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Arithmeticity, superrigidity, and
totally geodesic submanifolds

By Uri BADER, DaAvID FiSHER, NICHOLAS MILLER, and MATTHEW STOVER

Abstract

Let ' be a lattice in SOp(n,1). We prove that if the associated lo-
cally symmetric space contains infinitely many maximal totally geodesic
subspaces of dimension at least 2, then I' is arithmetic. This answers a
question of Reid for hyperbolic n-manifolds and, independently, McMullen
for hyperbolic 3-manifolds. We prove these results by proving a superrigid-
ity theorem for certain representations of such lattices. The proof of our
superrigidity theorem uses results on equidistribution from homogeneous
dynamics, and our main result also admits a formulation in that language.

1. Introduction

In this paper, a totally geodesic subspace of a finite volume hyperbolic
manifold or orbifold will always mean a properly immersed, topologically closed,
totally geodesic subspace. A totally geodesic subspace is mazimal if it is not
properly contained in another proper totally geodesic subspace. The main
result of this paper is the following.

THEOREM 1.1. Let I' be a lattice in SOg(n,1). If the associated locally
symmetric space contains infinitely many maximal totally geodesic subspaces
of dimension at least 2, then I' is arithmetic.

This answers a question, first posed informally by Alan Reid in the mid-
2000s. Independently, Curtis McMullen asked whether Theorem 1.1 is true in
the setting of hyperbolic 3-manifolds (see [12, Qn. 7.6] or [28, Qn. 8.2]). Theo-
rem 1.1 is also motivated in part by a question of Gromov and Piatetski-Shapiro
[17, Qn. 0.4]. In a prior paper with J.-F. Lafont, the last three authors proved
that a large class of nonarithmetic hyperbolic n-manifolds, including all the hy-
brids constructed by Gromov and Piatetski-Shapiro, have only finitely many
maximal totally geodesic submanifolds [14]. This provided the first known
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examples of hyperbolic n-manifolds, n > 3, for which the collection of totally
geodesic hypersurfaces is finite and nonempty. The case when M is a closed
hyperbolic 3-manifold was very recently and independently proved by Margulis
and Mohammadi [25]. Their proof and ours both use a superrigidity theorem
to prove arithmeticity, but the superrigidity theorems and their proofs are
quite different.

We now briefly give some applications of Theorem 1.1 and its proof. First,
combining Theorem 1.1 with a theorem of Reid [34] we obtain the following.

COROLLARY 1.2. Let K be a knot in S® such that S® \ K admits a com-
plete hyperbolic structure. Then S® \ K contains infinitely many immersed
totally geodesic surfaces if and only if K is the figure-eight knot.

Combining Theorem 1.1 with results of Benoist-Oh [4, Thm. 10.1], Lee—
Oh [19, Thm. 1.9(3)], and the classification of arithmetic hyperbolic n-mani-
folds (e.g., see [29]), we also obtain the following.

COROLLARY 1.3.

(1) If M is a geometrically finite hyperbolic 3-manifold containing infinitely
many totally geodesic surfaces with finite area, then M has finite volume
and w1 (M) is arithmetic.

(2) If M is a conver cocompact hyperbolic n-manifold containing infinitely
many mazimal totally geodesic surfaces with finite area, then M is compact
and w1 (M) is arithmetic.

(3) If n > 4 is even and M is a finite volume hyperbolic n-manifold, then
M is arithmetic if and only if it contains infinitely many totally geodesic
hypersurfaces.

For convex cocompact acylindrical 3-manifolds, this result already follows
from work of McMullen-Mohammadi-Oh [26], [27] and Theorem 1.1. See
Section 5.2 for discussion of (3) in odd dimensions.

Methods analogous to those used in the proof of Theorem 1.1 can also be
used to show the following.

THEOREM 1.4. Let M be a cusped hyperbolic 3-manifold of finite volume
with at least one torus cusp, and let N be a hyperbolic 3-manifold obtained
by Dehn filling on some nonempty subset of the torus cusps of M. Then only
finitely many totally geodesic surfaces in N are isotopic to the image of a totally
geodesic surface in M.

If either M or N is nonarithmetic, then this simply follows from Theo-
rem 1.1. However, there are examples where M and N are both arithmetic and
some totally geodesic surface in M remains totally geodesic in IV, and hence
Theorem 1.1 is not relevant. See Section 5.1 for the proof of Theorem 1.4,
discussion, and examples.
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TOTALLY GEODESIC SUBMANIFOLDS 339

Our approach to proving Theorem 1.1 is inspired by the Margulis super-
rigidity and arithmeticity theorems [22], [23]. The superrigidity theorem gives
criteria for when a representation of I' extends to a representation of the ambi-
ent Lie group G. Arithmeticity is then deduced using these criteria to control
the representations of I' one obtains by varying embeddings of the adjoint trace
field of I" into other local fields. See Section 3.2 for more discussion. A famous
example employing this strategy is the proof by Margulis of arithmeticity of
lattices with dense commensurator [22]. This theorem also holds in rank one
and is the full converse to a theorem of Borel [5]. Margulis proved this by
classifying representations of lattices that extend to representations of some
dense subgroup of G contained in the commensurator.

Relating dense commensurators of arithmetic lattices back to the existence
of infinitely many totally geodesic submanifolds, one can easily observe

ARITHMETIC GEODESIC SUBMANIFOLD DICHOTOMY. For any dimension
1 < k € n-—1, an arithmetic hyperbolic n-manifold either contains no codi-
mension k geodesic submanifolds, or it contains infinitely many and they are
everywhere dense.

This observation is one of the motivations for the question answered by
Theorem 1.1 and was perhaps first made precise in dimension 3 by Maclachlan—
Reid and Reid [20], [35], who also exhibited the first hyperbolic 3-manifolds
with no totally geodesic surfaces. Note that an analogous statement holds for
any arithmetic locally symmetric space. See [14] for further discussion and
examples.

Our proof of Theorem 1.1 rests on two key points:

(1) From certain homomorphisms p : I' — H, we construct a good measure
on a fiber bundle over G/I' that is invariant under a proper noncompact
connected simple subgroup W < G. This is accomplished in Section 3.

(2) We prove a superrigidity theorem showing that the measure constructed
in (1) allows us to extend p, provided that H satisfies an additional com-
patibility condition. This is proved in Section 4.

In the standard language of superrigidity and its proofs, one can view (1) as
the analogue for constructing a boundary map and (2) as the analogue for
using the boundary map to show that the representation p extends.

We now discuss each of these steps briefly and begin by stating a version of
Theorem 1.1 in language from homogeneous dynamics. We consider a proper
noncompact connected closed simple subgroup W < G = SOg(n,1). Then W
is isomorphic to SOg(m, 1) for some 1 < m < n. We have a W-action on G/T,
and results of Ratner classify the W-invariant ergodic measures for this action
[32], [33]. We say that a measure v on G/I" has proper support if its support
is a proper closed subset.
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340 U. BADER, D. FISHER, N. MILLER, and M. STOVER

THEOREM 1.5. If there exists an infinite sequence {u;} of W-invariant,
ergodic measures with proper support for which Haar measure on G/I' is a
weak-x limit of the p;, then ' is arithmetic.

We show in Proposition 3.1 that Theorem 1.5 implies Theorem 1.1.

In proving arithmeticity we are given a local field k of characteristic zero,
a connected semisimple adjoint k-algebraic group H with k-points H(k), and a
representation p : I' — H(k). We consider a certain irreducible representation
of H(k) on a finite dimensional k-vector space V' and the associated projective
space P(V'). We then use the hypotheses of either Theorem 1.1 or Theorem 1.5
to build a W-invariant ergodic measure on the bundle (G x P(V))/T" that
projects to Haar measure on G/T".

We now state the superrigidity theorem that finishes the proof from the
existence of such a measure. This requires an additional technical assumption
on the pair k and H. Let P be a minimal parabolic subgroup of G and U its
unipotent radical. A pair consisting of a local field k and a k-algebraic group
H is said to be compatible with G if for every nontrivial k-subgroup J < H and
any continuous homomorphism 7 : P — Ny (J)/J(k), where Ngz(J) is the nor-
malizer of J in H, we have that the Zariski closure of 7(U’) coincides with the
Zariski closure of 7(U) for every nontrivial subgroup U’ < U (see Section 3.4).

THEOREM 1.6. Let G be SOq(n,1) forn > 3, W < G be a noncompact
simple subgroup, and I' < G be a lattice. Suppose that k is a local field and
H is a connected k-algebraic group such that the pair consisting of k and H
is compatible with G. Finally, let p : I' — H(k) be a homomorphism with
unbounded, Zariski dense image. If there exist a k-rational faithful irreducible
representation H — SL(V') on a k-vector space V' and a W -invariant measure
v on (G x P(V))/I that projects to Haar measure on G/I', then p extends to
a continuous homomorphism from G to H(k).

Remark 1.7. We state the theorem for G = SOg(n, 1) for simplicity, but
the same theorem holds, with practically the same proof, for every connected
simple R-rank one Lie group. In particular, there is an analogue of Theorem 1.6
for lattices in SU(n, 1).

Understanding invariant measures for dynamical systems that are not ho-
mogeneous plays an important role in other recent results in rigidity theory.
For example, see work of Brown, Hurtado, and the second author on Zimmer’s
conjecture [7], [8]. In that context, Theorem 1.6 can be thought of as classi-
fying invariant measures in a nonhomogeneous setting. Indeed, Theorem 1.6
shows that either there is no extension of p and hence no such W-invariant
measures exist, or there is a simple classification of all invariant measures on
the projective bundle.
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TOTALLY GEODESIC SUBMANIFOLDS 841

We note in closing that Theorem 1.6 can be reformulated in several equiv-
alent ways. There is also an analogous superrigidity for cocycles that follows
from the same proof, and which provides some partial technical results towards
questions raised by results of Zimmer and Bader-Furman—Sauer [40], [2].
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2. Fixed Notation

We first fix some notation that will be used throughout our paper. Let
Gy denote SO(n,1) for n > 3, considered as a real algebraic group. We let G
be the connected component of the identity in Go(R), i.e., G = SOg(n, 1). Set
K = 80(n) < G and identify K'\G with hyperbolic n-space. For a noncompact
almost simple subgroup W < G, fix a maximal R-split torus A < W. Since
W and G are both R-rank one, A is also a maximal R-split torus of G. Fix
a maximal unipotent subgroup U of G normalized by A, and let M be the
compact factor of the Levi decomposition of the connected component of the
identity in the centralizer of A. Then P = M AU is the Langlands decomposi-
tion of the maximal parabolic subgroup of G associated with the pair (A4,U).
Set U' = W N U, and note that it is a maximal unipotent subgroup of W.

Now, fix a lattice I' < G. When considering the action of I' on G, we
always consider the right action, g -y = gy}, and Xpr = K\G/T will denote
the corresponding locally symmetric space. Let £ be the trace field of I', that
is the subfield of R generated by all elements of the form Tr(Ad(y)) for y € I,
where Ad denotes the adjoint representation. Denote the inclusion of £ in R by
w : £ —+ R. By work of Vinberg [39], there exist an ¢-group G and an R-isogeny
G — Gy such that the image of G(£) in Go(IR) contains a finite index subgroup
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8342 U. BADER, D. FISHER, N. MILLER, and M. STOVER

of I'. Passing to this finite index subgroup, we will assume throughout that I"
is contained in the image of G(£). By [39], £ is the minimal field of definition of
I'. Moreover, it follows from work of Selberg [37], Calabi [9], Raghunathan [31],
and Garland [15] that £ is in fact a number field.

3. Finding invariant measures and arithmeticity

In this section we show how Theorem 1.6 implies Theorem 1.1. We show in
Section 3.1 that the hypotheses of Theorem 1.5 are implied by the hypotheses
of Theorem 1.1, Section 3.2 recalls the overall strategy of deducing arithmetic-
ity from superrigidity, Section 3.3 finds the measure v from the hypotheses
of Theorem 1.6 using the hypotheses of Theorem 1.5, and finally Section 3.4
shows that all the target groups considered for proving arithmeticity are com-
patible. In particular, this section reduces Theorem 1.1 to Theorem 1.5 and
Theorem 1.5 to Theorem 1.6.

3.1. Geodesic submanifolds and properly supported measures. Recall that
a finite measure p on G/I is called homogeneous if there is a closed subgroup
S < G such that p is Haar measure on a closed S-orbit in G/I'. Such a
homogeneous measure is said to be W-ergodic when W is a closed subgroup
of S under which p is ergodic. In this case, the support of the measure is
said to be a W-ergodic homogeneous subspace of G/I'. For 1 < m < n, we let
Wi < G be the standard embedding of SOg(m, 1) into G. The entirety of this
subsection is devoted to proving the following proposition.

PROPOSITION 3.1. For the real hyperbolic space Xr = K\G/I', the fol-
lowing are equivalent:

(1) Xr contains infinitely many maximal totally geodesic subspaces of dimen-
sion two or higher;

(2) for some 1 < m < n, there exists an infinite sequence {p;} of Wp-
invariant, ergodic measures with proper support for which Haar measure
on G/I' is a weak-x limit of the p;;

(3) for some 1 < m < n, there erists an infinite sequence of homogeneous,
W -ergodic measures {p;} for which Haar measure on G/I' is a weak-*
limit of the p;.

That (3) implies (2) is clear, and the reverse implication is a theorem of
Ratner [32], [33] (see also Einsiedler [13]). It therefore suffices to show that (1)
and (3) are equivalent. Throughout this section we let 7 : G/I' — X be the
natural projection.

We start by clarifying the relationship between totally geodesic subspaces
and homogeneous measures. We first recall that a subspace Z of a hyperbolic
n-orbifold X is totally geodesic if it is properly immersed and if one (hence any)
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TOTALLY GEODESIC SUBMANIFOLDS 843

lift to a map of orbifold universal covers Z — Xisa totally geodesic isometric
embedding of hyperbolic m-space in hyperbolic n-space for some m < n. In
particular, totally geodesic subspaces are by definition connected.

LEMMA 3.2. Fizl <m <n and Xr = K\G/I'. Then the following hold:

(1) Let S < G be a closed subgroup containing Wy, and h € G be such that
ShI'/T c G/T is a closed S-orbit. Then the subspace Z = w(ShI'/T') of
Xr is a closed totally geodesic m'-dimensional subspace for some m’ > m
and, up to normalization, the m'-volume of Z is the push-forward of the
corresponding homogeneous measure on G/T.

(2) Furthermore, under the assumption above, m' = n if and only if S = G
and m' = m if and only if all unipotent elements of S are contained in Why,.
In the latter case S is a subgroup of the normalizer Ny, of Wy, in G, and
NmhI'/T' € GT is also closed with projection w(NpmhD'/T') = Z.

(3) Conversely, every m-dimensional closed totally geodesic subspace Z in Xr
has finite m-volume and, moreover, Z = w(ShI'/T") for some closed in-
termediate subgroup Wy, < S < Ny, and some homogeneous, Wp,-ergodic

subspace ShI'/T' C G/T.

Proof. We start by observing that for each m’, the image of Wy in K\G,
namely K\KW,,, is an m’-dimensional closed totally geodesic subspace. As
(G acts transitively on the collection of m’-dimensional closed totally geodesic
subspaces of K'\G, any such subspace is of the form K\ KW, g for some g € G.
Since Ny, is contained in KW/, every intermediate subgroup W, <51 < Ny
has the property that K\KS1g = K\KW,yg is an m/-dimensional closed
totally geodesic subspace of K\G, and the push-forward of the volume form
on the Lie group 51 is its m’-volume. Conversely, N,,s is exactly the stabilizer of
K\KWp, in G. Thus if K\K S;g is an m’-dimensional closed totally geodesic
subspace of K\G, then W,y < §; < Npy.

We now prove Part (1). Let S < G be a closed subgroup that contains
W, and let AI'/T € G/T' be a point whose S-orbit is closed. Denote by
ST < S the closed normal subgroup generated by unipotent elements in S.
Then ST is a connected semisimple subgroup of G that contains W,,,, hence it
is conjugate to W,,; for some m’ > m. In fact, if C,, denotes the centralizer
of Wy, in G, it is straightforward to see that there exists ¢ € C}, such that
W = (ST)9 = gStg~!. We fix such a g and set S; = S9.

Since ST is normal in S, Wy, is normal in S1, and thus Wiy < 81 < Npr.
From the fact that Cy,, < K and g € C,, we get that

KS=Kg¢g1'59=KSqg.
Since the projection = is proper, Z = w(ShI'/T) is closed, and since
Z = K\KShI'/T' = K\KS1ghI'/T' C Xr,
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we conclude that Z is m’-dimensional and totally geodesic, since it is the image
of K\ K S;gh under the projection K\G — Xr. Consequently, the m’-volume
on Z is the push forward of the S;-volume form. As the S;-volume form is the
g~ '-conjugate of the S-volume form, the m’-volume of Z is the push forward
of Haar measure on ShI'/T". This completes the proof of Part (1).

We now prove Part (2). Clearly, if S = G then m’ = n, and if m’ = n, then
S = @G, as S contains a conjugate of G = Wp». Thus we discuss the second
part of the statement. If all unipotent elements of S are contained in W,,, then
ST < Wy, but Wy, < ST by hypothesis, so we conclude that W, = ST and
m’ = m. Conversely, if m’ = m, then since W,,, < St = Wwi;l, we conclude
that ST = W,,, and all unipotent elements of S are contained in W,,. In this
case, W,, is normal in S and thus W,, < § < N,,. Since W,,, is cocompact in
Np, S is as well, and therefore the fact that ShI'/T is closed in G/I" implies
that the same holds for N;,h'/T". Moreover, from the chain of equations

K\KWpmh = K\KSh = K\K Nyh,

we conclude that w(Npyh'/T") = Z in Xp. This proves Part (2).

Before turning to Part (3), we discuss m-dimensional closed totally geo-
desic immersed submanifolds of n-dimensional Riemannian manifolds in gen-
eral. Given such a pair M C N, we let F(IN) be the oriented orthonormal
frame bundle of N and we let Fiy(M) be the subbundle where the fiber over
each point # € M is the subset of frames in F'(IV), whose first m vectors are
tangent to M. We note that Fy(M) is a principal S(O(m) x O(n—m))-bundle
over M and it is closed in F'(N), which itself is a principal SO(n)-bundle
over N. This construction is natural under covering maps.

Identifying G with F(K\G), one checks easily that N, gets identified
with Fy\q(K\KW,,) and thus for every g € G, Np,g gets identified with
Fi\g(K\KW,g). In accordance with the identification of G with F(K\G)
we identify G/I" with F(Xp). For an m-dimensional closed totally geodesic
subspace Z C Xy, the subbundle Fx (Z) gets identified with a closed subset
of G/T. Finding g € G such that K\KW,,g C K\G projects to Z under the
natural map K\G — Xr, we conclude by naturality under covering maps that
Fx.(Z) is identified with Np,gI'/T". In particular, the latter is a closed subset
of G/T" whose image under 7 is Z.

We are now in a position to prove Part (3). Let Z C Xt be an m-dimen-
sional closed totally geodesic subspace. The fact that it has a finite measure
is well known; see [16, Prop. 3.4] for a recent reference. By the discussion
above there exists g € G such that Ny, gI'/T" is a closed subset of G/T" whose
image under 7 is Z. Note that Ny, ¢gI'/T" has a finite volume, as it is a compact
extension of Z. Since Wi, < Ny, Nppgl' /T is Wip-invariant, though it might
not be Wp,-ergodic. Fix a Wp,;-ergodic measure p in its ergodic decomposition,
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TOTALLY GEODESIC SUBMANIFOLDS 845

and let S be the stabilizer of p in N,,. Clearly, W,, < § < N,,, and p is S-
homogeneous by Ratner’s Theorem. Let h € G be such that p is Haar measure
on the S-orbit ShI'/I'. It follows from Part (1) of the lemma that w(ShI'/T') is
a closed totally geodesic subspace of X of dimension m or higher. Since this
image is contained in the m-dimensional closed totally geodesic subspace Z, it
must coincide with it. This completes the proof of the lemma. |

We will also use the following theorem, which follows from combining
the existence of compact cores for hyperbolic manifolds with work of Dani—

Margulis [11, Thm. 6.1] and Mozes—Shah [30].

THEOREM 3.3. Suppose that W < G is a closed connected semisimple
subgroup that is generated by unipotent elements. Let {u;} be a sequence of
homogeneous, W-ergodic probability measures on G/I' that weak-*x converges
in the space of all finite Radon measures to a measure pu. Then p is a homoge-
neous, W-ergodic probability measure on G/I' and there ezist a sequence {g;}
in G and a natural number ig such that, for each i > ig, the measure g;u is a
homogeneous, W -ergodic probability measure on G/I' whose support contains
the support of p;.

Proof. We first claim that p is not the zero measure. This is trivial if G/T’
is compact. As this claim is conjugation invariant, we will assume, as we may,
that W = W, for some m > 1. Using [14, Lem. 5.13] we fix a compact set C; in
Xr = K\G/T' that meets every closed totally geodesic subspace of dimension
at least 2. Then, choose a compact set C5 that contains C' in its interior and
consider its preimage in G/T, i.e., the compact subset F' = 7~ (Cs) of G/T.
Fix a l-parameter unipotent subgroup {u;} in W, and set ¢ = 1/2. Applying
[11, Thm. 6.1] we find a compact subset F’ C G/I" such that

1 (T 1 L
(1) T/O xpr(uy)dt = A {t € [0,T] | ugy € F'} > 5

for every y € F' and every T' > 0, where xpr is the characteristic function of
F’ and ) is the Lebesgue measure on R. The claim will follow once we show
that pi(F') > 1/2 for every i, thus p(F') > 1/2. We now fix 7 and show that
indeed p;(F') > 1/2.

By Lemma 3.2(1), s is the unit renormalization of the volume measure
associated with a closed totally geodesic subspace of dimension at least m > 2.
This subspace intersects C; nontrivially, by the choice of C4, thus it intersects
(5 in an open set. It follows that pi(F) = mepi(Ca) > 0, as m«p; is proportional
to a volume measure. We note that p; is {u}-ergodic by the Howe-Moore
theorem, and we let y € F' be a {u; }-generic point with respect to p;. Applying
the Birkhoff ergodic theorem to the function xgs we conclude by Equation (1)
that indeed p;(F') > 1/2. This proves the claim.
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Using [30, Cor. 1.3] we therefore conclude that p is a homogeneous,
S-ergodic probability measure on G/T, where S is the subgroup of the stabilizer
of p generated by unipotent elements. The group S is not unipotent, as it con-
tains W, therefore it must be semisimple. We conclude by the Howe—Moore
theorem that p is W-ergodic.

Let Y; = supp(pi) and Y = supp(p) in G/T, and fix one dimensional
unipotent subgroups Uy,...,Ur < W that generate W. Note that p; is
Uj-ergodic for every ¢ and every 1 < j < k by the Howe-Moore theorem.
Thus, for any fixed i, the subset Y; consisting of the points in Y; that are
Uj-generic for every 1 < j < k is of full p;-measure, hence it is dense in Y;.
We fix a point y € Y. As p = limpy;, we can find a sequence of points {y;}
converging to y such that y; is in Y; for every 7. By deforming such a sequence,
using the fact that Y} is dense in Y;, we find and fix a sequence {y;} converging
to y such that y] is in Y] for every i. We fix a sequence {g;} in G such that
lim g; = e and g;y = ¥ for all .

By [30, Thm. 1.1], we conclude that for every 1 < j < k, there exists an i,

-1
such that Y; C ¢;Y and p is U:f" -invariant for every i > i;. Let ig = max{i;},
and fix ¢ > 7p. As g;Y = supp(gip), we conclude that supp(u;) C Supp(gﬂu) It
remains to show that g;p is W-ergodic or, equivalently, that pis W9 -ergochc

Since p is Uj‘ -invariant for every 1 < j < k, it is W% "_invariant. Tt follows

-1
that W% is contained in S. Then W% -ergodlclty follows from the Howe—
Moore theorem and S-ergodicity. This completes the proof. |

Proof of Proposition 3.1. As noted immediately after the statement of the
proposition, it is enough to show that (1) and (3) are equivalent. We begin
with the easier implication, namely that (3) implies (1). Fix 1 < m < n,
and suppose that {g;} is a sequence of homogeneous, Wy,-ergodic measures
for which Haar measure on G/I' is a weak-* limit. Let fi; = m.p; be the push-
forward measures. By Lemma 3.2(1), each measure [i; is supported on a closed
totally geodesic subspace of X1, and we let Z; be a maximal totally geodesic
subspace of Xr containing it. Since Haar measure on G/I" is by hypothesis a
weak-#* limit of the sequence {u;}, its push-forward is supported on the closure
of |JZ;. Since the push forward of Haar measure on G/I is the volume form
on X, it follows that | J Z; is dense in X1 and hence the sequence {Z;} consists
of infinitely many maximal totally geodesic subspaces. This implies (1).

Next we show that (1) implies (3). Assume that there exists an infinite
sequence {Z;} of distinct closed maximal totally geodesic subspaces of Xr. By
passing to a subsequence we assume that they all have the same dimension
m for some 1 < m < n. By Lemma 3.2(3), each Z; is the image under
m : G/I' - Xr of a homogeneous, Wp,-invariant subspace of G/I', which
we denote by Y;. Furthermore, each Y; is the support of a homogeneous,
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TOTALLY GEODESIC SUBMANIFOLDS 347

W -ergodic probability measure p; with stabilizer S; containing Wp,,. Passing
to a further subsequence, we can assume that the pu; weak-* converge to a
measure p. Note that Theorem 3.3 implies that p is a homogeneous, Wp,-
ergodic probability measure on G/I'. We now want to show that p is Haar
measure on G/T.

Assume for contradiction that p is not Haar measure on G/T". If S denotes
the stabilizer of p, which contains Wi, then Yo, = supp(p) = ShI'/T for some
h € G. By Theorem 3.3 there exist a sequence {g¢;} in G and a natural number
ip such that for each 7 > ig, ¢;Y~ is a homogeneous, Wy, -invariant subspace
of G/T that contains Y;. Once again passing to a subsequence we assume that
this holds for every 7 > 1.

Fix any 7 € N. Applying Lemma 3.2(1) to g;Yeo, we see that m(g;Yx) is a
closed totally geodesic subspace. Our assumption that p is not Haar measure
along with the case m’ = n in Lemma 3.2(2) implies that 7(g;Ye) C X1 is a
proper subspace. Since Y; C ¢;Y.,, we deduce that Z; C m(g;Yo) and hence
Z;i = m(9;Ys) by maximality. In particular, dim(7(g;Ys)) = m.

Note that S§9 is the stabilizer of the measure g;u and hence W, < S9%.
By the case m' = m in Lemma 3.2(2) we conclude that the subgroup of S%
generated by unipotent elements is W,,, and that W,, < 5% < N,,. Since
W,, < S, we also have that W% < S9%  and since the subgroup of N,,, generated
by unipotents is exactly W,,, we see that W,;, = Wy%. Therefore g; € Np,.
Applying Lemma 3.2(1) to the closed S%-orbit

5% g;hT /T = g;ShT T = g;Yoo,

the Ny-orbit Ny, g:hI' /T is also closed in G/T" and we have Z; = w(Npg:hI'/T).
However, g; € Ny, thus Npg;hI'/T' = N hI' /T is independent of i. We con-
clude that Z; = w(NphI'/T') is independent of 7, contradicting the assumption
that the spaces Z; are all distinct. This contradiction concludes the proof that
(1) implies (3). O

3.2. The proofs of Theorems 1.1 and 1.5. We now explain how to prove
Theorems 1.1 and 1.5 given Theorem 1.6. This closely follows Margulis’s
proof of arithmeticity from superrigidity. For more details, see [24, Ch. IX]
or [41, Ch. 6].

We are given a lattice I' < G and want to show that it is arithmetic.
As in Section 2, we consider I" as a subgroup of G(£), where £ is the adjoint
trace field of I', embedded in R via w : £ —+ R. Consider the collection S of all
places of £, that is, the equivalence classes of dense embeddings of £ into a local
field. For v € S, ¢, will denote the corresponding local field. In particular,
we have the aforementioned w € S and w : £ — £, = R. Considering the
various embeddings I' — G(¢) — G({y) for all v € S, it is standard that I is
arithmetic if and only if the image of I' in G(¥;) is precompact for every v # w.
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We let H be the adjoint group associated with G and claim that for v € S,
v # w, the corresponding homomorphism I' — G(¢,) — H(¥¢,) cannot be
extended to G(fy) ~ G — H({,). By [24, Rem. 1.8.2(III)], such an extension
gives rise to a continuous field embedding £,, — £,, and this field embedding
clearly agrees with v : £ — £, on the set of elements of the form Tr(Ad(v)) for
v € I'. As {is generated by the above set, we get that £, — ¢, extends v, which
contradicts the assumption that v # w. To be precise, in [24, Rem. 1.8.2(III)]
the target group is assumed absolutely simple, which is not necessarily the
case for H. This can be remedied by passing to a certain finite field extension
£, /£y, considering the corresponding homomorphism G(¢,) — H(4,) — H(¢;,),
taking the restriction of scalars of H from #;, back to #,, then projecting to a
simple factor. This procedure replaces the target group H with an absolutely
simple £,-group, thus proving our claim by the argument presented above. In
summary, we prove that I' is arithmetic by showing that its image in G(¢y)
is precompact, and we do that by proving that if this is not the case, then
I' - H({,) must extend to G. Note that the failure of precompactness of the
image of I' in G(¥¢,) implies the same holds for the image of I" in H({,), as the
map G — H is a finite isogeny.

The existence of the desired extension G — H(¢,) will follow from Theo-
rem 1.6 once we verify its various assumptions in the specific settings of Propo-
sition 3.1. In this setting, in Section 3.3 we will produce an £,-vector space V,
endowed with a faithful irreducible representation of H(¢,), and a W-invariant
measure on (G x P(V')) /T, as required in Theorem 1.6. Our proof will be com-
plete once we show that the pair consisting of £, and H is compatible with G.
This will be done in Section 3.4.

3.3. Lifting measures to the projective bundle. Let £ be the number field
and G the f-algebraic group associated with I' as in Section 2, and let H be the
corresponding adjoint ¢-group. In this subsection we let k = £, be any local
completion of £ for which the natural inclusion p' : I' = G(£) — G(k) is not
precompact. Consider the representation p: I' =+ G(k) — H(k) whose image
is also not precompact. In this subsection we assume the hypotheses of Theo-
rem 1.1. By (1) < (2) in Proposition 3.1, the hypotheses of Theorem 1.5 hold.
That is, for some 1 < m < n, we have an infinite sequence of homogeneous,
W-ergodic measures {u;} for which Haar measure on G/T" is a weak-* limit
of the p;. Passing to a subsequence, we assume, as we may, that p; actually
converges to Haar measure. As m is fixed, we set W = W,,,. This subsection
is then devoted to proving the following.

PROPOSITION 3.4. Under the hypotheses of Theorem 1.5 or Theorem 1.1,
there is a k-rational faithful irreducible representation H— SL(V') on a k-vector
space V' and a W-invariant measure on (G x P(V'))/I" that projects to Haar
measure on G/T.
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Proof. We retain all notation from prior subsections. We note that, as H is
semisimple, each of its k-rational representation is into SL(V') < GL(V). We
will construct a faithful irreducible representation supporting a W-invariant
measure as required. By (2) < (3) in Proposition 3.1 we can assume that the
W-invariant, ergodic measures p; on G/I" converging to Haar measure are in
fact homogeneous. Thus, for every i there exists a closed subgroup S; < G
such that y; is Haar measure on a closed Sj-orbit in G/T.

By Lemma 3.2, for every i, S; < Ny, for some m < m’ < n, thus 5] is not
Zariski dense in G. Fixing x; € G that project to a base point in this orbit, we
denote this orbit by Sjz;I'/I" and rewrite it as #;5;['/T", where m;ISi::ci = 5]

Let I} be the stabilizer in S] of the image of ; in G/I' and then set
I, = xifgmgl. Thus I'; = S; NI and I'; is a lattice in S;. We let L; be the
Zariski closure of p(I';). As S; is not Zariski dense, neither is I';, and we get
that L; < H is a proper k-subgroup such that p(I';) < Li(k). We pass to a
subsequence such that dim(L;) is constant and denote this constant by d.

We first assume that H is k-simple, which is automatic when G#S50,(3,1),
and we note that in this case faithfulness of a k-linear representation is equiv-
alent to its nontriviality. We will consider the semisimple case at the end of
the proof, where faithfulness will require an additional argument.

Consider the d'! exterior power AY(Ad) : H(k) — GL(A%h) of the ad-
joint representation of H(k) on its Lie algebra h. The Lie algebra I; of L;(k)
determines a line /; in /\d bh. Since the stabilizer of {; in H(k) is the normal-
izer of L;(k) and hence a proper subgroup, this line is never H(k)-invariant.
Therefore each I; projects nontrivially to some nontrivial irreducible summand
of A%(Ad) : H(k) — GL(A%). Since only finitely many irreducible representa-
tions can occur, one such irreducible representation V occurs infinitely often.
Passing to a further subsequence, we obtain an irreducible subrepresentation
V onto which each l; projects nontrivially. The point stabilizer of [; contains
the image of L;(k), and hence it contains p(I';).

Given the closed W-invariant subset x;(S;/I';), note that [; determines an
invariant line bundle over z;(S;/I';) and therefore defines a measurable section

s':2i(Si/Ts) — (G x P(V)) /T

Identifying Haar measure on z;(S;/I';) with p; we define v; = stpi. We then
construct a W-ergodic, W-invariant measure on (G x P(V))/I" by taking v
to be any ergodic component of any weak-* limit of the v; on (G x P(V))/I.
Since the p; converge to Haar measure on G/I' and projection commutes with
taking weak-* limits, this implies that v projects to Haar measure on G/I" and
completes the proof when H is simple.

For G = SO¢(3,1), the group H(k) need not be k-simple due to the
exceptional isomorphism PO(4,k) = PGL(2,k) x PGL(2,k). We therefore
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must find an irreducible representation V on which H(k) acts faithfully and
for which the above construction yields the necessary invariant measure. To
this end, we need to consider cases when

H(k) = PGLy(k) x PGLy(k),

where k is R, C, or a nonarchimedean local field of characteristic zero.

Notice that I" is Zariski dense in the almost simple group G(R) and the
groups I'; have proper Zariski closure. In particular, I'; < I' is not normal, and
it follows from injectivity of p that p(I';) is not contained in a direct factor of
H(k). As the Zariski closure of I'; is almost simple in G(¢) and p is given by
a field embedding, we conclude that p(I';) is contained in a conjugate of the
diagonal subgroup A(PGLy(k)) of PGLy(k) x PGLy(k) for all 4.

We take the adjoint representation of PGLy(k) x PGLy(k) on k% and the
diagonal three dimensional subspace A(k3) < k3@k? stabilized by A(PSLy(k)).
A computation shows that \*(k®@k?) splits as a direct sum of four irreducible
representations of PGL2 (k) x PGLa(k), two that are trivial and two that are iso-
morphic to the faithful representation V'(3,3) on k* ® k*. One also checks that
A (A(K?)) projects nontrivially to each V'(3,3) (in fact, to all four summands).
Taking V' = V (3, 3) and arguing as above, we also produce a W-invariant mea-

sure on (G x P(V))/I" when G = SOg(3,1). This completes the proof. O

3.4. Compatibility. Let G, U, and P = M AU be as defined in Section 2.
Let k be a local field and H a k-algebraic group. Recall that the pair consisting
of k and H is compatible with G if for every nontrivial k-subgroup J < H and
any continuous homomorphism 7 : P — Nu(J)/J(k), where Ny (J) is the
normalizer of J in H, we have that the Zariski closure of 7(U’) coincides with
the Zariski closure of 7(U) for every nontrivial subgroup U’ < U.

Note that if the pair (k’,H) is compatible, where k’/k is a finite field
extension, then the pair (k,H) is also compatible. Indeed, letting J < H
be a k-subgroup and 7 : P — Nyg(J)/J(k) be a continuous homomorphism,
composing 7 with the homomorphism Ng(J)/J(k) — Nyz(J)/J(K') defines a
continuous homomorphism 7 : P — Ny (J)/J(k"). Compatibility of (k¥',H)
implies that the Zariski closure of 7(U’) coincides with the Zariski closure of
7(U) for every nontrivial subgroup U’ < U.

We note also that compatibility of (k, H) follows immediately if U < ker T
for every 7 as above. This is automatically the case when k is nonarchimedean,
since then the group Ng(J)/J(k) is totally disconnected whereas U is con-
nected.

LEMMA 3.5. We retain the notation of Section 2 and let H be the adjoint

group of G(k) for k a local field and £ — k a field embedding. Then the pair
consisting of k and H is compatible with G.
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Proof. As mentioned above, we can and hence will assume that k is
archimedean and, passing to a finite extension, in fact assume that k = C.
In particular, we get that H is split and we identify it with PO(n + 1,C). In
what follows, we identify algebraic subgroups of H with their complex points.

Assume we have a nontrivial algebraic subgroup J < PO(n + 1,C) and
a continuous homomorphism 7 : P — N/J, where we denote N = Ng(J).
Fix a nontrivial subgroup U’ < U. Letting U, U’,M, A and P be the Zariski
closures of the images of U,U’, M, A and P in N/J correspondingly, we must
show that U’ = U. We can obviously assume that 7|y is nontrivial.

We first make an observation for later use. Since U is the derived subgroup
of the solvable group AU, U is contained in the derived subgroup of the solvable
group AU. It follows that U is a nontrivial unipotent group.

It is convenient to identify U with the additive group R*~! and M A with
its conformal group. In particular, we identify M with SO(n—1,R) and A with
the group of homotheties R*. Using transitivity of the action of SO(n—1,R) on
P"~2(R), one easily checks that every non-central subgroup of P contains U.
We conclude that 7 has finite kernel.

We claim that n = 3. To prove this, we will assume that n > 4 and argue
to show a contradiction.

As 7(M) is locally isomorphic to the compact group SO(n — 1,R), we see
that M is locally isomorphic to SO(n — 1,C). Thus M is almost simple and
it normalizes the solvable group AU, as M normalizes the solvable group AU
in P. Therefore M intersects the group AU almost trivially. As AU is not
nilpotent, we get that AU is not unipotent, thus rank AU > 1. We conclude
that rank P > rank M + 1. We note also that rank P/U = rank P, as U is
unipotent.

We let U and P be the corresponding preimages of U and P in N under
the map N — N /J. From the sequence of inequalities

rank H > rank P > rank P — rank U
= rank P/U = rank P/U = rank P
>rank M + 1 =rankSO(n —1,C) +1
=rankSO(n + 1,C) =rank H

we deduce that rank U = 0.

Next we consider the identity component J° of J and the identity compo-
nent U° of U. We note that J° < U° and that this is a proper inclusion by
nontriviality of the connected group U. As rank U = 0, we deduce that U
is a unipotent subgroup of N. We conclude that both J° and U are normal
unipotent subgroups of P with J° < Uo.
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By [6, §3], we see that P is contained in a maximal parabolic subgroup
Q < H, as it contains a nontrivial normal unipotent subgroup. Note that the
maximal parabolic subgroups of SO(n + 1,C) are the stabilizers of isotropic
subspaces of C"*!. For a k-dimensional isotropic subspace, the semisimple part
S < Q of the Levi subgroup is locally isomorphic to SLx(C) x SO(n+1—2k, C),
noting that 2k < n + 1. Alternatively, this can be seen by removing a node
from the Dynkin diagram associated with SO(n + 1,C). Almost-simplicity of
M<P=P /J implies that P contains a group M’ locally isomorphic to M.
Thus M’ < Q, and upon conjugating S we can assume that M’ < S. We
conclude that k = 1 and S is locally isomorphic to SO(n—1,C). In particular,
S=M <P.

We denote the unipotent radical of Q by R and note that it has no proper,
nontrivial S-normalized subgroups. Indeed, this follows from the transitivity
of the action of PO(n 4+ 1,C) on P""2(C). As S < P and R consists of all
unipotent elements of Q, we get that J° < U° are unipotent subgroups of R
that are normalized by S. We conclude that J° is trivial and U°=R.

AsP < Q contains both R and S, we see that P= Q. As JO is trivial, we
obtain that J is a finite normal subgroup of Q. However, Q is a parabolic sub-
group of the adjoint group H, and hence it contains no nontrivial finite normal
subgroup. This implies that J is trivial, which gives the desired contradiction
to the assumption n > 4.

We thus have n = 3. That is, we have
H =PO(4,C) ~ PGL(2,C) x PGL(2,C).

We will assume U’ < U and derive a contradiction. By almost injectivity
of 7, U’ is a nontrivial unipotent subgroup, and it follows that U < N/J is at
least two dimensional. We thus can find a two dimensional unipotent subgroup
V < N. Note that H has no three dimensional unipotent subgroup. It follows
that J has no nontrivial unipotent subgroup, thus V is the unipotent radical
of VJ. As both V and J are normal in VJ and they have trivial intersection,
it follows that they commute. We note that all two dimensional unipotent
subgroups of H are conjugate and these are all unipotent radicals of Borel
subgroups. It follows that Ny (V) is a Borel subgroup B < H. As J normalizes
V., J < B. Up to conjugation, we may assume that B is the standard Borel
subgroup of PGL(2,C) x PGL(2,C), and it is easy to check that its unipotent
radical is its own centralizer. It follows that J < V. This forces J to be trivial,
as it has no unipotent subgroup. This gives the desired contradiction and thus
finishes the proof. |

Remark 3.6. Note that PO(n + 1,C) can also be viewed as an algebraic
group over R and for £ = R, it is not compatible with G = SOg(n,1). In
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the proof of arithmeticity, a Galois conjugate isomorphic to PO(n + 1,C) is
naturally given the real Zariski topology, but for the purposes of proving The-
orem 1.6 we may instead consider it in the complex Zariski topology.

4. Proof of Theorem 1.6

Throughout this section, we assume that we have a W-invariant measure
v on the bundle (G x P(V))/I" that projects to Haar measure on G/I.

4.1. From measures to measurable maps to varieties. This subsection con-
verts our W-invariant measure into a measurable I'-equivariant map between
varieties.

PROPOSITION 4.1. Under the hypotheses of Theorem 1.6, there exist a
proper k-algebraic subgroup L < H and a measurable W -invariant, I'-equi-

variant map ¢ : G — H/L(k). We can also view ¢ as a measurable I'-equi-
variant map from W\G to H/L(k).

Proof. Via disintegration, the W-invariant measure v on (G x P(V))/T’
yields a W-invariant, I'-equivariant measurable map

¢: G — PP(V)),

where P(P(V')) is the space of probability measures on P(V'). By [41, Cor.
3.2.12 and Thm. 3.2.4], the image of this map lies in a single H(k)-orbit that
can be identified with H(k)/L for L a compact extension of the k-points of
a k-algebraic subgroup of H(k). Therefore we obatin a I'-equivariant map
W\G — H(k)/L.

We claim that L is not compact. If it were, we could find an H(k)-invariant
metric on H(k)/L, but by [3, Cor. 6.7] the action of I' on W\G is metrically
ergodic (see [3, Def. 6.5] for the definition) and thus the map W\G — H(k)/L
would be essentially constant with I'-invariant image. This would contradict
the assumption that p : I' — H(k) is unbounded, hence L cannot be compact.

Let L be the Zariski closure of L. Then [41, Prop. 3.2.15] implies that L
is a proper k-subgroup of H. We are then done by composing G — H(k)/ L
with the natural map H(k)/L — H/L(k). O

Remark 4.2. One can also prove the group L is noncompact by showing
nontriviality of the Lyapunov spectrum of the W-action on (G xP(V))/I" using
[24, Thm. V.5.15]. This is delicate when I' < G is nonuniform, relying on its
weak cocompactness and integrability of the standard cocycle o : GXG/T" — I

Note that the subgroup L of H might be a normal (even trivial) subgroup,
or, when H is semisimple but not simple, it might consist of a nontrivial factor
group. In the latter case the H action on H/L is not effective. However, these
caveats do not effect our proof.
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4.2. Algebraic representations. In this subsection, we introduce the ideas
from the work of Bader and Furman [1] used in the proof of our superrigidity
theorem.

Let k be a local field, fix a k-algebraic group H, and let H = H(k) denote
the k-points of H. To start, let G be a locally compact second countable group,
I' < G be a lattice, and p : I' —+ H be a Zariski dense representation.

Given a closed subgroup T' < G, a T-algebraic representation of G consists
of the following:

a k-algebraic group I;

e a k-(H x I)-algebraic variety V, which is considered as a left H-space and
a right I-space on which the I-action is faithful;

e a Zariski dense homomorphism 7 : T — I(k);

e an algebraic representation of G on V, i.e., an almost-everywhere defined
measurable map ¢ : G — V(k) such that

$(tgr™") = p(v)(g)T(H) ™

for every v € T, every t € T', and almost every g € G.

We denote the data for a T-algebraic representation of G by Iy, 7v, and ¢v.

A T-algebraic representation is called coset T'-algebraic when V is the
coset space H/J for some k-algebraic subgroup J of H, and I is a k-subgroup
of Ng(J)/J, where Ngz(J) denotes the normalizer of J in H. Given another
T-algebraic representation U, let Iyy v be the Zariski closure of (7y x 7v)(T) in
Iy x Iy. Then a morphism m: U — V is an (H x Iy v)-equivariant k-regular
morphism such that ¢y agrees almost everywhere with 7 o ¢yy. Recall that an
initial object in a category is an object that has exactly one morphism to all
other objects in the category. The proof of our superrigidity theorem uses the
following.

THEOREM 4.3 ([1, Thm. 4.3]). The collection of T-algebraic representa-
tions of G forms a category. If the T-action on G/T' is weakly mizing, then
this category has an initial object and this initial object is a coset T -algebraic
representation.

An initial object is characterized by the fact that J is the minimal sub-
group, up to conjugacy, that can arise as a stabilizer in any coset T-algebraic
representation in the category.

Though not stated explicitly, the following is also implicit in [1]. Given
two subgroups S and T of G, we say that their initial objects ¢s : G — V (k)
and ¢ : G — W(k) have the same map if V. = W as k-varieties and if ¢g

and ¢1 agree away from a set of measure zero.
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LEMMA 4.4. Assume that the action of T on G /I is weakly mizing. Then
initial objects for T and Ng(T') have the same map. Moreover, the initial object
for T' and for the iterated normalizer Ng(Ng(--- (Ng(T)) ---)) have the same
map.

Proof. For the first claim, the forward direction is the content of [1, Thm.
4.6]. For the backward direction, if ¢ : G — H/J(k) is an initial object in the
category of Ng(T)-algebraic representations with associated homomorphism 7
from T to Ng(J)/J(k), then ¢ and 7|7 form a T-algebraic representation and
this representation must be initial by minimality. Indeed, otherwise another
application of the forward direction contradicts minimality of J. The second
claim follows immediately from the first. |

4.3. From measurable maps to extension of homomorphisms. We now com-
plete the proof of Theorem 1.6. More specifically, we show that the existence of
the map ¢ : G — H/L(k) from Proposition 4.1 implies that the representation
p of I extends to G.

Proof of Theorem 1.6. Observe that the action of G on G/I' is mixing
by the Howe-Moore theorem. In particular, the action of each noncompact
subgroup of G is weakly mixing on G/I". This allows us to freely apply the
discussion and results of Section 4.2 regarding T-algebraic representations of
G for an arbitrary noncompact closed subgroup T of G.

Recall our setting from Section 2, and first consider T' = U’ = U NW,
which is noncompact. Given an initial object in the category of U’-algebraic
representations of G, Theorem 4.3 implies that there is a k-algebraic subgroup
J of H such that this object is a measurable map ¥ : G — H/J(k) that is
(U" x TI')-equivariant for a continuous homomorphism 7 : U’ — Ng(J)/J(k).
Since U’ is normal in U and U is normal in P, Lemma 4.4 implies that 7
extends to a continuous homomorphism 7 : P — Ng(J)/J(k) making the map
W an initial object in the category of P-algebraic representations of G.

We claim that J is trivial. Assume this is not the case. Since the pair
consisting of k£ and H is compatible with G, we know that the Zariski closure of
7(U") coincides with the Zariski closure of 7(U). We note that the W-invariant
map ¢ is also U'-invariant, as U’ < W, thus it factors via ¥ : G — H/J(k)
and via

G — H/J(k) — (H/3)/7(U")(k) = (H/I)/7(U)(K)

by U’-invariance, where 7(U’) and 7(U) are the Zariski closures. Then, ¥ is
U-equivariant, so the latter composed map is U-invariant, and it follows that
¢ is also U-invariant. Since ¢ is also W-invariant and (U, W) = G, we obtain
that ¢ : G — H/L(k) is an essentially constant -equivariant map, hence p(I")
has a fixed point on H/L(k). This is impossible since p(I') is Zariski dense in
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H and L is a proper algebraic subgroup of the connected adjoint group H. We
conclude that J is indeed trivial.

Since J is trivial and A < P, we view 7 as a morphism 7 : P —+ H and ¥
as a (P x I')-equivariant map ¥ : G — H(k). In particular, ¥ is A-equivariant
via the homomorphism 7|4, and therefore it must be an initial object for the
category of A-algebraic representations by Lemma 4.4. Once again, Lemma 4.4
implies that 7|4 extends to a homomorphism 7’ : Ng(A) — H(k) for which ¥
is Ng(A)-equivariant, where Ng(A) is the normalizer of A in G.

Note that Ng(A) contains a Weyl element w for A and thus (P, Ng(A4))=G.
Since V is equivariant for both P and Ng(A), using [1, Prop. 5.1] and following
the end of the proof of [1, Thm. 1.3], we deduce that p : I' — H(k) extends to
a continuous homomorphism p: G — H(k). This proves the theorem. O

5. Theorem 1.4 and final remarks

In this section, we adapt the proof of Theorem 1.1 to prove Theorem 1.4,
then make some final remarks and ask some questions related to our main
results.

5.1. The proof of Theorem 1.4. Let M and N be connected, orientable
hyperbolic 3-manifolds of finite volume, and suppose that N is obtained by
Dehn filling on a nonempty subset of the torus cusps of M. If ' = 71 (M) and
A = m(N), the map M — N induced by the filling determines a surjective
homomorphism p : I' —+ A. Since I" and A are naturally lattices in SOy(3,1), we
can consider p as a homomorphism from I" to SOg(3,1) with p(I') isomorphic
to A. Note that p has nontrivial kernel.

If either of M or N is nonarithmetic, then Theorem 1.1 immediately im-
plies that M and N contain only finitely many totally geodesic surfaces. How-
ever, Theorem 1.1 is not applicable with both M and N are arithmetic. Before
giving the proof of Theorem 1.4, we give an example to show that the theorem
is indeed nontrivial.

Ezample 5.1. Let N be the complement in S? of the 3-chain link, which
is also called 63 in the Rolfsen tables [36]. Then N is arithmetic [21, §9.2].
Moreover, N is obtained from trivial Dehn filling on one component of the four
component arithmetic link complement given in [38, Ex. 6.8.10], also known
as L12n2210. See Figure 1. Using symmetries of the link diagrams, one sees
that there are totally geodesic 4-punctured spheres in M that fill to become
totally geodesic 3-punctured spheres in N. Therefore, the collection of totally
geodesic surfaces in M that fill to a totally geodesic surface in N is nonempty.

One can easily find other examples of this nature. We now prove Theo-
rem 1.4.
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N S\ N

Figure 1. The arithmetic links 63 and L12n2210

Proof of Theorem 1.4. Given M and N as in the statement of the theorem,
let p: I' = SOg(3, 1) be the representation defined above. We will prove that if
infinitely many totally geodesic surfaces in N are the images of totally geodesic
surfaces in M, then p must extend to a homomorphism SOg(3,1) — POgy(3,1).
Since p has a nontrivial kernel, this is impossible. We let G denote SO(3,1)
containing I' as a lattice and H denote POy (3, 1) as the target for p. Note that
p has unbounded and Zariski dense image.

To apply Theorem 1.6, we take W = SOg(2,1) and then must produce an
H-representation V' and a W-invariant measure v on the bundle (G x P(V)) /I’
that projects to Haar measure on G/I'. Then Theorem 1.6 implies that p
extends to a representation of GG, which gives the desired contradiction.

As in the proof of Theorem 1.1, we produce this measure by finding an
invariant line bundle over each closed W-orbit in G/T". Let V' be a nontrivial,
faithful, irreducible summand of the third exterior power of so(3,1) with the
adjoint action of H. Let {A;} be Fuchsian subgroups of I' associated with
totally geodesic surfaces of M that remain totally geodesic under Dehn filling.
Then p(A;) is a Fuchsian subgroup of A = p(I'), and hence it is contained in
a subgroup W; of H conjugate to the standard embedding of Isom™ (H?) in
SO00(3,1). Moreover, W; stabilizes a line in V' under the adjoint action, and
the construction of v proceeds exactly as in the proof of Proposition 3.4. Thus
Theorem 1.6 applies and the proof is complete. |

Remark 5.2. We also note that it is frequently the case that a m-injective
surface in a 3-manifold remains mi-injective under Dehn filling (e.g., see [10]).
Therefore, infinitely many totally geodesic surfaces in M may descend to
mi-injective surfaces in N. Our results say that these surfaces are very rarely
totally geodesic.

5.2. Final remarks and questions. We begin by noting that every known
construction of a nonarithmetic hyperbolic n-manifold for n > 4 contains a
totally geodesic hypersurface. Theorem 1.1 implies that the set of such hyper-
surfaces is always finite.
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QUESTION 5.3. For eachn > 4 and 1 < k < n — 1, does there exist a
nonarithmetic hyperbolic n-manifold for which the set of totally geodesic sub-
spaces of codimension k is empty?

Answering this question in the positive will require a genuinely new con-
struction of hyperbolic manifolds. Perhaps more tractable is

QUESTION 5.4. For each m > 1, is there a hyperbolic 3-manifold contain-
ing ezactly m totally geodesic surfaces?!

Finally, we ask about asymptotic properties of our results:

QUESTION 5.5. Let Hy, m(v) be the number of lattices I' < SOg(n, 1) such
that H"/T" contains exactly m totally geodesic hypersurfaces and vol(H" /T") <wv.
What is the growth type of Hy m(v) as a function of v?

Remark 5.6. In part (3) of Corollary 1.3, we note that having infinitely
many totally geodesic hypersurfaces gives a geometric characterization of arith-
meticity in even dimensions. For n # 3,7 odd, there is a similar statement.
In this case, every arithmetic hyperbolic manifold contains maximal totally
geodesic submanifolds of codimension 1 or 2 (see [29]), hence having infin-
itely many such submanifolds again characterizes arithmeticity. There are
arithmetic and nonarithmetic hyperbolic 3-manifolds that contain no totally
geodesic surfaces, so such a characterization is not possible; see [14, §6.1] for
discussion and examples. For n = 7, one must classify the geodesic subman-
ifolds of the arithmetic manifolds arising from triality; for those arithmetic
manifolds not arising from that construction, the situation is the same as for
other odd dimensions greater than 3.
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