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implications, especially for large n-dimensional nonlinear systems. A set of minimum num-
ber of n + 1 sigma points is necessary in each filtering application in order to provide mean

Iéiysvcv:r:fzd Kalman Filter and nonsingular covariance estimates. Incorporating additional sigma points than this
Sigma points minimum set improves the accuracy of t_he estimates and can takg advantage of a richer
Sequential probabilistic inference information content that can possibly exist, but at the same time increases the computa-
State estimation tional demand. To this end, by adding one more sigma point to this minimum set, and
Parameter identification assigning general, well defined weights and scaling factors, a new Scaled Spherical
Online nonlinear filtering Simplex Filter (S3F) with n + 2 sigma points set size is presented in this work, and it is the-

oretically proven that it can practically achieve in all cases the same accuracy and numer-
ical stability as the typical 2n + 1 sigma points Unscented Kalman Filter (UKF), with almost
50% less computational requirements. A comprehensive study of the suggested filter is pre-
sented, including detailed derivations, theoretical examples and numerical results, demon-
strating the efficiency, robustness, and accuracy of the S3F.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

System identification in the form of dynamic states and parameters inference through available measurements plays an
important role for condition assessment, performance prediction, and adaptive control, among others [1,2,3,4]. This work
focuses on sigma points based nonlinear Kalman filtering, a time domain, model-based, Bayesian probabilistic technique that
can tackle difficult problems of a broad range in a unified formulation, such as linear and nonlinear systems, dual state esti-
mation and parameter identification, linear and/or nonlinear observation equations, online estimations, and sparse measure-
ment data. The Kalman Filter [5] is well known to provide unbiased, minimum variance optimal estimates of the state vector
for linear dynamic systems and is widely used in numerous relevant applications. In nonlinear cases however, either as they
emerge due to the need for parameters estimation or due to inherent nonlinearities, one of the most popular filters that can
be employed, with a long history, is the Extended Kalman Filter (EKF), e.g. [6]. Going beyond the first-order approximations
and gradient evaluation requirements in EKF, other nonlinear filtering alternatives have been developed, such as the
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Unscented Kalman Filter (UKF) [7] and the Particle Filter (PF) 8], among others. In the PF a large number of particles is prob-
abilistically sampled, while in the UKF a predefined set of sigma points is deterministically obtained, in order to eventually
quantify the final output statistics. The uncertainty quantification and propagation accuracy and effectiveness attained
through a predefined set of sigma points, as in the case of UKF, makes sigma point based filters a viable option in many set-
tings, from a computational perspective [9].

Consequently, numerous researches have been dedicated regarding appropriate sigma points selection, to capture statis-
tical properties of the prior distribution. A symmetric set of 2n + 1 sigma points for UKF has been derived by Julier and Uhl-
mann and co-workers [10,11,12], to capture the mean and covariance of a n-dimensional random variable following any
distribution, and the first three moments for any symmetric distribution, such as the Gaussian one. By increasing the number
of sigma points, higher order accuracy can be achieved, as for example in skewed/third moment approaches, conjugate
Unscented Transform or higher order filters [13,14,15], albeit by also drastically increasing the computational demand of
the filtering process. Since the computational cost of the filtering methodology is proportional to the number of sigma/
sample points, there is a strong incentive to minimize the number of points required for uncertainty propagation, especially
for computationally expensive models.

Along these lines, a minimum-skew simplex sigma points filter is introduced by Julier and Uhlmann [16], utilizing n + 2
points to match the first two moments and to minimize third moment (skew) errors for a n-dimensional random variable,
where n + 1 points form the vertices of a simplex. In the suggested approach in [16], however, the spread of the points
increases exponentially with the state-space dimension, resulting in potential numerical stability problems even for relatively
low dimensionality. Julier [17] introduced an alternate strategy for the n + 2 sigma points selection and transformation,
named as spherical simplex Unscented Transform, where n + 1 points are now located on a hypersphere with radius propor-
tional to \/n. In both [16,17], the sigma points are asymmetrically distributed about the origin, and therefore some symmetric
distribution higher moment effects, especially for the skew and the other odd moments, are not captured now by the sigma
points. To be able to limit the spread of the sigma points to some extent, in order to utilize the approach in [16] which can
minimize third moment errors, the scaled Unscented Transformation is presented by Julier in [18], through the introduction
of the scaling parameters o and . The scaling factor o determines the spread of the sigma points and can suppress higher
moments errors, whereas the scaling factor § is used to incorporate potential distribution information relating to its 4™
moments. This scaled transformation approach has been eventually formalized by Wan and van der Merwe in [19,20] for
the 2n + 1 sigma points UKF [10,11,12], and a robust, general methodology is presented for appropriate sigma points selection,
weight allocations, and the implementation of the scaling factors « and p. The UKF version in [19,20] is currently the most
popular UKF version and it is considered as the standard, state-of-the-art implementation. In this work, we are revisiting these
issues and we are formally introducing and generally formalizing the Scaled Spherical Simplex Filter (S3F), which, as we prove,
combines all the best attributes of the previous approaches and can achieve an equivalent accuracy and numerical stability
with the state-of-the-art 2n + 1 UKEF, for all distribution cases, despite using a decreased n + 2 sigma points set size.

The 2n + 1 UKF version is currently widely used and has proven successful in a diverse range of applications for nonlinear
systems, because of its ease of implementation, accuracy, computational stability, and efficiency. Only some notable exem-
plifying works are mentioned here, with more emphasis on structural mechanics applications. The UKF implementation for
softening single degree-of-freedom structural systems is shown by Mariani and Ghisi [21], while Wu and Smyth [22] applied
the filter for online parametric system identification of hysteretic models with degradation and pinching. Cheng and Feng
[23] utilized large-scale experimental and actual field data for two- and three-span bridges, while Chatzi et al. [24]| employed
the UKF to obtain the most relevant hysteretic model based on the available experimental data. A parallel UKF implemen-
tation is discussed in Azam et al. [25], and Omrani et al. [26] applied the UKF to identify the inelastic seismic response of a
single-story building. Xie and Feng [27] applied an iterative UKF version for nonlinear system identification, while in Song
and Dyke [28] real-time hysteretic model updating of an experimental shear-type steel structure is shown. Papakonstanti-
nou and Shinozuka [29] used UKF outside a traditional dynamic context, for parameter optimization of a computational
model in an inverse setting, while Schenkendorf and Mangold [30] presented an online model selection approach based
on UKF. Asgarieh et al. [31] applied UKF for nonlinear identification of a seven-story shear wall building, and Al-Hussein
and Haldar [32] applied the UKF in applications with unknown inputs. Kontoroupi and Smyth [33] used UKF for online noise
identification in joint state and parameter estimation problems, and Chatzis and Chatzi [34] suggested a discontinuous UKF
to tackle problems related to observability and identifiability [35] in non-smooth dynamic problems. Astroza et al. [36,37]
integrated the UKF with high-fidelity mechanics-based nonlinear finite elements, to estimate unknown material parameters
in frame-type structures, Erazo and Hernandez [38] thoroughly compared different filter types for damage assessment, and
in Olivier and Smyth [39,40] various nonlinear filters are explored and compared. The impact load and its location are iden-
tified by Yan et al. [41] using UKF, and in [42] Song suggested a UKF approach for joint input-state-parameter estimation.
Calabrese et al. [43] investigated constrained approaches for UKF, Dertimanis et al. and Lei et al. [44,45] devised UKF schemes
for the identification of nonlinear systems and unknown inputs, and Song et al. [46] proposed an adaptive UKF version for
model updating and noise identification. Other UKF applications can also be seen in relation to simultaneous localization and
mapping (SLAM), robotics, target tracking, autonomous vehicles, dynamic positioning, image processing, and many more.
Lastly, among various other applications, the filters can be directly integrated with the recently introduced, flexible, fully
parametrized, state-space based hysteretic finite element models in Amir et al. [47,48,49], as presented in Amir et al.
[50], and can be also combined with Partially Observable Markov Decision Processes (POMDP) techniques for optimal
stochastic control [51,52,53,54].
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Motivated by the numerous UKF applications in multiple scientific and engineering fields, the objective of the present
work is to formally introduce the Scaled Spherical Simplex Filter (S3F) that can be unrestrictedly utilized in all general appli-
cations where UKF can be used, while achieving in all cases an equivalent accuracy and numerical stability for all distribution
types, however, with a ~50% reduced computational effort. This is achieved through a reduced sigma points uncertainty
propagation mechanism, requiring only n + 2 weighted sigma points, in contrast to the 2n + 1 used in the typical Unscented
Transformation. The relevant derivations and the resulting S3F development are discussed in detail and a general, straight-
forward approach is presented for the selection of the sigma points and their associated weights. The minimum possible
number of sigma points needed to provide mean and nonsingular covariance estimates is n + 1, but such a filter cannot
achieve the same order of accuracy and robustness as the UKF. By adding one more sigma point to this minimum set,
and assigning well defined weights and scaling factors, the suggested n + 2 sigma points S3F can instead preserve all the
important features of the UKF. Detailed theoretical proofs are provided to indeed demonstrate that the suggested S3F with
appropriate scaling factors can practically achieve the same UKF accuracy of third moment for symmetric prior distributions,
such as the Gaussian ones, and second moment in general. Several theoretical examples are also shown, by comparing the
estimated mean and covariance outputs of nonlinear functions, assuming bivariate input cases described by correlated Gaus-
sian and lognormal random variables, as well as an arbitrarily defined joint density function. Finally, numerical examples
with increasing level of complexity are presented, to showcase the capabilities and advantages of the suggested approach,
for problems associated with dual state and parameter estimation, considering systems with hysteresis, sparsity of measure-
ments, large observation and input noises, and time-variant and invariant parameters, among others.

2. Uncertainty propagation and sequential probabilistic inference

Sequential probabilistic inference in the context of this paper is the problem of estimating the hidden states of a nonlinear
dynamic system given a set of noisy and sparse observations. Representing the system as the simplest dynamic Bayesian
network in a first order hidden Markov model format with continuous states, as in Fig. 1, enables the use of Bayesian esti-
mation algorithms which recursively update the system state posterior density as new observations become available. The
hidden system state x in Fig. 1, having an initial distribution p(X), evolves over time according to the conditional probability
density p(X,|Xk_1), with k being the discrete time index. The observed data u,, are conditionally independent given the system
state and follow the probability density function p(u,|X,). The system dynamics can be also expressed as:

X = (X1, Q, Vi, 0) s w = WXy, 1, v, 0) (1)

where f is the nonlinear state transition function, q is the process noise, v is the exogenous input, 0 is the parameter vector
that parametrizes f and h, the nonlinear observation function, and r is the observation noise. The state transition probability
density p(x¢|X,_1) is fully described by f and p(qy), the process noise distribution, and the observation likelihood p(u|x;) is
fully specified by h and p(ry), the observation noise distribution.

The posterior density p(X.|u;y) of the system state, given all the observations u; = {u;,u; ..., w} is the complete
sought solution to this inference problem. To recursively update the posterior density in a Bayesian context, the following
classical relationship is used:

P (W[ Xi)P (X [ W41

P(X|uyx) = T p(UX)D (e 1)e (2)

with p(x;|u;_1) given by propagating the previous posterior p(X,_1|ux_1) in time:

X[t 1) = / P(XelXi1)P (K1 [ 41 )i 3)

For linear, Gaussian systems, Kalman derived the closed-form solution of these integral equations, in what is currently well
known as the Kalman filter [5]. Unfortunately, for general nonlinear systems, the closed-form solutions to these multi-
dimensional integrals are intractable and approximate methods can only be used, such as the Extended Kalman Filter
(EKF) [6] and the Unscented Kalman Filter (UKF) [7], among others, where only the conditional mean X, = E[X;|u;,] and
covariance P, are tracked. In the case that the posterior density is a Gaussian distribution, these two moments can fully
describe the posterior density.

u;

Observed

—_—
P(X; [X4)

Unobserved

Fig. 1. A hidden Markov model.
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The EKF linearizes the nonlinear equations at each step through a Taylor-series expansion and then analytically propa-
gates the associated mean and covariance through the filter. To illustrate, let x = dx + X, where the zero mean random vari-
able 5x has the same covariance Py, as X. Expanding a function f about X results in:

y = f(x) = £(X) + VEox + %széxz + %V3f5x3 . (4)

where V'fsx! is the it term in the multidimensional Taylor series, as explained in the subsequent sections and expanded in
Eq. (9). The mean and covariance used in the EKF are obtained by a first and second moment approximation, respectively, as:

f(x) =y ~ f(X), Py ~ VP, VI (5)

The nature of this approximation often introduces significant errors and leads to poor performance of the filter in meaning-
fully nonlinear problems.

2.1. The Unscented Transformation for UKF

Assuming a n-dimensional random variable, ¢, with zero mean, 0, and identity covariance, I, any n-dimensional random
variable x with mean X and covariance Py, can be obtained by the affine transformation x = X + /PxC. Consequently, with-
out loss of generality, the UKF sigma points and weights can be first derived in the c-space and then translated to the x-space.
The standard UKF uses a 2n + 1 symmetrical set of sigma points, as illustrated in Fig. 2 for a 3-dimensional state-space, i.e.
n = 3, that are identified by solving a system of moment equations, and are appropriately placed and weighted so as to com-
pletely capture the mean and covariance of X. By slightly reformulating the expressions by Wan and van der Merwe [19], the
sigma points X; for i = [0, 1, ...,2n] and the corresponding weights W; for a scaled UKF are given as:

Xp =X
Xi:i+(oc\/ﬁ)<\/ﬂ> i=1,..,n

i—column

X,-:i—(an/ﬁ)(@) i=n+1,..2n

i—column

1
ng):l—?+(1—oc2+ﬁ)

wm =w' = 2;2n i=1,..2n (6)
where the superscripts (m) and (c) stand for mean and covariance respectively, and o/n is the radius of the hypersphere
where the sigma points in the c-space are distributed. Hence, the value of o determines the spread of the sigma points,
and the scaling parameter B incorporates prior knowledge of the distribution X, as also explained subsequently. The set of
points propagates through the function y = f(x) to obtain a new set of sigma points Y;, which are then employed to evaluate
the updated mean and covariance of the transformed random variable y as follows:

Y = £(X))
2n 2n T

V=2 W"Yi ; Py=> WINi-V]Y,-¥| (7)
i=0 i=0

where § and Py are the estimated mean and covariance of the transformed random variable y.

> / \
N / \
~ / ‘ A
Sl e = [ _
- \ ey
7 IS N
7/ \ /\\’ N
/ )
W =
7
Loeer Y s 0 s
- S e —— = \\\
\ / AR
\ | Sy
N\ / N

\ /
N, /
Z
- S

Fig. 2. Sigma points locations on a sphere of radius «v/3, at the 3-dimensional c-space, for both UKF (left) and S3F (right).
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3. The Scaled Spherical Simplex Filter (S3F)

This section presents in detail the general S3F derivations and implementation, and analyzes the selection strategy for the
asymmetric sigma points, their associated weights, and the effect of the scaling factors. Comparisons with respect to Taylor
series expansion and the 2n + 1 Unscented Transformation scheme of the UKF are provided, and lastly the overall recursive
filter estimation method is shown.

Keeping the same notation as in Eq. (4), it can be proved that the mean and covariance of a scaled random vari-
able x through a function f, with the scaling parameter «, can be expanded as [7,18]:

f(x) =y =f(x) +%V2f E[ox?] +%V3f aE[6X%] + ...

Py = VI P VI + oc% (sz E[ox*x"|VE' + Vf E[oxox*] VZfT)
+ o2 1sz(E (3¢ ox™] — E[ox?]E[ox] ") V"
4

1 . o
+ o5 (VEE[ x| VE + VE E[oxox™| V1) + .. (8)
where V is the first-order gradient in the form of a row-vector, V*f gives the k™ order gradient of the function f, where V¥ is
a row-vector of size n* consisting of all possible k™ order gradients for a n-dimensional system, obtained through the Kro-
necker product of V performed k-times, ox is a column vector of size n, such that the i" element with i € [1,...,n] is given as
d%; = x; — E[x;], 9x* is the column vector of size n* obtained by the k-times Kronecker product of vector ¢x, and E[6x'6x™7] is the

(1+m)t" central moment of x, arranged in the appropriate matrix of size (n', n™), where superscript T represents vector/matrix
transpose. Mathematically, all the terms can be thus expressed as:

V:{ o 0. 0 } . V-VaV.. oVef
—_————

X1 Xy OXn
k times X=X
0X1
8vk—1 6vk—1 8vk—1
= e ®f ; 0X=
0X1 Xy OXp _
X 3Xn
5% OXk-1
X = 6X®0X - @ X = : ckel,2,---
—_———————— .
k times 5Xn(;xk—1
XX = {0X ® - - ® OX} {5x®--~®6x}T ; Ime0,1,2,--- 9)
I times m times

where ® is the Kronecker product. Since the UKF set of sigma points captures only the first two moments of the random
variable x , the scaling factor «, also seen in Eq. (6), is required to suppress the errors present in the third and higher
moments. As such, the estimations in Eq. (8) are, for any nonlinear function, accurate to the second moment in general,
and to the third moment for symmetric priors and symmetric sigma points sets, due to odd moments being zero in both
cases.

To reduce the number of used sigma points in Egs. (6)-(7), which are the ones that dictate the computational cost of the
filter for a given n-dimensional system, an alternative filter implementation is suggested in this work, named as the Scaled
Spherical Simplex Filter (S3F). Fewer than n + 1 points in n-dimensions provide a singular covariance, since the points will
always lie on a subspace of less than n-dimensions. As a result, the minimum set of sigma points that can be used by any
filter of this kind forms a simplex of n + 1 vertices. In order to preserve important features of the classical UKF implemen-
tation, one more central point is added to the minimum points set, to take advantage of the scaling parameters o and , and
just as in the scaled UKF case, the rest of the points can be then placed on a hypersphere of radius «\/n in the c-space with
zero mean and identity covariance matrix, as mentioned earlier. Apart from being at equal distance from the origin, the n + 1
points that form the simplex are also equidistant from each other in this suggested formation. In Fig. 2, the sigma points
locations in the c-space for the UKF and the S3F filters can be observed and compared.
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Similar to Eqgs. (6)-(7), the S3F evaluates sigma points X; in the original space, which are then utilized to estimate the
mean and covariance of the output distribution. Therefore, equivalently to the UKF case, the uncertainty quantification
and propagation is expressed as:

Xi=X+ (\/Pxxc)i forie[0,1,2,..,n+1]

Y; = fX|]
y= i Wiy,
i=0
n+1
Py = > WilY; —¥]IYi = ¥]" + (1 - o) Yo — §][Yo — ¥]' (10)
i=0

where C is a matrix of n + 2 sigma points in the c-space, shown in detail in Eq. (12), and W; are the associated weights, for
which the derivations can be seen subsequently. Note that a term related to (1-«2) is present in the covariance estimate, to
properly account for the scaled transformation f[X + o(x — X)] and to achieve a similar scaling effect in the mean and covari-
ance estimates as in the Taylor series expansion of Eq. (8) [18].

3.1. The Scaled Spherical Simplex Unscented Transformation

The Scaled Spherical Simplex uncertainty propagation mechanism for the S3F is analyzed in detail in this section, follow-
ing a reduced sigma points Unscented Transform (UT) approach that requires only n + 2 sigma points, in contrast to the typ-
ical 2n + 1 points.

3.1.1. Selection of sigma points, weights and scaling factors
As mentioned, a given random variable x can be transformed to and from a random variable ¢, in the standard normal c-
space, with zero mean, 0, and identity covariance, I, as follows:

-1

c:(\/Pxx) (X—%) ; X=X+ PuC (11)
In the S3F case, n + 2 sigma points are selected, C = [Cy ... C,.1], to capture the statistical properties of the random variable c,
where C; = {c“« Cai ... c,ﬂ-}T is a n-dimensional vector representing the ith sigma point, given i € [0,1,...,n + 1]. Note

that the point C, is located at the center, and the remaining n + 1 points form the vertices of the simplex. The sigma points
matrix for the n-dimensional system is thus formulated as:

o -« ¢ 0 -~ 0 0 0 0]
0o -z -2 q 0 0 0 0
Cio Cia -+ Cipnr 0 -8 & _a 0 0 0 0
Co C1 -+ Conu } } ’
C= = : Do
0 _qn2 _9n2 dn-2 _Gn2 q ) 0 0
Cho Cn1 - Capnt1 x n-2 -2 -2 -2 -
T g g g S G O
I T e e
where g N q. = (S for te(2,3..,n] orq -t for te[1,2..,n] (12)
U 2W T V1 T Lt Wi o
and W, gives the same assigned weights for all points except the central one with i = 0. All the weights are determined by:
1 . 1 n+1
w,»:wlzm for ie[l,2,..n+1] ; Wo=1-— ; ;Wi:l (13)

and the scaling parameter o appropriately determines the central weight and the spread of the sigma points away from the
center, lying again on a hypersphere of radius «\/n, as also shown in Fig. 2 for a three-dimensional space. For the suggested
S3F approach, the parameter « should be set to a small positive value (~0.001), as explained subsequently.

3.1.2. Effect of the parameter o. The equivalent accuracy of the 2n + 1 UKF and the n + 2 S3F is demonstrated in this section,
through the parameter o and the scaled Taylor series in Eq. (8). Without loss of generality, a 2-dimensional space is used here
for both UKF and S3F cases.

UKF case: For a n = 2 system, the set of 5 (2n + 1) sigma points in the standard normal c-space, as shown in Fig. 3, is
obtained as:

C Cio €11 Ci2 Ci13 C1.4] {0 p 0 —p O
2x5 = =

14
00 -p 0 p 14

Co C1 C2 C3 Coa

6
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Fig. 3. Sigma points location at the 2-dimensional c-space for both UKF (left) and S3F (right).

where (0,0), (p,0), (0,—p), (—p,0), and (0,p) are the coordinates of the five sigma points, p = ov/2 and associated weight
W, = 1/(40?). Based on the selected sigma points, the first moments are obtained as:

St =WoCro+Wi(cr11 +Cip2 +C13+Cra) = Wo(0) + Wi(p—p) =0

15
Sy =Woca0 + Wi(Ca1 + Ca2 + €23 + C24) = Wo(0) + Wi (—p+p) =0 (13
Thus, accurately matching the standard normal space zero mean. The second moments are similarly obtained as:
1 2 2
St =Wocky+ Wi (&, + 6+ ety +6) = Wo(0) + 1 ((cxﬁ) +(-av2) ) ~1
1 2 2
Si2 = Woho+ Wi (1 + G+ s+ Ga) = Wol0) + 4 ((—aﬁ) + (2v2) > —1
S12 = Woci10C20 + Wi(C11C21 + C12C22 + C13C23 + C14C24) = Wo(0) + W (4(0(\/5)(0)> =0 (16)

Hence, the condition for identity covariance matrix in the standard normal space is also satisfied. In addition, due to the sym-
metry of the sigma points all the odd moments are zero, and the fourth moments can be computed similarly as:

St = Wocho + Wi (chy + ¢ty + ¢t + by ) = Wo(0) +% ((aﬁ)“ N (,Wi)“) 22~ 0 (17)
: : : o

with « being a small positive value (~0.001). Accordingly, any k™ moment is proportional to «*2 for k = [4,6,8...], and hence

all higher moment terms become negligible with o being small.

Overall, the UKF sigma points are accurately capturing the first two moments in the standard normal space, and conse-
quently in the original space as well, while suppressing the errors in the higher moment terms by applying the appropriate
scaling factor o.. They are thus offering second moment accuracy for any given prior distribution and third moment accuracy
for symmetric prior distribution, due to their own symmetry.

S3F case: For the S3F in a 2-dimensional space case, as shown in Fig. 3, the C matrix, consisting of four sigma points now
(n + 2), is obtained based on Eq. (12) as:

Cilo €11 Ci2 €13 0 -¢ ¢q O 1 \/§
Cors = = ; here Wy =—: q, = oy/>: q, = av/2 18
2 C20 C21 C22 C23 } {0 —q72 —q72 a; } W ' 302 o o 1%

and similar to the UKF the radius of the circle in this case is again given by ov/2. To verify the equivalent UKF accuracy of the
S3F methodology, the first moments based on the selected sigma points are now obtained as:
St =Wocro+Wi(ci1 +cip2+€13) = Wo(0) + Wi(—q; +¢,) =0

Sy =WoCa0+ Wi(Co1 + €22 + C23) = Wo(0) + W, (—612—2— qz—zJF‘b) =0 (19)

while the second moments are given as:

2 2
1 3 3
St =Wocky+ Wi (&, + 6, + ) = Wo(0) + 55 ((—a\/;) + (oc i) ) ~1

2 2
1 1 1 2
S22 = Woc3 o + Wi (c%\l +6,+ c§‘3> =Wo(0) +5 5 ((ac i) + (oc i) + (ax@) ) =1

S12 = WocC10C20 + W1(C1,1C21 4 C12C22 + C13C23) = Wo(0) + W, (qlzi - %ﬁ- 0) =0 (20)

7
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satisfying both zero mean and identity covariance matrix conditions with this reduced set of sigma points. However, con-
trary to the UKF, due to the asymmetric distribution of points here, the odd moments are non-zero, and third and fourth
moments are thereby evaluated as:

S = Woclo + Wi (¢l +¢1;) = Wo(0) + Wi ((-a1)° +(4,)°) =0

o

2 2
Si2 = W0C1.0C§,0 + W, <C1.1 C%,] + C1.2C§,2) = Wy(0) + W, (*% +%> =

3 3
1 o2 o2 3 o
5222 = W()C%_O + W1 (ng + 63,2 + ng) = WO(O) +W ((— T) + <— T) + (OC\/E) ) = ﬁ
2
1 3 o2 o
_ 2 2 _ L 2 _ __*
St12 = WoC10C5 9 + 2Wici 1C21 = Wo(0) + 2 32 (OC\[Z> ( 5 ) 7
) ) 1 3\* 32 o
S1111 = Woct g + Wi2ct; = Wy(0) +W(2) o 5] =5 (One of the 4™ moments) (21)

Accordingly, any k™ moment is proportional to o*-2 for k = [4,6,8...], and proportional to o*~2 or 0 for k = [3,5, 7...] because
some of the odd moments are exactly zero, due to the sigma points symmetry about one axis. Therefore, all the third and
higher moment terms are inherently zero, or become zero due to the small value of the scaling factor o.

Thus, similar to the UKF and the scaled Taylor expansion in Eq. (8), the S3F sigma points also offer up to second moment
accuracy for any given prior distribution and up to third moment accuracy for any symmetric prior distribution, mainly due to
the small value of the scaling factor o, that also nullifies all higher moments effects.

3.1.3. Effect of the parameter . The effect of the scaling parameter $in the S3F is again similar to that of the UKF[18,19,20], which
is to capture some of the fourth moments of the Taylor series expansion. The 8 parameter can be only included in the covariance
term, Pyy, to approximate the following fourth moment term of the Taylor series at no additional computational effort:

1
As = 3 V1 (E[ox*x"] — E[ox*]E[ox*])" ) V' (22)
where A4 is the third term of the Taylor expansion in Eq. (8), without the scaling effects. Since the sigma points transforma-
tion only captures the first two prior moments, certain algebraic manipulations are performed to capture the A4 effect in the
final output covariance expression. With Y, = f(X,) = f(X), the following expressions are obtained for the central term:

= 1 g 1 1 NP
y-Yo= [f(x)+§v2f E[0x°] + g VEE[0] +...| ~f(%) = o VF E[3x?] + s VPEE[6x°] + .. (23)

Yo-¥)(Yo-¥) = %vzf E[sx?)E[ox?] V£ + .. (24)
Therefore, the central covariance term in Eq. (10) can be further scaled to partially capture fourth moments, and the resulting
covariance estimate now becomes:

n+1

Py =D WilYi-¥)Yi =9 + (1 - &) Yo -¥[Yo -5+ B[Yo—¥][Yo—¥]' (25)

i=0 Added for fourth moment effects

The error in the A4 and the fourth moment term is thus obtained as:
A=Ay —BYo-FYo—-3' = }lvzf(s[ax%x”] ~ (B+ DE[]E[ox]") V" (26)

and p can be determined accordingly to minimize AA, if relevant information is available. For the case of a normal density func-

tion, for example, the optimal value of § is 2, since E[6x*3x*'] ~ 3E[sx2]E[6x?]. Note that the approximate sign is used herein
since not all terms in the matrices satisfy the aforementioned relationship in a general multivariate case. Taking both scaling
parameters « and 8 into account, the modified weights and the posterior mean and covariance matrix are now obtained as:

1 1
W§,’">:1—ﬁ ; Wg“):1—@+(l—ac2+ﬁ)
1
(m) _ ya/(0) _ . i

wm = w; = 2ni1) i=1,.,(n+1)

n+1 n+1 T
V=2 WY Py=3 Wiy -] 7)

i=0 i=0
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Table 1
Sigma points selection for UKF and S3F.

UKF S3F

Sigma points weights

Wi =1-—

o2 o2
1 1
wg>:1—;+(1—a2+ﬁ> ng):l—a—2+(l—o<2+ﬁ)
m _ o1 i m _ o _ 1 _
Wi =W =5 i=1,..2n wim = w; =2mii) =1,.,n+1
Sigma points for n-dimensional random variable X, with mean X and covariance matrix Pxx
C=[C - Conlpyinay G ={000 -~ 00} 0 -q - 0 See Eq. (12)
¢ ={p00---007.. C, ={000 --- 0 p}f c=|: =
Cot ={-p00---00}7...C, ={000---0 —p}T 0 _In n
where p = o/ n nx(n+2)
Xi =X+ (VPxC); i=0,..2n where g, = oy /"% ; t€[1,2,3...1]

X=X+ (VPC); i=0,..n+1

Value of parameter « is small, for example in the range of 0.01 to 0.0001, and parameter f can be determined based on Eq. (26) or else =2, if no relevant
fourth moment information is available.

where (m) stands for the mean and (c) for the covariance. A concise overview for the final sigma points selection for both
scaled UKF and S3F is provided in Table 1.

3.2. S3F without central point: The Spherical Simplex Filter (S2F)

As seen in Table 1, with o = 1 and g = 0, the central point is no longer used and only the absolute minimum set of n + 1
points is now utilized. This is a byproduct of the presented S3F formulation, that leads to the filter variant, referred to here as
the Spherical Simplex Filter (S2F). The S2F has therefore the exact same logic as the S3F, with the important difference that

ng) = w§;> = 0 and the exclusion of the central sigma point. All the relevant equations in Table 1 still apply in this case but
the S2F does not necessarily have all of the odd moments equal to zero in the absence of any scaling effects, with o = 1,
because of the asymmetry in the sigma points distribution. As such, S2F exhibits, in general, a lower approximation accuracy
in comparison to the UKF and S3F.

3.3. Filtering methodology
The X,_; sigma points at the (k-1)™ time step, selected based on the random variables with mean X,_; and covariance

matrix P,_;, estimated either through the UKF or the S3F (Table 1), propagate through the function f of Eq. (1) and the
updated mean and covariance can be estimated as:

Xipe-1 = F[Xk-1, Vi, 0]
L
X, = Z W™ X, ki1
i=0
L
- o o7
P => W Xikge-1 — X ] X1 = X, ]+ Qi (28)
i=0
where L = 2n for the UKF and L = (n + 1) for the S3F, and Qy is the process noise covariance for the case of additive zero mean
noise qy.
To incorporate this effect of the additive process noise, the Xy_; sigma points are redrawn based now on the current

mean and covariance estimates (X, , P, ), and are subsequently used as inputs in the observation function h of Eq. (1), in order
to calculate the appropriate mean vector and covariance matrices, as:

U1 = h(Xipe1, vk, 0)

L
u, = ngm)ui.k\k—l
i=0
L
P“kuk = Z WEC) [Uf‘k\kfl - ﬁl;] [Ui‘k|k71 - ﬁl;]T + Ry
i=0

L
Py = Z WEC) [Xiﬁk\kfl - iI;] [Uﬂk\k*] - GIZ]T (29)
i=0
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where R, the observation noise covariance, for the case of additive zero mean noise r,. Finally, when an observation u,
becomes available, the posterior mean X; and covariance P, for this time step are updated through the Kalman gain K,
as [20]:

K =Py, P},

ik = i,; + K (llk - ﬁ,;)

P, =P, - K.P,, K; (30)

4. Theoretical analysis and examples
4.1. Theoretical example 1

my My
My My
and variance of the output random variable, y = f(X) = x;x, is obtained. Two cases are analyzed, first when x follows a Gaus-
sian distribution (GRV), and second when it is lognormally (LN) distributed. Appropriate moment generating functions are
employed to obtain the higher moments required for the analysis herein. Detailed derivations can be seen in the Appendix.
Note that for the GRV, all the odd moments of x = X — X are zero, while for LN they have non-zero values. The results are
summarized in Table 2.

As seen in Table 2, the Taylor series and filter approaches in this example are accurate to the second moment for the mean
estimates, and given that the analyzed function has zero 3™ and higher order gradients, the estimated mean coincides with
the true mean in all cases and is not dependent on the scaling factors. The obtained variance in the GRV scaled Taylor series
case is correct up to the third moment estimates, since the fourth moment terms are suppressed due to the small « value. In
the LN case, the scaling effect suppresses the third and higher moment terms in the Taylor series estimate of the variance,
thereby resulting in accuracy to the second moment. The complete expressions can be seen in the Appendix. Again, for small
«, i.e. 0.001, both UKF and S3F provide the same accuracy, i.e. up to third moment if the prior is symmetric and up to second
moment otherwise, while the parameter p partially captures the fourth moment terms. Note that the parameter $ is not
applicable in the Taylor series expansion of Eq. (8). When no scaling is present, as seen in the S2F case, estimates may diverge
in some cases due to the introduced error by the higher moment terms.

In this example, for a given random bivariate input x = {i‘ } , with X = E[X] = {Zl } i P = [ } the mean
2 2

4.2. Theoretical example 2

In this example, the mean and variance of a random variable y = x,sin(x;) is obtained, given the joint probability density
function fy x, (%1,%;) = %(3){1 +2x,7), where x; € [0 /2], x, € [0 1]. The first moments of the input random variables

are obtained using the following integrals:

1. 72 177
Uy, = I ] xifxx, (%1, %2)dx; dx; =48 — 1.1126
X=0 x,=0
1 w2 7
Ly, = | | Xafxx,(%1,%2)dx; dxa == 0.5833 (31)
X=0 x,=0

Table 2
Comparison of mean and covariance estimates for Gaussian (GRV) and lognormal (LN) distribution cases.
Y = XXz Mean Variance
Exact (GRV) Wyl + My 1BMyy + 21 Uy My + [3Myy + M3, + Mymyy
Taylor (Eq.(8)) (GRV) Lyl + Mo 2myy + 2 My + W2m +02(m3, + my;m
TR amn + 2 +ime) o (i mem)
Exact (LN) Uiy + myp 12My + 204 Mg + [2my; + (3™and higher moments) . . .See Appendix
Taylor (Eq. (8)) (LN) Wyl + My 13y + 24 fly Mg + (2ms + o (3™ moments) -+ o (4™ moments) .. See Appendix
UKF My + Mz M+ 204 Ly Mg + pimyy + pmi, + o?m?,
S3F Mty + my 2 P
B3 + 2 oMz + Mo + fmi, — o %(mﬂﬂz + M) + Gy,
S2F Hiflp + Mz > —m?
H3myq + 2, pymyn + pmy; — W(mnﬂz + Mz fly) + 3myimy;

10
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For the scaled Taylor series approximation in Eq. (8), higher centralized moments are evaluated as:

1 w2

Eloox] = [0 — i) 02— )] = [ [ G g0 = s ", 0,30 ) s (32)

Xx2=0 x1=0

where [ + m gives the order of the moment. All moments up to fourth order are provided in the Appendix. The true mean and
variance of the random variable Y can be obtained as:

! /2 2(-18 +13m)
Hy = /x2:0 o Y Fxyx, (%1, %2)d%1 dxy = 33
v 1578 + 727* — 5,40872 + 14,9767 — 10,368
oy = / / W = 1) Fxx, (%1 %2)dxy dx; = 79776 (33)
X;=0 Jx;=0

The results for the UKF and S3F transformations, as well as the scaled Taylor series estimates are summarized in Table 3,
where the values in the parentheses give the % error for the estimated mean and variance as compared to the exact values. As
seen in the table, the Taylor series approximations are slightly different from the exact values, since the scaled Taylor series
achieves accuracy up to the second order moment due to the scaling factor «. The S3F with « = 0.001, 8 = 0 also results in the
same mean and variance values with the Taylor expansion, since the exact same effects of suppressing the third and higher
moments are included in the S3F. Lastly, the S3F and UKF with o = 0.001, 8 = 2 provide improved accuracy for the variance
estimates, in comparison to the Taylor series and S3F with = 0 cases, because the parameter  now partially captures some
fourth moments terms as well. As thoroughly explained, the UKF and S3F provide the exact same estimates with the given
scaling parameters, for both the mean and variance.

The effect of different scaling factor values for the S3F is further examined in Table 4. The value of g is not affecting the
mean, while both o and p are considered for the variance estimate. To control the introduced error by the higher moment
terms, the small value of 0.001 should be used for o, and the default value of g = 2 can be generally used for partially cap-
turing the fourth moments, as already indicated in Table 1.

Table 3
Comparison of mean and variance estimates for theoretical example 2.
Y = Xzsin(xq) Mean Variance
Exact 0.4911 0.0685
Taylor (Eq.(8)) (o = 0.001, § = NJA) 0.4896 (0.3%) 0.0669 (2.3%)
S3F (o = 0.001, f = 0) 0.4896 (0.3%) 0.0669 (2.3%)
S3F (o = 0.001, f = 2) 0.4896 (0.3%) 0.0691 (0.9%)
UKEF (o = 0.001, 8 = 2) 0.4896 (0.3%) 0.0691 (0.9%)
Table 4
The effect of scaling factors on the mean and variance estimates.
Y =Xxsin(xq) Mean Variance
Exact 0.4911 0.0685
S3F (o = 0.001, § = 2) 0.4896 (0.3%) 0.0691 (0.9%)
S2F (=1, = 0) 0.5004 (1.9%) 0.0715 (4.4%)
S3F (o = 0.001, = 10) 0.4896 (0.3%) 0.0781 (14.0%)
S3F(x=1,=10) 0.5004 (1.9%) 0.0766 (11.8%)
—d,.d, —>d,.d, —d..d, — dpy,d;, —>ds.d,
Y,
_§7_
—— m — ::ZZ:: my, 3
— A AN
(z1,k1,¢1) (22,k1,¢,) (k) (kis, )

Fig. 4. Nonlinear hysteretic model.
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5. Numerical examples

To examine the performance of the presented S3F filter in comparison to the standard UKF implementation, several
numerical examples with different levels of complexity are presented, based on a 13-degree of freedom (13-DOF) mass-
spring-dashpot nonlinear dynamic system, as illustrated in Fig. 4. For the examples presented here, the first and second DOFs
are associated with a Bouc-Wen hysteretic component, as also seen in Fig. 4. The equation of motion and the state-space
formulation governing the system dynamics are given similarly to the 3-DOF expressions in [9] and succinctly presented
here as:

. d
.. . d 0 I 0 . 0
Md + Cd + Kd + Hz=P(t) {a}{_Mm M —M’lH} : +{M7 }

6 = {C K Pow Tew nBW}T =0, i:f<d7z>7
Zi=di— Vaw, |21 disgn (Zidi) — Bow, zil™ d;
T
x ={da" d 7 o} G4

where M, C, K are the mass, viscous damping and stiffness matrices respectively, and H is a hysteretic matrix associated with
the nonlinear DOFs (as all provided in the Appendix), I and 0 are identity and null matrices respectively, d is the displace-
ment vector, z is the vector of the hysteretic component of the relevant displacements, X is the overall state-parameter vector
to be identified, and P(t) is the excitation vector related to the input ground acceleration. The Bouc-Wen parameters, fgw, Ysw
and npy, and all stiffness, k, and damping terms, c, are assumed unknown and have been augmented in the state vector in
this case, as seen in Eq. (34), in order to be identified by the filtering process in the dual state and parameter estimation
examples presented herein. This dual estimation process, together with the nature of the system dynamics in Eq. (34), con-
stitute the particular examples in this section highly nonlinear.

The dimension of the augmented state-parameter vector X in Eq. (34) is n = 71, and hence the number of sigma points
required for the UKF are 143 (=2n + 1), whereas S3F employs only 73 sigma points (=n + 2) in this case, thereby improving
the numerical efficiency by ~50%. A scaled Chi-Chi acceleration record has been used for all examples, as seen in Fig. 5(a),
available in the NGA-West2 PEER database [55]. The Heun’s (modified Euler’s) method is successfully used to solve Eq.
(34) in time, after examining its accuracy with a highly accurate (but rather slow) variable-step, implicit, 6th order
Adams-Moulton solver.

For illustration purposes, all numbers have been normalized accordingly. All masses are considered known and equal to 0.9.
The correct damping and Bouc-Wen parameters are the same for all numerical examples and are summarized in Table 5. The
initial stiffness values are also the same for all examples, however different cases are examined with and without time variant
values. For all numerical examples, the scaling factors values of o = 0.001 and 8 = 2 are used, for both UKF and S3F, based on
Table 1, unless otherwise specified. For the estimation process, in all the examples, the observation noise and process noise
at each time step k are generically assumed to be zero mean Gaussian white noises with R, = R = 0.003I, where I is the identity
matrix of size equal to the number of observed measurements, and Q, is assumed to have all its elements zeros, except for the

diagonal elements g; = (0.0001 z;)? withi € [14,15, ..., 26] and , the acceleration input. The initial covariance matrix Py is also

a diagonal matrix with its diagonal entries equal to p; = [(0.2&{))2 +0.001], wherej € [1,2,...,n] and x’o is the j™™ element of the
assumed initial state vector X,. All initial unknown parameter values are provided in Figs. 5-8, accordingly for each example.

5.1. Example 1: Dual state-parameter estimation for nonlinear system

In this first example, acceleration measurements are available for all DOFs of the nonlinear system in Fig. 4. A notable 5%
signal-to-noise ratio (SNR) is assumed, that contaminates both the acceleration input and the observed acceleration mea-
surements at all DOFs. All the damping, stiffness parameters, and Bouc-Wen parameters are assumed to be time invariant
with their exact values listed in Tables 5 and 6. Initial values of the unknown parameters are indicated in Fig. 5, presenting
initial errors in the range of 30%-83%. Note that such large errors in the initial values and the significant noise levels are
selected to analyze and validate the robustness of the suggested filter under these settings.

As seen in Fig. 5, both filters are performing extremely well in this case and S3F is achieving an identical performance with
the UKF for all states and parameter estimates, albeit at a ~50% reduced computational time as compared to the UKF, due to
its decreased sigma points set size. Fig. 5(a) showcases the base excitation the system is subjected to, without any added
noise, Figs. 5(b-c) illustrate representative dynamic state estimations, and Figs. 5(d-h) show the online parameters identifi-
cation. In all Figs. 5(b-h) exact values are also shown for comparison, along with the S3F and UKF estimates. In particular,
Fig. 5(b) provides the displacement time history of the first DOF, and Fig. 5(c) displays the variation of the hysteretic defor-
mation with respect to the displacement, again for the first DOF. Figs. 5(d-e) show the damping and stiffness identification
for all DOFs, and Figs. 5(f-h) exhibit the Bouc-Wen parameters related to the nonlinear DOFs. All figures indicate that the

12
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Fig. 5. Parameter and state estimation using S3F and UKF for 13-DOF nonlinear system with 5% SNR and acceleration measurements for all DOFs.

:I.;:!i :amping and Bouc-Wen parameter values for the 13-DOF nonlinear system.
Damping parameters Bouc-Wen parameters
Parameters €1 —C4 s —Cs Cg — C12 C13 Bew Vew Tgw
Exact values 0.3 0.4 0.5 0.6 1 2 2

dynamic states are correctly identified, and all the damping, stiffness, and Bouc-Wen parameters are converging to their
respective true values largely within the first 20 s of the excitation.

5.2. Example 2: Dual estimation for nonlinear system with time-variant parameters

To further increase the complexity of the analyzed example, the stiffness parameters, which have been kept constant in
the previous example, are now changing with time, as shown in Table 7, where it is indicated that the stiffness parameters

13
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Fig. 6. Parameter and state estimation using S3F and UKF for 13-DOF nonlinear system with stiffness drop in the first six DOFs, 5% SNR, and acceleration
measurements for all DOFs.

for the first six DOFs are instantaneously reduced at the 20th second of the seismic excitation. The rationale of the example is
based on the assumption that the system may undergo damage and loss in stiffness which was not expected and modeled
apriori with appropriate nonlinear formulations, similar to the ones used for DOFs 1 and 2. The damping and Bouc-Wen
parameters still remain the same as in the previous example, and their values can be seen in Table 5, while acceleration mea-
surements are again observed for all DOFs, and their values, as well as the ground acceleration, are contaminated with 5%
SNR. Initial parameter values are also considered to be the same as in the previous example, again indicating significant
errors in the initial parameter assumptions.

To simulate the target dynamic response, two different models are employed here based on different parameter values at
different time instants. For the first 20 s, the responses are obtained with the zero-initial state conditions and the stiffness
parameters listed in the second row of Table 7. After 20 s, the model uses the parameters of the third row, with the initial
conditions given by the final state outputs of the first model. The results are presented as the exact data in Fig. 6. For the fil-
tering process, the same model is used as in the previous example, without accounting for this stiffness change effect. There-
fore, besides the complexity increase of the identification process in relation to time variant parameters, this example also
studies modeling discrepancy effects, as different modeling assumptions are now made for simulation and identification.
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Fig. 7. Parameter and state estimation using S3F and UKF for 13-DOF nonlinear system with stiffness drop in the first six DOFs, 5% SNR, and acceleration
measurements for DOFs 1-6-8-13.

Table 6

Exact stiffness parameter values for 13-DOF nonlinear system for numerical examples 1 and 4.
Stiffness k1, ka, ks Kkq, ks, ke k7, kg, ko k1o, k11, K12 ki3
Exact values 18 16 15 14 13

Table 7

Exact stiffness parameter values for the 13-DOF nonlinear system for numerical examples 2 and 3.
Stiffness ky, Kz, k3 kq, ks, ke k7, kg, kg k1o, ki1, k12 ki3
Exact values (0-20 sec) 18 16 15 14 13
Exact values (20 sec onwards) 16 14 15 14 13
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Fig. 8. Parameter and state estimation using S3F, S2F, and the n + 2 filter in [17] for 13-DOF nonlinear system with 5% SNR, and acceleration measurements
for DOFs 1-6-8-13.

The UKF and S3F responses for the dynamic state estimations are shown in Figs. 6(a-c), and parameter identification
results can be seen in Figs. 6(d-h). Both filters are again performing very well, however, their performance has slightly dete-
riorated as compared to the previous example, due to the increase in the complexity of the problem. Again, the exact same
behavior is observed for both UKF and S3F at each and every time instant. In Fig. 6(e) it can be observed that in the first 20 s
the filters are accurately estimating the true stiffness before the drop. After 20 s, the stiffness estimates are evolving, to again
predict the new reduced stiffness of the system. As such, the time at which damage is induced can also be properly identified.

5.3. Example 3: Dual estimation with sparse measurement data and time-variant parameters

Increasing the complexity of the problem even further, now only the accelerations at the DOFs 1, 6, 8 and 13 are observed
(i.e. O: 1-6-8-13), instead of all DOFs, and again 5% SNR is added for all observations and the input ground excitation. The
same model as in the previous example is adopted, where the stiffness parameters are changing over time. The true param-
eter values can be seen in Tables 5 and 7, and the initial assumed values again remain significantly distant from the true
ones, as can be also seen in Fig. 7. Due to the further increase in the complexity of the problem, some of the parameters
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are not converging to the exact true values now, contrary to the previous two examples, however, they are still providing
good estimates, as shown in Fig. 7, with only four measurements. Note that the displacement and hysteretic responses
and filtering estimates of the second DOF are again shown in Fig. 7(c), a DOF which is however completely unobserved in
this case. Many more arrangements with various combinations of four acceleration observations have also been analyzed,
for example 0:1-2-8-13, 0:1-5-9-13 and so on, and they produce either similar or slightly deteriorating results, which
are not shown here for brevity. The performance of the filters is further worsened for three or fewer acceleration measure-
ments, especially for the parameter estimates. Again, these cases are not shown here for brevity.

Noteworthy in Fig. 7 is once more the similarity of the two filters for all states and parameters, which is the main scope of
this paper, and same results have been also observed, as expected, for all other cases which are not reported here. Therefore,
despite the high level of nonlinearity, sparsity of measurements, model discrepancies, presence of time-variant parameters,
and large observation and input noise levels, the behavior of the UKF and S3F are exactly the same for both state estimates
and parameter identification, as also theoretically explained earlier in this paper.

5.4. Example 4: Comparison with other filter variants

In this example, the importance of the scaling factors is examined, by comparing the S3F estimates with two other filter
variants that do not consider scaling effects. The first filter is the n + 2 sigma points filter from [17], that selects the central
sigma point weight W, for the mean and covariance estimates in the range 0-1, with Wy = 0.5 selected here for the present
illustration. The second filter, S2F, presented also earlier, requires the minimum number of sigma points, n + 1, since the cen-
tral sigma point is no longer used, with weight Wy = 0, as can be also obtained by substituting o = 1 and g = 0 in the S3F. For
the filtering process, accelerations at the DOFs 1, 6, 8 and 13 are assumed to be observed, and the SNR level remains the same
as in the previous examples. All parameters are time-invariant in this case and their true values are listed in Tables 5 and 6.
Filtering results are presented in Fig. 8. In this figure, UKF results are not shown, since they are once more found to be exactly
the same as the S3F results, with o = 0.001 and g = 2, consistent with the theoretical analysis and the previous examples. As
can be seen in Fig. 8, the performance of both filter variants is worse as compared to the S3F, for both states and parameters
estimations. Note again here that the displacement and hysteretic responses of the second DOF are now shown in Figs. 8(a,c),
a DOF which is completely unobserved in this example as well, and still the S3F estimates are able to provide a high predic-
tion accuracy, in contrast to the other two filters. Since the identification errors in Figs. 8(d-e) are significant, for illustrative
and comparative purposes the percentage errors for the damping and stiffness parameter estimates are shown in Fig. 9. As
seen in the figure, while S3F error estimates are consistently converging to small values, large errors are observed in both
stiffness and damping estimates for the other two filter variants, with Wy = 0 and W, = 0.5, because of the higher order terms
importance in nonlinear, complex problems.

In general, in the absence of any proper scaling effects, the performance of asymmetric sigma point filtering schemes sig-
nificantly deteriorates, and their behavior is no longer similar to the UKF. By just including one additional, central sigma
point to the S2F scheme, and proper scaling, the S3F estimates become essentially identical to the UKF ones, in all cases.

250 T T T @ T T T ] 150 T T T ®) T

S3F (a=0.001; 8=2)
WOZO; S2F (a=1;3=0)
200

W, =0.5[17]

S Sof
5 150 ] 5

=] o

5 5

2 %

& 2

£ €

< =

a 2

0 10 20 30 40 50 60 70
Time (sec) Time (sec)

Fig. 9. Error estimates for the damping and stiffness parameters using various filters for 13-DOF nonlinear system with 5% SNR and acceleration
measurements for DOFs 1-6-8-13.
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5.5. Discussion of the numerical results

To illustrate the efficiency, consistency and numerical stability of the proposed S3F, four numerical examples have been
presented, characterized by considerable nonlinearity, notable noise levels, time-variant and invariant parameters, significant
initial parameters discrepancy from exact values, modeling errors, and sparse measurements. In all examples, the S3F
achieves the same level of robustness and accuracy as the UKF, as also theoretically proven and expected, and can be imple-
mented in exactly the same manner as the UKF. Numerous other initial values and noise levels have also been tested, and it is
again observed that both filters are performing in the same manner, even with extremely high noise levels. Naturally, with the
increase in the noise levels, prediction errors are similarly increasing for both UKF and S3F. For consistency and brevity, only
one set of noise level and initial parameters is thus used in all examples, and generic Ry, Qy, and Py matrices are selected, since
the filters’ relative performance with respect to each other is not sensitive to these values. Likewise, various sparse observa-
tion settings have also been tested, and in all cases equivalent S3F and UKF accuracy is attained. In all examples, the CPU time
for the S3F cases is approximately 50% reduced as compared to the UKF cases, regardless of the system configuration and the
problem complexity. This computational time reduction is attributed to the pertinent reduced number of model calls, as well
as the related reduction in matrix operations, since the size of all relevant matrices is almost half in S3F as compared to the
UKEF. Overall, S3F can be unrestrictedly utilized in all general applications where UKF can be used, while achieving in all cases
an equivalent accuracy and numerical stability, albeit at a ~50% reduced computational effort.

6. Conclusions

An efficient and robust online nonlinear system identification approach, referred to as Scaled Spherical Simplex Filter
(S3F), is presented in this work, that requires almost half the number of sigma points compared to the state-of-the-art
UKEF, while nearly achieving the exact same accuracy and numerical stability in all cases. For a general n-dimensional system,
the n + 2 used sigma points, their corresponding weights, and their scaling parameters are suggested and explained in detail.
The equivalence between the UKF and S3F accuracy is proven through theoretical derivations and several examples that
compare the estimated mean and covariance outputs of nonlinear functions, assuming bivariate input cases described by
correlated Gaussian and lognormal random variables, as well as an arbitrarily defined joint density function. Lastly, numer-
ical examples are provided for a 13-DOF nonlinear system with varied levels of complexity, including hysteretic behavior,
dual state-parameter estimation, sparsity of measurements, time-variant and invariant parameters, model error effects,
and large observation and input noise levels, to showcase the capabilities and advantages of the suggested approach under
very general conditions.

The performance of the S3F filter is observed to be remarkably good and robust, exhibiting identical performance to the UKF
in all cases, yet requiring almost half computational demands, making it an ideal candidate for use in larger systems and online
identification. The absolute minimum number of sigma points needed is achieved by eliminating the central point and scaling
effects in the S3F, however, this extra point is particularly important for accuracy and suppression of errors associated with
higher order terms. Overall, based on our study, we have not observed any disadvantages of the S3F in relation to the UKF,
and the suggested filter can be readily utilized and similarly implemented in all relevant applications where UKF is used.
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Appendix
Higher moments and gradients for theoretical example 1

Evaluating gradients: Gradients for the Taylor series expansion, V*f, for f(x) = x;x, are obtained as:
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- T = iy )

_ [OVf OVf
vy {5 G -110)
OV aVf
V3f_{—8x1 8X2}_{00000000}

where g, and p, are the mean values for the random variables x; and x, respectively.
Evaluating Moments: Similarly, the vector §xi can be expanded as:

6X ={ox; Oxy}'
X=X Sxioxs S0 B}
S =X x2x, XX, Sx10%3  OxPoxy oxoxd ox %3 oxd )

CASE A) Assuming Gaussian distribution (GRV)
For a multivariate Gaussian distribution of size n, x={x; x> ... xn}T, with mean py and variance Py, the moment generating
function is given by:

My(t) = exp(tTux—&-%tTPxxt) sot={ttp -t}

By differentiating the moment generating function with respect to t, the k" moment can be evaluated as:

o OMK(Y)
ot otk .. otk

n

ki k k
ERq'xyt - x7]

st. k=ki+ky+---+ky
t=0

Next, the k™ central moment can be obtained as:
E[oxy!ox§? -+ oxi] = E| (61 — Elxi))" (2 — EDea])' - (6 — Exa])

Therefore, for the given bivariate case, the moment generating function and the resulting central moments, up to 4™
moment, are expressed as:

timy  tm fimy  tm
Mx(t):exp(t1u1+t2,lt2+ ( ‘2”+ 22]2>t1+<12]2+ 2222>t2)

Moment evaluations for GRV

First Moment :

—— (_ al\ga(t)

E[oxJ=0 ; E[oxp]= 0

Second Moment :

My (t
E[xi] =3 +my | = 2( )
o

O*My(t)
E[x1%2] = 4yl + mMiz (— o, gtz

t={0 0}7)

E[ox2] =mn ; E[oxiox] =my, ; E[0x3] = my

* My (t)
o3

E[x3] = 155 + mz (—

Third Moment :
E[x}] = uy (3 +3mu1) 5 E[x3%] = o (13 + mu) + 2umyy 5 E[X3] = py (12 + 3mys)
E[x1X3] = 1y (183 + M) + 21,myy 5 E[0x3] = E[0x20X;] = E[6x10%3] =E[6x3] =0
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Fourth Moment :

E[xi] = i +3mi; + 6muy g

E[X?Xz] = ,U?,UZ + 3m12,uf + 3,ulmﬂ,u2 + 3myymyy

[(X1X5] = (15 + Mo (17 + 4y Mz + (51 + 23, + Moy

(X1X5] = g 15 + 3ma i + 3y Myp fl, + 3M1aMmy;

Exact transformed mean and variance for GRV
From the evaluated moments, the true mean and variance for y is given by:

E[y] = Ex1%2] = iy lhy + My
Py = E[y*] — (EY)* = E[x{x3] — (ExaXa]) = fmuy + 24, jp My + J5 MM, + M3, + Mty

Scaled Taylor estimates for GRV
Similarly, scaled Taylor approximations for the mean and covariance are obtained as:

fx) =y =£fX) +%V2fE[5x2] +év3f GE[0X?] = i, + Mpa

Pyy = VE PocVE' + ol (V2F E[ox?ox' | VET + VI E[ox! x| V" )+
22V (E[oxox?] — E[ox’] E[ox’] ") V2" +

22§ (V°f E[xCoxT] V' + VE E[ox! x| VF )

= My 3 + 2, 1y Mz + W2Mys + 0% (M2, + my1my;)

CASE B) Assuming lognormal distribution (LN)

For a multivariate lognormal distribution of size n, x= {x; x> . . . x,,}', with mean p, and variance Py, higher order moments
can be easily evaluated from the moment generating function of the normal distribution.

Assume z is given by z = log(x). Therefore, z is a GRV with mean p, and variance P,,. Using the previous definition, the
moment generating function of z is given by:

M,(t) = exp(tTuer%tTPut) t={t ty -t}

where, ,uz,-:log(,ui)—%log<%+l> : mzij_log<lin_if'+l) ;o ostoije{l,2,---,n}
i i

sth th

Uz is the i™ element of vector 1, and my; is the element of matrix P, in the i row and j

ment of vector py, and m;; is the element of matrix Py in the i row and j** column.

The k™ moment can be evaluated as:
k1 4k kn1 k121 +kyzy+--+k; _
Ep sz - ko] = Eleha kot hotn] = Myl o ot

Elox{ 057 - oxir] = E[(x1 — Elxa))* (k2 — Exa)* -+ (x — Elxa]) "]

column, whereas y; is the i ele-

st. k=ky +ky+---+ky

Therefore, for the given bivariate case, the moment generating function and the resulting central moments, up to 4™
moment, are expressed as:
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GRV: z =log(x) ; z:{zl} :{logx]} ; uz:E[Z]:{#Z]} : Pzz:|:mzn mm}

2 logx, Uy Mz2 Mgzn
tym t,m tym tom
Mz(t) — E[eth] = exp (ﬁ :uzl + tZ,uzz + ( 1 2211 + 2 2212)1,] + ( 1 2212 + 2 2222>t2>

Moment evaluations for LN

First Moment :

Epa] = f (= Ma®l ey or) ¢ Ebal= 1 (= Ma®)] g 1y7)
E[ox;] =0 ; E[ox;] = 0

Second Moment :
E[x}] = i3 + my (: Mz ()] 0}T>
Elx1x3] =ty fty + My (: Mz(t)|t:{1 1)’)

E[X)] = 15 + mz (Z MOl o 2}T>
E[6x3] = myy ; E[6X10%;] = myp ; E[6X5] = my,

Third Moment :

31 (,u2+mn)3 . (H +m11)(ll H +m12)2 . 21 _ (M2+m22)(ﬂ I erlz)2 . 31 (H2+m22)3
Elx] = 5 TR E[xixy| === u%ulz : i Elxixg] =2 ,@,411 : R 2

31 _ m} (3#2”"11) . 2 2myym mnm 2 2my,m mzzm 31 _ m3 (3#2“”22)
E[ox]] = 02— uli i E[ox{ox;] = 12 2y ST S 12 i E[ox10x5] = 12 2 Sh22 +—# o E[ox;] = 22— #23

Fourth Moment :

ppt] = Um0’ gy = (8ma)” pra)  (m) (s ima)’

15 1 us
3 3 4
E[ ] _ # +m22) (H1ﬂ2+m12) . E[XZXZ] _ (H%”"H)(H§+m22)(ﬂ1#z+m12)
e 142] = T4
512 [T
16m 15m? m 4 16m3 15m
11 11 22 2 22
5[5 ] - 3m 2 ,uﬁ T E[éX } - 3m22 12 Iz +
6m2,m 9m2. m 3m3,m 9m2, m? 3myym3 3m3,m? 3m2,m3 m3,m3
E[ox30;) = 3mupmy + u122 et Tt e T T uﬂu T E T ;ltém”
2 1 172 172 1 172 172
m3 6m2 my;  9mZmy, . 3m3 my, 9m2, m2 3my,m3 3m3,m2 3m2,m3 m3 m3
5x:0x31 = 3m-m Moy 2MpMa2 | M2, 2, 122 2 W P i L R i
E[ox10%)] 12M22 + %2 oy 13 [TT TS I e I 1512
4m?,m 4my mym 4m? mn amd,my, | 6myymi,my,
5X oX m;m 2m 1222 111115 12 12 12 12
E[6x30x3] = myymy, + 2m3, + A +M2+ B+ Sl 7 +u%u%

4 4m3,myq I m?,myy I 4myym3,my; n mi,myy n myym?,my,
151 13 [Tt wig uig

Exact transformed mean and variance for LN

Based on the evaluated moments, the true values for the transformed mean and variance are obtained as:
Ely] = Ex1Xa] = py fty + M1z
Py =E[y’] - (EY])* = E[¥%3] — (E[xix2))?
_ (M%H‘nn)(ll§+mzz)(#1ﬂz+m12)4 _

(i, + le)2

w3
2 4uymypym 4upmyym 4mymppm amdmyy | Amimyg | Amggmi,my,
= [ + 20 By Mz + [T Mz + My Myp + SMi,  HATET2 o Jefume 4 S ZZ+HI;;+ FTT: B oSl s 7
2 1 172
+6mf2m22+6mf2m” +6m]1m%2m22+ mi, | mi m22+ 4 my mnmlzmzz
"3 e uipl w2 eI G
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Scaled Taylor estimates for GRV
Results from the scaled Taylor approximations:

1ot oe [0%°]

fx) =y=£fXx +%V2fE[6x2} +5

= Ml + M2
= VE P VE o) 5 (VPF E[ox?ox| VE' + VI E[ox"ox] V1)
oczzlvzf(E[éxzb‘sz]—E[éx} o] ) v

ozzl (V3f E[ox*ox"| V' + Vf E[ox"0x’] V3fT)

6
2 2 41, myam: 9 4pt,mym 2m2 my, | 2m2,my
:m11N2+2ﬂ1ﬂzm12+M1m22+OC<—”] ﬂ‘; 2 4 4m3, + -2 o 12 4 ;f% + 1;2
1
am? mzz 4my myym, 4m3 m11 4m3,my,
m11m22+m%2+ 4 Am MMy, 12+ Nl - N
Lo 3 ity ity M1ty
Gm“mumzz 12 4m12mn mnmzz 4mnm12m22 m My m”m]zmzz
s +u§#§ oY + 12 + [T + Mt" + el

Note that when o = 1, the true variance is exactly the same with the one from the Taylor approximation, since the higher
moment terms in the Taylor expansion are all zero, except for the ones employed in the above equation.

UKF case

The weights for the Unscented Transformations are obtained as:
W(m),-l l . W(C>*1 l+(‘1 0(2_‘_
0 T T2 0 = T2 - ﬁ)
m _ o _ 1
Wi =W =g
The estimated mean and variance using transformed sigma points, Y;, are given as:

i=1,..4

4
Ely] = Wg"Yo + > W™Yi = iy, +miz

i=1
4
Py = W (Yo — Ely)* + S WO (Y; - Ey)
i=1

= [y + MuaMMiun 4 + 24 flyMaz + UM + (o2 + f)ms,

S2F case

The weights of the sigma points are:

The estimated mean and variance using transformed sigma points, Y;, are given as:

3
E] = D> WiYi = ity +mi

i-1
Pyy—ZW, i EM

2(myymyy—m2, )

1
= mn,u% + 20, My + ,U%mzz +§m11m22 - T(mnﬂz + m12,u1)

S3F case

The weights of the sigma points are obtained as:
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The estimated mean and variance using transformed sigma points, Y;, are given as:

3
Ely] = We Yo+ > W™Yi = + miy
i=1

Pyy = Wi (Yo — Ely))* + Z Wi (Y; — Ely))®

i=1

1 2 2
= M5+ 24 My + 1Mo + iy + 507 My, — fo(mnuz + M)

Higher moments for theoretical example 2

The first four centralized moments for the Taylor series approximation are evaluated as:
FirstMoment (I+m = 1):
E[ox;]=0 ; E[ox]= 0
Second Moment (I +m = 2):

13972 T 11
sv2] _ . X)) = — - — . 2l = =
E[ox7] = 11,520 0.1191; E[6X16x7] 576 0.0055; E[6x3] 144 0.0764
Third Moment (I+ m = 3):
5573 1372
31 _ - _ . 2 — —
E[ox]] = 55.206 0.0308 ; E[ox30x;] 69.120 0.0019
S sy2] U . s 31
E[6x10x3] = 3.456 0.0009; E[sx3] = 4320 0.0072
FourthMoment (I+m = 4):
25,0217 14973
41 _ ’ _ . 3 — _ — _
E[oxi] = 61,931,520 0.0394; E[6X;6x2] 3.211,840 0.0021
1,4777? 41r 403
25427 _ 1> _ . 31 — _ P . == =
E[ox;0x3] = 1,653,880 0.0088; E[6x106x;] 138,240 0.00093; E[x3] 34,560 0.0117
where [ + m is the order of the moment, as already defined in Eq. (32).
System matrices for numerical examples
System matrices for all numerical examples are defined as follows:
0 m ... 0 IR
M= . . - 0 , €= . —C12 0
) ) ’ 0 0 —C12 Ci2+Ci3 —Ci3
0o 0 O
s 0 0 0 —C13 C13
(K" —kh 0 . 0 0]
ki+ky -k 0 0 0 K K . o0 0
-k kS +k; 0 0
Y § 0
_ . . . _ 3
K= : : - -k, o |-H=
0 0 -k, K,+k, —K, oo ? 0/
0 0 0 K, K, 0 0 0 kyp —ky
I 0 0 0 0 K|

K = oyk;, and k' = (1 — o)k; fori = [1,2,...,13]

where m;, ¢;, k; are the mass, damping, and elastic stiffness parameters, and o; is the post-elastic to elastic stiffness ratio for
the i™ DOF, defined as o; = O for i=[1,2] and 1 otherwise, in all examples.
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