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Abstract 
 

The time evolution of purity for an initially localized state of a symmetric 
two-level system coupled to a dissipative bath is investigated using numerically 
exact real-time path integral methods.  With strong system-bath coupling and high 
temperature, the purity decays monotonically to its fully mixed value, with a 
short-time Gaussian behavior which is subsequently followed by exponential 
evolution. However, under low-temperature and weak coupling conditions, a 
substantial recovery of purity is observed.  A simple theoretical analysis reveals 
three contributions that correspond to completely incoherent, eigenstate 
population difference and rate terms.  The last two of these terms can counter the 
early drop of purity and are responsible for its rebound.  These findings caution 
against using purity as a measure of decoherence in the dynamics of quantum 
dissipative systems. 
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 Quantum mechanical coherence is responsible for some of the most intriguing phenomena 
encountered in the microscopic world.  The interference pattern of Young’s double slit experiment, the 
persisting tunneling oscillations in a two-level system and the survival probability recurrences of a 
displaced wavepacket in an anharmonic potential are typical manifestations of quantum coherence in small, 
isolated systems.  These effects arise from delicate quantum phase relations and are easily destroyed by the 
noisy effects of fluctuating polyatomic environments (or a generic “bath”).  Quantum coherence and its 
destruction are of interest not only for achieving a deeper understanding of countless physical and biological 
phenomena, but also in the design for nanoscale devices with a targeted function, e.g. solar energy storage 
and transport or quantum computers. 
 Much effort has been spent on understanding the characteristics of decoherence in quantum systems 
in contact with dissipative environments.  The main paradigm in most studies has been the dissipative two-
level system1 (TLS), which represents the simplest case of the more general system-dissipative bath 
Hamiltonian.2  The coupling to a bath manifests itself as noise, which gradually destroys the delicate 
quantum mechanical phase relationships, quenching the coherent tunneling oscillations of the bare system.  
At low temperature and with weak system-bath coupling the oscillation amplitude of a symmetric TLS 
decreases slowly as time progresses.  The oscillatory dynamics is damped more rapidly with increasing 
temperature and/or system-bath coupling strength. Strongly dissipative environments fully quench the 
tunneling oscillations, typically leading to monotonic population decay and rate dynamics. 
 The idempotence or “purity” of a system’s reduced density matrix (RDM) ( )t , defined as 
 

   2TrQ t t ,                                                               (1) 
 
which is also related to the linear entropy lin 1S Q  , has often been used as a well-defined, basis-
independent measure of decoherence.  The density matrix of an isolated quantum system in a pure state 
corresponds to 1Q  .  If the system and its environment are initially uncorrelated and the system is placed 
in a pure state, 2Tr (0) 1   and the purity is equal to unity.  Over time, interactions with the environment 
introduce entanglement between system and bath states, destroying the purity of the RDM and leading to 

( ) 1Q t  .  In that case the system, in the presence of its environment, is an incoherent mixture of two or 
more quantum states.  The purity is also intimately connected to the behavior of the off-diagonal elements 
of the RDM (the “coherences”), and decoherence of an initially pure quantum system when placed in a 
dissipative environment has been associated with a decrease in purity. 
  Previous work to determine the dynamics of purity in quantum dissipative systems has been largely 
confined to approximate analytical treatments.  Quadratic expansion in time has shown that the early 
dynamics of a quantum system’s linear entropy closely resembles the classical result.3  Perturbative 
expansions about 0t   predict a Gaussian decay with a characteristic coefficient given by the inverse of 
the decoherence time.4-7  The quantitative behavior of purity in system-bath problems remains unexplored, 
owing to the computational challenges of full quantum mechanical treatments in condensed phase 
environments.   
 In this work we use numerically exact real-time path integral methods to follow the time evolution 
of purity in the tunneling dynamics of a TLS coupled to a harmonic bath across a variety of parameter 
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regimes.  Our results reveal a substantial recovery of purity following its initial drop, which can be nearly 
quantitative in the low-temperature, weak coupling regime, and a partial recovery under different 
conditions.  This effect may at first seem counterintuitive.  However, the equilibrium density matrix will 
be dominated by the ground state at sufficiently low temperatures in the regime of weak dissipation.  Not 
surprisingly, the long-time RDM of the TLS closely resembles an almost pure state under such conditions.   
 We focus on the simple case of a symmetric two-level quantum system bilinearly coupled to a bath 
of harmonic oscillators, which clearly displays the interplay between the important, fundamentally quantum 
mechanical phenomenon of tunneling and the decohering effects from an environment.  In the local (or site) 
basis, the symmetric TLS Hamiltonian has the standard form 
 

  TLS
ˆ ˆR L L R xH                                                           (2) 

 
where 2 0   is the tunneling splitting, x  is the Pauli spin operator, and R  and L  are the ‘right’ and 
‘left’ localized states, which are related to the TLS eigenstates 0 1,   (with energy eigenvalues 

0 1,E E     ) through the usual sum and difference combinations, 
 

   0 1
1 1R L , R L
2 2

       .                                           (3) 

 
The TLS is coupled to a bath of harmonic oscillators through the additional term 
 

22
2

bath 2

ˆ ˆ1ˆ ˆ
2 2

j j z
j j j

j j j j

p c
H m q

m m





 
   

 
 

 ,                                                 (4) 

 
where ˆ R R L Lz   .  As is well known, all collective parameters of the bath are contained in the 
spectral density function 
 

    
2

1
2

j
j

j j j

c
J

m
    


  .                                                        (5) 

 

In this work we employ the commonly used Ohmic spectral density with an exponential cutoff, 
  c/1

2J e     
 , which is known1 to produce rich dynamical behaviors.  In this, the TLS-bath 

coupling is quantified by the dimensionless Kondo parameter   and c  is the cutoff frequency. All 
dynamical properties of the system can be obtained from the RDM, 
 

    
ˆ ˆ/ /

bath ˆTr 0iHt iHtt e e    

 
  ,                                                (6) 

 

where , R,L     or 0, 1.   
 For the symmetric TLS, it is easy to show that the purity is bounded by the inequality 1

2 1Q  .  
The minimum value 1

2Q   is associated with the maximally mixed state  1
2 R R L L   , while the 

highest value 1Q   is attained when the RDM corresponds to a pure state.  While the density matrix can 
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be prepared in a pure state at 0t  , evolution in contact with a dissipative environment leads to mixing.  
After a long time, the process reaches equilibrium, thus ˆ ˆ

bathlim ( ) Tr / TrH H

t
t e e 

    

 


  , where 
B1/ k T   is the inverse temperature.                   

 The evolution of the RDM is calculated using the numerically exact quasi-adiabatic propagator 
path integral (QuAPI) methodology,8,9 and (for parameters associated with long memory) the small matrix 
disentanglement of the path integral10,11 (SMatPI) with the blip decomposition12 of the relevant matrices.  
Once converged to the desired accuracy with respect to time step and included memory length, these 
methods produce exact results and allow propagation to long times with effort that scales linearly with the 
number of path integral time steps.  In particular, the SMatPI decomposition eliminates the need for storage 
and manipulation of large QuAPI matrices, facilitating calculations with long memory and multisite 
systems.   
 As is customary, we use a factorized initial condition, sys bathˆ ˆ ˆ(0) (0) (0)    where bathˆ (0)  is the 
Boltzmann operator for the free bath Hamiltonian, given by Eq. (4) with 0jc  .  In all calculations 
presented in the next section the system was initially prepared in the R state, i.e., sysˆ (0) R R  , and the 
purity was followed until equilibrium was reached.  The behavior of purity dynamics during relaxation 
from the excited TLS eigenstate is investigated in separate work.  
 In Figure 1 we show the purity dynamics of this symmetric TLS for four parameter sets: (i) 

c2, , 0.125      , (ii) c0.3, 5 , 1       , (iii) c0.3, 7.5 , 5        and (iv)  
c0.1, 7.5 , 5       .  These are chosen to display a variety of TLS population behaviors, ranging 

from monotonic decay toward equilibrium to weakly damped oscillatory dynamics.  With parameter set (i) 
the TLS is strongly coupled to a slow, high-temperature bath.  The purity is seen to drop monotonically to 
its equilibrium value eq 0.51Q ,  which practically corresponds to a completely mixed state.  The small 
value of the bath cutoff frequency induces long-lasting memory effects which lead to Gaussian purity 
evolution that (as seen from the logarithmic plot shown in the inset of Fig. 1) persists only up to 0.25t  
and is subsequently replaced by exponential decay.  The transition to exponential dynamics occurs even 
earlier with larger values of c .  In parameter set (ii) the TLS interacts with a moderately dissipative 
environment at an intermediate temperature.  In this case the equilibrium RDM is a mixed state with 

eq 0.67Q .  The purity decays to this value nearly monotonically, although it is seen to drop to the slightly 
lower value min 0.63Q  before plateauing.   
 With parameter set (iii) the TLS population exhibits quenched oscillations.  The coupling to the 
bath is again of intermediate strength, but the low temperature prevents a monotonic decay of the 
population.  In this case the purity initially falls to the value min 0.70Q , but subsequently rises to the 
equilibrium value eq 0.81Q .  Last, parameter set (iv) shows the purity dynamics in the case of weakly 
dissipative conditions at a low temperature.  Following an initial drop to about min 0.81Q , the purity 
subsequently recovers, eventually rising to the value eq 0.94Q , which represents an almost pure state.  At 
this low temperature the equilibrium distribution is dominated by the ground state, and since the TLS-bath 
coupling is weak in this case, the projection of the equilibrium density on the TLS subspace results in a 
RDM that closely resembles the TLS ground state.  The nearly complete recovery of purity observed in this 
case follows an oscillatory pattern.   
 While the RDM purity decays monotonically to 0.5 in the high-temperature, strongly dissipative 
regime, its dynamics is not monotonic in the other situations.  At lower temperatures and with weaker 
system-bath coupling, the lowest value the purity reaches is seen to be considerably larger than 0.5.  Most 
interestingly, the initial drop is followed by a rebound, as the RDM evolves toward its long-time equilibrium 
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value.  As seen in Fig. 1, the minimum value reached can be considerably larger than 0.5, and the subsequent 
recovery can be substantial and nearly complete.   
 
 
 

 
 

Fig 1.   Purity of symmetric TLS coupled to a dissipative bath for four sets of 
parameters.  Red: parameter set (i), c2, , 0.125      .  
Green: parameter set (ii), c0.3, 5 , 1       . Blue: parameter 
set (iii), c0.3, 7.5 , 5       .  Black: parameter set (iv), 

0.1  , c 7.5   , 5  .  The inset shows a logarithmic plot for 
parameter set (i).  

 

 

 To understand these behaviors, we express Eq. (1) in terms of the TLS RDM elements, 
 

    
2 22 2

RR LL RL RL( ) ( ) ( ) 2 Re 2 ImQ t t t       .                                     (7) 

 

Next, we rewrite this expression in terms of quantities that have a clear physical meaning.  It is easy to see 
that the real part of the off-diagonal element is related to the difference between the TLS eigenstate 
populations, while the imaginary part is proportional to the time derivative of the site population,13 i.e., 
 

  11 1
RL 00 11 RL RR2 2Re ( ) ( ) ( ) , Im ( ) ( )t t t t t        .                                      (8) 

 
Using these relations, the purity becomes the sum of three terms, 
 

incoh pop-dif t-der( ) ( ) ( ) ( )Q t Q t Q t Q t                                                        (9) 

where 
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 

2 2
incoh RR LL
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pop-dif 00 112

2 21
t-der RR2

( ) ( ) ( )
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( ) ( )

Q t t t

Q t t t

Q t t
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

 

 

 

                                                        (10) 

 The first contribution to Eq. (9), incohQ , is the sum of the squared diagonal elements.  This is a 
completely incoherent contribution which is dominant in the strong-dissipation, high-temperature regime.  
For a localized initial state, RR (0) 1  , incohQ  is initially equal to unity and begins to decrease as soon as 
the site populations change in value.  Eventually, the site populations reach the value 1

2 , thus the sum of 
the squared site populations approaches the maximally mixed value 1

2 .  The second term pop-difQ , the 
eigenstate population difference, vanishes at 0t   as 1

00 11 2(0) (0)   .  As time progresses, population 
begins to transfer from the excited to the ground state, until the two populations attain the Boltzmann 
relation (projected onto the TLS subspace), thus the population difference term rises gradually.   
 The behavior of the third term t-derQ , the square of the instantaneous rate, depends strongly on the 
parameter regime.  This term starts at zero and rises slightly in the overdamped regime characterized by 
monotonic population decay.  However, the oscillatory population evolution typical of low-temperature, 
weakly dissipative conditions causes rapid, large-amplitude oscillations in the rate, which can counter the 
contribution of the first term in Eq. (9) early on, stopping the decay of purity.  The contributions of the three 
components given in Eq. (9) to the purity dynamics for the four parameter sets discussed earlier are seen in 
Figure 2.   
 In the high-temperature, overdamped regime of parameter set (i), the eigenstate population 
difference remains very small because of the Boltzmann factor.  Once the site populations have entered the 
exponential decay regime 1 1

RR 2 2( ) ktt e   , 2 2 21 1
RR LL 2 2( ) ( ) ktt t e      and 1

RR 2( ) ktt ke   .  (These 
forms do not apply to very short times, at which the evolution is Gaussian.)  From these expressions we 
obtain 2 2 21 1 1

2 2 8( ) (1 ) ktQ t k e    , i.e. the purity decays exponentially to the thermodynamic limit 1
2 .  As 

seen in Fig. 2, the purity is dominated by the sum of squared populations at all times in this regime, as the 
rate contribution is also very small in this case.  
 In the moderate-dissipation, intermediate-to-low temperature regime of parameter sets (ii) and (iii), 
the site populations exhibit rapidly damped oscillatory dynamics.  As a result, the sum of the squared 
populations displays a small hump after falling to its minimum value 1

2 , subsequently stabilizing at its 
thermodynamic value. The contribution of the eigenstate population difference is significant at intermediate 
temperatures and even larger at low temperature, gradually increasing the value of purity.  The rate term, 
while not particularly large in this regime, plays an important role at early times by shifting the local 
minimum of the RDM purity to a higher value.   
 The low-temperature, weak coupling regime of parameter set (iv) shows the complex interplay of 
all three contributions.  In this regime the site populations exhibit damped oscillations, which can be 
described approximately by the form 1 1

RR 2 2( ) cos ktt at e   , 1 1
LL 2 2( ) cos ktt at e   , where a  is the 

renormalized tunneling frequency.1  Thus 2 21 1
incoh 2 2( ) cos ktQ t at e  , i.e. the sum of the squared site 

populations shows persistent oscillations, periodically falling to the fully mixed value 1
2 .  The contribution 

of the eigenstate population difference increases steadily over time and is responsible for the nearly 
complete recovery of purity at long times.  The time derivative of the site population has the form 

 1
RR 2( ) cos sin ktt k at a at e    .  Since the eigenstate population difference is small at early times, the 

large, highly oscillatory t-derQ  term is responsible for preventing the fall of purity below the relatively high 
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minimum value observed in this regime.  Overall, we find that the purity in the low-temperature, weakly 
dissipative regime satisfies the inequality  

22 2 2 21 1 1
2 2 16( ) cos cos sinkt ktQ t at e k at a at e       , which 

provides a lower bound.  
 The three contributions to the time evolution of purity in each of the regimes discussed above are 
clearly identified in the numerical results presented in Fig. 2.  
 
 

     

 

     

Fig. 2.   The three contributions to purity for a two-level system.  Red: incoherent term, 
incohQ .  Blue: term related to eigenstate population difference, pop-difQ .  Green: 

term related to the time derivative of the site population, t-derQ .  The black markers 
show the sum of these three contributions, which is identical to the calculated 
purity shown as a black line.  Top left: c2, , 0.125      . Top right: 

c0.3, 5 , 1       . Bottom left: c0.3, 7.5 , 5       .  
Bottom right: c0.1, 7.5 , 5       .   
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 These behaviors have important implications for the use of purity as a measure of decoherence. 
When the system has reached the equilibrium distribution in the presence of its environment, all recurrences 
in its dynamics have ended, and one would say that quantum coherence has been completely quenched.  
However, the loss of coherence at equilibrium does not necessarily imply that the purity has decayed to its 
fully mixed value.  In particular, under low-temperature, weak coupling conditions, the equilibrium purity 
can be almost equal to unity.  Similarly, the transient short-time decrease of purity may not even 
approximately characterize the time length of persisting oscillatory dynamics over which the system 
remains partially coherent. Thus, these findings caution against the use of purity as a measure of quantum 
coherence and its destruction.   
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