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Geometric models reveal behavioural and neural
signatures of transforming experiences into

memories

Andrew C. Heusser®'23, Paxton C. Fitzpatrick®'3® and Jeremy R. Manning ®12<

How do we preserve and distort our ongoing experiences when encoding them into episodic memories? The mental contexts in
which we interpret experiences are often person-specific, even when the experiences themselves are shared. Here we develop a
geometric framework for mathematically characterizing the subjective conceptual content of dynamic naturalistic experiences.
We model experiences and memories as trajectories through word-embedding spaces whose coordinates reflect the universe of
thoughts under consideration. Memory encoding can then be modelled as geometrically preserving or distorting the ‘shape’ of
the original experience. We applied our approach to data collected as participants watched and verbally recounted a television
episode while undergoing functional neuroimaging. Participants' recountings preserved coarse spatial properties (essential
narrative elements) but not fine spatial scale (low-level) details of the episode’s trajectory. We also identified networks of brain

structures sensitive to these trajectory shapes.

hat does it mean to remember something? In traditional

episodic memory experiments (for example, list-learning

or trial-based experiments'?), remembering is often cast
as a discrete, binary operation: each studied item may be separated
from the rest of one’s experience and labelled as having been either
recalled or forgotten. More nuanced studies might incorporate
self-reported confidence measures as a proxy for memory strength,
or ask participants to discriminate between recollecting the (contex-
tual) details of an experience and having a general feeling of famil-
iarity®. Using well-controlled, trial-based experimental designs, the
field has amassed a wealth of information regarding human epi-
sodic memory’. However, there are fundamental properties of the
external world and our memories that trial-based experiments are
not well suited to capture™. First, our experiences and memories are
continuous, rather than discrete—isolating a naturalistic event from
the context in which it occurs can substantially change its meaning.
Second, whether or not the rememberer has precisely reproduced
a specific set of words in describing a given experience is nearly
orthogonal to how well they were actually able to remember it. In
classic (for example, list-learning) memory studies, by contrast, the
number or proportion of exact recalls is often considered to be a
primary metric for assessing the quality of participants’ memories.
Third, one might remember the essence (or a general summary) of
an experience but forget (or neglect to recount) particular low-level
details. Capturing the essence of what happened is often a main goal
of recounting an episodic memory to a listener, whereas the inclu-
sion of specific low-level details is often less pertinent.

How might we formally characterize the essence of an experi-
ence, and whether it has been recovered by the rememberer? And
how might we distinguish an experience’s overarching essence from
its low-level details? One approach is to start by considering some
fundamental properties of the dynamics of our experiences. Each
given moment of an experience tends to derive meaning from sur-
rounding moments, as well as from longer-range temporal associa-
tions’™’. Therefore, the time course describing how an event unfolds

is fundamental to its overall meaning. Further, this hierarchy
formed by our subjective experiences at different timescales defines
a context for each new moment'®"" and has an important role in how
we interpret that moment and remember it later”'”. Our memory
systems can leverage these associations to form predictions that
help guide our behaviours'’. For example, as we navigate the world,
the features of our subjective experiences tend to change gradually
(for example, the room or situation we find ourselves in at any given
moment is strongly temporally autocorrelated), allowing us to form
stable estimates of our current situation and behave accordingly'*".

Occasionally, this gradual drift of our ongoing experience is
punctuated by sudden changes or shifts (for example, when we walk
through a doorway'¢). Previous research suggests that these sharp
transitions (termed event boundaries) help to discretize our experi-
ences (and their mental representations) into events'®*'. The inter-
play between the stable (within-event) and transient (across-event)
temporal dynamics of an experience also provides a potential frame-
work for transforming experiences into memories that distils those
experiences down to their essences. For example, previous work has
shown that event boundaries can influence how we learn sequences
of items'®?!, navigate'” and remember and understand narratives'>*.
This work also suggests a means of distinguishing the essence of an
experience from its low-level details: the overall structure of events
and event transitions reflects how the high-level experience unfolds
(that is, its essence), while subtler event-level properties reflect its
low-level details. Previous research has also implicated a network of
brain regions (including the hippocampus and the medial prefron-
tal cortex) in having a critical role in transforming experiences into
structured and consolidated memories™.

Here we sought to examine how the temporal dynamics of a nat-
uralistic experience were later reflected in participants’ memories.
We also sought to leverage the above conceptual insights into the
distinctions between an experience’s essence and its low-level details
to build models that explicitly quantified these distinctions. We ana-
lysed an open dataset that comprised behavioural and functional
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magnetic resonance imaging (fMRI) data collected as participants
viewed and then verbally recounted an episode of the BBC televi-
sion show Sherlock”. We developed a computational framework for
characterizing the temporal dynamics of the moment-by-moment
content of the episode and of participants’ verbal recalls. Our frame-
work uses topic modelling® to characterize the thematic concep-
tual (semantic) content present in each moment of the episode and
recalls by projecting each moment into a word-embedding space.
We then use hidden Markov models (HMMs)?*>? to discretize this
evolving semantic content into events. In this way, we cast both nat-
uralistic experiences and memories of those experiences as geomet-
ric trajectories through word-embedding space that describe how
they evolve over time. Under this framework, successful remember-
ing entails verbally traversing the content trajectory of the episode,
thereby reproducing the shape (essence) of the original experience.
Our framework captures the episodes essence in the sequence of
geometric coordinates for its events, and its low-level details by
examining its within-event geometric properties.

Comparing the overall shapes of the topic trajectories for the epi-
sode and participants’ recalls reveals which aspects of the episode’s
essence were preserved (or lost) in the translation into memory. We
also develop two metrics for assessing participants’ memories for
low-level details: (1) the precision with which a participant recounts
details about each event, and (2) the distinctiveness of their recall
for each event, relative to other events. We examine how these met-
rics relate to overall memory performance as judged by third-party
human annotators. We also compare and contrast our general
approach to studying memory for naturalistic experiences with
standard metrics for assessing performance on more traditional
memory tasks, such as list learning. Finally, we leverage our frame-
work to identify networks of brain structures whose responses (as
participants watched the episode) reflected the temporal dynamics
of the episode and/or how participants would later recount it.

Results

To characterize the dynamic content of the Sherlock episode and
participants’ subsequent recountings, we used a topic model* to
discover the episode’s latent themes. Topic models take as inputs a
vocabulary of words to consider and a collection of text documents,
and return two output matrices. The first of these is a topics matrix
whose rows are topics (or latent themes) and whose columns cor-
respond to words in the vocabulary. The entries in the topics matrix
reflect how each word in the vocabulary is weighted by each dis-
covered topic. For example, a detective-themed topic might weight
heavily on words such as ‘crime’ and ‘search. The second output is a
topic-proportions matrix, with one row per document and one col-
umn per topic. The topic-proportions matrix describes the mixture
of discovered topics reflected in each document.

Chen et al. collected hand-annotated information about each of
1,000 (manually delineated) time segments spanning the roughly
50 min video used in their study*. Each annotation included a brief
narrative description of what was happening, the location where
the action took place, the names of any characters on the screen,
and other similar details (for a full list of annotated features, see
Methods). We took the union of all unique words (excluding stop
words, such as ‘and,, ‘or’ and ‘but’) across all features from all annota-
tions as the vocabulary for the topic model. We then concatenated
the sets of words across all features contained in overlapping sliding
windows of (up to) 50 annotations, and treated each window as a
single document for the purpose of fitting the topic model. Next, we
fit a topic model with (up to) K= 100 topics to this collection of doc-
uments. We found that 32 unique topics (with non-zero weights)
were sufficient to describe the time-varying content of the episode
(see Methods; Fig. 1 and Supplementary Fig. 2). We note that our
approach is similar in some respects to dynamic topic models”,
in that we sought to characterize how the thematic content of

the episode evolved over time. However, whereas dynamic topic
models are designed to characterize how the properties of col-
lections of documents change over time, our sliding-window
approach enables us to examine the topic dynamics within a single
document (or video). Specifically, our approach yielded (via the
topic-proportions matrix) a single topic vector for each sliding
window of annotations transformed by the topic model. We then
stretched (interpolated) the resulting windows-by-topics matrix to
match the time series of the 1,976 fMRI volumes collected as par-
ticipants viewed the episode.

The 32 topics we found were heavily character focused (that is,
the top-weighted word in each topic was nearly always a character)
and could be roughly divided into themes centred around Sherlock
Holmes (the titular character), John Watson (Sherlock’s close con-
fidant and assistant), supporting characters (for example, Inspector
Lestrade, Sergeant Donovan or SherlocKs brother Mycroft), or
the interactions between various groupings of these characters
(Supplementary Fig. 2). This probably follows from the frequency
with which these terms appeared in the episode annotations. Several
of the identified topics were highly similar, which we hypothesized
might allow us to distinguish between subtle narrative differences if
the distinctions between those overlapping topics were meaningful.
The topic vectors for each timepoint were also sparse, in that only
a small number of topics (typically one or two) tended to be active
at any given timepoint (Fig. 2a). Further, the dynamics of the topic
activations appeared to exhibit persistence (that is, given that a topic
was active in one timepoint, it was likely to be active in the follow-
ing timepoint) along with occasional rapid changes (that is, occa-
sionally topic weights would change abruptly from one timepoint
to the next). These two properties of the topic dynamics may be
seen in the block-diagonal structure of the timepoint-by-timepoint
correlation matrix (Fig. 2b) and reflect the gradual drift and sudden
shifts fundamental to the temporal dynamics of many real-world
experiences, as well as television episodes. Given this observation,
we adapted an approach devised by Baldassano et al.*, and used a
HMM to identify the event boundaries where the topic activations
changed rapidly (that is, the boundaries of the blocks in the tempo-
ral correlation matrix; event boundaries identified by the HMM are
outlined in yellow in Fig. 2b). Part of our model-fitting procedure
required selecting an appropriate number of events into which the
topic trajectory should be segmented. To accomplish this, we used
an optimization procedure that maximized the difference between
the topic weights for timepoints within an event versus timepoints
across multiple events (see Methods). We then created a stable sum-
mary of the content within each episode event by averaging the
topic vectors across the timepoints spanned by each event (Fig. 2¢).

Given that the time-varying content of the episode could be
segmented cleanly into discrete events, we investigated whether
participants’ recalls of the episode also displayed a similar struc-
ture. We applied the same topic model (already trained on the epi-
sode annotations) to each participant’s recalls. Analogously to the
way in which we parsed the time-varying content of the episode,
to obtain similar estimates for each participant’s recall transcript,
we treated each overlapping window of (up to) 10 sentences from
their transcript as a document, and computed the most probable
mix of topics reflected in each timepoint’s sentences. This yielded,
for each participant, a number-of-windows by number-of-topics
topic-proportions matrix that characterized how the topics identi-
fied in the original episode were reflected in the participant’s recalls.
An important feature of our approach is that it allows us to compare
participants’ recalls to events from the original episode, despite the
participants using widely varying language to describe the events,
and their descriptions often diverging in content, quality and quan-
tity from the episode annotations. This ability to match up con-
ceptually related text that differs in specific vocabulary, detail and
length is an important benefit of projecting the episode and recalls
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“Anderson, from where he is casually leaning
against the doorway continues: ‘rache: It's
German for revenge [...]' . While he is speaking,
Sherlock has walked quickly towards the door and
now begins to close it in Anderson’s face...”

“Reporter 1 raises his hand and asks Lestrade:
‘Detective Inspector, how can suicides be linked?'
Lestrade answers: ‘Well[...]. Reporter 1 interrupts
and states: ‘But you can't have serial suicides’..”

“...he turns back to her and asks: ‘hey, um... do you

ever get any free time?’ Anthea smiles while typing

on her phone and sarcastically says: ‘Oh yeah, lots”
[...] The car drives away and John walks across the
pavement to the front door of 221B..”

Episode annotations

“...s0 then we get the press conference and the guy “...80 he’s figuring out all this stuff and then in the “...he says to the woman who is now seated on the

saying that he thinks that these suicides are linked
and then a reporter says but how could suicides be
linked that doesn’'t make any sense..”

P17 recall transcript

Time = TR 265

sherlock, floor, room, crime
scene, lauriston, indoor,
gardens, john, yes

lestrade, donovan, indoor,
room, press, conference, police,
reporter, medium, reporters

65 65

Topic 65 Topic 9

john, medium, anthea, yes, 68 68
indoor, street, baker, sherlock,
outdoor, man

Topic 68

doorway we see Anderson and he’s like oh rache
means it's a German word for revenge but then
Sherlock slams the door in his face..”

left hand side, ‘do you have any free time?’ and she
kinda smirks and says ‘no, does it seem like | have
free time?’ She’s always on her phone. So then he

gets out and is back at 221 Baker Street ..”

Time = TR 1081 Time=TR 1715

I Episode
N Recall

Topic weight

Topic weight Topic weight

Fig. 1| Topic weights in episode and recall content. We used detailed, hand-generated annotations describing each manually identified time segment from
the episode to fit a topic model. Three example frames from the episode (first row) are displayed, along with their descriptions from the corresponding
episode annotation (second row), an example participant’s recall transcript (third row), and image repetition times (TR). We used the topic model (fit to
the episode annotations) to estimate topic vectors for each moment of the episode and each sentence of participants’ recalls. Example topic vectors are
displayed in the bottom row (blue, episode annotations; green, example participant'’s recalls). Three topic dimensions are shown (the highest-weighted
topics for each of the three example scenes), along with the ten highest-weighted words for each topic. Supplementary Fig. 2 provides a full list of the top
10 words from each of the discovered topics. Images are copyright of Hartswood Films Ltd.

into a shared topic space. An example topic-proportions matrix
from one participant’s recalls is shown in Fig. 2d.

Although the example participant’s recall topic-proportions
matrix shows some visual similarity to the episode topic-proportions
matrix, the time-varying topic proportions for the example partici-
pant’s recalls are not as sparse as those for the episode (compare Figs.
2a,d). Similarly, although there do appear to be periods of stability
in the recall topic dynamics (that is, most topics are active or inac-
tive over contiguous blocks of time), the changes in topic activations
that define event boundaries appear less clearly delineated in par-
ticipants’ recalls than in the episode’s annotations. To examine these
patterns in detail, we computed the timepoint-by-timepoint corre-
lation matrix for the example participant’s recall topic-proportions
matrix (Fig. 2e). As in the episode correlation matrix (Fig. 2b),
the example participant’s recall correlation matrix has a strong
block-diagonal structure, indicating that their recalls are discretized
into separated events. We used the same HMM-based optimization
procedure that we had applied to the episode’s topic-proportions
matrix (Methods) to estimate an analogous set of event boundar-
ies in the participants recounting of the episode (outlined in yel-
low). We carried out this analysis on all 17 participants’ recall
topic-proportions matrices (Extended Data Fig. 2).

Two clear patterns emerged from this set of analyses. First,
although every individual participant’s recalls could be segmented
into discrete events (that is, every individual participant’s recall cor-
relation matrix exhibited clear block-diagonal structure; Extended
Data Fig. 2), each participant appeared to have a unique recall
resolution, reflected in the sizes of those blocks. While some
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participants’ recall topic proportions segmented into just a few
events (for example, participant (P)4, P5 and P7), others’ segmented
into many shorter-duration events (for example, P12, P13 and P17).
This suggests that different participants may be recalling the epi-
sode with different levels of detail—that is, some might recount
only high-level essential plot details, whereas others might recount
low-level details instead (or in addition). The second clear pattern
present in every individual participant’s recall correlation matrix was
that, unlike in the episode correlation matrix, there were substantial
off-diagonal correlations. One potential explanation for this find-
ing is that the topic models, trained only on episode annotations,
do not capture topic proportions in participants’ held-out recalls as
accurately. A second possibility is that, whereas each event in the
original episode was (largely) separable from the others (Fig. 2b),
in transforming those separable events into memory, participants
appeared to be integrating across multiple events, blending ele-
ments of previously recalled and not-yet-recalled content into each
newly recalled event®**** (Fig. 2e and Extended Data Fig. 2).

The above results demonstrate that topic models capture the
dynamic conceptual content of the episode and participants’ recalls
of the episode. Further, the episode and recalls exhibit event bound-
aries that can be identified automatically using HMMs to segment
the dynamic content. Next, we investigated whether some cor-
respondence might be made between the specific content of the
events the participants experienced while viewing the episode and
the events they later recalled. We labelled each recall event as match-
ing the episode event with the most similar (that is, most highly cor-
related) topic vector (Fig. 2g and Extended Data Fig. 3). This yielded
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a sequence of presented events from the original episode, and a
(potentially differently ordered) sequence of recalled events for each
participant. Analogous to classic list-learning studies, we can then
examine participants’ recall sequences by asking which events they
tended to recall first (probability of first recall’*-**; Fig. 3a); how par-
ticipants most often transitioned between recalls of the events as
a function of the temporal distance between them (lag-conditional
response probability’; Fig. 3b); and which events they were likely

to remember overall (serial position recall analyses'; Fig. 3¢c). Some
of the patterns we observed appeared to be similar to classic effects
from the list-learning literature. For example, participants had a
higher probability of initiating recall with early events (Fig. 3a) and
a higher probability of transitioning to neighbouring events with an
asymmetric forward bias (Fig. 3b). However, unlike typical obser-
vations in list-learning studies, we did not observe patterns compa-
rable to the primacy or recency serial position effects (Fig. 3c). We
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events, as determined by our model. e, The correlation between distinctiveness and the number of recalled episode events, as determined by our model.

hypothesized that participants might be leveraging meaningful nar-
rative associations and references over long timescales throughout
the episode.

Clustering scores are often used by memory researchers to char-
acterize how people organize their memories of words on a studied
list®. We defined analogous measures to characterize how par-
ticipants organized their memories for episodic events (details in
Methods). Temporal clustering refers to the extent to which partici-
pants group their recall responses according to encoding position.
Opverall, we found that sequentially viewed episode events tended
to appear nearby in participants’ recall-event sequences (cluster-
ing score 0.732+0.033, mean+s.e.m.). Participants with higher
temporal clustering scores tended to exhibit better overall mem-
ory for the episode, according to both hand-counted numbers of
recalled scenes from the episode reported by Chen et al.* (Pearson’s
r(15)=0.49, P=0.046, 95% confidence interval (CI)=[0.25,0.76])
and the numbers of episode events that best matched at least one
recall event (that is, model-estimated number of events recalled;
Pearson’s r(15)=0.59, P=0.013, 95% CI=[0.31,0.80]). Semantic
clustering measures the extent to which participants cluster their
recall responses according to semantic similarity’*. We found that
participants tended to recall semantically similar episode events
together (clustering score 0.650+0.032), and that semantic clus-
tering scores were also related to both hand-counted (Pearsons
r(15)=0.65, P=0.004, 95% CI=[0.31,0.85]) and model-estimated
(Pearson’s r(15)=0.58, P=0.015, 95% CI=[0.10,0.83]) numbers of
recalled events.

The above analyses illustrate how our framework for characteriz-
ing the dynamic conceptual content of naturalistic episodes enables
us to carry out analyses that have traditionally been applied to much
simpler list-learning paradigms. However, perhaps the most inter-
esting aspects of memory for naturalistic episodes are those that
have no list-learning analogues. The nuances of how one’s memory
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for an event might capture some details, yet distort or neglect oth-
ers, is central to how we use our memory systems in daily life. Yet,
when researchers study memory in highly simplified paradigms,
those nuances are not typically observable. We next developed two
novel, continuous metrics, termed ‘precision’ and ‘distinctiveness’
aimed at characterizing distortions in the conceptual content of
individual recall events, and the conceptual overlap between how
people described different events.

Precision is intended to capture the completeness of recall—
how fully the presented content was recapitulated in a participant’s
recounting. We define a recall event’s precision as the maximum
correlation between the topic proportions of that recall event and
any episode event (Fig. 4). In other words, given that a recall event
best matches a particular episode event, more precisely recalled
events overlap more strongly with the conceptual content of the
original episode event. When a given event is assigned a blend of
several topics, as is often the case (Fig. 2), a high precision score
requires recapitulating the relative topic proportions during recall.

Distinctiveness is intended to capture the specificity of recall. In
other words, distinctiveness quantifies the extent to which a given
recall event reflects the most similar episode event over and above
other episode events. Intuitively, distinctiveness is like a normalized
variant of our precision metric. Whereas precision measures only
how much detail about an event was captured in someone’s recall,
distinctiveness penalizes details that also pertain to other episode
events. We define the distinctiveness of an event’s recall as its pre-
cision expressed in standard deviation units with respect to other
episode events. Specifically, for a given recall event, we compute the
correlation between its topic vector and that of each episode event.
This yields a distribution of correlation coefficients (one per epi-
sode event). We subtract the mean and divide by the standard devia-
tion of this distribution to obtain a z-score for each coefficient. The
maximum value in this distribution (which, by definition, belongs
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to the episode event that best matches the given recall event) is that
recall event’s distinctiveness score. In this way, recall events that
match one episode event far better than all other episode events will
receive a high distinctiveness score. By contrast, a recall event that
matches all episode events roughly equally will receive a compara-
tively low distinctiveness score.

In addition to examining how precisely and distinctively par-
ticipants recalled individual events, these metrics can also be used
to summarize each participant’s performance by averaging across
a participant’s event-wise precision or distinctiveness scores. This
enables us to quantify how precisely a participant tended to recall
subtle within-event details, as well as how specific (distinctive) those
details were to individual events from the episode. Participants’
average precision and distinctiveness scores were strongly cor-
related (r(15)=0.90, P<0.001, 95% CI=[0.66, 0.96]). This indi-
cates that participants who tended to precisely recount low-level
details of episode events also tended to do so in an event-specific
way (for example, as opposed to detailing recurring themes that
were present in most or all episode events; this behaviour would
have resulted in high precision but low distinctiveness). We found
that, across participants, higher precision scores were positively
correlated with the numbers of both model-estimated events
(r(15)=0.90, P<0.001, 95% CI=[0.54, 0.96]) and hand-annotated
scenes (r(15)=0.60, P=0.010, 95% CI=[0.02, 0.83]) that partici-
pants recalled. Participants’ average distinctiveness scores were also
correlated with their numbers of model-estimated recalled events
(r(15)=0.71, P=0.001, 95% CI=[—-0.07, 0.90]) and marginally
significantly correlated with their numbers of hand-annotated
(r(15)=0.45, P=0.068, 95% CI=[—0.21, 0.79]).

Examining individual recalls of the same episode event can
provide insights into how the above precision and distinctiveness
scores may be used to characterize similarities and differences in
how different people describe the same shared experience. In Fig. 5,
we compare recalls for the same episode event from the participants
with the highest (P17) and lowest (P6) precision scores. From the
HMM-identified episode event boundaries, we recovered the set of
annotations describing the content of a single episode event (event
21; Fig. 5¢), and divided them into different colour-coded sections
for each action or feature described. Next, we used an analogous
approach to identify the set of sentences comprising the correspond-
ing recall event from each of the two example participants (Fig. 5d).
We then coloured all words describing actions and features in the
transcripts shown in Fig. 5d according to the colour-coded annota-
tions in Fig. 5¢c. Visual comparison of these example recalls reveals
that the more precise recall captures more of the episode event’s
content, and captures it in greater detail.

Figure 5 also illustrates the differences between high and low
distinctiveness scores. We extracted the set of sentences compris-
ing the most distinctive (P9) and least distinctive (P6) recall events
corresponding to the example episode event shown in Fig. 5¢ (event
21). We also extracted the annotations for all episode events whose
content these participants’ single recall events touched on. We
assigned each episode event a unique colour (Fig. 5¢), and coloured
each recalled sentence (Fig. 5f) according to the episode events they

best matched. Visual inspection of Fig. 5f reveals that the content
of the most distinctive recall is tightly concentrated around event
21, whereas the least distinctive recall incorporates content from a
much wider range of episode events.

The preceding analyses sought to characterize how participants’
recountings of individual episode events captured the low-level
details of each event. Next, we sought to characterize how par-
ticipants’ recountings of the full episode captured its high-level
essence—that is, the shape of the episodes trajectory through
word-embedding (topic) space. To visualize the essence of the
episode and each participant’s recall trajectory®, we projected the
topic-proportions matrices for the episode and recalls onto a shared
two-dimensional space using uniform manifold approximation
and projection (UMAP)*. In this lower-dimensional space, each
point represents a single episode or recall event, and the distances
between the points reflect the distances between the events’ associ-
ated topic vectors (Fig. 6). In other words, events that are nearer to
each other in this space are more semantically similar, and those
that are farther apart are are less so.

Visual inspection of the episode and recall topic trajectories
reveals a striking pattern. First, the topic trajectory of the episode
(which reflects its dynamic content; Fig. 6a) is captured nearly per-
fectly by the averaged topic trajectories of participants’ recalls (Fig.
6b). To assess the consistency of these recall trajectories across par-
ticipants, we asked: given that a participant’s recall trajectory had
entered a particular location in the reduced topic space, could the
position of their next recalled event be predicted reliably? For each
location in the reduced topic space, we computed the set of line
segments connecting successively recalled events (across all par-
ticipants) that intersected that location (see Methods and Extended
Data Fig. 1). We then computed (for each location) the distribution
of angles formed by the lines defined by those line segments and a
fixed reference line (the x-axis). Rayleigh tests revealed the set of
locations in topic space at which these across-participant distribu-
tions exhibited reliable peaks (blue arrows in Fig. 6b reflect signifi-
cant peaks at p<0.05, corrected). We observed that the locations
traversed by nearly the entire episode trajectory exhibited such
peaks. In other words, participants’ recalls exhibited similar trajec-
tories to each other that also matched the trajectory of the origi-
nal episode (Fig. 6¢). This is especially notable when considering
the fact that the number of HMM-identified recall events (dots in
Fig. 6¢) varied considerably across people, and that every partici-
pant used different words to describe what they had remembered
happening in the episode. Differences in the numbers of recall
events appear in participants’ trajectories as differences in the sam-
pling resolution along the trajectory. We note that this framework
also provides a means of disentangling classic proportion-recalled
measures (that is, the proportion of episode events described in
participants” recalls) from participants’ abilities to recapitulate the
episode’s essence (that is, the similarity between the shapes of the
original episode trajectory and that defined by each participant’s
recounting of the episode).

In addition to enabling us to visualize the episode’s high-level
essence, describing the episode as a geometric trajectory also

>
>

Fig. 5 | Precision reflects the completeness of recall, whereas distinctiveness reflects recall specificity. a, Recall precision by episode event. Grey

violin plots display kernel density estimates for the distribution of recall precision scores for a single episode event. Coloured dots within each violin plot
represent individual participants' recall precisions for the given event. b, Recall distinctiveness by episode event, analogous to a. ¢, The set of ‘narrative
details' episode annotations?®, comprising an example episode event (22) identified by the HMM. Each action or feature is highlighted in a different colour.
d, Sentences comprising the most precise (P17) and least precise (P6) participants’ recalls of episode event 21. Descriptions of specific actions or features
reflecting those highlighted in b are highlighted in the corresponding colour. The text highlighted in grey denotes a (rare) false recall. The unhighlighted
text denotes correctly recalled information about other episode events. e, The sets of ‘narrative details' episode annotations” for scenes, comprising
episode events described by the example participants in f. Each event's text is highlighted in a different colour. f, The sentences comprising the most
distinctive (P9) and least distinctive (P6) participants’ recalls of episode event 21. Sections of recall describing each episode event in e are highlighted with

the corresponding colour.
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enables us to drill down to individual words and quantify how this, we next asked whether the events that were generally remem-
each word relates to the memorability of each event. This provides  bered precisely or imprecisely tended to reflect particular content.
another approach to examining participants’ recall for low-level Because our analysis framework projects the dynamic episode con-
details beyond the precision and distinctiveness measures we tent and participants’ recalls into a shared space, and because the
defined above. The results displayed in Figs. 3c and 5a suggest dimensions of that space represent topics (which are, in turn, sets
that certain events were remembered better than others. Given of weights over known words in the vocabulary), we are able to
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Episode event

Episode annotations

Donovan turns around toward John and calls out to John: “Stay away
from Sherlock Holmes". John watches her go, then looks around for a
moment. John turns and eyes the distance he has to go to get to the main
road. John begins to limp down the road. He is looking up toward his left.
The sound of a telephone ringing is heard and John stops walking. John
turns to where the sound is coming from. It is from a public telephone in
a red booth. He looks at it for a few seconds. John looks down at his
watch, shakes his head and continues down the road. A view of the tele-
phone booth. It stops ri il 4

This was uptoher.So,

i aiay,But then she cals out to i, How do you know Sherlock? And he' ke, just met him. He's no my fiend. And shes ke wellstay away from him,
because he's dangerous. She tells Watson that she thinks he's  psychv, she thinks Sherlockis a psychopath. gets off on these murder

and figuring stuff out, and that, while none of them have been linked to him, she thinks that eventually they're gonna find one of these bodies and it's, he
woulda, he's gonna have been the one that put it there. So then we see, right, kinda like across the street from the building where that lady was found dead,
there wa: And it was ringing. hears it ringing but che it.So then he
justends up walking,

and the guys says Do you see this camera. 5o he looks up, and, the camera,
sothen we see from the camera’s view, And then the camera pans over to the street. And then the person on
the phone says, Do you see the camera across the street? And then we see th i - We 's right. And the
quy asks Do you see the camera. And 50 Watson notices all these cameras. And we get a shot of, in each corner of the screen, a view of the street where Watson
is. 5o then the guy says, ok there's gonna be a car, i’s gonna pick you up, do you understand the situation you're in? So get in the car, t's gonna pick you up. So.

Most precise (P17)

then Watson understands the situation he's in and he gets in the car. There's a man that open the door for him.

But the bag disappears, he figures it is pink just like her suit, her sportcoat. He asks Watson to examine the body and Watson says it looks like strangling or

asphyxiation, she doesn't seem drunk. Oh and before the show we see the same pills in a container on the floor and we've just seen a woman's hand reaching

down for them but we did not see the woman. So we had some advanced warning of this additional death. Sherlock ends up kind of running out of the room

e has a eureka moment about the first mistake that the-frs o alhe sas h thinksthey are murders not suicides, that they havea seral ileron thelr hands,

and he has  cureka moment,he gtsreslly caught up and excited,and he uns off o find the s of the building

tive earlier h dacab. And bout getting too close to herlock doesn't have any
h

fvlendsand is kind of

of she hints at the possibility that some day Sherlock might be committing the crimes because of his psychopathic tendencies. Watson ends up not calling a

y 9, hears another public phone ring, keeps walking, but thenwhenathird onerings

and then tells him to get in the car. He gets taken away. In the car he talks to a woman

who s transfixed by her cell phone. He asks what her name is and she gives him a fake name, He asks where are they going or he realizes he isn't going to get

any information, it all very unclear. He ends up in a clandestine warehouse type thing and finds himself talking to a man who refers to himself as the closest

thing to a friend that Sherlock has which is an enemy. This man says he considers himself to be Sherlock's arch enemy. He offers Watson money to spy and

provide information on Sherlock's activities. Watson refuses, not because he feels loyal to Sherlock, he just doesn't want to take the man up on his offer. The
man then asks Watson to hold out his left hand and some how knows that Watson usually has a tremor in his left hand from his wartime experiences.

Least precise (P6)

Episode annotations

Event 16

Event 17

Event 18

Most distinctive (P9)

Least distinctive (P6)
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Video events

Recalled events

P13 P14 P15

Fig. 6 | Trajectories through topic space capture the dynamic content of the episode and recalls. a-c, The topic-proportions matrices have been
projected onto a shared two-dimensional space using UMAP. a, The two-dimensional topic trajectory taken by the episode of Sherlock. Each dot indicates
an event identified using the HMM (see Methods). Dot colours denote the order of the events (early events are in red, later events are in blue), and the
connecting lines indicate the transitions between successive events. b, The average two-dimensional trajectory captured by participants’ recall sequences,
with the same format and colouring as the trajectory in a. To compute the event positions, we matched each recalled event with an event from the original
episode (see Results), and then we averaged the positions of all events with the same label. Arrows reflect the average transition direction through topic
space taken by any participants whose trajectories crossed that part of topic space; blue denotes reliable agreement across participants as determined

by a Rayleigh test (P<0.05, corrected). Additional detail are provided in Methods and Extended Data Fig. 1. ¢, The recall topic trajectories (grey) taken by
each individual participant (P1-P17). The episode’s trajectory is shown in black for reference. Here, events (dots) are coloured by their matched episode

event in a.

recover the weighted combination of words that make up any point
(that is, topic vector) in this space. We first computed the average
precision with which participants recalled each of the 30 episode
events (Fig. 7a; note that this result is analogous to a serial posi-
tion curve created from our precision metric). We then computed a
weighted average of the topic vectors for each episode event, where
the weights reflected how precisely each event was recalled. To visu-
alize the result, we created a Wordle image (https://zenodo.org/
record/1322068), in which words weighted more heavily by more
precisely remembered topics appear in a larger font (Fig. 7b, green
box). Across the full episode, content that weighted heavily on top-
ics and words central to the major foci of the episode (for example,
the names of the two main characters, ‘Sherlock’ and ‘John, and the
address of a major recurring location, 221B Baker Street’) was best
remembered. An analogous analysis revealed which themes were

less precisely remembered. Here, in computing the weighted aver-
age over events' topic vectors, we weighted each event in inverse
proportion to its average precision (Fig. 7b, red box). The least pre-
cisely remembered episode content reflected information that was
extraneous to the episode’s essence, such as the proper names of rel-
atively minor characters (for example, ‘Mike, ‘Molly’ and ‘Lestrade’)
and locations (for example, ‘St Bartholomew’s Hospital’).

A similar result emerged from assessing the topic vectors for
individual episode and recall events (Fig. 7c). Here, for each of the
three most and least precisely remembered episode events, we have
constructed two Wordles: one from the topic vector for the origi-
nal episode event (left) and a second from the average recall topic
vector for that event (right). The three most precisely remembered
events (circled in green) correspond to scenes integral to the cen-
tral plotline: a mysterious figure spying on John in a phone booth;
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Fig. 7 | Language used in the most and least precisely remembered events. a, Average precision (episode event-recall event topic vector correlation) across
participants for each episode event. Here we defined each episode event's precision for each participant as the correlation between its topic vector and the
most-correlated recall event's topic vector from that participant. Error bars denote bootstrap-derived across-participant 95% confidence intervals. The stars
denote the three most (green) and least (red) precisely remembered events. b, Wordles comprising the top 200 highest-weighted words reflected in the
weighted-average topic vector across episode events. Green box: episode events were weighted by their precision (a). Red box: episode events were weighted
by the inverse of their precision. ¢, The set of all episode and recall events is projected onto the two-dimensional space derived in Fig. 6. The dots outlined in
black denote episode events (dot size is proportional to each event's average precision). The dots without black outlines denote individual recall events from
each participant. All dots are coloured using the same scheme as in Fig. 6a. Wordles for several example events are displayed (green, the three most precisely
remembered events; red, the three least precisely remembered events). In each circular Wordle, the left side displays words associated with the topic vector
for the episode event, and the right side displays words associated with the (average) recall-event topic vector, across all recall events matched to the given

episode event.

John meeting Sherlock at Baker St. to discuss the murders; and
Sherlock laying a trap to catch the killer. Meanwhile, the least pre-
cisely remembered events (circled in red) reflect scenes that com-
prise minor plot points: a video of singing cartoon characters that
participants viewed in an introductory clip before the main episode;
John asking Molly about Sherlock’s habit of over-analysing people;
and Sherlock noticing evidence of Anderson’s and Donovan’s affair.

The results thus far inform us about which aspects of the
dynamic content in the episode participants watched were pre-
served or altered in participants’ memories. We next carried out a
series of analyses aimed at understanding which brain structures
might facilitate these preservations and transformations between
the participants’ shared experience of watching the episode and
their subsequent memories of the episode. In the first analysis,
we sought to identify brain structures that were sensitive to the
dynamic unfolding of the episode’s content, as characterized by its
topic trajectory. We used a searchlight procedure to identify clusters

NATURE HUMAN BEHAVIOUR | www.nature.com/nathumbehav

of voxels whose activity patterns displayed a proximal temporal cor-
relation structure (as participants watched the episode) matching
that of the original episode’s topic proportions (Fig. 8a; see Methods
for additional details). In a second analysis, we sought to identify
brain structures whose responses (during episode viewing) reflected
how each participant would later structure their recounting of the
episode. We used a searchlight procedure to identify clusters of vox-
els whose proximal temporal correlation matrices matched that of
the topic-proportions matrix for each participant’s recall transcript
(Figs. 8b; see Methods for additional details). To ensure our search-
light procedure identified regions specifically sensitive to the tem-
poral structure of the episode or recalls (that is, rather than those
with a temporal autocorrelation length similar to that of the epi-
sode and recalls), we performed a phase shift-based permutation
correction (see Methods). As shown in Fig. 8¢, the episode-driven
searchlight analysis revealed a distributed network of regions
that may play a role in processing information relevant to the
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Fig. 8 | Brain structures that underlie the transformation of experience into memory. a, We isolated the proximal diagonals from the upper triangle of

the episode correlation matrix and applied this same diagonal mask to the voxel response correlation matrix for each cube of voxels in the brain. We then
searched for brain regions whose activation time series consistently exhibited a similar proximal correlational structure to the episode model, across
participants. b, We used dynamic time warping® to align each participant's recall time series to the TR time series of the episode. We then computed

the temporal correlation matrix of each participant’s warped recalls. Next, we applied the same diagonal mask used in a to isolate the proximal temporal
correlations and searched for brain regions whose activation time series for each participant consistently exhibited a similar proximal correlational
structure to that participant’s recalls. ¢, We identified a network of regions sensitive to the narrative structure of participants’ ongoing experience. The map
shown is thresholded at P< 0.05, corrected. The top ten Neurosynth terms displayed in the panel were computed using the unthresholded map. d, We also
identified a network of regions sensitive to how individuals would later structure the episode’s content in their recalls. The map shown is thresholded at
P<0.05, corrected. The top ten Neurosynth terms displayed in the panel were computed using the unthresholded map.

narrative structure of the episode. The recall-driven searchlight
analysis revealed a second network of regions (Fig. 8d) that may
facilitate a person-specific transformation of one’s experience into
memory. In identifying regions whose responses to ongoing experi-
ences reflect how those experiences will be remembered later, this
latter analysis extends classic subsequent memory effect analyses”
to the domain of naturalistic experiences.

The searchlight analyses described above yielded two distrib-
uted networks of brain regions whose activity time courses tracked
with the temporal structure of the episode (Fig. 8c) or participants’
subsequent recalls (Fig. 8d). We next sought to gain greater insight
into the structures and functional networks our results reflected.
To accomplish this, we performed an additional, exploratory analy-
sis using Neurosynth®. Given an arbitrary statistical map as input,
Neurosynth performs a massive automated meta-analysis, return-
ing a frequency-ranked list of terms used in neuroimaging papers
that report similar statistical maps. We ran Neurosynth on the
(unthresholded) permutation-corrected maps for the episode- and
recall-driven searchlight analyses. The top ten terms with maxi-
mally similar meta-analysis images identified by Neurosynth are
shown in Fig. 8.

Discussion

Explicitly modelling the dynamic content of a naturalistic stimu-
lus and participants’ memories enabled us to connect the present
study of naturalistic recall with an extensive previous literature that
has used list-learning paradigms to study memory*, as in Fig. 3. We
found some similarities between how participants in the present

study recounted a television episode and how participants typically
recall memorized random word lists. However, our broader claim is
that word lists miss out on fundamental aspects of naturalistic mem-
ory that are more like the sort of memory we rely on in everyday life.
For example, there are no random word-list analogues of charac-
ter interactions, conceptual dependencies between temporally dis-
tant episode events, the sense of solving a mystery that pervades
the Sherlock episode, or the myriad other features of the episode
that convey deep meaning and capture interest. Nevertheless, each
of these properties affects how people process and engage with the
episode as they are watching it and how they remember it later. The
overarching goal of the present study is to characterize how the
rich dynamics of the episode affect the rich behavioural and neural
dynamics of how people remember it.

Our work casts remembering as reproducing (behaviourally and
neurally) the topic trajectory or shape of an experience, thereby
drawing implicit analogies between mentally navigating through
word-embedding spaces and physically navigating through spatial
environments®~*'. When we characterized memory for a television
episode using this framework, we found that every participant’s
recounting of the episode recapitulated the low spatial frequency
details of the shape of its trajectory through topic space (Fig. 6). We
termed this narrative scaffolding the episode’s essence. Where par-
ticipants’ behaviours varied most was in their tendencies to recount
specific low-level details from each episode event. Geometrically, this
appears as high spatial frequency distortions in participants’ recall
trajectories relative to the trajectory of the original episode (Fig. 7).
We developed metrics to characterize the precision (recovery

NATURE HUMAN BEHAVIOUR | www.nature.com/nathumbehav
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of any and all event-level information) and distinctiveness (recovery
of event-specific information). We also used word cloud visualiza-
tions to interpret the details of these event-level distortions.

The neural analyses we carried out (Fig. 8) also leveraged our
geometric framework for characterizing the shapes of the episode
and participants’ recountings. We identified one network of regions
whose responses tracked with temporal correlations in the concep-
tual content of the episode (as quantified by topic models applied
to a set of annotations about the episode). This network included
orbitofrontal cortex, ventromedial prefrontal cortex, and striatum,
among others. As reviewed by Ranganath and Ritchey"’, several of
these regions are members of the anterior temporal system, which
has been implicated in assessing and processing the familiarity
of ongoing experiences, emotions, social cognition and reward.
A second network that we identified tracked with temporal cor-
relations in the idiosyncratic conceptual content of participants’
subsequent recountings of the episode. This network included
occipital cortex, extrastriate cortex, fusiform gyrus, and the pre-
cuneus. Several of these regions are members of the posterior
medial system'’, which has been implicated in matching incoming
cues about the current situation to internally maintained situation
models that specify the parameters and expectations inherent to
the current situation'*". Together, our results support the notion
that these two (partially overlapping) networks work in coordina-
tion to make sense of our ongoing experiences, distort them in a
way that links them with our prior knowledge and experiences,
and encodes those distorted representations into memory for our
later use. Our work also provides a potential framework for model-
ling and elucidating memory schemas—that is, cognitive abstrac-
tions that may be applied to multiple related experiences**. For
example, the event-level geometric scaffolding of an experience
(for example, Fig. 6a) might reflect its underlying schema, and
experiences that share similar schemas might have similar shapes.
This could also help explain how brain structures including the
ventromedial prefrontal cortex* (Fig. 8) might acquire or apply
schema knowledge across different experiences (that is, by learn-
ing patterns in the schema’s shape).

Our general approach draws inspiration from previous work
aimed at elucidating the neural and behavioural underpinnings
of how we process dynamic naturalistic experiences and remem-
ber them later. Our approach to identifying neural responses to
naturalistic stimuli (including experiences) entails building an
explicit model of the stimulus dynamics and searching for brain
regions whose responses are consistent with the model*-*’. Building
an explicit model of these dynamics also enables us to match up
different people’s recountings of a common shared experience,
despite individual differences®. In previous work, a series of stud-
ies from Uri Hasson’s group”***** has presented a clever alter-
native approach: rather than building an explicit stimulus model,
these studies instead search for brain responses to the stimulus
that are reliably similar across individuals. Inter-subject correlation
and inter-subject functional connectivity analyses effectively treat
other people’s brain responses to the stimulus as a model of how its
features change over time®. These purely brain-driven approaches
are well suited to identifying which brain structures exhibit simi-
lar stimulus-driven responses across individuals. Further, because
neural response dynamics are observed data (rather than model
approximations), such approaches do not require a detailed under-
standing of which stimulus properties or features might be driving
the observed responses. However, this also means that the specific
stimulus features driving those responses are typically opaque to the
researcher. Our approach is complementary. By explicitly model-
ling the stimulus dynamics, we are able to relate specific stimulus
features to behavioural and neural dynamics. However, when our
model fails to accurately capture the stimulus dynamics that are
truly driving behavioural and neural responses, our approach
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necessarily yields an incomplete characterization of the neural basis
of the processes we are studying.

Other recent work has used HMMs to discover latent event
structure in neural responses to naturalistic stimuli*’. By applying
HMMs to our explicit models of stimulus and memory dynam-
ics, we gain a more direct understanding of those state dynamics.
For example, we found that although the events comprising each
participant’s recalls recapitulated the episode’s essence, participants
differed in the resolution of their recounting of low-level details.
In turn, these individual behavioural differences were reflected in
differences in neural activity dynamics as participants watched the
television episode.

Our approach also draws inspiration from the growing field of
word-embedding models. The topic models* we used to embed
text from the episode annotations and participants’ recall tran-
scripts are just one of many models that have been studied in an
extensive literature. The earliest approaches to word embedding,
including latent semantic analysis*, used word co-occurrence sta-
tistics (that is, how often pairs of words occur in the same docu-
ments contained in the corpus) to derive a unique feature vector
for each word. The feature vectors are constructed so that words
that co-occur more frequently have feature vectors that are closer
(in Euclidean distance). Topic models are essentially an extension
of those early models, in that they attempt to explicitly model the
underlying causes of word co-occurrences by automatically identi-
fying the set of themes or topics reflected across the documents in
the corpus. More recent work on these types of semantic models,
including word2vec®, the Universal Sentence Encoder™ and gener-
ative pre-trained transformers (for example, GPT-2°° and GTP-3*)
use deep neural networks to attempt to identify the deeper con-
ceptual representations underlying each word. Despite the growing
popularity of these sophisticated deep learning-based embedding
models, we chose to prioritize interpretability of the embedding
dimensions (for example, Fig. 7) over raw performance (for exam-
ple, with respect to some predefined benchmark). Nevertheless, we
note that our general framework is, in principle, robust to the spe-
cific choice of language model as well as other aspects of our com-
putational pipeline. For example, the word-embedding model, time
series segmentation model and the episode-recall matching func-
tion could each be customized to suit a particular question space
or application. Indeed, for some questions, interpretability of the
embeddings may not be a priority, and thus other text embedding
approaches (including the deep learning-based models described
above) may be preferable. Further work will be needed to explore
the influence of particular models on our framework’s predictions
and performance.

Speculatively, our work may have broad implications for how we
characterize and assess memory in real-world settings, such as the
classroom or physicians office. For example, the most commonly
used classroom evaluation tools involve simply computing the pro-
portion of correctly answered exam questions. Our work suggests
that this approach is only loosely related to what educators might
really want to measure: how well did the students understand the
key ideas presented in the course? Under this typical framework
of assessment, the same exam score of 50% could be ascribed to
two very different students: one who attended to the full course
but struggled to learn more than a broad overview of the material,
and one who attended to only half of the course but understood the
attended material perfectly. Instead, one could apply our computa-
tional framework to build explicit dynamic content models of the
course material and exam questions. This approach might provide a
more nuanced and specific view into which aspects of the material
students had learned well (or poorly). In clinical settings, memory
measures that incorporate such explicit content models might also
provide more direct evaluations of patients’ memories, and of doc-
tor—patient interactions.
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Methods

Paradigm and data collection. Data were collected by Chen et al.”. In brief,
participants (n=22) viewed the first 48 min of ‘A Study in Pink] the first episode
of the BBC television show Sherlock, while fMRI volumes were collected
(TR=1,500ms). Participants were pre-screened to ensure they had never seen any
episode of the show before. The stimulus was divided into a 23 min (946 TR) and
a25min (1030 TR) segment to mitigate technical issues related to the scanner.
After finishing the clip, participants were instructed to “describe what they recalled
of the [episode] in as much detail as they could, to try to recount events in the
original order they were viewed in, and to speak for at least 10 min if possible,

but that longer was better. They were told that completeness and detail were

more important than temporal order, and that if at any point they realized they
had missed something, to return to it. Participants were then allowed to speak

for as long as they wished, and verbally indicated when they were finished (e.g.,
‘Tm done’)”*. Five participants were dropped from the original dataset due to
excessive head motion (2 participants), insufficient recall length (2 participants) or
falling asleep during stimulus viewing (1 participant), resulting in a final sample
size of n=17. For additional details about the testing procedures and scanning
parameters, see ref. ». The testing protocol was approved by Princeton University’s
Institutional Review Board.

After preprocessing the fMRI data and warping the images into a standard
(3 mm?® MNI) space, the voxel activations were given z-scores (within voxel) and
spatially smoothed using a 6 mm (full width at half maximum) Gaussian kernel.
The fMRI data were also cropped so that all episode-viewing data were aligned
across participants. This included a constant 3 TR (4.5s) shift to account for the
lag in the haemodynamic response. All of these preprocessing steps followed Chen
et al., where additional details may be found®*.

The video stimulus was divided into 1,000 fine-grained time segments and
annotated by an independent coder. For each of these 1,000 annotations, the
following information was recorded: a brief narrative description of what was
happening, the location where the time segment took place, whether that location
was indoors or outdoors, the names of all characters on-screen, the name(s) of the
character(s) in focus in the shot, the name(s) of the character(s) currently speaking,
the camera angle of the shot, a transcription of any text appearing on-screen, and
whether or not there was music present in the background. Each time segment was
also tagged with its onset and offset time, in both seconds and TRs.

Statistics. All statistical tests performed in the behavioural analyses were
two-sided. All statistical tests performed in the neural data analyses were
two-sided, except for the permutation-based thresholding, which was one-sided. In
this case, we were specifically interested in identifying voxels whose activation time
series reflected the temporal structure of the episode and recall topic-proportions
matrices to a greater extent than that of the phase-shifted matrices. The 95%
confidence intervals we reported for each correlation were estimated by generating
10,000 bootstrap distributions of correlation coefficients by sampling (with
replacement) from the observed data.

Modelling the dynamic content of the episode and recall transcripts. Topic
modelling. The input to the topic model that we trained to characterize the
dynamic content of the episode comprised 998 hand-generated annotations of
short (mean 2.96s) time segments spanning the video clip (Chen et al. generated
1,000 annotations in total*’; we removed two annotations referring to a break
between the first and second scan sessions, during which no fMRI data were
collected). We concatenated the text for all of the annotated features within each
segment, creating a ‘bag of words’ describing its content, and performed some
minor preprocessing (for example, stemming possessive nouns and removing
punctuation). We then reorganized the text descriptions into overlapping sliding
windows spanning (up to) 50 annotations each. In other words, we estimated the
context for each annotated segment using the text descriptions of the preceding 25
annotations, the present annotations, and the following 24 annotations. To model
the context for annotations near the beginning of the episode (that is, within 25 of
the beginning or end), we created overlapping sliding windows that grew in size
from one annotation to the full length. We also tapered the sliding-window lengths
at the end of the episode, whereby time segments within fewer than 24 annotations
of the end of the episode were assigned sliding windows that extended to the end of
the episode. This procedure ensured that each annotation’s content was represented
in the text corpus an equal number of times.

We trained our model using these overlapping text samples with scikit-learn
v.0.19.1%, called from our high-dimensional visualization and text analysis
software, HyperTools”. Specifically, we used the CountVectorizer class to
transform the text from each window into a vector of word counts (using the union
of all words across all annotations as the vocabulary, excluding English stop words);
this yielded a number-of-windows by number-of-words word-count matrix. We
then used the LatentDirichletAllocation class (topics =100, method = ‘batch’) to fit
a topic model* to the word-count matrix, yielding a number-of-windows (1,047)
by number-of-topics (100) topic-proportions matrix. The topic-proportions
matrix describes the gradually evolving mix of topics (latent themes) present
in each annotated time segment of the episode. Next, we transformed the
topic-proportions matrix to match the 1,976 fMRI volume acquisition times.

We assigned each topic vector to the timepoint (in seconds) midway between

the beginning of the first annotation and the end of the last annotation in its
corresponding sliding text window. By doing so, we warped the linear temporal
distance between consecutive topic vectors to align with the inconsistent temporal
distance between consecutive annotations (whose durations varied greatly). We
then rescaled these timepoints to 1.5s TR units, and used linear interpolation to
estimate a topic vector for each TR. This resulted in a number-of-TRs (1,976) by
number-of-topics (100) matrix.

We created similar topic-proportions matrices using hand-annotated
transcripts of each participant’s verbal recall of the episode”. We tokenized the
transcript into a list of sentences, and then reorganized the list into overlapping
sliding windows spanning (up to) 10 sentences each, analogously to how we
parsed the episode annotations. In turn, we transformed each window’s sentences
into a word-count vector (using the same vocabulary as for the episode model),
then used the topic model already trained on the episode scenes to compute
the most probable topic proportions for each sliding window. This yielded a
number-of-windows (range 83-312) by number-of-topics (100) topic-proportions
matrix for each participant. These reflected the dynamic content of each
participant’s recalls. For details on how we selected the episode and recall
window lengths and number of topics, see Supplementary Information and
Supplementary Fig. 1.

Segmenting topic-proportions matrices into discrete events using HMMs. We parsed
the topic-proportions matrices of the episode and participants’ recalls into discrete
events using HMMs?. Given the topic-proportions matrix (describing the mix

of topics at each timepoint) and a number of states K, an HMM recovers the set

of state transitions that segments the time series into K discrete states. Following
Baldassano et al.”, we imposed an additional set of constraints on the discovered
state transitions that ensured that each state was encountered exactly once (that

is, never repeated). We used the BrainIAK toolbox (https://doi.org/10.5281/
zeno0do.59780) to implement this segmentation.

We used an optimization procedure to select the appropriate K for each
topic-proportions matrix. Previous studies on narrative structure and processing
have shown that we both perceive and internally represent the world around us
at multiple, hierarchical timescales™********". However, for the purposes of our
framework, we sought to identify the single time series of event representations
that was emphasized most heavily in the temporal structure of the episode and of
each participant’s recall. We quantified this as the set of K states that maximized
the similarity between topic vectors for timepoints comprising each state, while
minimizing the similarity between topic vectors for timepoints across different
states. Specifically, we computed (for each matrix)

argmax|[W(a, b)],
K

where a was the distribution of within-state topic vector correlations, and b was
the distribution of across-state topic vector correlations. We computed the first
Wasserstein distance (W, also known as Earth mover’s distance)’®** between
these distributions for a large range of possible K values (range [2, 50]), and
selected the K that yielded the maximum value. Figure 2b displays the event
boundaries returned for the episode, and Extended Data Fig. 2 displays the event
boundaries returned for each participant’s recalls. See Extended Data Fig. 4 for
the optimization functions for the episode and recalls. After obtaining these
event boundaries, we created stable estimates of the content represented in each
event by averaging the topic vectors across timepoints between each pair of event
boundaries. This yielded a number-of-events by number-of-topics matrix for the
episode and recalls from each participant.

Naturalistic extensions of classic list-learning analyses. In traditional list-learning
experiments, participants view a list of items (for example, words) and then recall
the items later. Our episode-recall event-matching approach affords us the ability
to analyse memory in a similar way. The episode and recall events can be treated
analogously to studied and recalled items in a list-learning study. We can then
extend classic analyses of memory performance and dynamics (originally designed
for list-learning experiments) to the more naturalistic episode-recall task used in
this study.

Perhaps the simplest and most widely used measure of memory performance
is accuracy—that is, the proportion of studied (experienced) items (in this case,
episode events) that the participant later remembered. Chen et al.** used this
method to rate each participant’s memory quality by computing the proportion
of (50 manually identified) scenes mentioned in their recall. We found a strong
across-participants correlation between these independent ratings and the
proportion of 30 HMM-identified episode events matched to participants’ recalls
(Pearson’s r(15) =0.71, P=0.002, 95% CI=1[0.39, 0.88]). We further considered
anumber of more nuanced memory performance measures that are typically
associated with list-learning studies. We also provide a software package, Quail, for
carrying out these analyses®.

Probability of first recall. Probability of first recall curves™-** reflect the
probability that an item will be recalled first, as a function of its serial position

NATURE HUMAN BEHAVIOUR | www.nature.com/nathumbehav


https://doi.org/10.5281/zenodo.59780
https://doi.org/10.5281/zenodo.59780
http://www.nature.com/nathumbehav

NATURE HUMAN BEHAVIO

TICLES

during encoding. To carry out this analysis, we initialized a number-of-participants
(17) by number-of-episode-events (30) matrix of zeros. Then, for each participant,
we found the index of the episode event that was recalled first (that is, the episode
event whose topic vector was most strongly correlated with that of the first recall
event) and filled in that index in the matrix with a 1. Finally, we averaged over

the rows of the matrix, resulting in a 1 by 30 array representing the proportion

of participants that recalled an event first, as a function of the order of the event’s
appearance in the episode (Fig. 3a).

Lag-conditional probability curve. The lag-conditional probability (lag-CRP)
curve’ reflects the probability of recalling a given item after the just-recalled
item, as a function of their relative encoding positions (lag). In other words,

alag of 1 indicates that a recalled item was presented immediately after the
previously recalled item, and a lag of —3 indicates that a recalled item came 3
items before the previously recalled item. For each recall transition (following the
first recall), we computed the lag between the current recall event and the next
recall event, normalizing by the total number of possible transitions. This yielded
a number-of-participants (17) by number-of-lags (=29 to +29; 58 lags in total
excluding lags of 0) matrix. We calculated the average over the rows of this matrix
to obtain a group-averaged lag-CRP curve (Fig. 3b).

Serial position curve. Serial position curves' reflect the proportion of
participants who remember each item as a function of the item’s serial

position during encoding. We initialized a number-of-participants (17) by
number-of-episode-events (30) matrix of zeros. Then, for each recalled event, for
each participant, we found the index of the episode event that the recalled event
most closely matched (via the correlation between the events’ topic vectors) and
entered a 1 into that position in the matrix. This resulted in a matrix whose entries
indicated whether or not each event was recalled by each participant (depending
on whether the corresponding entires were set to one or zero). Finally, we averaged
over the rows of the matrix to yield a 1 by 30 array representing the proportion of
participants that recalled each event as a function of the events’ order appearance
in the episode (Fig. 3¢).

Temporal clustering scores. Temporal clustering describes a participant’s tendency
to organize their recall sequences by the learned items’ encoding positions.

For instance, if a participant recalled the episode events in the exact order they
occurred (or in exact reverse order), this would yield a score of 1. If a participant
recalled the events in random order, this would yield an expected score of 0.5. For
each recall-event transition (and separately for each participant), we sorted all
not-yet-recalled events according to their absolute lag (that is, distance away in the
episode). We then computed the percentile rank of the next event the participant
recalled. We took an average of these percentile ranks across all of the participant’s
recalls to obtain a single temporal clustering score for the participant.

Semantic clustering scores. Semantic clustering describes a participant’s tendency
to recall semantically similar presented items together in their recall sequences.
We used the topic vectors for each event as a proxy for its semantic content. Thus,
the similarity between the semantic content for two events can be computed by
correlating their respective topic vectors. For each recall-event transition, we
sorted all not-yet-recalled events according to how correlated the topic vector of
the closest-matching episode event was to the topic vector of the closest-matching
episode event to the just-recalled event. We then computed the percentile rank

of the observed next recall. We averaged these percentile ranks across all of the
participant’s recalls to obtain a single semantic clustering score for the participant.

Averaging correlations. In all instances where we performed statistical tests
involving precision or distinctiveness scores (Fig. 5), we used the Fisher
z-transformation® to stabilize the variance across the distribution of correlation
values before performing the test. Similarly, when averaging precision or
distinctiveness scores, we used the z-transform of the scores to compute the mean,
and inverse z-transformed the result.

Visualizing the episode and recall topic trajectories. We used the UMAP algorithm’
to project the 100-dimensional topic space onto a two-dimensional space for
visualization (Figs. 6 and 7). To ensure that all of the trajectories were projected
onto the same lower-dimensional space, we computed the low-dimensional
embedding on a stacked matrix created by vertically concatenating the
events-by-topics topic-proportions matrices for the episode, the across-participants
average recalls and all 17 individual participants’ recalls. We then separated the
rows of the result (a total number of events by two matrix) back into individual
matrices for the episode topic trajectory, the across-participant average recall
trajectory, and the trajectories for each individual participant’s recalls (Fig. 6).
This general approach for discovering a shared low-dimensional embedding for
a collections of high-dimensional observations follows our previous work on
manifold learning™.

We optimized the manifold space for visualization on the basis of two criteria:
first, that the 2D embedding of the episode trajectory should reflect its original
100-dimensional structure as faithfully as possible; and second, that the path
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traversed by the embedded episode trajectory should intersect itself a minimal
number of times. The first criteria helps bolster the validity of visual intuitions
about relationships between sections of episode content, based on their locations
in the embedding space. The second criteria was motivated by the observed

low off-diagonal values in the episode trajectory’s temporal correlation matrix
(suggesting that the same topic space coordinates should not be revisited; see Fig.
2a). For further details on how we created this low-dimensional embedding space,
see Supplementary Information.

Estimating the consistency of flow through topic space across participants. In Fig.

6b, we present an analysis aimed at characterizing locations in topic space that
different participants move through in a consistent way (via their recall topic
trajectories; also see Extended Data Fig. 1). The two-dimensional topic space used
in our visualizations (Fig. 6) comprised a 60X 60 (arbitrary units) square. We tiled
this space with a 50 X 50 grid of evenly spaced vertices, and defined a circular area
centred on each vertex, whose radius was two times the distance between adjacent
vertices (that is, 2.4 units). For each vertex, we examined the set of line segments
formed by connecting each pair successively recalled events, across all participants,
that passed through this circle. We computed the distribution of angles formed by
those segments and the x-axis, and used a Rayleigh test to determine whether the
distribution of angles was reliably peaked (that is, consistent across all transitions
that passed through that local portion of topic space). To create Fig. 6b, we drew
an arrow originating from each grid vertex, pointing in the direction of the average
angle formed by the line segments that passed within 2.4 units. We set the arrow
lengths to be inversely proportional to the P values of the Rayleigh tests at each
vertex. Specifically, for each vertex we converted all of the angles of segments that
passed within 2.4 units to unit vectors, and we set the arrow lengths at each vertex
proportional to the length of the (circular) mean vector. We also indicated any
significant results (P < 0.05, corrected using the Benjamini-Hochberg procedure)
by colouring the arrows in blue (darker blue denotes a lower P value, that is, a
longer mean vector); all tests with P> 0.05 are displayed in grey and given a lower
opacity value.

Searchlight fMRI analyses. In Fig. 8, we present two analyses aimed at identifying
brain regions whose responses (as participants viewed the episode) exhibited a
particular temporal structure. We developed a searchlight analysis wherein we
constructed a 5X5X5 cube of voxels centred on each voxel in the brain”, and

for each of these cubes, computed the temporal correlation matrix of the voxel
responses during episode viewing. Specifically, for each of the 1,976 volumes
collected during episode viewing, we correlated the activity patterns in the given
cube with the activity patterns (in the same cube) collected during every other
timepoint. This yielded a 1,976 X 1,976 correlation matrix for each cube. Note: the
scan of participant 5 ended 75 early, and in the publicly released dataset for Chen
et al.”, their scan data was zero-padded to match the length of those of the other
participants. For our searchlight analyses, we removed this padded data (that is,
the last 50 TRs), resulting in a 1,925 1,925 correlation matrix for each cube in the
brain of participant 5.

Next, we constructed a series of template matrices. The first template reflected
the time course of the episode’s topic-proportions matrix, and the others reflected
the time course of each participant’s recall topic-proportions matrix. To construct
the episode template, we computed the correlations between the topic proportions
estimated for every pair of TRs (before segmenting the topic-proportions matrices
into discrete events; that is, the correlation matrix shown in Figs. 2b and 8a). We
constructed similar temporal correlation matrices for each participant’s recall
topic-proportions matrix (Fig. 2d and Extended Data Fig. 2). However, to correct
for length differences and potential non-linear transformations between viewing
time and recall time, we first used dynamic time warping® to temporally align
participants’ recall topic-proportions matrices with the episode topic-proportions
matrix. An example correlation matrix before and after warping is shown in Fig.
8b. This yielded a 1,976 X 1,976 correlation matrix for the episode template and for
each participant’s recall template.

The temporal structure of the episode’s content (as described by our model)
is captured in the block-diagonal structure of the episode’s temporal correlation
matrix (for example, Figs. 2b and 8a), with time periods of thematic stability
represented as dark blocks of varying sizes. Inspecting the episode correlation
matrix suggests that the episode’s semantic content is highly temporally specific
(that is, the correlations between topic vectors from distant timepoints are almost
all near zero). By contrast, the activity patterns of individual (cubes of) voxels can
encode relatively limited information on their own, and their activity frequently
contributes to multiple separate functions®-°. By nature, these two attributes give
rise to similarities in activity across large timescales that may not necessarily reflect
a single task. To identify brain regions whose shifts in activity patterns mirrored
shifts in the semantic content of the episode or recalls, we restricted the temporal
correlations we considered to the timescale of semantic information captured by
our model. Specifically, we isolated the upper triangle of the episode correlation
matrix and created a proximal correlation mask that included only diagonals
from the upper triangle of the episode correlation matrix up to the first diagonal
that contained no positive correlations. Applying this mask to the full episode
correlation matrix was equivalent to excluding diagonals beyond the corner of the
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largest diagonal block. In other words, the timescale of temporal correlations we
considered corresponded to the longest period of thematic stability in the episode,
and by extension the longest period of thematic stability in participants’ recalls and
the longest period of stability we might expect to see in voxel activity arising from
processing or encoding episode content. Figure 8 shows this proximal correlation
mask applied to the temporal correlation matrices for the episode, an example
participant’s (warped) recall, and an example cube of voxels from our searchlight
analyses.

To determine which (cubes of) voxel responses matched the episode
template, we correlated the proximal diagonals from the upper triangle of the
voxel correlation matrix for each cube with the proximal diagonals from episode
template matrix®’. This yielded, for each participant, a voxelwise map of correlation
values. We then performed a one-sample t-test on the distribution of (Fisher
z-transformed) correlations at each voxel, across participants. This resulted in a
value for each voxel (cube), describing how reliably its time course followed that of
the episode.

We further sought to ensure that our analysis identified regions where
the activations’ temporal structure specifically reflected that of the episode,
rather than regions whose activity was simply autocorrelated at a timescale
similar to the episode template’s diagonal. To achieve this, we used a phase
shift-based permutation procedure, whereby we circularly shifted the episode’s
topic-proportions matrix by a random number of timepoints (rows), computed
the resulting null episode template, and re-ran the searchlight analysis, in full. (For
each of the 100 permutations, the same random shift was used for all participants).
We z-scored the observed (unshifted) result at each voxel against the distribution
of permutation-derived null results, and estimated a P value by computing the
proportion of shifted results that yielded larger values. To create the map in Fig. 8c,
we thresholded out any voxels whose similarity to the unshifted episode’s structure
fell below the 95th percentile of the permutation-derived similarity results.

We used an analogous procedure to identify voxels whose responses reflected
the recall templates. For each participant, we correlated the proximal diagonals
from the upper triangle of the correlation matrix for each cube of voxels with
the proximal diagonals from the upper triangle of their (time-warped) recall
correlation matrix. As in the episode template analysis, this yielded a voxelwise
map of correlation coefficients for each participant. However, whereas the episode
analysis compared every participant’s responses to the same template, here the
recall templates were unique for each participant. As in the analysis described
above, we t-scored the (Fisher z-transformed) voxelwise correlations, and used the
same permutation procedure we developed for the episode responses to ensure
specificity to the recall time series and assign significance values. To create the map
in Fig. 8d we again thresholded out any voxels whose scores were below the 95th
percentile of the permutation-derived null distribution.

Neurosynth decoding analyses. Neurosynth* parses a massive online database
of over 14,000 neuroimaging studies and constructs meta-analysis images for
over 13,000 psychology- and neuroscience-related terms, based on NIfTT images
accompanying studies where those terms appear at a high frequency. Given a
novel image (tagged with its value type; for example, z-, t-, F- or P-statistics),
Neurosynth returns a list of terms whose meta-analysis images are most similar.
Our permutation procedure yielded, for each of the two searchlight analyses, a
voxelwise map of z-values. These maps describe the extent to which each voxel
specifically reflected the temporal structure of the episode or individuals’ recalls
(that is, relative to the null distributions of phase-shifted values). We inputted the
two statistical maps described above to Neurosynth to create a list of the ten most
representative terms for each map.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

The fMRI data we analysed are available online at https://dataspace.princeton.edu/
jspui/handle/88435/dsp01nz8062179. The behavioural data are available at https://
github.com/ContextLab/sherlock-topic-model-paper/tree/master/data/raw.

Code availability
All of our analysis code can be downloaded from https://github.com/ContextLab/
sherlock-topic-model-paper.
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Extended Data Fig. 1| See next page for caption.
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Extended Data Fig. 1| Methods detail for recall trajectory analysis displayed in Figure 6B. A. This panel replicates Figure 6B, but with two additions. First,
individual participants’ recall trajectories are displayed (faintly) as light gray lines. Second, three locations on the trajectory have been highlighted (blue,
yellow, and red circles). B. These zoomed-in views of the locations highlighted in Panel A show the average trajectory (black) and individual participants’
trajectories (gray lines) that intersect the given region of topic space. C. For each circular region of topic space tiling the 2D embedding plane displayed in
Panel A, we compute the distribution of angles formed between each participant's trajectory segment (that is, the point at which the trajectory enters and
exists the region of topic space) and the x-axis. The distributions of angles for these three example regions are displayed in the colored rose plots. We use
Rayleigh tests to assign an arrow direction, length, and color for that region of topic space. Arrows displayed in color are significant at the p < 0.05 level
(corrected). The arrow directions are oriented according to the circular means of each distribution, and the arrow lengths are proportional to the lengths of
those mean vectors. The example regions have been oriented from left to right in decreasing order of consistency across participants.
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Extended Data Fig. 2 | Recall temporal correlation matrices and event segmentation fits. Each panel is in the same format as Figure 2E. The yellow boxes
indicate HMM-identified event boundaries.
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Software and code

Policy information about availability of computer code

Data collection  PsychToolbox (http://psychtoolbox.org/) and MATLAB (https://www.mathworks.com/products/matlab.html) were used to present the video.

Data analysis We used a number of open-source software in our analyses. All code was written in Python. All code used to analyze data and generate
figures and text can be found here: https://github.com/ContextLab/sherlock-topic-model-paper. For topic modeling, we used our open-source
library called Hypertools (https://hypertools.readthedocs.io/en/latest/), which utilizes scikit-learn (http://scikit-learn.org/stable/index.html).
For the Hidden Markov Model, we used the brainlAK toolbox. For dimensionality reduction, we utilized HyperTools which calls UMAP (https://
umap-learn.readthedocs.io/en/latest/). For brain-related analyses, we used BrainlAK and nilearn (http://nilearn.github.io/). For list learning
analyses, we used our open-source software, Quail (https://cdl-quail.readthedocs.io/en/latest/). For plotting, we used matplotlib (https://
matplotlib.org/), seaborn (https://seaborn.pydata.org/index.html) and word-cloud (https://github.com/amueller/word_cloud). Other
packages used include pandas (https://pandas.pydata.org/), numpy (http://www.numpy.org/), scipy (https://www.scipy.org/), fastdtw
(https://pypi.org/project/fastdtw/), pycircstat (https://github.com/circstat/pycircstat), statsmodels (https://www.statsmodels.org/stable/
index.html).
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- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

All data and code to generate all figures can be found here: https://github.com/ContextLab/sherlock-topic-model-paper. We analyzed an open dataset originally
published alongside Chen et al.'s "Shared memories reveal shared structure in neural activity across individuals" (Nature Neuroscience, vol. 20, p. 115, 2017).
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Sample size 22 participants; Quoted from Chen et al, 2017: "No statistical methods were used to predetermine sample sizes, but our sample sizes are
similar to those reported in previous publications"

Data exclusions  Quoted from Chen et al, 2017: "Twenty-two participants were recruited from the Princeton community (12 male, 10 female, ages 18-26,
mean age 20.8)...Data from 5 of the 22 participants were discarded due to excessive head motion (greater than 1 voxel; 2 participants),
because recall was shorter than 10 min (2 participants), or for falling asleep during the movie (1 participant). For one participant (#5 in Figs.
2¢,f, and 3c) the movie scan ended 75 s early (that is, this participant was missing data for part of scene 49 and all of scene 50)."

Replication The findings in this study were not replicated.

Randomization  All participants viewed, then verbally recalled, a common 48-minute video. Participants were not assigned to different groups/conditions, and
the experimental design precluded randomization of trial order.

Blinding Blinding was not necessary because there was no explicit experimental manipulation.
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mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines  pgme any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology
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Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information).

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field, report species, sex and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics Quoted from Chen et al, 2017: "Twenty-two participants were recruited from the Princeton community (12 male, 10 female,
ages 18-26, mean age 20.8). All participants were right-handed native English speakers, reported normal or corrected-to-
normal vision, and had not watched any episodes of Sherlock before the experiment."

Recruitment See Chen et al, 2017 for specific recruitment information.

Ethics oversight The testing protocol was approved by Princeton University's Institutional Review Board.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration | Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.




Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes

[ ] Public health

[ ] National security

|:| Crops and/or livestock
|:| Ecosystems

O0oofds

|:| Any other significant area

Experiments of concern
Does the work involve any of these experiments of concern:

Yes

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

OO0oodoods
Ooodoogo

Any other potentially harmful combination of experiments and agents

ChlIP-seq

Data deposition
|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.g. UCSC)

enable peer review. Write "no longer applicable" for "Final submission" documents.

Methodology
Replicates Describe the experimental replicates, specifying number, type and replicate agreement.
Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.
Antibodies Describe the antibodies used for the ChiP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot

number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files
used.
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Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChlIP-seq data. For custom code that has been deposited into a community
repository, provide accession details.

Flow Cytometry

Plots

Confirm that:
D The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

D The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

D All plots are contour plots with outliers or pseudocolor plots.
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|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.
Instrument Identify the instrument used for data collection, specifying make and model number.
Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a

community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

D Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type "Naturalistic" task: fMRI was recorded while participants watched and verbally recalled a video

Design specifications The stimulus was divided into a 23 minute (946 TR) and a 25 min (1030 TR) segment to facilitate technical issues related
to the scanner. After finishing the clip, participants were instructed to (quoting from Chen et al., 2017) “describe what
they recalled of the movie in as much detail as they could, to try to recount events in the original order they were
viewed in, and to speak for at least 10 minutes if possible but that longer was better. They were told that completeness
and detail were more important than temporal order, and that if at any point they realized they had missed something,
to return to it. Participants were then allowed to speak for as long as they wished, and verbally indicated when they
were finished (e.g., ‘I'm done’).”

Behavioral performance measures  Verbal summaries of the video were collected.

Acquisition
Imaging type(s) functional
Field strength 3
Sequence & imaging parameters T2*-weighted echo-planar imaging (EPI) pulse sequence (TR 1,500 ms, TE 28 ms, flip angle 64, whole-brain coverage 27
slices of 4 mm thickness, in-plane resolution 3 x 3 mm2, FOV 192 x 192 mm?2), with ascending interleaved acquisition.
Area of acquisition whole brain
Diffusion MRI [ ]Used X| Not used

Preprocessing

Preprocessing software Quoted from Chen et al., 2017: "Preprocessing was performed in FSL (http://fsl.fmrib.ox.ac.uk/fsl), including slice time
correction, motion correction, linear detrending, high-pass filtering (140 s cutoff), and coregistration."

Normalization Quoted from Chen et al., 2017: "..affine transformation of the functional volumes to a template brain (Montreal Neurological




Normalization Institute (MNI) standard). Functional images were resampled to 3 mm isotropic voxels for all analyses. All calculations were
performed in volume space."

Normalization template MNI template brain (3mm isotropic)
Noise and artifact removal FSL was used to remove artifacts related to motion and signal drift (linear detrending).
Volume censoring N/A

Statistical modeling & inference

Model type and settings We developed a searchlight analysis whereby we constructed a 5 mm3 cube centered on each voxel. For each of these
cubes, we computed the temporal correlation matrix of the voxel responses during movie viewing. Specifically, for each of
the 1976 volumes collected during movie viewing, we correlated the activity patterns in the given cube with the activity
patterns (in the same cube) collected during every other timepoint. This yielded a 1976 by 1976 correlation matrix for each
cube. Next, we constructed two sets of “template” matrices; one reflected the video’s topic trajectory and the other
reflected each participant’s recall topic trajectory. To construct the video template, we computed the correlations between
the topic proportions estimated for every pair of TRs (prior to segmenting the trajectory into discrete events). We
constructed similar temporal correlation matrices for each participant’s recall topic trajectory. However, to correct for length
differences and potential non-linear transformations between viewing time and recall time, we first used dynamic time
warping (Berndt and Clifford, 1994) to temporally align participants’ recall topic trajectories with the video topic trajectory.
This yielded a 1976 by 1976 correlation matrix for the video template and for each participant’s recall template.

Effect(s) tested To determine which (cubes of) voxel responses reliably matched the video template, we correlated the upper triangle of the
voxel correlation matrix for each cube with the upper triangle of the video template matrix (Kriegeskorte et al., 2008). This
yielded, for each participant, a single correlation value. We computed the average (Fisher z-transformed) correlation
coefficient across participants.

Specify type of analysis:  [X] Whole brain [ | ROI-based [ ] Both

Statistic type for inference voxel-wise p < .05 (corrected)
(See Eklund et al. 2016)

Correction We used a permutation-based procedure to assess significance, whereby we re-computed the average correlations for each
of 100 “null” video templates (constructed by circularly shifting the template by a random number of timepoints). (For each
permutation, the same shift was used for all participants.) We then estimated a p-value by computing the proportion of
shifted correlations that were larger than the observed (unshifted) correlation. To create the map in Figure 5A we
thresholded out any voxels whose correlation values fell below the 95th percentile of the permutation-derived null
distribution.

We used a similar procedure to identify which voxels’ responses reflected the recall templates. For each participant, we
correlated the upper triangle of the correlation matrix for each cube of voxels with their (time warped) recall correlation
matrix. As in the video template analysis this yielded a single correlation coefficient for each participant. However, whereas
the video analysis compared every participant’s responses to the same template, here the recall templates were unique for
each participant. We computed the average z-transformed correlation coefficient across participants, and used the same
permutation procedure we developed for the video responses to assess significant correlations. To create the map in Figure
5B we thresholded out any voxels whose correlation values fell below the 95th percentile of the permutation-derived null
distribution.

Models & analysis

n/a | Involved in the study
|X| |:| Functional and/or effective connectivity

|X| |:| Graph analysis

|:| Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis = We constructed two sets of “template” matrices; one reflected the video’s topic trajectory and the other
reflected each participant’s recall topic trajectory. To construct the video template, we computed the
correlations between the topic proportions estimated for every pair of TRs (prior to segmenting the
trajectory into discrete events). We constructed similar temporal correlation matrices for each participant’s
recall topic trajectory. However, to correct for length differences and potential non-linear transformations
between viewing time and recall time, we first used dynamic time warping (Berndt and Clifford, 1994) to
temporally align participants’ recall topic trajectories with the video topic trajectory. This yielded a 1976 by
1976 correlation matrix for the video template and for each participant’s recall template. Our evaluation
metric was the correlation (Pearson's r) between the upper triangle of the templates described about and
the upper triangle of the searchlight cube (5mm) of voxel responses.
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