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What does it mean to remember something? In traditional 
episodic memory experiments (for example, list-learning 
or trial-based experiments1,2), remembering is often cast 

as a discrete, binary operation: each studied item may be separated 
from the rest of one’s experience and labelled as having been either 
recalled or forgotten. More nuanced studies might incorporate 
self-reported confidence measures as a proxy for memory strength, 
or ask participants to discriminate between recollecting the (contex-
tual) details of an experience and having a general feeling of famil-
iarity3. Using well-controlled, trial-based experimental designs, the 
field has amassed a wealth of information regarding human epi-
sodic memory4. However, there are fundamental properties of the 
external world and our memories that trial-based experiments are 
not well suited to capture5,6. First, our experiences and memories are 
continuous, rather than discrete—isolating a naturalistic event from 
the context in which it occurs can substantially change its meaning. 
Second, whether or not the rememberer has precisely reproduced 
a specific set of words in describing a given experience is nearly 
orthogonal to how well they were actually able to remember it. In 
classic (for example, list-learning) memory studies, by contrast, the 
number or proportion of exact recalls is often considered to be a 
primary metric for assessing the quality of participants’ memories. 
Third, one might remember the essence (or a general summary) of 
an experience but forget (or neglect to recount) particular low-level 
details. Capturing the essence of what happened is often a main goal 
of recounting an episodic memory to a listener, whereas the inclu-
sion of specific low-level details is often less pertinent.

How might we formally characterize the essence of an experi-
ence, and whether it has been recovered by the rememberer? And 
how might we distinguish an experience’s overarching essence from 
its low-level details? One approach is to start by considering some 
fundamental properties of the dynamics of our experiences. Each 
given moment of an experience tends to derive meaning from sur-
rounding moments, as well as from longer-range temporal associa-
tions7–9. Therefore, the time course describing how an event unfolds 

is fundamental to its overall meaning. Further, this hierarchy 
formed by our subjective experiences at different timescales defines 
a context for each new moment10,11 and has an important role in how 
we interpret that moment and remember it later9,12. Our memory 
systems can leverage these associations to form predictions that 
help guide our behaviours13. For example, as we navigate the world, 
the features of our subjective experiences tend to change gradually 
(for example, the room or situation we find ourselves in at any given 
moment is strongly temporally autocorrelated), allowing us to form 
stable estimates of our current situation and behave accordingly14,15.

Occasionally, this gradual drift of our ongoing experience is 
punctuated by sudden changes or shifts (for example, when we walk 
through a doorway16). Previous research suggests that these sharp 
transitions (termed event boundaries) help to discretize our experi-
ences (and their mental representations) into events16–21. The inter-
play between the stable (within-event) and transient (across-event) 
temporal dynamics of an experience also provides a potential frame-
work for transforming experiences into memories that distils those 
experiences down to their essences. For example, previous work has 
shown that event boundaries can influence how we learn sequences 
of items18,21, navigate17 and remember and understand narratives15,20. 
This work also suggests a means of distinguishing the essence of an 
experience from its low-level details: the overall structure of events 
and event transitions reflects how the high-level experience unfolds 
(that is, its essence), while subtler event-level properties reflect its 
low-level details. Previous research has also implicated a network of 
brain regions (including the hippocampus and the medial prefron-
tal cortex) in having a critical role in transforming experiences into 
structured and consolidated memories22.

Here we sought to examine how the temporal dynamics of a nat-
uralistic experience were later reflected in participants’ memories. 
We also sought to leverage the above conceptual insights into the 
distinctions between an experience’s essence and its low-level details 
to build models that explicitly quantified these distinctions. We ana-
lysed an open dataset that comprised behavioural and functional 
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magnetic resonance imaging (fMRI) data collected as participants 
viewed and then verbally recounted an episode of the BBC televi-
sion show Sherlock23. We developed a computational framework for 
characterizing the temporal dynamics of the moment-by-moment 
content of the episode and of participants’ verbal recalls. Our frame-
work uses topic modelling24 to characterize the thematic concep-
tual (semantic) content present in each moment of the episode and 
recalls by projecting each moment into a word-embedding space. 
We then use hidden Markov models (HMMs)25,26 to discretize this 
evolving semantic content into events. In this way, we cast both nat-
uralistic experiences and memories of those experiences as geomet-
ric trajectories through word-embedding space that describe how 
they evolve over time. Under this framework, successful remember-
ing entails verbally traversing the content trajectory of the episode, 
thereby reproducing the shape (essence) of the original experience. 
Our framework captures the episode’s essence in the sequence of 
geometric coordinates for its events, and its low-level details by 
examining its within-event geometric properties.

Comparing the overall shapes of the topic trajectories for the epi-
sode and participants’ recalls reveals which aspects of the episode’s 
essence were preserved (or lost) in the translation into memory. We 
also develop two metrics for assessing participants’ memories for 
low-level details: (1) the precision with which a participant recounts 
details about each event, and (2) the distinctiveness of their recall 
for each event, relative to other events. We examine how these met-
rics relate to overall memory performance as judged by third-party 
human annotators. We also compare and contrast our general 
approach to studying memory for naturalistic experiences with 
standard metrics for assessing performance on more traditional 
memory tasks, such as list learning. Finally, we leverage our frame-
work to identify networks of brain structures whose responses (as 
participants watched the episode) reflected the temporal dynamics 
of the episode and/or how participants would later recount it.

Results
To characterize the dynamic content of the Sherlock episode and 
participants’ subsequent recountings, we used a topic model24 to 
discover the episode’s latent themes. Topic models take as inputs a 
vocabulary of words to consider and a collection of text documents, 
and return two output matrices. The first of these is a topics matrix 
whose rows are topics (or latent themes) and whose columns cor-
respond to words in the vocabulary. The entries in the topics matrix 
reflect how each word in the vocabulary is weighted by each dis-
covered topic. For example, a detective-themed topic might weight 
heavily on words such as ‘crime’ and ‘search.’ The second output is a 
topic-proportions matrix, with one row per document and one col-
umn per topic. The topic-proportions matrix describes the mixture 
of discovered topics reflected in each document.

Chen et al. collected hand-annotated information about each of 
1,000 (manually delineated) time segments spanning the roughly 
50 min video used in their study23. Each annotation included a brief 
narrative description of what was happening, the location where 
the action took place, the names of any characters on the screen, 
and other similar details (for a full list of annotated features, see 
Methods). We took the union of all unique words (excluding stop 
words, such as ‘and’, ‘or’ and ‘but’) across all features from all annota-
tions as the vocabulary for the topic model. We then concatenated 
the sets of words across all features contained in overlapping sliding 
windows of (up to) 50 annotations, and treated each window as a 
single document for the purpose of fitting the topic model. Next, we 
fit a topic model with (up to) K = 100 topics to this collection of doc-
uments. We found that 32 unique topics (with non-zero weights) 
were sufficient to describe the time-varying content of the episode 
(see Methods; Fig. 1 and Supplementary Fig. 2). We note that our 
approach is similar in some respects to dynamic topic models27,  
in that we sought to characterize how the thematic content of 

the episode evolved over time. However, whereas dynamic topic  
models are designed to characterize how the properties of col-
lections of documents change over time, our sliding-window 
approach enables us to examine the topic dynamics within a single 
document (or video). Specifically, our approach yielded (via the 
topic-proportions matrix) a single topic vector for each sliding 
window of annotations transformed by the topic model. We then 
stretched (interpolated) the resulting windows-by-topics matrix to 
match the time series of the 1,976 fMRI volumes collected as par-
ticipants viewed the episode.

The 32 topics we found were heavily character focused (that is, 
the top-weighted word in each topic was nearly always a character) 
and could be roughly divided into themes centred around Sherlock 
Holmes (the titular character), John Watson (Sherlock’s close con-
fidant and assistant), supporting characters (for example, Inspector 
Lestrade, Sergeant Donovan or Sherlock’s brother Mycroft), or 
the interactions between various groupings of these characters 
(Supplementary Fig. 2). This probably follows from the frequency 
with which these terms appeared in the episode annotations. Several 
of the identified topics were highly similar, which we hypothesized 
might allow us to distinguish between subtle narrative differences if 
the distinctions between those overlapping topics were meaningful. 
The topic vectors for each timepoint were also sparse, in that only 
a small number of topics (typically one or two) tended to be active 
at any given timepoint (Fig. 2a). Further, the dynamics of the topic 
activations appeared to exhibit persistence (that is, given that a topic 
was active in one timepoint, it was likely to be active in the follow-
ing timepoint) along with occasional rapid changes (that is, occa-
sionally topic weights would change abruptly from one timepoint 
to the next). These two properties of the topic dynamics may be 
seen in the block-diagonal structure of the timepoint-by-timepoint 
correlation matrix (Fig. 2b) and reflect the gradual drift and sudden 
shifts fundamental to the temporal dynamics of many real-world 
experiences, as well as television episodes. Given this observation, 
we adapted an approach devised by Baldassano et al.26, and used a 
HMM to identify the event boundaries where the topic activations 
changed rapidly (that is, the boundaries of the blocks in the tempo-
ral correlation matrix; event boundaries identified by the HMM are 
outlined in yellow in Fig. 2b). Part of our model-fitting procedure 
required selecting an appropriate number of events into which the 
topic trajectory should be segmented. To accomplish this, we used 
an optimization procedure that maximized the difference between 
the topic weights for timepoints within an event versus timepoints 
across multiple events (see Methods). We then created a stable sum-
mary of the content within each episode event by averaging the 
topic vectors across the timepoints spanned by each event (Fig. 2c).

Given that the time-varying content of the episode could be 
segmented cleanly into discrete events, we investigated whether 
participants’ recalls of the episode also displayed a similar struc-
ture. We applied the same topic model (already trained on the epi-
sode annotations) to each participant’s recalls. Analogously to the 
way in which we parsed the time-varying content of the episode, 
to obtain similar estimates for each participant’s recall transcript, 
we treated each overlapping window of (up to) 10 sentences from 
their transcript as a document, and computed the most probable 
mix of topics reflected in each timepoint’s sentences. This yielded, 
for each participant, a number-of-windows by number-of-topics 
topic-proportions matrix that characterized how the topics identi-
fied in the original episode were reflected in the participant’s recalls. 
An important feature of our approach is that it allows us to compare 
participants’ recalls to events from the original episode, despite the 
participants using widely varying language to describe the events, 
and their descriptions often diverging in content, quality and quan-
tity from the episode annotations. This ability to match up con-
ceptually related text that differs in specific vocabulary, detail and 
length is an important benefit of projecting the episode and recalls 
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into a shared topic space. An example topic-proportions matrix 
from one participant’s recalls is shown in Fig. 2d.

Although the example participant’s recall topic-proportions 
matrix shows some visual similarity to the episode topic-proportions 
matrix, the time-varying topic proportions for the example partici-
pant’s recalls are not as sparse as those for the episode (compare Figs. 
2a,d). Similarly, although there do appear to be periods of stability 
in the recall topic dynamics (that is, most topics are active or inac-
tive over contiguous blocks of time), the changes in topic activations 
that define event boundaries appear less clearly delineated in par-
ticipants’ recalls than in the episode’s annotations. To examine these 
patterns in detail, we computed the timepoint-by-timepoint corre-
lation matrix for the example participant’s recall topic-proportions 
matrix (Fig. 2e). As in the episode correlation matrix (Fig. 2b), 
the example participant’s recall correlation matrix has a strong 
block-diagonal structure, indicating that their recalls are discretized 
into separated events. We used the same HMM-based optimization 
procedure that we had applied to the episode’s topic-proportions 
matrix (Methods) to estimate an analogous set of event boundar-
ies in the participant’s recounting of the episode (outlined in yel-
low). We carried out this analysis on all 17 participants’ recall 
topic-proportions matrices (Extended Data Fig. 2).

Two clear patterns emerged from this set of analyses. First, 
although every individual participant’s recalls could be segmented 
into discrete events (that is, every individual participant’s recall cor-
relation matrix exhibited clear block-diagonal structure; Extended 
Data Fig. 2), each participant appeared to have a unique recall  
resolution, reflected in the sizes of those blocks. While some  

participants’ recall topic proportions segmented into just a few 
events (for example, participant (P)4, P5 and P7), others’ segmented 
into many shorter-duration events (for example, P12, P13 and P17). 
This suggests that different participants may be recalling the epi-
sode with different levels of detail—that is, some might recount 
only high-level essential plot details, whereas others might recount 
low-level details instead (or in addition). The second clear pattern 
present in every individual participant’s recall correlation matrix was 
that, unlike in the episode correlation matrix, there were substantial 
off-diagonal correlations. One potential explanation for this find-
ing is that the topic models, trained only on episode annotations, 
do not capture topic proportions in participants’ held-out recalls as 
accurately. A second possibility is that, whereas each event in the 
original episode was (largely) separable from the others (Fig. 2b),  
in transforming those separable events into memory, participants 
appeared to be integrating across multiple events, blending ele-
ments of previously recalled and not-yet-recalled content into each 
newly recalled event8,28,29 (Fig. 2e and Extended Data Fig. 2).

The above results demonstrate that topic models capture the 
dynamic conceptual content of the episode and participants’ recalls 
of the episode. Further, the episode and recalls exhibit event bound-
aries that can be identified automatically using HMMs to segment 
the dynamic content. Next, we investigated whether some cor-
respondence might be made between the specific content of the 
events the participants experienced while viewing the episode and 
the events they later recalled. We labelled each recall event as match-
ing the episode event with the most similar (that is, most highly cor-
related) topic vector (Fig. 2g and Extended Data Fig. 3). This yielded 
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Fig. 1 | Topic weights in episode and recall content. We used detailed, hand-generated annotations describing each manually identified time segment from 
the episode to fit a topic model. Three example frames from the episode (first row) are displayed, along with their descriptions from the corresponding 
episode annotation (second row), an example participant’s recall transcript (third row), and image repetition times (TR). We used the topic model (fit to 
the episode annotations) to estimate topic vectors for each moment of the episode and each sentence of participants’ recalls. Example topic vectors are 
displayed in the bottom row (blue, episode annotations; green, example participant’s recalls). Three topic dimensions are shown (the highest-weighted 
topics for each of the three example scenes), along with the ten highest-weighted words for each topic. Supplementary Fig. 2 provides a full list of the top 
10 words from each of the discovered topics. Images are copyright of Hartswood Films Ltd.
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a sequence of presented events from the original episode, and a 
(potentially differently ordered) sequence of recalled events for each 
participant. Analogous to classic list-learning studies, we can then 
examine participants’ recall sequences by asking which events they 
tended to recall first (probability of first recall30–32; Fig. 3a); how par-
ticipants most often transitioned between recalls of the events as 
a function of the temporal distance between them (lag-conditional 
response probability2; Fig. 3b); and which events they were likely 

to remember overall (serial position recall analyses1; Fig. 3c). Some 
of the patterns we observed appeared to be similar to classic effects 
from the list-learning literature. For example, participants had a 
higher probability of initiating recall with early events (Fig. 3a) and 
a higher probability of transitioning to neighbouring events with an 
asymmetric forward bias (Fig. 3b). However, unlike typical obser-
vations in list-learning studies, we did not observe patterns compa-
rable to the primacy or recency serial position effects (Fig. 3c). We 
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Fig. 2 | Modelling naturalistic stimuli and recalls. a–h, Darker colours indicate higher values; range: [0, 1]. a, Topic vectors (K = 100) for each of the  
1,976 episode timepoints. b, Timepoint-by-timepoint correlation matrix of the topic vectors displayed in a. Event boundaries discovered by the HMM  
are denoted in yellow (30 events detected). c, Average topic vectors for each of the 30 episode events. d, Topic vectors for each of 265 sliding windows  
of sentences spoken by an example participant while recalling the episode. e, Timepoint-by-timepoint correlation matrix of the topic vectors displayed  
in d. Event boundaries detected by the HMM are denoted in yellow (22 events detected). Extended Data Fig. 2 shows similar plots for all participants.  
f, Average topic vectors for each of the 22 recall events from the example participant. g, Correlations between the topic vectors for every pair of episode 
events (c) and recall events (from the example participant in f). Extended Data Fig. 3 shows similar plots for all participants. h, Average correlations 
between each pair of episode events and recall events (across all 17 participants). To create the figure, each recalled event was assigned to the episode 
event with the most correlated topic vector (yellow boxes in g,h).
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hypothesized that participants might be leveraging meaningful nar-
rative associations and references over long timescales throughout 
the episode.

Clustering scores are often used by memory researchers to char-
acterize how people organize their memories of words on a studied 
list33. We defined analogous measures to characterize how par-
ticipants organized their memories for episodic events (details in 
Methods). Temporal clustering refers to the extent to which partici-
pants group their recall responses according to encoding position. 
Overall, we found that sequentially viewed episode events tended 
to appear nearby in participants’ recall-event sequences (cluster-
ing score 0.732 ± 0.033, mean ± s.e.m.). Participants with higher 
temporal clustering scores tended to exhibit better overall mem-
ory for the episode, according to both hand-counted numbers of 
recalled scenes from the episode reported by Chen et al.23 (Pearson’s 
r(15) = 0.49, P = 0.046, 95% confidence interval (CI) = [0.25, 0.76]) 
and the numbers of episode events that best matched at least one 
recall event (that is, model-estimated number of events recalled; 
Pearson’s r(15) = 0.59, P = 0.013, 95% CI = [0.31, 0.80]). Semantic 
clustering measures the extent to which participants cluster their 
recall responses according to semantic similarity34. We found that 
participants tended to recall semantically similar episode events 
together (clustering score 0.650 ± 0.032), and that semantic clus-
tering scores were also related to both hand-counted (Pearson’s 
r(15) = 0.65, P = 0.004, 95% CI = [0.31, 0.85]) and model-estimated 
(Pearson’s r(15) = 0.58, P = 0.015, 95% CI = [0.10, 0.83]) numbers of 
recalled events.

The above analyses illustrate how our framework for characteriz-
ing the dynamic conceptual content of naturalistic episodes enables 
us to carry out analyses that have traditionally been applied to much 
simpler list-learning paradigms. However, perhaps the most inter-
esting aspects of memory for naturalistic episodes are those that 
have no list-learning analogues. The nuances of how one’s memory 

for an event might capture some details, yet distort or neglect oth-
ers, is central to how we use our memory systems in daily life. Yet, 
when researchers study memory in highly simplified paradigms, 
those nuances are not typically observable. We next developed two 
novel, continuous metrics, termed ‘precision’ and ‘distinctiveness’ 
aimed at characterizing distortions in the conceptual content of 
individual recall events, and the conceptual overlap between how 
people described different events.

Precision is intended to capture the completeness of recall—
how fully the presented content was recapitulated in a participant’s 
recounting. We define a recall event’s precision as the maximum 
correlation between the topic proportions of that recall event and 
any episode event (Fig. 4). In other words, given that a recall event 
best matches a particular episode event, more precisely recalled 
events overlap more strongly with the conceptual content of the 
original episode event. When a given event is assigned a blend of 
several topics, as is often the case (Fig. 2), a high precision score 
requires recapitulating the relative topic proportions during recall.

Distinctiveness is intended to capture the specificity of recall. In 
other words, distinctiveness quantifies the extent to which a given 
recall event reflects the most similar episode event over and above 
other episode events. Intuitively, distinctiveness is like a normalized 
variant of our precision metric. Whereas precision measures only 
how much detail about an event was captured in someone’s recall, 
distinctiveness penalizes details that also pertain to other episode 
events. We define the distinctiveness of an event’s recall as its pre-
cision expressed in standard deviation units with respect to other 
episode events. Specifically, for a given recall event, we compute the 
correlation between its topic vector and that of each episode event. 
This yields a distribution of correlation coefficients (one per epi-
sode event). We subtract the mean and divide by the standard devia-
tion of this distribution to obtain a z-score for each coefficient. The 
maximum value in this distribution (which, by definition, belongs 
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to the episode event that best matches the given recall event) is that 
recall event’s distinctiveness score. In this way, recall events that 
match one episode event far better than all other episode events will 
receive a high distinctiveness score. By contrast, a recall event that 
matches all episode events roughly equally will receive a compara-
tively low distinctiveness score.

In addition to examining how precisely and distinctively par-
ticipants recalled individual events, these metrics can also be used 
to summarize each participant’s performance by averaging across 
a participant’s event-wise precision or distinctiveness scores. This 
enables us to quantify how precisely a participant tended to recall 
subtle within-event details, as well as how specific (distinctive) those 
details were to individual events from the episode. Participants’ 
average precision and distinctiveness scores were strongly cor-
related (r(15) = 0.90, P < 0.001, 95% CI = [0.66, 0.96]). This indi-
cates that participants who tended to precisely recount low-level 
details of episode events also tended to do so in an event-specific 
way (for example, as opposed to detailing recurring themes that 
were present in most or all episode events; this behaviour would 
have resulted in high precision but low distinctiveness). We found 
that, across participants, higher precision scores were positively 
correlated with the numbers of both model-estimated events 
(r(15) = 0.90, P < 0.001, 95% CI = [0.54, 0.96]) and hand-annotated 
scenes (r(15) = 0.60, P = 0.010, 95% CI = [0.02, 0.83]) that partici-
pants recalled. Participants’ average distinctiveness scores were also 
correlated with their numbers of model-estimated recalled events 
(r(15) = 0.71, P = 0.001, 95% CI = [−0.07, 0.90]) and marginally 
significantly correlated with their numbers of hand-annotated 
(r(15) = 0.45, P = 0.068, 95% CI = [−0.21, 0.79]).

Examining individual recalls of the same episode event can 
provide insights into how the above precision and distinctiveness 
scores may be used to characterize similarities and differences in 
how different people describe the same shared experience. In Fig. 5, 
we compare recalls for the same episode event from the participants 
with the highest (P17) and lowest (P6) precision scores. From the 
HMM-identified episode event boundaries, we recovered the set of 
annotations describing the content of a single episode event (event 
21; Fig. 5c), and divided them into different colour-coded sections 
for each action or feature described. Next, we used an analogous 
approach to identify the set of sentences comprising the correspond-
ing recall event from each of the two example participants (Fig. 5d). 
We then coloured all words describing actions and features in the 
transcripts shown in Fig. 5d according to the colour-coded annota-
tions in Fig. 5c. Visual comparison of these example recalls reveals 
that the more precise recall captures more of the episode event’s 
content, and captures it in greater detail.

Figure 5 also illustrates the differences between high and low 
distinctiveness scores. We extracted the set of sentences compris-
ing the most distinctive (P9) and least distinctive (P6) recall events 
corresponding to the example episode event shown in Fig. 5c (event 
21). We also extracted the annotations for all episode events whose 
content these participants’ single recall events touched on. We 
assigned each episode event a unique colour (Fig. 5e), and coloured 
each recalled sentence (Fig. 5f) according to the episode events they 

best matched. Visual inspection of Fig. 5f reveals that the content 
of the most distinctive recall is tightly concentrated around event 
21, whereas the least distinctive recall incorporates content from a 
much wider range of episode events.

The preceding analyses sought to characterize how participants’ 
recountings of individual episode events captured the low-level 
details of each event. Next, we sought to characterize how par-
ticipants’ recountings of the full episode captured its high-level 
essence—that is, the shape of the episode’s trajectory through 
word-embedding (topic) space. To visualize the essence of the 
episode and each participant’s recall trajectory35, we projected the 
topic-proportions matrices for the episode and recalls onto a shared 
two-dimensional space using uniform manifold approximation 
and projection (UMAP)36. In this lower-dimensional space, each 
point represents a single episode or recall event, and the distances 
between the points reflect the distances between the events’ associ-
ated topic vectors (Fig. 6). In other words, events that are nearer to 
each other in this space are more semantically similar, and those 
that are farther apart are are less so.

Visual inspection of the episode and recall topic trajectories 
reveals a striking pattern. First, the topic trajectory of the episode 
(which reflects its dynamic content; Fig. 6a) is captured nearly per-
fectly by the averaged topic trajectories of participants’ recalls (Fig. 
6b). To assess the consistency of these recall trajectories across par-
ticipants, we asked: given that a participant’s recall trajectory had 
entered a particular location in the reduced topic space, could the 
position of their next recalled event be predicted reliably? For each 
location in the reduced topic space, we computed the set of line 
segments connecting successively recalled events (across all par-
ticipants) that intersected that location (see Methods and Extended 
Data Fig. 1). We then computed (for each location) the distribution 
of angles formed by the lines defined by those line segments and a 
fixed reference line (the x-axis). Rayleigh tests revealed the set of 
locations in topic space at which these across-participant distribu-
tions exhibited reliable peaks (blue arrows in Fig. 6b reflect signifi-
cant peaks at p < 0.05, corrected). We observed that the locations 
traversed by nearly the entire episode trajectory exhibited such 
peaks. In other words, participants’ recalls exhibited similar trajec-
tories to each other that also matched the trajectory of the origi-
nal episode (Fig. 6c). This is especially notable when considering 
the fact that the number of HMM-identified recall events (dots in 
Fig. 6c) varied considerably across people, and that every partici-
pant used different words to describe what they had remembered 
happening in the episode. Differences in the numbers of recall 
events appear in participants’ trajectories as differences in the sam-
pling resolution along the trajectory. We note that this framework 
also provides a means of disentangling classic proportion-recalled 
measures (that is, the proportion of episode events described in 
participants’ recalls) from participants’ abilities to recapitulate the 
episode’s essence (that is, the similarity between the shapes of the 
original episode trajectory and that defined by each participant’s 
recounting of the episode).

In addition to enabling us to visualize the episode’s high-level 
essence, describing the episode as a geometric trajectory also 

Fig. 5 | Precision reflects the completeness of recall, whereas distinctiveness reflects recall specificity. a, Recall precision by episode event. Grey 
violin plots display kernel density estimates for the distribution of recall precision scores for a single episode event. Coloured dots within each violin plot 
represent individual participants’ recall precisions for the given event. b, Recall distinctiveness by episode event, analogous to a. c, The set of ‘narrative 
details’ episode annotations23, comprising an example episode event (22) identified by the HMM. Each action or feature is highlighted in a different colour. 
d, Sentences comprising the most precise (P17) and least precise (P6) participants’ recalls of episode event 21. Descriptions of specific actions or features 
reflecting those highlighted in b are highlighted in the corresponding colour. The text highlighted in grey denotes a (rare) false recall. The unhighlighted 
text denotes correctly recalled information about other episode events. e, The sets of ‘narrative details’ episode annotations23 for scenes, comprising 
episode events described by the example participants in f. Each event’s text is highlighted in a different colour. f, The sentences comprising the most 
distinctive (P9) and least distinctive (P6) participants’ recalls of episode event 21. Sections of recall describing each episode event in e are highlighted with 
the corresponding colour.
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enables us to drill down to individual words and quantify how 
each word relates to the memorability of each event. This provides 
another approach to examining participants’ recall for low-level 
details beyond the precision and distinctiveness measures we 
defined above. The results displayed in Figs. 3c and 5a suggest 
that certain events were remembered better than others. Given 

this, we next asked whether the events that were generally remem-
bered precisely or imprecisely tended to reflect particular content. 
Because our analysis framework projects the dynamic episode con-
tent and participants’ recalls into a shared space, and because the 
dimensions of that space represent topics (which are, in turn, sets 
of weights over known words in the vocabulary), we are able to 
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recover the weighted combination of words that make up any point 
(that is, topic vector) in this space. We first computed the average 
precision with which participants recalled each of the 30 episode 
events (Fig. 7a; note that this result is analogous to a serial posi-
tion curve created from our precision metric). We then computed a 
weighted average of the topic vectors for each episode event, where 
the weights reflected how precisely each event was recalled. To visu-
alize the result, we created a Wordle image (https://zenodo.org/
record/1322068), in which words weighted more heavily by more 
precisely remembered topics appear in a larger font (Fig. 7b, green 
box). Across the full episode, content that weighted heavily on top-
ics and words central to the major foci of the episode (for example, 
the names of the two main characters, ‘Sherlock’ and ‘John’, and the 
address of a major recurring location, ‘221B Baker Street’) was best 
remembered. An analogous analysis revealed which themes were 

less precisely remembered. Here, in computing the weighted aver-
age over events’ topic vectors, we weighted each event in inverse 
proportion to its average precision (Fig. 7b, red box). The least pre-
cisely remembered episode content reflected information that was 
extraneous to the episode’s essence, such as the proper names of rel-
atively minor characters (for example, ‘Mike’, ‘Molly’ and ‘Lestrade’) 
and locations (for example, ‘St Bartholomew’s Hospital’).

A similar result emerged from assessing the topic vectors for 
individual episode and recall events (Fig. 7c). Here, for each of the 
three most and least precisely remembered episode events, we have 
constructed two Wordles: one from the topic vector for the origi-
nal episode event (left) and a second from the average recall topic 
vector for that event (right). The three most precisely remembered 
events (circled in green) correspond to scenes integral to the cen-
tral plotline: a mysterious figure spying on John in a phone booth; 

a Video events b Recalled events

c P1 P2 P3 P4 P5 P6

P7 P8 P9 P10 P11 P12

P13 P14 P15 P16 P17

Fig. 6 | Trajectories through topic space capture the dynamic content of the episode and recalls. a–c, The topic-proportions matrices have been 
projected onto a shared two-dimensional space using UMAP. a, The two-dimensional topic trajectory taken by the episode of Sherlock. Each dot indicates 
an event identified using the HMM (see Methods). Dot colours denote the order of the events (early events are in red, later events are in blue), and the 
connecting lines indicate the transitions between successive events. b, The average two-dimensional trajectory captured by participants’ recall sequences, 
with the same format and colouring as the trajectory in a. To compute the event positions, we matched each recalled event with an event from the original 
episode (see Results), and then we averaged the positions of all events with the same label. Arrows reflect the average transition direction through topic 
space taken by any participants whose trajectories crossed that part of topic space; blue denotes reliable agreement across participants as determined 
by a Rayleigh test (P < 0.05, corrected). Additional detail are provided in Methods and Extended Data Fig. 1. c, The recall topic trajectories (grey) taken by 
each individual participant (P1–P17). The episode’s trajectory is shown in black for reference. Here, events (dots) are coloured by their matched episode 
event in a.
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John meeting Sherlock at Baker St. to discuss the murders; and 
Sherlock laying a trap to catch the killer. Meanwhile, the least pre-
cisely remembered events (circled in red) reflect scenes that com-
prise minor plot points: a video of singing cartoon characters that 
participants viewed in an introductory clip before the main episode; 
John asking Molly about Sherlock’s habit of over-analysing people; 
and Sherlock noticing evidence of Anderson’s and Donovan’s affair.

The results thus far inform us about which aspects of the 
dynamic content in the episode participants watched were pre-
served or altered in participants’ memories. We next carried out a 
series of analyses aimed at understanding which brain structures 
might facilitate these preservations and transformations between 
the participants’ shared experience of watching the episode and 
their subsequent memories of the episode. In the first analysis, 
we sought to identify brain structures that were sensitive to the 
dynamic unfolding of the episode’s content, as characterized by its 
topic trajectory. We used a searchlight procedure to identify clusters 

of voxels whose activity patterns displayed a proximal temporal cor-
relation structure (as participants watched the episode) matching 
that of the original episode’s topic proportions (Fig. 8a; see Methods 
for additional details). In a second analysis, we sought to identify 
brain structures whose responses (during episode viewing) reflected 
how each participant would later structure their recounting of the 
episode. We used a searchlight procedure to identify clusters of vox-
els whose proximal temporal correlation matrices matched that of 
the topic-proportions matrix for each participant’s recall transcript 
(Figs. 8b; see Methods for additional details). To ensure our search-
light procedure identified regions specifically sensitive to the tem-
poral structure of the episode or recalls (that is, rather than those 
with a temporal autocorrelation length similar to that of the epi-
sode and recalls), we performed a phase shift-based permutation 
correction (see Methods). As shown in Fig. 8c, the episode-driven  
searchlight analysis revealed a distributed network of regions  
that may play a role in processing information relevant to the  
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narrative structure of the episode. The recall-driven searchlight 
analysis revealed a second network of regions (Fig. 8d) that may 
facilitate a person-specific transformation of one’s experience into 
memory. In identifying regions whose responses to ongoing experi-
ences reflect how those experiences will be remembered later, this 
latter analysis extends classic subsequent memory effect analyses37 
to the domain of naturalistic experiences.

The searchlight analyses described above yielded two distrib-
uted networks of brain regions whose activity time courses tracked 
with the temporal structure of the episode (Fig. 8c) or participants’ 
subsequent recalls (Fig. 8d). We next sought to gain greater insight 
into the structures and functional networks our results reflected. 
To accomplish this, we performed an additional, exploratory analy-
sis using Neurosynth38. Given an arbitrary statistical map as input, 
Neurosynth performs a massive automated meta-analysis, return-
ing a frequency-ranked list of terms used in neuroimaging papers 
that report similar statistical maps. We ran Neurosynth on the 
(unthresholded) permutation-corrected maps for the episode- and 
recall-driven searchlight analyses. The top ten terms with maxi-
mally similar meta-analysis images identified by Neurosynth are 
shown in Fig. 8.

Discussion
Explicitly modelling the dynamic content of a naturalistic stimu-
lus and participants’ memories enabled us to connect the present 
study of naturalistic recall with an extensive previous literature that 
has used list-learning paradigms to study memory4, as in Fig. 3. We 
found some similarities between how participants in the present 

study recounted a television episode and how participants typically 
recall memorized random word lists. However, our broader claim is 
that word lists miss out on fundamental aspects of naturalistic mem-
ory that are more like the sort of memory we rely on in everyday life. 
For example, there are no random word-list analogues of charac-
ter interactions, conceptual dependencies between temporally dis-
tant episode events, the sense of solving a mystery that pervades 
the Sherlock episode, or the myriad other features of the episode 
that convey deep meaning and capture interest. Nevertheless, each 
of these properties affects how people process and engage with the 
episode as they are watching it and how they remember it later. The 
overarching goal of the present study is to characterize how the 
rich dynamics of the episode affect the rich behavioural and neural 
dynamics of how people remember it.

Our work casts remembering as reproducing (behaviourally and 
neurally) the topic trajectory or shape of an experience, thereby 
drawing implicit analogies between mentally navigating through 
word-embedding spaces and physically navigating through spatial 
environments39–41. When we characterized memory for a television 
episode using this framework, we found that every participant’s 
recounting of the episode recapitulated the low spatial frequency 
details of the shape of its trajectory through topic space (Fig. 6). We 
termed this narrative scaffolding the episode’s essence. Where par-
ticipants’ behaviours varied most was in their tendencies to recount 
specific low-level details from each episode event. Geometrically, this 
appears as high spatial frequency distortions in participants’ recall 
trajectories relative to the trajectory of the original episode (Fig. 7).  
We developed metrics to characterize the precision (recovery  
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structure to that participant’s recalls. c, We identified a network of regions sensitive to the narrative structure of participants’ ongoing experience. The map 
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of any and all event-level information) and distinctiveness (recovery 
of event-specific information). We also used word cloud visualiza-
tions to interpret the details of these event-level distortions.

The neural analyses we carried out (Fig. 8) also leveraged our 
geometric framework for characterizing the shapes of the episode 
and participants’ recountings. We identified one network of regions 
whose responses tracked with temporal correlations in the concep-
tual content of the episode (as quantified by topic models applied 
to a set of annotations about the episode). This network included 
orbitofrontal cortex, ventromedial prefrontal cortex, and striatum, 
among others. As reviewed by Ranganath and Ritchey13, several of 
these regions are members of the anterior temporal system, which 
has been implicated in assessing and processing the familiarity 
of ongoing experiences, emotions, social cognition and reward. 
A second network that we identified tracked with temporal cor-
relations in the idiosyncratic conceptual content of participants’ 
subsequent recountings of the episode. This network included 
occipital cortex, extrastriate cortex, fusiform gyrus, and the pre-
cuneus. Several of these regions are members of the posterior 
medial system13, which has been implicated in matching incoming 
cues about the current situation to internally maintained situation 
models that specify the parameters and expectations inherent to 
the current situation14,15. Together, our results support the notion 
that these two (partially overlapping) networks work in coordina-
tion to make sense of our ongoing experiences, distort them in a 
way that links them with our prior knowledge and experiences, 
and encodes those distorted representations into memory for our 
later use. Our work also provides a potential framework for model-
ling and elucidating memory schemas—that is, cognitive abstrac-
tions that may be applied to multiple related experiences42,43. For 
example, the event-level geometric scaffolding of an experience 
(for example, Fig. 6a) might reflect its underlying schema, and 
experiences that share similar schemas might have similar shapes. 
This could also help explain how brain structures including the 
ventromedial prefrontal cortex42 (Fig. 8) might acquire or apply 
schema knowledge across different experiences (that is, by learn-
ing patterns in the schema’s shape).

Our general approach draws inspiration from previous work 
aimed at elucidating the neural and behavioural underpinnings 
of how we process dynamic naturalistic experiences and remem-
ber them later. Our approach to identifying neural responses to 
naturalistic stimuli (including experiences) entails building an 
explicit model of the stimulus dynamics and searching for brain 
regions whose responses are consistent with the model44,45. Building 
an explicit model of these dynamics also enables us to match up 
different people’s recountings of a common shared experience, 
despite individual differences46. In previous work, a series of stud-
ies from Uri Hasson’s group7,23,26,47,48 has presented a clever alter-
native approach: rather than building an explicit stimulus model, 
these studies instead search for brain responses to the stimulus 
that are reliably similar across individuals. Inter-subject correlation 
and inter-subject functional connectivity analyses effectively treat 
other people’s brain responses to the stimulus as a model of how its 
features change over time49. These purely brain-driven approaches 
are well suited to identifying which brain structures exhibit simi-
lar stimulus-driven responses across individuals. Further, because 
neural response dynamics are observed data (rather than model 
approximations), such approaches do not require a detailed under-
standing of which stimulus properties or features might be driving 
the observed responses. However, this also means that the specific 
stimulus features driving those responses are typically opaque to the 
researcher. Our approach is complementary. By explicitly model-
ling the stimulus dynamics, we are able to relate specific stimulus 
features to behavioural and neural dynamics. However, when our 
model fails to accurately capture the stimulus dynamics that are  
truly driving behavioural and neural responses, our approach  

necessarily yields an incomplete characterization of the neural basis 
of the processes we are studying.

Other recent work has used HMMs to discover latent event 
structure in neural responses to naturalistic stimuli26. By applying 
HMMs to our explicit models of stimulus and memory dynam-
ics, we gain a more direct understanding of those state dynamics. 
For example, we found that although the events comprising each 
participant’s recalls recapitulated the episode’s essence, participants 
differed in the resolution of their recounting of low-level details. 
In turn, these individual behavioural differences were reflected in 
differences in neural activity dynamics as participants watched the 
television episode.

Our approach also draws inspiration from the growing field of 
word-embedding models. The topic models24 we used to embed 
text from the episode annotations and participants’ recall tran-
scripts are just one of many models that have been studied in an 
extensive literature. The earliest approaches to word embedding, 
including latent semantic analysis50, used word co-occurrence sta-
tistics (that is, how often pairs of words occur in the same docu-
ments contained in the corpus) to derive a unique feature vector 
for each word. The feature vectors are constructed so that words 
that co-occur more frequently have feature vectors that are closer 
(in Euclidean distance). Topic models are essentially an extension 
of those early models, in that they attempt to explicitly model the 
underlying causes of word co-occurrences by automatically identi-
fying the set of themes or topics reflected across the documents in 
the corpus. More recent work on these types of semantic models, 
including word2vec51, the Universal Sentence Encoder52 and gener-
ative pre-trained transformers (for example, GPT-253 and GTP-354) 
use deep neural networks to attempt to identify the deeper con-
ceptual representations underlying each word. Despite the growing 
popularity of these sophisticated deep learning-based embedding 
models, we chose to prioritize interpretability of the embedding 
dimensions (for example, Fig. 7) over raw performance (for exam-
ple, with respect to some predefined benchmark). Nevertheless, we 
note that our general framework is, in principle, robust to the spe-
cific choice of language model as well as other aspects of our com-
putational pipeline. For example, the word-embedding model, time 
series segmentation model and the episode-recall matching func-
tion could each be customized to suit a particular question space 
or application. Indeed, for some questions, interpretability of the 
embeddings may not be a priority, and thus other text embedding 
approaches (including the deep learning-based models described 
above) may be preferable. Further work will be needed to explore 
the influence of particular models on our framework’s predictions 
and performance.

Speculatively, our work may have broad implications for how we 
characterize and assess memory in real-world settings, such as the 
classroom or physician’s office. For example, the most commonly 
used classroom evaluation tools involve simply computing the pro-
portion of correctly answered exam questions. Our work suggests 
that this approach is only loosely related to what educators might 
really want to measure: how well did the students understand the 
key ideas presented in the course? Under this typical framework 
of assessment, the same exam score of 50% could be ascribed to 
two very different students: one who attended to the full course 
but struggled to learn more than a broad overview of the material, 
and one who attended to only half of the course but understood the 
attended material perfectly. Instead, one could apply our computa-
tional framework to build explicit dynamic content models of the 
course material and exam questions. This approach might provide a 
more nuanced and specific view into which aspects of the material 
students had learned well (or poorly). In clinical settings, memory 
measures that incorporate such explicit content models might also 
provide more direct evaluations of patients’ memories, and of doc-
tor–patient interactions.
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Methods
Paradigm and data collection. Data were collected by Chen et al.23. In brief, 
participants (n = 22) viewed the first 48 min of ‘A Study in Pink’, the first episode 
of the BBC television show Sherlock, while fMRI volumes were collected 
(TR = 1,500 ms). Participants were pre-screened to ensure they had never seen any 
episode of the show before. The stimulus was divided into a 23 min (946 TR) and 
a 25 min (1030 TR) segment to mitigate technical issues related to the scanner. 
After finishing the clip, participants were instructed to “describe what they recalled 
of the [episode] in as much detail as they could, to try to recount events in the 
original order they were viewed in, and to speak for at least 10 min if possible, 
but that longer was better. They were told that completeness and detail were 
more important than temporal order, and that if at any point they realized they 
had missed something, to return to it. Participants were then allowed to speak 
for as long as they wished, and verbally indicated when they were finished (e.g., 
‘I’m done’)”23. Five participants were dropped from the original dataset due to 
excessive head motion (2 participants), insufficient recall length (2 participants) or 
falling asleep during stimulus viewing (1 participant), resulting in a final sample 
size of n = 17. For additional details about the testing procedures and scanning 
parameters, see ref. 23. The testing protocol was approved by Princeton University’s 
Institutional Review Board.

After preprocessing the fMRI data and warping the images into a standard 
(3 mm3 MNI) space, the voxel activations were given z-scores (within voxel) and 
spatially smoothed using a 6 mm (full width at half maximum) Gaussian kernel. 
The fMRI data were also cropped so that all episode-viewing data were aligned 
across participants. This included a constant 3 TR (4.5 s) shift to account for the 
lag in the haemodynamic response. All of these preprocessing steps followed Chen 
et al., where additional details may be found23.

The video stimulus was divided into 1,000 fine-grained time segments and 
annotated by an independent coder. For each of these 1,000 annotations, the 
following information was recorded: a brief narrative description of what was 
happening, the location where the time segment took place, whether that location 
was indoors or outdoors, the names of all characters on-screen, the name(s) of the 
character(s) in focus in the shot, the name(s) of the character(s) currently speaking, 
the camera angle of the shot, a transcription of any text appearing on-screen, and 
whether or not there was music present in the background. Each time segment was 
also tagged with its onset and offset time, in both seconds and TRs.

Statistics. All statistical tests performed in the behavioural analyses were 
two-sided. All statistical tests performed in the neural data analyses were 
two-sided, except for the permutation-based thresholding, which was one-sided. In 
this case, we were specifically interested in identifying voxels whose activation time 
series reflected the temporal structure of the episode and recall topic-proportions 
matrices to a greater extent than that of the phase-shifted matrices. The 95% 
confidence intervals we reported for each correlation were estimated by generating 
10,000 bootstrap distributions of correlation coefficients by sampling (with 
replacement) from the observed data.

Modelling the dynamic content of the episode and recall transcripts. Topic 
modelling. The input to the topic model that we trained to characterize the 
dynamic content of the episode comprised 998 hand-generated annotations of 
short (mean 2.96s) time segments spanning the video clip (Chen et al. generated 
1,000 annotations in total23; we removed two annotations referring to a break 
between the first and second scan sessions, during which no fMRI data were 
collected). We concatenated the text for all of the annotated features within each 
segment, creating a ‘bag of words’ describing its content, and performed some 
minor preprocessing (for example, stemming possessive nouns and removing 
punctuation). We then reorganized the text descriptions into overlapping sliding 
windows spanning (up to) 50 annotations each. In other words, we estimated the 
context for each annotated segment using the text descriptions of the preceding 25 
annotations, the present annotations, and the following 24 annotations. To model 
the context for annotations near the beginning of the episode (that is, within 25 of 
the beginning or end), we created overlapping sliding windows that grew in size 
from one annotation to the full length. We also tapered the sliding-window lengths 
at the end of the episode, whereby time segments within fewer than 24 annotations 
of the end of the episode were assigned sliding windows that extended to the end of 
the episode. This procedure ensured that each annotation’s content was represented 
in the text corpus an equal number of times.

We trained our model using these overlapping text samples with scikit-learn 
v.0.19.155, called from our high-dimensional visualization and text analysis 
software, HyperTools35. Specifically, we used the CountVectorizer class to 
transform the text from each window into a vector of word counts (using the union 
of all words across all annotations as the vocabulary, excluding English stop words); 
this yielded a number-of-windows by number-of-words word-count matrix. We 
then used the LatentDirichletAllocation class (topics = 100, method = ‘batch’) to fit 
a topic model24 to the word-count matrix, yielding a number-of-windows (1,047) 
by number-of-topics (100) topic-proportions matrix. The topic-proportions 
matrix describes the gradually evolving mix of topics (latent themes) present 
in each annotated time segment of the episode. Next, we transformed the 
topic-proportions matrix to match the 1,976 fMRI volume acquisition times. 

We assigned each topic vector to the timepoint (in seconds) midway between 
the beginning of the first annotation and the end of the last annotation in its 
corresponding sliding text window. By doing so, we warped the linear temporal 
distance between consecutive topic vectors to align with the inconsistent temporal 
distance between consecutive annotations (whose durations varied greatly). We 
then rescaled these timepoints to 1.5 s TR units, and used linear interpolation to 
estimate a topic vector for each TR. This resulted in a number-of-TRs (1,976) by 
number-of-topics (100) matrix.

We created similar topic-proportions matrices using hand-annotated 
transcripts of each participant’s verbal recall of the episode23. We tokenized the 
transcript into a list of sentences, and then reorganized the list into overlapping 
sliding windows spanning (up to) 10 sentences each, analogously to how we 
parsed the episode annotations. In turn, we transformed each window’s sentences 
into a word-count vector (using the same vocabulary as for the episode model), 
then used the topic model already trained on the episode scenes to compute 
the most probable topic proportions for each sliding window. This yielded a 
number-of-windows (range 83–312) by number-of-topics (100) topic-proportions 
matrix for each participant. These reflected the dynamic content of each 
participant’s recalls. For details on how we selected the episode and recall 
window lengths and number of topics, see Supplementary Information and 
Supplementary Fig. 1.

Segmenting topic-proportions matrices into discrete events using HMMs. We parsed 
the topic-proportions matrices of the episode and participants’ recalls into discrete 
events using HMMs25. Given the topic-proportions matrix (describing the mix 
of topics at each timepoint) and a number of states K, an HMM recovers the set 
of state transitions that segments the time series into K discrete states. Following 
Baldassano et al.26, we imposed an additional set of constraints on the discovered 
state transitions that ensured that each state was encountered exactly once (that 
is, never repeated). We used the BrainIAK toolbox (https://doi.org/10.5281/
zenodo.59780) to implement this segmentation.

We used an optimization procedure to select the appropriate K for each 
topic-proportions matrix. Previous studies on narrative structure and processing 
have shown that we both perceive and internally represent the world around us 
at multiple, hierarchical timescales7,23,26,43,56,57. However, for the purposes of our 
framework, we sought to identify the single time series of event representations 
that was emphasized most heavily in the temporal structure of the episode and of 
each participant’s recall. We quantified this as the set of K states that maximized 
the similarity between topic vectors for timepoints comprising each state, while 
minimizing the similarity between topic vectors for timepoints across different 
states. Specifically, we computed (for each matrix)

argmax
K

W1ða; bÞ½ ;

where a was the distribution of within-state topic vector correlations, and b was 
the distribution of across-state topic vector correlations. We computed the first 
Wasserstein distance (W1, also known as Earth mover’s distance)58,59 between 
these distributions for a large range of possible K values (range [2, 50]), and 
selected the K that yielded the maximum value. Figure 2b displays the event 
boundaries returned for the episode, and Extended Data Fig. 2 displays the event 
boundaries returned for each participant’s recalls. See Extended Data Fig. 4 for 
the optimization functions for the episode and recalls. After obtaining these 
event boundaries, we created stable estimates of the content represented in each 
event by averaging the topic vectors across timepoints between each pair of event 
boundaries. This yielded a number-of-events by number-of-topics matrix for the 
episode and recalls from each participant.

Naturalistic extensions of classic list-learning analyses. In traditional list-learning 
experiments, participants view a list of items (for example, words) and then recall 
the items later. Our episode-recall event-matching approach affords us the ability 
to analyse memory in a similar way. The episode and recall events can be treated 
analogously to studied and recalled items in a list-learning study. We can then 
extend classic analyses of memory performance and dynamics (originally designed 
for list-learning experiments) to the more naturalistic episode-recall task used in 
this study.

Perhaps the simplest and most widely used measure of memory performance 
is accuracy—that is, the proportion of studied (experienced) items (in this case, 
episode events) that the participant later remembered. Chen et al.23 used this 
method to rate each participant’s memory quality by computing the proportion 
of (50 manually identified) scenes mentioned in their recall. We found a strong 
across-participants correlation between these independent ratings and the 
proportion of 30 HMM-identified episode events matched to participants’ recalls 
(Pearson’s r(15) = 0.71, P = 0.002, 95% CI = [0.39, 0.88]). We further considered 
a number of more nuanced memory performance measures that are typically 
associated with list-learning studies. We also provide a software package, Quail, for 
carrying out these analyses60.

Probability of first recall. Probability of first recall curves30–32 reflect the 
probability that an item will be recalled first, as a function of its serial position 
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during encoding. To carry out this analysis, we initialized a number-of-participants 
(17) by number-of-episode-events (30) matrix of zeros. Then, for each participant, 
we found the index of the episode event that was recalled first (that is, the episode 
event whose topic vector was most strongly correlated with that of the first recall 
event) and filled in that index in the matrix with a 1. Finally, we averaged over 
the rows of the matrix, resulting in a 1 by 30 array representing the proportion 
of participants that recalled an event first, as a function of the order of the event’s 
appearance in the episode (Fig. 3a).

Lag-conditional probability curve. The lag-conditional probability (lag-CRP) 
curve2 reflects the probability of recalling a given item after the just-recalled 
item, as a function of their relative encoding positions (lag). In other words, 
a lag of 1 indicates that a recalled item was presented immediately after the 
previously recalled item, and a lag of −3 indicates that a recalled item came 3 
items before the previously recalled item. For each recall transition (following the 
first recall), we computed the lag between the current recall event and the next 
recall event, normalizing by the total number of possible transitions. This yielded 
a number-of-participants (17) by number-of-lags (−29 to +29; 58 lags in total 
excluding lags of 0) matrix. We calculated the average over the rows of this matrix 
to obtain a group-averaged lag-CRP curve (Fig. 3b).

Serial position curve. Serial position curves1 reflect the proportion of 
participants who remember each item as a function of the item’s serial 
position during encoding. We initialized a number-of-participants (17) by 
number-of-episode-events (30) matrix of zeros. Then, for each recalled event, for 
each participant, we found the index of the episode event that the recalled event 
most closely matched (via the correlation between the events’ topic vectors) and 
entered a 1 into that position in the matrix. This resulted in a matrix whose entries 
indicated whether or not each event was recalled by each participant (depending 
on whether the corresponding entires were set to one or zero). Finally, we averaged 
over the rows of the matrix to yield a 1 by 30 array representing the proportion of 
participants that recalled each event as a function of the events’ order appearance 
in the episode (Fig. 3c).

Temporal clustering scores. Temporal clustering describes a participant’s tendency 
to organize their recall sequences by the learned items’ encoding positions. 
For instance, if a participant recalled the episode events in the exact order they 
occurred (or in exact reverse order), this would yield a score of 1. If a participant 
recalled the events in random order, this would yield an expected score of 0.5. For 
each recall-event transition (and separately for each participant), we sorted all 
not-yet-recalled events according to their absolute lag (that is, distance away in the 
episode). We then computed the percentile rank of the next event the participant 
recalled. We took an average of these percentile ranks across all of the participant’s 
recalls to obtain a single temporal clustering score for the participant.

Semantic clustering scores. Semantic clustering describes a participant’s tendency 
to recall semantically similar presented items together in their recall sequences. 
We used the topic vectors for each event as a proxy for its semantic content. Thus, 
the similarity between the semantic content for two events can be computed by 
correlating their respective topic vectors. For each recall-event transition, we 
sorted all not-yet-recalled events according to how correlated the topic vector of 
the closest-matching episode event was to the topic vector of the closest-matching 
episode event to the just-recalled event. We then computed the percentile rank 
of the observed next recall. We averaged these percentile ranks across all of the 
participant’s recalls to obtain a single semantic clustering score for the participant.

Averaging correlations. In all instances where we performed statistical tests 
involving precision or distinctiveness scores (Fig. 5), we used the Fisher 
z-transformation61 to stabilize the variance across the distribution of correlation 
values before performing the test. Similarly, when averaging precision or 
distinctiveness scores, we used the z-transform of the scores to compute the mean, 
and inverse z-transformed the result.

Visualizing the episode and recall topic trajectories. We used the UMAP algorithm36 
to project the 100-dimensional topic space onto a two-dimensional space for 
visualization (Figs. 6 and 7). To ensure that all of the trajectories were projected 
onto the same lower-dimensional space, we computed the low-dimensional 
embedding on a stacked matrix created by vertically concatenating the 
events-by-topics topic-proportions matrices for the episode, the across-participants 
average recalls and all 17 individual participants’ recalls. We then separated the 
rows of the result (a total number of events by two matrix) back into individual 
matrices for the episode topic trajectory, the across-participant average recall 
trajectory, and the trajectories for each individual participant’s recalls (Fig. 6). 
This general approach for discovering a shared low-dimensional embedding for 
a collections of high-dimensional observations follows our previous work on 
manifold learning35.

We optimized the manifold space for visualization on the basis of two criteria: 
first, that the 2D embedding of the episode trajectory should reflect its original 
100-dimensional structure as faithfully as possible; and second, that the path 

traversed by the embedded episode trajectory should intersect itself a minimal 
number of times. The first criteria helps bolster the validity of visual intuitions 
about relationships between sections of episode content, based on their locations 
in the embedding space. The second criteria was motivated by the observed 
low off-diagonal values in the episode trajectory’s temporal correlation matrix 
(suggesting that the same topic space coordinates should not be revisited; see Fig. 
2a). For further details on how we created this low-dimensional embedding space, 
see Supplementary Information.

Estimating the consistency of flow through topic space across participants. In Fig. 
6b, we present an analysis aimed at characterizing locations in topic space that 
different participants move through in a consistent way (via their recall topic 
trajectories; also see Extended Data Fig. 1). The two-dimensional topic space used 
in our visualizations (Fig. 6) comprised a 60 × 60 (arbitrary units) square. We tiled 
this space with a 50 × 50 grid of evenly spaced vertices, and defined a circular area 
centred on each vertex, whose radius was two times the distance between adjacent 
vertices (that is, 2.4 units). For each vertex, we examined the set of line segments 
formed by connecting each pair successively recalled events, across all participants, 
that passed through this circle. We computed the distribution of angles formed by 
those segments and the x-axis, and used a Rayleigh test to determine whether the 
distribution of angles was reliably peaked (that is, consistent across all transitions 
that passed through that local portion of topic space). To create Fig. 6b, we drew 
an arrow originating from each grid vertex, pointing in the direction of the average 
angle formed by the line segments that passed within 2.4 units. We set the arrow 
lengths to be inversely proportional to the P values of the Rayleigh tests at each 
vertex. Specifically, for each vertex we converted all of the angles of segments that 
passed within 2.4 units to unit vectors, and we set the arrow lengths at each vertex 
proportional to the length of the (circular) mean vector. We also indicated any 
significant results (P < 0.05, corrected using the Benjamini–Hochberg procedure) 
by colouring the arrows in blue (darker blue denotes a lower P value, that is, a 
longer mean vector); all tests with P ≥ 0.05 are displayed in grey and given a lower 
opacity value.

Searchlight fMRI analyses. In Fig. 8, we present two analyses aimed at identifying 
brain regions whose responses (as participants viewed the episode) exhibited a 
particular temporal structure. We developed a searchlight analysis wherein we 
constructed a 5 × 5 × 5 cube of voxels centred on each voxel in the brain23, and 
for each of these cubes, computed the temporal correlation matrix of the voxel 
responses during episode viewing. Specifically, for each of the 1,976 volumes 
collected during episode viewing, we correlated the activity patterns in the given 
cube with the activity patterns (in the same cube) collected during every other 
timepoint. This yielded a 1,976 × 1,976 correlation matrix for each cube. Note: the 
scan of participant 5 ended 75 s early, and in the publicly released dataset for Chen 
et al.23, their scan data was zero-padded to match the length of those of the other 
participants. For our searchlight analyses, we removed this padded data (that is, 
the last 50 TRs), resulting in a 1,925 × 1,925 correlation matrix for each cube in the 
brain of participant 5.

Next, we constructed a series of template matrices. The first template reflected 
the time course of the episode’s topic-proportions matrix, and the others reflected 
the time course of each participant’s recall topic-proportions matrix. To construct 
the episode template, we computed the correlations between the topic proportions 
estimated for every pair of TRs (before segmenting the topic-proportions matrices 
into discrete events; that is, the correlation matrix shown in Figs. 2b and 8a). We 
constructed similar temporal correlation matrices for each participant’s recall 
topic-proportions matrix (Fig. 2d and Extended Data Fig. 2). However, to correct 
for length differences and potential non-linear transformations between viewing 
time and recall time, we first used dynamic time warping62 to temporally align 
participants’ recall topic-proportions matrices with the episode topic-proportions 
matrix. An example correlation matrix before and after warping is shown in Fig. 
8b. This yielded a 1,976 × 1,976 correlation matrix for the episode template and for 
each participant’s recall template.

The temporal structure of the episode’s content (as described by our model) 
is captured in the block-diagonal structure of the episode’s temporal correlation 
matrix (for example, Figs. 2b and 8a), with time periods of thematic stability 
represented as dark blocks of varying sizes. Inspecting the episode correlation 
matrix suggests that the episode’s semantic content is highly temporally specific 
(that is, the correlations between topic vectors from distant timepoints are almost 
all near zero). By contrast, the activity patterns of individual (cubes of) voxels can 
encode relatively limited information on their own, and their activity frequently 
contributes to multiple separate functions63–66. By nature, these two attributes give 
rise to similarities in activity across large timescales that may not necessarily reflect 
a single task. To identify brain regions whose shifts in activity patterns mirrored 
shifts in the semantic content of the episode or recalls, we restricted the temporal 
correlations we considered to the timescale of semantic information captured by 
our model. Specifically, we isolated the upper triangle of the episode correlation 
matrix and created a proximal correlation mask that included only diagonals 
from the upper triangle of the episode correlation matrix up to the first diagonal 
that contained no positive correlations. Applying this mask to the full episode 
correlation matrix was equivalent to excluding diagonals beyond the corner of the 
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largest diagonal block. In other words, the timescale of temporal correlations we 
considered corresponded to the longest period of thematic stability in the episode, 
and by extension the longest period of thematic stability in participants’ recalls and 
the longest period of stability we might expect to see in voxel activity arising from 
processing or encoding episode content. Figure 8 shows this proximal correlation 
mask applied to the temporal correlation matrices for the episode, an example 
participant’s (warped) recall, and an example cube of voxels from our searchlight 
analyses.

To determine which (cubes of) voxel responses matched the episode 
template, we correlated the proximal diagonals from the upper triangle of the 
voxel correlation matrix for each cube with the proximal diagonals from episode 
template matrix67. This yielded, for each participant, a voxelwise map of correlation 
values. We then performed a one-sample t-test on the distribution of (Fisher 
z-transformed) correlations at each voxel, across participants. This resulted in a 
value for each voxel (cube), describing how reliably its time course followed that of 
the episode.

We further sought to ensure that our analysis identified regions where 
the activations’ temporal structure specifically reflected that of the episode, 
rather than regions whose activity was simply autocorrelated at a timescale 
similar to the episode template’s diagonal. To achieve this, we used a phase 
shift-based permutation procedure, whereby we circularly shifted the episode’s 
topic-proportions matrix by a random number of timepoints (rows), computed 
the resulting null episode template, and re-ran the searchlight analysis, in full. (For 
each of the 100 permutations, the same random shift was used for all participants). 
We z-scored the observed (unshifted) result at each voxel against the distribution 
of permutation-derived null results, and estimated a P value by computing the 
proportion of shifted results that yielded larger values. To create the map in Fig. 8c, 
we thresholded out any voxels whose similarity to the unshifted episode’s structure 
fell below the 95th percentile of the permutation-derived similarity results.

We used an analogous procedure to identify voxels whose responses reflected 
the recall templates. For each participant, we correlated the proximal diagonals 
from the upper triangle of the correlation matrix for each cube of voxels with 
the proximal diagonals from the upper triangle of their (time-warped) recall 
correlation matrix. As in the episode template analysis, this yielded a voxelwise 
map of correlation coefficients for each participant. However, whereas the episode 
analysis compared every participant’s responses to the same template, here the 
recall templates were unique for each participant. As in the analysis described 
above, we t-scored the (Fisher z-transformed) voxelwise correlations, and used the 
same permutation procedure we developed for the episode responses to ensure 
specificity to the recall time series and assign significance values. To create the map 
in Fig. 8d we again thresholded out any voxels whose scores were below the 95th 
percentile of the permutation-derived null distribution.

Neurosynth decoding analyses. Neurosynth38 parses a massive online database 
of over 14,000 neuroimaging studies and constructs meta-analysis images for 
over 13,000 psychology- and neuroscience-related terms, based on NIfTI images 
accompanying studies where those terms appear at a high frequency. Given a 
novel image (tagged with its value type; for example, z-, t-, F- or P-statistics), 
Neurosynth returns a list of terms whose meta-analysis images are most similar. 
Our permutation procedure yielded, for each of the two searchlight analyses, a 
voxelwise map of z-values. These maps describe the extent to which each voxel 
specifically reflected the temporal structure of the episode or individuals’ recalls 
(that is, relative to the null distributions of phase-shifted values). We inputted the 
two statistical maps described above to Neurosynth to create a list of the ten most 
representative terms for each map.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The fMRI data we analysed are available online at https://dataspace.princeton.edu/
jspui/handle/88435/dsp01nz8062179. The behavioural data are available at https://
github.com/ContextLab/sherlock-topic-model-paper/tree/master/data/raw.

Code availability
All of our analysis code can be downloaded from https://github.com/ContextLab/
sherlock-topic-model-paper.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Methods detail for recall trajectory analysis displayed in Figure 6B. A. This panel replicates Figure 6B, but with two additions. First, 
individual participants’ recall trajectories are displayed (faintly) as light gray lines. Second, three locations on the trajectory have been highlighted (blue, 
yellow, and red circles). B. These zoomed-in views of the locations highlighted in Panel A show the average trajectory (black) and individual participants’ 
trajectories (gray lines) that intersect the given region of topic space. C. For each circular region of topic space tiling the 2D embedding plane displayed in 
Panel A, we compute the distribution of angles formed between each participant’s trajectory segment (that is, the point at which the trajectory enters and 
exists the region of topic space) and the x-axis. The distributions of angles for these three example regions are displayed in the colored rose plots. We use 
Rayleigh tests to assign an arrow direction, length, and color for that region of topic space. Arrows displayed in color are significant at the p < 0.05 level 
(corrected). The arrow directions are oriented according to the circular means of each distribution, and the arrow lengths are proportional to the lengths of 
those mean vectors. The example regions have been oriented from left to right in decreasing order of consistency across participants.
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Extended Data Fig. 2 | Recall temporal correlation matrices and event segmentation fits. Each panel is in the same format as Figure 2E. The yellow boxes 
indicate HMM-identified event boundaries.
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Extended Data Fig. 3 | Episode-recall event correlation matrices. Each panel is in the same format as Figure 2G. The yellow boxes mark the matched 
episode event for each recall event (that is, the maximum correlation in each column).
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Extended Data Fig. 4 | Episode and recall topic proportions matrix K-optimization functions. We selected the optimal K-value for the episode and each 
recall topic proportions matrix using the formula described in Methods. This computation resulted in a curve for each matrix, describing the Wasserstein 
distance between the distributions of within-event and across-event topic vector correlations, as a function of K.

Nature Human Behaviour | www.nature.com/nathumbehav

http://www.nature.com/nathumbehav


1

nature research  |  reporting sum
m

ary
April 2020

Corresponding author(s): Jeremy R. Manning

Last updated by author(s): Nov 26, 2020

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection PsychToolbox (http://psychtoolbox.org/) and MATLAB (https://www.mathworks.com/products/matlab.html) were used to present the video.

Data analysis We used a number of open-source software in our analyses. All code was written in Python.  All code used to analyze data and generate 
figures and text can be found here: https://github.com/ContextLab/sherlock-topic-model-paper. For topic modeling, we used our open-source 
library called Hypertools (https://hypertools.readthedocs.io/en/latest/), which utilizes scikit-learn (http://scikit-learn.org/stable/index.html).  
For the Hidden Markov Model, we used the brainIAK toolbox. For dimensionality reduction, we utilized HyperTools which calls UMAP (https://
umap-learn.readthedocs.io/en/latest/).  For brain-related analyses, we used BrainIAK and nilearn (http://nilearn.github.io/). For list learning 
analyses, we used our open-source software, Quail (https://cdl-quail.readthedocs.io/en/latest/). For plotting, we used matplotlib (https://
matplotlib.org/), seaborn (https://seaborn.pydata.org/index.html) and word-cloud (https://github.com/amueller/word_cloud). Other 
packages used include pandas (https://pandas.pydata.org/), numpy (http://www.numpy.org/), scipy (https://www.scipy.org/), fastdtw 
(https://pypi.org/project/fastdtw/), pycircstat (https://github.com/circstat/pycircstat), statsmodels (https://www.statsmodels.org/stable/
index.html). 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All data and code to generate all figures can be found here: https://github.com/ContextLab/sherlock-topic-model-paper.  We analyzed an open dataset originally 
published alongside Chen et al.'s "Shared memories reveal shared structure in neural activity across individuals" (Nature Neuroscience, vol. 20, p. 115, 2017).
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size 22 participants; Quoted from Chen et al, 2017: "No statistical methods were used to predetermine sample sizes, but our sample sizes are 
similar to those reported in previous publications"

Data exclusions Quoted from Chen et al, 2017: "Twenty-two participants were recruited from the Princeton community (12 male, 10 female, ages 18–26, 
mean age 20.8)...Data from 5 of the 22 participants were discarded due to excessive head motion (greater than 1 voxel; 2 participants), 
because recall was shorter than 10 min (2 participants), or for falling asleep during the movie (1 participant). For one participant (#5 in Figs. 
2c,f, and 3c) the movie scan ended 75 s early (that is, this participant was missing data for part of scene 49 and all of scene 50)."

Replication The findings in this study were not replicated.

Randomization All participants viewed, then verbally recalled, a common 48-minute video. Participants were not assigned to different groups/conditions, and 
the experimental design precluded randomization of trial order.  

Blinding Blinding was not necessary because there was no explicit experimental manipulation.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the 
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.
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Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) State the source of each cell line used.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for 
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Palaeontology and Archaeology
Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 

issuing authority, the date of issue, and any identifying information).

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where 
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are 
provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals were 
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released, 
say where and when) OR state that the study did not involve wild animals.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants
Policy information about studies involving human research participants

Population characteristics Quoted from Chen et al, 2017: "Twenty-two participants were recruited from the Princeton community (12 male, 10 female, 
ages 18–26, mean age 20.8). All participants were right-handed native English speakers, reported normal or corrected-to-
normal vision, and had not watched any episodes of Sherlock before the experiment."

Recruitment See Chen et al, 2017 for specific recruitment information.

Ethics oversight The testing protocol was approved by Princeton University's Institutional Review Board.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.
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Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern
Policy information about dual use research of concern

Hazards
Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 
in the manuscript, pose a threat to:

No Yes
Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area

Experiments of concern
Does the work involve any of these experiments of concern:

No Yes
Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

ChIP-seq

Data deposition
Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and 
whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot 
number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files 
used.
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Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community 
repository, provide accession details.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the 
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type "Naturalistic" task: fMRI was recorded while participants watched and verbally recalled a video

Design specifications The stimulus was divided into a 23 minute (946 TR) and a 25 min (1030 TR) segment to facilitate technical issues related 
to the scanner. After finishing the clip, participants were instructed to (quoting from Chen et al., 2017) “describe what 
they recalled of the movie in as much detail as they could, to try to recount events in the original order they were 
viewed in, and to speak for at least 10 minutes if possible but that longer was better. They were told that completeness 
and detail were more important than temporal order, and that if at any point they realized they had missed something, 
to return to it. Participants were then allowed to speak for as long as they wished, and verbally indicated when they 
were finished (e.g., ‘I’m done’).”

Behavioral performance measures Verbal summaries of the video were collected.

Acquisition

Imaging type(s) functional

Field strength 3

Sequence & imaging parameters T2*-weighted echo-planar imaging (EPI) pulse sequence (TR 1,500 ms, TE 28 ms, flip angle 64, whole-brain coverage 27 
slices of 4 mm thickness, in-plane resolution 3 × 3 mm2, FOV 192 × 192 mm2), with ascending interleaved acquisition.

Area of acquisition whole brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Quoted from Chen et al., 2017: "Preprocessing was performed in FSL (http://fsl.fmrib.ox.ac.uk/fsl), including slice time 
correction, motion correction, linear detrending, high-pass filtering (140 s cutoff), and coregistration."

Normalization Quoted from Chen et al., 2017: "..affine transformation of the functional volumes to a template brain (Montreal Neurological 
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Normalization Institute (MNI) standard). Functional images were resampled to 3 mm isotropic voxels for all analyses. All calculations were 
performed in volume space."

Normalization template MNI template brain (3mm isotropic)

Noise and artifact removal FSL was used to remove artifacts related to motion and signal drift (linear detrending).

Volume censoring N/A

Statistical modeling & inference

Model type and settings We developed a searchlight analysis whereby we constructed a 5 mm3 cube centered on each voxel. For each of these 
cubes, we computed the temporal correlation matrix of the voxel responses during movie viewing. Specifically, for each of 
the 1976 volumes collected during movie viewing, we correlated the activity patterns in the given cube with the activity 
patterns (in the same cube) collected during every other timepoint. This yielded a 1976 by 1976 correlation matrix for each 
cube. Next, we constructed two sets of “template” matrices; one reflected the video’s topic trajectory and the other 
reflected each participant’s recall topic trajectory. To construct the video template, we computed the correlations between 
the topic proportions estimated for every pair of TRs (prior to segmenting the trajectory into discrete events). We 
constructed similar temporal correlation matrices for each participant’s recall topic trajectory. However, to correct for length 
differences and potential non-linear transformations between viewing time and recall time, we first used dynamic time 
warping (Berndt and Clifford, 1994) to temporally align participants’ recall topic trajectories with the video topic trajectory. 
This yielded a 1976 by 1976 correlation matrix for the video template and for each participant’s recall template.

Effect(s) tested To determine which (cubes of) voxel responses reliably matched the video template, we correlated the upper triangle of the 
voxel correlation matrix for each cube with the upper triangle of the video template matrix (Kriegeskorte et al., 2008). This 
yielded, for each participant, a single correlation value. We computed the average (Fisher z-transformed) correlation 
coefficient across participants.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

voxel-wise p < .05 (corrected)

Correction We used a permutation-based procedure to assess significance, whereby we re-computed the average correlations for each 
of 100 “null” video templates (constructed by circularly shifting the template by a random number of timepoints). (For each 
permutation, the same shift was used for all participants.) We then estimated a p-value by computing the proportion of 
shifted correlations that were larger than the observed (unshifted) correlation. To create the map in Figure 5A we 
thresholded out any voxels whose correlation values fell below the 95th percentile of the permutation-derived null 
distribution. 
 
We used a similar procedure to identify which voxels’ responses reflected the recall templates. For each participant, we 
correlated the upper triangle of the correlation matrix for each cube of voxels with their (time warped) recall correlation 
matrix. As in the video template analysis this yielded a single correlation coefficient for each participant. However, whereas 
the video analysis compared every participant’s responses to the same template, here the recall templates were unique for 
each participant. We computed the average z-transformed correlation coefficient across participants, and used the same 
permutation procedure we developed for the video responses to assess significant correlations. To create the map in Figure 
5B we thresholded out any voxels whose correlation values fell below the 95th percentile of the permutation-derived null 
distribution.

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis We constructed two sets of “template” matrices; one reflected the video’s topic trajectory and the other 
reflected each participant’s recall topic trajectory. To construct the video template, we computed the 
correlations between the topic proportions estimated for every pair of TRs (prior to segmenting the 
trajectory into discrete events). We constructed similar temporal correlation matrices for each participant’s 
recall topic trajectory. However, to correct for length differences and potential non-linear transformations 
between viewing time and recall time, we first used dynamic time warping (Berndt and Clifford, 1994) to 
temporally align participants’ recall topic trajectories with the video topic trajectory. This yielded a 1976 by 
1976 correlation matrix for the video template and for each participant’s recall template. Our evaluation 
metric was the correlation (Pearson's r) between the upper triangle of the templates described about and 
the upper triangle of the searchlight cube (5mm) of voxel responses.
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