceleration observations have also been analyzed,
for example O:1–2-8–13, O:1–5-9–13 and so on, and they produce either similar or slightly deteriorating results, which
are not shown here for brevity. The performance of the filters is further worsened for three or fewer acceleration measure-
ments, especially for the parameter estimates. Again, these cases are not shown here for brevity.

Noteworthy in Fig. 7 is once more the similarity of the two filters for all states and parameters, which is the main scope of
this paper, and same results have been also observed, as expected, for all other cases which are not reported here. Therefore,
despite the high level of nonlinearity, sparsity of measurements, model discrepancies, presence of time-variant parameters,
and large observation and input noise levels, the behavior of the UKF and S3F are exactly the same for both state estimates
and parameter identification, as also theoretically explained earlier in this paper.
5.4. Example 4: Comparison with other filter variants

In this example, the importance of the scaling factors is examined, by comparing the S3F estimates with two other filter
variants that do not consider scaling effects. The first filter is the n + 2 sigma points filter from [17], that selects the central
sigma point weight W0 for the mean and covariance estimates in the range 0–1, with W0 = 0.5 selected here for the present
illustration. The second filter, S2F, presented also earlier, requires the minimum number of sigma points, n + 1, since the cen-
tral sigma point is no longer used, with weight W0 = 0, as can be also obtained by substituting a = 1 and b = 0 in the S3F. For
the filtering process, accelerations at the DOFs 1, 6, 8 and 13 are assumed to be observed, and the SNR level remains the same
as in the previous examples. All parameters are time-invariant in this case and their true values are listed in Tables 5 and 6.
Filtering results are presented in Fig. 8. In this figure, UKF results are not shown, since they are once more found to be exactly
the same as the S3F results, with a = 0.001 and b = 2, consistent with the theoretical analysis and the previous examples. As
can be seen in Fig. 8, the performance of both filter variants is worse as compared to the S3F, for both states and parameters
estimations. Note again here that the displacement and hysteretic responses of the second DOF are now shown in Figs. 8(a,c),
a DOF which is completely unobserved in this example as well, and still the S3F estimates are able to provide a high predic-
tion accuracy, in contrast to the other two filters. Since the identification errors in Figs. 8(d-e) are significant, for illustrative
and comparative purposes the percentage errors for the damping and stiffness parameter estimates are shown in Fig. 9. As
seen in the figure, while S3F error estimates are consistently converging to small values, large errors are observed in both
stiffness and damping estimates for the other two filter variants, withW0 = 0 andW0 = 0.5, because of the higher order terms
importance in nonlinear, complex problems.

In general, in the absence of any proper scaling effects, the performance of asymmetric sigma point filtering schemes sig-
nificantly deteriorates, and their behavior is no longer similar to the UKF. By just including one additional, central sigma
point to the S2F scheme, and proper scaling, the S3F estimates become essentially identical to the UKF ones, in all cases.
Fig. 9. Error estimates for the damping and stiffness parameters using various filters for 13-DOF nonlinear system with 5% SNR and acceleration
measurements for DOFs 1–6-8–13.
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5.5. Discussion of the numerical results

To illustrate the efficiency, consistency and numerical stability of the proposed S3F, four numerical examples have been
presented, characterized by considerable nonlinearity, notable noise levels, time-variant and invariant parameters, significant
initial parameters discrepancy from exact values, modeling errors, and sparse measurements. In all examples, the S3F
achieves the same level of robustness and accuracy as the UKF, as also theoretically proven and expected, and can be imple-
mented in exactly the samemanner as the UKF. Numerous other initial values and noise levels have also been tested, and it is
again observed that both filters are performing in the samemanner, evenwith extremely high noise levels. Naturally, with the
increase in the noise levels, prediction errors are similarly increasing for both UKF and S3F. For consistency and brevity, only
one set of noise level and initial parameters is thus used in all examples, and generic Rk, Qk, and P0 matrices are selected, since
the filters’ relative performance with respect to each other is not sensitive to these values. Likewise, various sparse observa-
tion settings have also been tested, and in all cases equivalent S3F and UKF accuracy is attained. In all examples, the CPU time
for the S3F cases is approximately 50% reduced as compared to the UKF cases, regardless of the system configuration and the
problem complexity. This computational time reduction is attributed to the pertinent reduced number of model calls, as well
as the related reduction in matrix operations, since the size of all relevant matrices is almost half in S3F as compared to the
UKF. Overall, S3F can be unrestrictedly utilized in all general applications where UKF can be used, while achieving in all cases
an equivalent accuracy and numerical stability, albeit at a ~50% reduced computational effort.

6. Conclusions

An efficient and robust online nonlinear system identification approach, referred to as Scaled Spherical Simplex Filter
(S3F), is presented in this work, that requires almost half the number of sigma points compared to the state-of-the-art
UKF, while nearly achieving the exact same accuracy and numerical stability in all cases. For a general n-dimensional system,
the n + 2 used sigma points, their corresponding weights, and their scaling parameters are suggested and explained in detail.
The equivalence between the UKF and S3F accuracy is proven through theoretical derivations and several examples that
compare the estimated mean and covariance outputs of nonlinear functions, assuming bivariate input cases described by
correlated Gaussian and lognormal random variables, as well as an arbitrarily defined joint density function. Lastly, numer-
ical examples are provided for a 13-DOF nonlinear system with varied levels of complexity, including hysteretic behavior,
dual state-parameter estimation, sparsity of measurements, time-variant and invariant parameters, model error effects,
and large observation and input noise levels, to showcase the capabilities and advantages of the suggested approach under
very general conditions.

The performance of the S3F filter is observed to be remarkably good and robust, exhibiting identical performance to theUKF
in all cases, yet requiring almost half computational demands,making it an ideal candidate for use in larger systems and online
identification. The absoluteminimumnumber of sigma points needed is achieved by eliminating the central point and scaling
effects in the S3F, however, this extra point is particularly important for accuracy and suppression of errors associated with
higher order terms. Overall, based on our study, we have not observed any disadvantages of the S3F in relation to the UKF,
and the suggested filter can be readily utilized and similarly implemented in all relevant applications where UKF is used.
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Appendix

Higher moments and gradients for theoretical example 1

Evaluating gradients: Gradients for the Taylor series expansion, rkf , for f ðxÞ ¼ x1x2 are obtained as:
18
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rf ¼ @f
@x1

@f
@x2

� �
¼ x2 x1f g ¼ l2 l1

� �
r2f ¼ @rf

@x1

@rf
@x2

� �
¼ 0 1 1 0f g

r3f ¼ @r2f
@x1

@r2f
@x2

( )
¼ 0 0 0 0 0 0 0 0f g
where l1 and l2 are the mean values for the random variables x1 and x2 respectively.
Evaluating Moments: Similarly, the vector dxi can be expanded as:
dx ¼ dx1 dx2f gT

dx2 ¼ dx21 dx1dx2 dx2dx1 dx22
� �T

dx3 ¼ dx31 dx21dx2 dx21dx2 dx1dx22 dx21dx2 dx1dx22 dx1dx22 dx32
� �T
CASE A) Assuming Gaussian distribution (GRV)
For a multivariate Gaussian distribution of size n, x= {x1 x2 . . . xn}T, with mean lx and variance Pxx, the moment generating

function is given by:
MxðtÞ ¼ exp tTlx þ
1
2
tTPxxt

� �
; t ¼ t1 t2 � � � tnf gT
By differentiating the moment generating function with respect to t, the kth moment can be evaluated as:
E½xk11 xk22 � � � xknn � ¼ @kMxðtÞ
@tk11 @tk22 � � � @tknn

�����
t¼0

s:t: k ¼ k1 þ k2 þ � � � þ kn
Next, the kth central moment can be obtained as:
E½dxk11 dxk22 � � � dxknn � ¼ E x1 � E½x1�ð Þk1 x2 � E½x2�ð Þk2 � � � xn � E½xn�ð Þkn
h i
Therefore, for the given bivariate case, the moment generating function and the resulting central moments, up to 4th

moment, are expressed as:
MxðtÞ ¼ exp t1l1 þ t2l2 þ
t1m11

2
þ t2m12

2

� �
t1 þ t1m12

2
þ t2m22

2

� �
t2

� �

Moment evaluations for GRV
First Moment :

E x1½ � ¼ l1 ¼ @MxðtÞ
@t1

����
t¼f0 0gT

 !
; E x2½ � ¼ l2 ¼ @MxðtÞ

@t2

����
t¼f0 0gT

 !
E dx1½ � ¼ 0 ; E dx2½ � ¼ 0
Second Moment :

E x21
	 
 ¼ l2

1 þm11 ¼ @2MxðtÞ
@t21

�����
t¼f0 0gT

0@ 1A
E x1x2½ � ¼ l1l2 þm12 ¼ @2MxðtÞ

@t1@t2

�����
t¼f0 0gT

0@ 1A
E x22
	 
 ¼ l2

2 þm22 ¼ @2MxðtÞ
@t22

�����
t¼f0 0gT

0@ 1A
E dx21
	 
 ¼ m11 ; E dx1dx2½ � ¼ m12 ; E dx22

	 
 ¼ m22
Third Moment :

E x31
	 
 ¼ l1ðl2

1 þ 3m11Þ ; E x21x2
	 
 ¼ l2ðl2

1 þm11Þ þ 2l1m12 ; E x32
	 
 ¼ l2ðl2

2 þ 3m22Þ
E x1x22
	 
 ¼ l1ðl2

2 þm22Þ þ 2l2m12 ; E dx31
	 
 ¼ E dx21dx2

	 
 ¼ E dx1dx22
	 
 ¼ E dx32

	 
 ¼ 0
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Fourth Moment :

E x41
	 
 ¼ l4

1 þ 3m2
11 þ 6m11l2

1

E x31x2
	 
 ¼ l3

1l2 þ 3m12l2
1 þ 3l1m11l2 þ 3m12m11

E x21x
2
2

	 
 ¼ ðl2
2 þm22Þl2

1 þ 4l1l2m12 þ l2
2m11 þ 2m2

12 þm22m11

E x1x32
	 
 ¼ l1l

3
2 þ 3m12l2

2 þ 3l1m22l2 þ 3m12m22

E x42
	 
 ¼ l4

2 þ 3m2
22 þ 6m22l2

2

E dx41
	 
 ¼ 3m2

11

E dx31dx2
	 
 ¼ 3m11m22

E dx21dx
2
2

	 
 ¼ m11m22 þ 2m2
12

E dx1dx32
	 
 ¼ 3m12m22

E dx42
	 
 ¼ 3m2

22
Exact transformed mean and variance for GRV
From the evaluated moments, the true mean and variance for y is given by:
E y½ � ¼ E x1x2½ � ¼ l1l2 þ m12

Pyy ¼ E y2
	 
� E y½ �ð Þ2 ¼ E x21x

2
2

	 
 � E x1x2½ �ð Þ2 ¼ l2
2m11 þ 2l1l2m12 þ l2

1m22 þm2
12 þm22m11
Scaled Taylor estimates for GRV
Similarly, scaled Taylor approximations for the mean and covariance are obtained as:
f xð Þ ¼ y ¼ fðxÞ þ 1
2
r2fE dx2

	 
þ 1
6
r3f aE dx3

	 
 ¼ l1l2 þ m12

Pyy ¼ rf PxxrfT þ a 1
2 r2f E dx2dxT

	 
rfT þ rf E dxTdx2
	 
r2fT

� �
þ

a2 1
4r2f E dx2dx2T

	 
� E dx2
	 


E dx2
	 
T� �

r2fTþ

a2 1
6 r3f E dx3dxT

	 
rfT þrf E dxTdx3
	 
r3fT

� �
¼ m11l2

2 þ 2l1l2m12 þ l2
1m22 þ a2 m2

12 þm11m22
� �
CASE B) Assuming lognormal distribution (LN)
For a multivariate lognormal distribution of size n, x= {x1 x2 . . . xn}T, with mean lx and variance Pxx, higher order moments

can be easily evaluated from the moment generating function of the normal distribution.
Assume z is given by z ¼ logðxÞ. Therefore, z is a GRV with mean lz and variance Pzz. Using the previous definition, the

moment generating function of z is given by:
MzðtÞ ¼ exp tTlz þ
1
2
tTPzzt

� �
; t ¼ t1 t2 � � � tnf gT

where; lzi ¼ log li

� �� 1
2
log

mii

l2
i

þ 1
� �

; mzij ¼ log
mij

lilj
þ 1

 !
; s:t: i; j 2 1 ;2; � � � ;nf g
lzi is the ith element of vector lz, and mzij is the element of matrix Pzz in the ith row and jth column, whereas li is the ith ele-
ment of vector lx, and mij is the element of matrix Pxx in the ith row and jth column.

The kth moment can be evaluated as:
E½xk11 xk22 � � � xknn � ¼ E½ek1z1þk2z2þ���þknzn � ¼ MzðtÞjt¼ k1 k2 ��� knf gT s:t: k ¼ k1 þ k2 þ � � � þ kn

E½dxk11 dxk22 � � � dxknn � ¼ E x1 � E½x1�ð Þk1 x2 � E½x2�ð Þk2 � � � xn � E½xn�ð Þkn
h i
Therefore, for the given bivariate case, the moment generating function and the resulting central moments, up to 4th

moment, are expressed as:
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GRV : z ¼ logðxÞ ; z ¼ z1
z2

� �
¼ logx1

logx2

� �
; lz ¼ E z½ � ¼ lz1

lz2

� �
; P zz ¼

mz11 mz12

mz12 mz22

� �
MzðtÞ ¼ E½etT z� ¼ exp t1lz1 þ t2lz2 þ

t1mz11

2
þ t2mz12

2

� �
t1 þ t1mz12

2
þ t2mz22

2

� �
t2

� �

Moment evaluations for LN
First Moment :

E x1½ � ¼ l1 ¼ MzðtÞj t¼f1 0gT
� �

; E x2½ � ¼ l2 ¼ MzðtÞj t¼f0 1gT
� �

E dx1½ � ¼ 0 ; E dx2½ � ¼ 0
Second Moment :

E x21
	 
 ¼ l2

1 þm11 ¼ MzðtÞj t¼f2 0gT
� �

E x1x2½ � ¼ l1l2 þm12 ¼ MzðtÞj t¼f1 1gT
� �

E x22
	 
 ¼ l2

2 þm22 ¼ MzðtÞj t¼f0 2gT
� �

E dx21
	 
 ¼ m11 ; E dx1dx2½ � ¼ m12 ; E dx22

	 
 ¼ m22
Third Moment :

E x31
	 
 ¼ l2

1þm11ð Þ3
l3
1

; E x21x2
	 
 ¼ l2

1þm11ð Þ l1l2þm12ð Þ2
l2
1l2

; E x1x22
	 
 ¼ l2

2þm22ð Þ l1l2þm12ð Þ2
l2
2l1

; E x32
	 
 ¼ l2

2þm22ð Þ3
l3
2

E dx31
	 
 ¼ m2

11 3l2
1þm11ð Þ
l3
1

; E dx21dx2
	 
 ¼ m2

12
l2

þ 2m11m12
l1

þ m11m2
12

l2
1l2

; E dx1dx22
	 
 ¼ m2

12
l1

þ 2m22m12
l2

þ m22m2
12

l2
2l1

; E dx32
	 
 ¼ m2

22 3l2
2þm22ð Þ
l3
2

Fourth Moment :

E x41
	 
 ¼ l2

1þm11ð Þ6
l8
1

; E x42
	 
 ¼ l2

2þm22ð Þ6
l8
2

; E x31x2
	 
 ¼ l2

1þm11ð Þ3 l1l2þm12ð Þ3
l6
1l

2
2

E x1x32
	 
 ¼ l2

2þm22ð Þ3 l1l2þm12ð Þ3
l6
2l

2
1

; E x21x
2
2

	 
 ¼ l2
1þm11ð Þ l2

2þm22ð Þ l1l2þm12ð Þ4
l4
1l

4
2

E dx41
	 
 ¼ 3m2

11 þ
16m3

11
l2
1

þ 15m4
11

l4
1

þ 6m5
11

l6
1

þ m6
11
l8
1
; E dx42
	 
 ¼ 3m2

22 þ
16m3

22
l2
2

þ 15m4
22

l4
2

þ 6m5
22

l6
2

þ m6
22
l8
2

E dx31dx2
	 
 ¼ 3m12m11 þ m3

12
l2
2
þ 6m2

12m11

l1l2
þ 9m2

11m12

l2
1

þ 3m3
12m11

l2
1
l2
2

þ 9m2
12m

2
11

l3
1
l2

þ 3m12m3
11

l4
1

þ 3m3
12m

2
11

l4
1
l2
2

þ 3m2
12m

3
11

l5
1l2

þ m3
12m

3
11

l6
1
l2
2

E dx1dx32
	 
 ¼ 3m12m22 þ m3

12
l2
1
þ 6m2

12m22

l1l2
þ 9m2

22m12

l2
2

þ 3m3
12m22

l2
1l

2
2

þ 9m2
12m

2
22

l3
2l1

þ 3m12m3
22

l4
2

þ 3m3
12m

2
22

l4
2l

2
1

þ 3m2
12m

3
22

l5
2l1

þ m3
12m

3
22

l6
2l

2
1

E dx21dx
2
2

	 
 ¼ m11m22 þ 2m2
12 þ

4m2
12m22

l2
2

þ 4m11m22m12
l1l2

þ 4m3
12

l1l2
þ 4m2

12m11

l2
1

þ 4m3
12m22

l1l3
2

þ 6m11m2
12m22

l2
1l

2
2

þ m4
12

l2
1l

2
2

þ 4m3
12m11

l3
1l2

þ m4
12m22

l2
1l

4
2
þ 4m11m3

12m22

l3
1l

3
2

þ m4
12m11

l4
1l

2
2
þ m11m4

12m22

l4
1l

4
2

Exact transformed mean and variance for LN

Based on the evaluated moments, the true values for the transformed mean and variance are obtained as:
E y½ � ¼ E x1x2½ � ¼ l1l2 þ m12

Pyy ¼ E y2
	 
� E y½ �ð Þ2 ¼ E x21x

2
2

	 
 � E x1x2½ �ð Þ2

¼ l2
1þm11ð Þ l2

2þm22ð Þ l1l2þm12ð Þ4
l4
1l

4
2

� l1l2 þm12
� �2

¼ l2
2m11 þ 2l1l2m12 þl2

1m22 þm11m22 þ 5m2
12 þ 4l1m12m22

l2
þ 4l2m11m12

l1
þ 4m11m12m22

l1l2
þ 4m3

12
l1l2

þ 4m3
12m22

l1l3
2

þ 4m3
12m11

l2l3
1

þ 4m11m3
12m22

l3
1l

3
2

þ 6m2
12m22

l2
2

þ 6m2
12m11

l2
1

þ 6m11m2
12m22

l2
1l

2
2

þ m4
12

l2
1l

2
2
þ m4

12m22

l2
1l

4
2
þ m4

12m11

l2
2l

4
1
þ m11m4

12m22

l4
1l

4
2
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Scaled Taylor estimates for GRV

Results from the scaled Taylor approximations:
f xð Þ ¼ y ¼ fðxÞ þ 1
2
r2fE dx2	 
þ 1

6
r3f aE dx3	 


¼ l1l2 þ m12

Pyy ¼ rf PxxrfT þ a
1
2

r2f E dx2dxT
	 
rfT þ rf E dxTdx2	 
r2fT

� �
þa2 1

4
r2f E dx2dx2T	 
� E dx2	 


E dx2	 
T� �
r2fT

þa2 1
6

r3f E dx3dxT
	 
rfT þrf E dxTdx3	 
r3fT

� �
¼ m11l2

2 þ 2l1l2m12 þ l2
1m22 þ a 4l1m12m22

l2
þ 4m2

12 þ 4l2m11m12
l1

þ 2m2
12m22

l2
2

þ 2m2
12m11

l2
1

� �
þa2

m11m22 þm2
12 þ

4m2
12m22

l2
2

þ 4m11m12m22
l1l2

þ 4m3
12

l1l2
þ 4m2

12m11

l2
1

þ 4m3
12m22

l1l3
2
þ

6m11m2
12m22

l2
1l

2
2

þ m4
12

l2
1l

2
2
þ 4m3

12m11

l2l3
1

þ m4
12m22

l2
1l

4
2
þ 4m11m3

12m22

l3
1l

3
2

þ m4
12m11

l2
2l

4
1
þ m11m4

12m22

l4
1l

4
2

0B@
1CA
Note that when a = 1, the true variance is exactly the same with the one from the Taylor approximation, since the higher
moment terms in the Taylor expansion are all zero, except for the ones employed in the above equation.

UKF case

The weights for the Unscented Transformations are obtained as:
W ðmÞ
0 ¼ 1� 1

a2 ; W ðcÞ
0 ¼ 1� 1

a2 þ 1� a2 þ b
� �

W ðmÞ
i ¼ W ðcÞ

i ¼ 1
4a2 i ¼ 1; :::;4
The estimated mean and variance using transformed sigma points, Yi, are given as:
E y½ � ¼ W mð Þ
0 Y0 þ

X4
i¼1

W mð Þ
i Yi ¼ l1l2 þm12

Pyy ¼ W cð Þ
0 Y0 � E y½ �ð Þ2 þ

X4
i¼1

W cð Þ
i Yi � E y½ �ð Þ2

¼ l1l2 þm12m11l2
2 þ 2l1l2m12 þ l2

1m22 þ a2 þ b
� �

m2
12
S2F case

The weights of the sigma points are:
Wi ¼ 1
3

i ¼ 1; :::;3
The estimated mean and variance using transformed sigma points, Yi, are given as:
E y½ � ¼
X3
i¼1

WiYi ¼ l1l2 þm12

Pyy ¼
X3
i¼1

Wi Yi � E y½ �ð Þ2

¼ m11l2
2 þ 2l1l2m12 þ l2

1m22 þ 1
2
m11m22 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 m11m22�m2

12ð Þ
m11

r
m11l2 þm12l1

� �

S3F case

The weights of the sigma points are obtained as:
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W ðmÞ
0 ¼ 1� 1

a2 ; W ðcÞ
0 ¼ 1� 1

a2 þ 1� a2 þ b
� �

W ðmÞ
i ¼ W ðcÞ

i ¼ 1
3a2 i ¼ 1; :::;3
The estimated mean and variance using transformed sigma points, Yi, are given as:
E y½ � ¼ W mð Þ
0 Y0 þ

X3
i¼1

W mð Þ
i Yi ¼ l1l2 þm12

Pyy ¼ W cð Þ
0 Y0 � E y½ �ð Þ2 þ

X3
i¼1

W cð Þ
i Yi � E y½ �ð Þ2

¼ m11l2
2 þ 2l1l2m12 þ l2

1m22 þ bm2
12 þ

1
2
a2m11m22 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 m11m22�m2

12ð Þ
m11

r
a m11l2 þm12l1

� �
Higher moments for theoretical example 2

The first four centralized moments for the Taylor series approximation are evaluated as:
FirstMoment ðlþm ¼ 1Þ :
E dx1½ � ¼ 0 ; E dx2½ � ¼ 0
SecondMoment ðlþm ¼ 2Þ :

E dx21
	 
 ¼ 139p2

11;520
¼ 0:1191 ; E dx1dx2½ � ¼ � p

576
¼ �0:0055; E dx22

	 
 ¼ 11
144

¼ 0:0764

ThirdMoment ðlþm ¼ 3Þ :

E dx31
	 
 ¼ � 55p3

55;296
¼ �0:0308 ; E dx21dx2

	 
 ¼ 13p2

69;120
¼ 0:0019

E dx1dx22
	 
 ¼ p

3;456
¼ 0:0009; E dx32

	 
 ¼ � 31
4;320

¼ �0:0072

FourthMoment ðlþm ¼ 4Þ :

E dx41
	 
 ¼ 25; 021p4

61;931;520
¼ 0:0394; E dx31dx2

	 
 ¼ � 149p3

2;211;840
¼ �0:0021

E dx21dx
2
2

	 
 ¼ 1;477p2

1;658;880
¼ 0:0088; E dx1dx32

	 
 ¼ � 41p
138;240

¼ �0:00093; E dx42
	 
 ¼ 403

34;560
¼ 0:0117
where l + m is the order of the moment, as already defined in Eq. (32).

System matrices for numerical examples

System matrices for all numerical examples are defined as follows:
M ¼

m1 0 � � � 0
0 m2 . . . 0

..

. ..
. . .

.
0

0 0 0 m13

266664
377775; C ¼

c1 þ c2 �c2 � � � 0 0
�c2 c2 þ c3 � � � 0 0

..

. ..
. . .

. �c12 0
0 0 �c12 c12 þ c13 �c13
0 0 0 �c13 c13

266666664

377777775

K ¼

ke1 þ ke2 �ke2 � � � 0 0
�ke2 ke2 þ ke3 � � � 0 0

..

. ..
. . .

. �ke12 0
0 0 �ke12 ke12 þ ke13 �ke13
0 0 0 �ke13 ke13

266666664

377777775; H ¼

kh1 �kh2 0 � � � 0 0

0 kh2 �kh3 � � � 0 0

..

. ..
.

kh3 � � � 0 0

..

. ..
. ..

. . .
.

0 0
0 0 0 0 kh12 �kh13
0 0 0 0 0 kh13

26666666666664

37777777777775
kei ¼ aiki; and khi ¼ ð1� aiÞki for i ¼ ½1;2;:::;13�
where mi; ci; ki are the mass, damping, and elastic stiffness parameters, and ai is the post-elastic to elastic stiffness ratio for
the ith DOF, defined as ai ¼ 0 for i=[1,2] and 1 otherwise, in all examples.
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