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Abstract

W Primate vision is characterized by constant, sequential pro-
cessing and selection of visual targets to fixate. Although expected
reward is known to influence both processing and selection of
visual targets, similarities and differences between these effects
remain unclear mainly because they have been measured in
separate tasks. Using a novel paradigm, we simultaneously mea-
sured the effects of reward outcomes and expected reward on
target selection and sensitivity to visual motion in monkeys.
Monkeys freely chose between two visual targets and received a
juice reward with varying probability for eye movements made to
either of them. Targets were stationary apertures of drifting
gratings, causing the end points of eye movements to these
targets to be systematically biased in the direction of motion.
We used this motion-induced bias as a measure of sensitivity to
visual motion on each trial. We then performed different analyses
to explore effects of objective and subjective reward values on
choice and sensitivity to visual motion to find similarities and
differences between reward effects on these two processes.
Specifically, we used different reinforcement learning models to

INTRODUCTION

Primates make approximately three to four saccadic eye
movements each second, and thus, the choice of where
to fixate next is our most frequently made decision. The
next fixation location is determined in part not only by
visual salience (Itti & Koch, 2000) but also by internal goals
and reward expected from the foveated target (Schiitz,
Trommershiuser, & Gegenfurtner, 2012; Markowitz,
Shewcraft, Wong, & Pesaran, 2011; Navalpakkam, Koch,
Rangel, & Perona, 2010). Brain structures known to be
involved in the control of saccadic eye movement have
been extensively studied as a means of understanding
the neural basis of decision-making (Sugrue, Corrado, &
Newsome, 2005; Glimcher, 2003). Interestingly, the same
structures also appear to contribute to the selective pro-
cessing of targeted visual stimuli that tend to accompany
saccades (Squire, Noudoost, Schafer, & Moore, 2013).
Thus, it is conceivable that reward outcomes and expected
reward (i.e., subjective reward value) control saccadic
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fit choice behavior and estimate subjective reward values based
on the integration of reward outcomes over multiple trials.
Moreover, to compare the effects of subjective reward value on
choice and sensitivity to motion directly, we considered correla-
tions between each of these variables and integrated reward out-
comes on a wide range of timescales. We found that, in addition
to choice, sensitivity to visual motion was also influenced by
subjective reward value, although the motion was irrelevant for
receiving reward. Unlike choice, however, sensitivity to visual
motion was not affected by objective measures of reward value.
Moreover, choice was determined by the difference in subjective
reward values of the two options, whereas sensitivity to motion
was influenced by the sum of values. Finally, models that best
predicted visual processing and choice used sets of estimated
reward values based on different types of reward integration
and timescales. Together, our results demonstrate separable
influences of reward on visual processing and choice, and point
to the presence of multiple brain circuits for the integration of
reward outcomes. i

choice and processing of targeted visual stimuli via similar
mechanisms.

Our current knowledge of how reward outcomes and
subjective reward value influence the processing of visual
information and saccadic choice comes from separate
studies using different experimental paradigms. For
instance, the effects of reward on saccadic choice are
studied using tasks that involve probabilistic reward
outcomes (Farashahi, Azab, Hayden, & Soltani, 2018;
Chen & Stuphorn, 2015; Strait, Blanchard, & Hayden,
2014; Liston & Stone, 2008; Platt & Glimcher, 1999) as well
as tasks with dynamic reward schedules (Costa, Dal
Monte, Lucas, Murray, & Averbeck, 2016; Donahue &
Lee, 2015; Schiitz et al., 2012; Lau & Glimcher, 2007,
Barraclough, Conroy, & Lee, 2004; Sugrue, Corrado, &
Newsome, 2004), both of which require estimation of
subjective reward value. In contrast, the effects of reward
on the processing of visual information have been mainly
examined using tasks involving unequal expected reward
outcomes without considering the subjective valuation of
reward outcomes (Rakhshan et al., 2020; Barbaro, Peelen,
& Hickey, 2017; Hickey & Peelen, 2017; Anderson, 2016;
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Hickey, Chelazzi, & Theeuwes, 2010, 2014; Anderson,
Laurent, & Yantis, 2011a, 2011b; Della Libera & Chelazzi,
2006, 2009; Peck, Jangraw, Suzuki, Efem, & Gottlieb,
2009). More importantly, none of the previous studies
has explored the effects of reward on choice and process-
ing of visual information simultaneously. As a result, the
relationship between these effects is currently unknown.

Understanding this relationship is important because the
extent to which reward influences sensory processing could
impact decision-making independently of the direct effects
of reward on choice. For example, in controlled decision-
making paradigms or natural foraging settings, recent
harvest of reward after saccade or visits to certain parts of
the visual field or space could enhance processing of
features of the targets that appear in those parts of space,
ultimately biasing choice behavior. Such an influence of
reward on sensory processing could have strong effects
on choice behavior during tasks with dynamic reward
schedules that require flexible integration of reward out-
comes over time (Bari et al., 2019; Farashahi, Donahue,
et al., 2017; Farashahi, Rowe, Aslami, Lee, & Soltani, 2017,
Donahue & Lee, 2015; Soltani & Wang, 2006, 2008; Lau &
Glimcher, 2007; Sugrue et al., 2004). In addition to better
understanding choice behavior, elucidating the relation-
ship between sensory and reward processing can also be
used to disambiguate neural mechanisms underlying
attention and reward (Maunsell, 2004, 2015; Hikosaka,
2007) and how deficits in deployment of selective attention,
which is characterized by changes in sensory processing,
are affected by abnormalities in reward circuits (Volkow
et al., 2009).

Here, we used a novel experimental paradigm with a
dynamic reward schedule to simultaneously measure the
influences of reward on choice between available targets
and processing of visual information of these targets. We
exploited the influence of visual motion on the trajectory
of saccadic eye movements (Schafer & Moore, 2007),
motion-induced bias (MIB), to quantify sensitivity to visual
motion as a behavioral readout of visual processing in a
criterion-free manner. Using this measure in the context
of a saccadic free-choice task in monkeys allowed us to si-
multaneously estimate how reward feedback is integrated
to determine both visual processing and decision-making
on a trial-by-trial basis. We then used different approaches
to compare the effects of objective reward value (i.e., total
harvested reward, and more vs. less rewarding target based
on task parameters) and subjective reward value (i.e., esti-
mated reward values of the two targets using choice data)
on decision-making and visual processing. To estimate sub-
jective reward values on each trial, we fit choice behavior
using multiple reinforcement learning (RL) models to ex-
amine how animals integrated reward outcomes over time
and to determine choice. On the basis of the literature on
reward learning, the difference in subjective values should
drive choice behavior. The MIB could be independent of
subjective reward value, or it could depend on subjective
values similarly to or differently than choice. To test these

alternative possibilities, we then used correlation between
the MIB and estimated subjective values based on different
integrations of reward feedback and on different timescales
to examine similarities and differences between the effects
of subjective reward value on choice and visual processing.

We found that both choice and sensitivity to visual
motion were affected by reward although visual motion
was irrelevant for obtaining reward in our experiment.
However, there were separable influences of reward on
these two processes. First, choice was modulated by both
objective and subjective reward values, whereas sensitivity
to visual motion was mainly influenced by subjective re-
ward value. Second, choice was most strongly correlated
with the difference in subjective values of the chosen
and unchosen targets, whereas sensitivity to visual motion
was most strongly correlated with the sum of subjective
values. Finally, choice and sensitivity to visual motion were
best predicted based on different types of reward integra-
tion and integration on different timescales.

METHODS
Subjects

Two male monkeys (Macaca mulatta) weighing 6 kg
(Monkey 1) and 11 kg (Monkey 2) were used as subjects
in the experiment. The two monkeys completed 160 ex-
perimental sessions (74 and 86 sessions for Monkeys 1
and 2, respectively) on separate days in the free-choice
task for a total of 42,180 trials (10,096 and 32,084 trials
for Monkeys 1 and 2, respectively). Each session consisted
of approximately 140 and 370 trials for Monkeys 1 and 2,
respectively. All surgical and behavioral procedures were
approved by the Stanford University Administrative Panel
on Laboratory Animal Care and the consultant veterinarian
and were in accordance with National Institutes of Health
and Society for Neuroscience guidelines.

Visual Stimuli

Saccade targets were drifting sinusoidal gratings within
stationary, 5°-8° Gaussian apertures. Gratings had a spatial
frequency of 0.5 cycle/degree and Michelson contrast
between 2% and 8%. Target parameters and locations
were held constant during an experimental session. Drift
speed was 5°/sec in a direction perpendicular to the sac-
cade required to acquire the target. Targets were identical
on each trial with the exception of drift direction, which
was selected randomly and independently for each target.

Experimental Paradigm

After acquiring fixation on a central fixation spot, the mon-
key waited for a variable delay (200-600 msec) before the
fixation spot disappeared and two targets appeared on the
screen simultaneously (Figure 1A). Targets appeared equi-
distant from the fixation spot and diametrically opposite
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Figure 1. The free-choice task
and reward schedule example.
(A) Task design. On each trial,
a fixation point appeared on
the screen, followed by the
presentation of two drifting—
grating targets. The monkeys
indicated their selection with

a saccade. Targets disappeared
at the onset of the saccade. A
juice reward was delivered on
a variable schedule after the
saccade. Event plots indicate
the sequence of presentation of
the visual targets; dashed lines
denote variable time intervals.
Horizontal eye position traces
are from a subset of trials of
an example experiment and
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rate on each target as a function of the percentage of 7} selections, f;, for » = 80 and x = 0. (D) Total reward harvest rate as a function of reward
parameter 7 and f; for x = 0. The gray dashed line shows f; = 7 corresponding to matching behavior. The black dashed line indicates the percentage
of T} selections that results in the optimal reward rate. Slight undermatching corresponds to optimal choice behavior in this task. rew. = reward.

one another. The monkeys had to make a saccadic eye
movement to one of the two targets to select that target
and obtain a possible reward allocated to it (see Reward
Schedule section). Both targets disappeared at the start
of the eye movement. If the saccadic eye movement
shifted the monkey’s gaze to within a 5-8°-diameter error
window around the target within 400 msec of target ap-
pearance, the monkeys received a juice reward according
to the variable reward schedule described below.

Quantifying the MIB

Eye position was monitored using the scleral search coil
method (Judge, Richmond, & Chu, 1980; Fuchs &
Robinson, 1966) and digitized at 500 Hz. Saccades were
detected using previously described methods (Schafer &
Moore, 2007). Directions of drifting gratings were perpen-
dicular to the saccade required to choose the targets.
Saccades directed to drifting—grating targets are displaced
in the direction of visual motion, an effect previously re-
ferred to as the MIB (Schafer & Moore, 2007). The MIB
for each trial was measured as the angular deviation of
the saccade vector in the direction of the chosen target’s
drift, with respect to the mean saccade vector from all
selections of that target within the session. This method
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of measuring deviation would yield approximately the
same results as vertical displacement because the loca-
tions of targets were held constant throughout the session
and angles were small, making angles a good approxima-
tion for the tangent of angles times the horizontal distance
of the targets (vertical displacement). To compare MIB
values across sessions with different target contrasts and
locations, we used z score values of the MIB in each ses-
sion to avoid confounds because of systematic biases.

Reward Schedule

For each correct saccade, the monkey could receive a juice
reward with a probability determined by a dynamic reward
schedule based on the location of the foveated target (Abe
& Takeuchi, 1993). More specifically, the probability of
reward given a selection of the left (77;) or right (7}) target,
Dy and p,p, was equal to

1
prl(ﬁ7rax> = ( _fL +7r+ 10) X
1+ exp B
. @®
er(fL,?",.X') = _ X
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where f; is the local fraction (in percentage) of 7} selec-
tions estimated using the previous 20 trials, » (reward
parameter) is a task parameter that was fixed on a given
session of the experiment and determined which option
was globally more valuable (77 for » > 50 and 7y for r <
50), s is another task parameter that determines the extent
to which the deviation from matching (corresponding to
J1 = r) results in a decrease in reward probability and was
set to 7 in all experimental sessions, and x is a penalty
parameter that reduced the global probability of a reward.
Positive values of x decreased reward probability on sac-
cades to both left and right targets to further motivate
monkeys to identify and choose the more rewarding loca-
tion at the time. x was kept constant throughout a session
and was assigned to one of the following values on a fraction
of sessions (reported in the parentheses in percentage): 0
(77%), 0.15 (6%), 0.30 (6%), or 0.40 (11%). Although the in-
troduction of penalty decreased the reward probability and
rate on both targets, it did not change the local choice frac-
tion (f7) at which the optimal reward rate or matching could
be achieved. Because of the penalty parameter and the
structure of the reward schedule, p,;(f, 7, x) and p,r(f7, 7,
x) are not necessarily complementary. Finally, to ensure that
the reward probabilities would not have negative values, any
negative reward probability (based on Equation 1) is
replaced with 0.

On the basis of the above equations, the reward prob-
abilities on saccades to the left and right targets are equal
at f; = r, corresponding to matching behavior, which is
slightly suboptimal in this task. As shown in Figure 1C
and D, an optimal reward rate is obtained via slight un-
dermatching. As the value of s approaches zero, matching
and optimal behaviors become closer to each other.

RL Models

In our experiment, reward was assigned based on target
location (left vs. right), and thus, the targets’ motion direc-
tions were irrelevant for obtaining reward. Nevertheless,
we considered the possibility that monkeys could incor-
rectly assign value to motion direction. We used various
RL models to fit choice behavior to determine whether
monkeys attributed reward outcomes to target locations
or target motions and how they integrated these outcomes
over trials to estimate subjective values and guide choice
behavior. Therefore, we considered RL models that esti-
mate subjective reward values associated with target loca-
tions as well as RL models that estimate subjective reward
values associated with the motion of the two targets.

In the models based on the location of the targets (location-
based RLs), the left and right targets (7; and T%) were
assigned subjective values V; () and Vi(#), respectively. In
the models based on motion direction of the targets
(motion-based RLs), subjective values V(¢) and Vp(¥) were
assigned to the upward and downward motion (7;; and
Tp), respectively. For both types of models, values were
updated at the end of each trial according to different

learning rules described below. In addition, we assumed
that the probability of selecting 7; (or 77, in motion-based
RLs) is a sigmoid function of the difference in subjective
values as follows:

1
1+ exp(=(Viyo(t) = Vasp(t) = b))

where b quantifies the bias in choice behavior toward the
left target (or upward motion) and V; iy denotes the subjec-
tive value of the left target in the location-based RL or
upward motion in the motion-based RL, respectively.
Similarly, Vi, denotes the subjective value of the right
target in the location-based RL or downward motion in
the motion-based RL, respectively.

At the end of each trial, subjective reward values of one
or both targets were updated depending on the choice and
reward outcome on that trial. We considered different
types of learning rules for how reward outcomes are
integrated over trials and grouped these learning rules
depending on whether they estimate a quantity similar to
“return” (average reward per selection) or “income” (aver-
age reward per trial). More specifically, on each trial, the
monkeys could update subjective reward value of the
chosen target only, making the estimated reward values
resemble local (in time) return. Alternatively, the monkeys
could update subjective reward values of both the chosen
and unchosen targets, making these values resemble local
income. We adopted these two methods for updating
subjective reward values because previous work has shown
that both local return and income can be used to achieve
matching behavior (Soltani & Wang, 2006; Corrado,
Sugrue, Seung, & Newsome, 2005; Sugrue et al., 2004).
In addition, subjective reward values for the chosen and
unchosen targets could be discounted when updating
these values on subsequent trials similarly or differently,
and monkeys could learn differently from positive (reward)
and negative (no reward) outcomes. We tested all these
possibilities using four different types of RL models.

In return-based RL models (RL..), only the subjective
value of the chosen target (in terms of location or motion
direction) was updated. More specifically, if 7;(7;,) was
selected and rewarded on trial ¢, subjective reward values
were updated as the following:

)% (TL/U) = 2

VL/U(I + 1) = (XVL/[](t) + Ar
Viyp(t + 1) = Vip(t)

where A, quantifies the change in subjective reward value
after a rewarded trial and « (0 < o < 1) is the discount factor
measuring how much the estimated subjective reward
value from the previous trial is carried to the current trial.
As a result, values of a closer to 1 indicates longer lasting
effects of reward or integration of reward on longer time-
scales, both of which indicate slower learning. In contrast,
values of a closer to 0 indicate integration of reward on
shorter timescales corresponding to faster learning. We
note that our learning rule is not a delta rule, and because

©)
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of its form, (1 — &) in our models more closely resembles
learning rate in RL models based on the delta rule. If 7;(77))
was selected but not rewarded, subjective reward values of
the two target locations or motion directions were updated
as the following:

VL/U(t + 1) - OLVL/U(t> + An

€))
Ve (t+1) = Vep(t)

where A,, quantifies the change in subjective reward value
after a nonrewarded trial. Similar equations governed the
update of subjective reward values when Tr(7p) was
selected. Importantly, in these models, subjective reward
value of the unchosen target (in terms of location or
motion) is not updated, making these models return-
based.

In contrast, in all other models, subjective reward values of
both chosen and unchosen targets were updated in every
trial, making them income-based models. Specifically, in
the RL;,(1) models, the subjective value of the unchosen
target was discounted on the subsequent trial similarly
to the subjective value of the chosen target. For example,
when 7, (Ty) was selected, the subjective values were
updated as follows:

Vi ju(t+1) = oV (t) + A, (or A, for no reward)

©)
VR/D(t + 1) = ()LVR/D<f)

In the Ry, (2) models, subjective values of chosen and un-
chosen targets were discounted on the subsequent trial
differently:

VYL/U(ZL + 1) = (XCVL/[/(f) + A, (Or A, for no reward)

(©)
Vit 4 1) =, Vi/p(2)

where o, and «,, are the discount factors for the chosen
and unchosen targets or motion directions.

In the Rl,(3) models, we updated the subjective value
of unchosen target location (or unchosen motion direc-
tion) in addition to discounting the subjective values of
chosen and unchosen locations:

Vi (t+1) = acViu(t) + A, (or A, for no reward)

@)
Vit 4 1) = Vi (t) + Ay

Note that the motion directions of the two targets were the
same in half of the trials. This makes updating of subjective
value of motion directions nontrivial in trials in which the
chosen and unchosen motion directions are the same
(referred to as match trials). Therefore, we tested different
update rules for match trials to identify the model that best
describes the monkeys’ choice behavior. Specifically, we
tested two possibilities: (1) update the subjective value of
motion direction that was presented on a given match trial
only and (2) update the subjective values of both present
and nonpresent motion directions but in the opposite
direction. We found that the second model, in which
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subjective values of both motion directions were updated,
provided a better fit for our data (data not shown).

Finally, we also tested hybrid RL models in which subjec-
tive values of both target locations and motion directions
were updated at the end of each trial and subsequently
used to make decisions. Fitting based on these hybrid
models was not significantly better than those using the
RL models that consider only subjective values of target
locations. Therefore, the results from these hybrid models
are not presented here.

Model Fitting and Comparison

We used the maximum likelihood ratio method to fit
choice behavior with different RL models described above
and estimated the parameters of those models. To com-
pare the goodness-of-fit based on different models while
considering the number of model parameters, we used
the negative log-likelihood (—LL), Akaike information
criterion (AIC), and Bayesian information criterion (BIC).
AIC is defined as

AIC= -2 xIL+2xk ®)

where LL is log-likelihood of the fit and £ is the number of
parameters in a given model. BIC is defined as

BIC = =2 xLL+ In(n) x k ©)

where LL is log-likelihood of the fit, £ is the number of pa-
rameters in a given model, and 7 is the number of trials in a
given session. We then used the best RL model in terms of
predicting choice behavior to examine whether the MIB is
also affected by subjective reward value similarly to or
differently than choice (see below).

Effects of Subjective Reward Value on MIB

To estimate subjective reward values associated with a
given target location, we used two methods of reward inte-
gration corresponding to income and return. To calculate
the subjective income for a given target location on a given
trial, we filtered the sequences of reward outcomes on
preceding trials (excluding the current trial) using an expo-
nential filter with a given time constant T, assigning +1 to
rewarded trials and A,, to nonrewarded trials if that target
location was chosen and 0 if that target location was not
chosen on the trial. To calculate the subjective return of
a given target location, we filtered reward sequence on pre-
ceding trials (again excluding the current trial) in which
that target location was chosen using an exponential filter
with a given time constant T, assigning +1 to rewarded trials
and A,, to nonrewarded trials. Finally, we calculated the
correlation between the MIB and the obtained filtered
values for different values of T and A,,.
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Data Analysis

To assess the overall performance of the monkeys, we used
static and dynamic models to harvest maximum rewards. In
the static model, we assumed that selection between the
two target locations in a given session was a stochastic pro-
cess with a fixed probability that is optimized for a given set
of parameters. Replacing f; with to-be-determined proba-
bility p(71) in Equation 1, one can obtain the total average
reward on the two targets, R, as follows:

Riot :p(Tl) *pfl(flvrax) +p<TR) *er(fL,r,x)

1
=p(Th) = — —x
14 exp(— p(TL) :— r+ 10)
(1= p(11)) ! x
- L * - )
14 exp(— +P(TL)S—7’ +10)
(10)

The optimal probability, pp(71), was then determined by
maximizing R

Pop(T1) = argmax, ;) (Reor) an

In the optimal dynamic model, we assumed that the deci-
sion maker has access to all the parameters of the reward
schedule (7, s, x) and perfect memory of their own choices
in terms of f;. Having this knowledge, the optimal decision
maker could compute the probability of reward on the two
options, p,.( fi, 7, X) and p,(f7, 7, x); (using Equation 1)
and choose the option with the higher reward probability
on every trial.

We also compared the monkeys’ choice behavior with
the prediction of the matching law. The matching law
states that the animals allocate their choices in a proportion
that matches the relative reinforcement obtained by the
choice options. In our experiment, this is equivalent to
the relative fraction of left (respectively, right) choices to

match the relative fraction of incomes on the left (respec-
tively, right) choices. Therefore, to quantify deviations
from matching, we calculated the difference between the
relative fraction of choosing the more rewarding target
(left when » > 50 and right when » < 50) and the relative
fraction of the income for the more rewarding target.
Negative and positive values correspond to undermatching
(choosing the better option less frequently than the rela-
tive reinforcement) and overmatching, respectively.

RESULTS

We trained two monkeys to freely select between two visual
targets via saccadic eye movement (Figure 1A). Saccades to
each target resulted in delivery of a fixed amount of juice
reward with a varying probability. Targets were stationary
apertures of drifting gratings, and the reward probability
was determined based on the location of the grating targets
independently of the direction of visual motion contained
within the gratings. More specifically, on a given trial, prob-
abilities of reward on the left and right targets were deter-
mined by the reward parameter () and the choice history
on the preceding 20 trials (Equation 1; Figure 1B). Critical
for our experimental design, the motion contained within
the targets caused the end points of eye movements made
to those targets to be systematically biased in the direction
of grating motion (MIB). We first show that this MIB can be
used as a measure of sensitivity to visual motion on a trial-
by-trial basis. Next, we use an exploratory approach to study
whether and how the effects of reward on choice are differ-
ent or similar to the effects of reward on sensitivity to visual
motion measured by the MIB. In this approach, we rely on
known effects of objective and subjective reward values on
choice and then test those effects for the MIB.

MIB Measures Sensitivity to Visual Motion

The MIB of a saccadic eye movement quantifies the extent
to which the end points of saccades directed toward the
drifting gratings were biased in the direction of grating
motion (Figures 1A and 2A). Despite the stationary

Figure 2. MIB measures
sensitivity to visual motion.
(A) Plotted are the example
distributions of the angle of
saccade vector (relative to
the fixation dot) for upward
(open) and downward (filled)
drifting targets. (B) MIB
significantly increased as
the contrast of grating is
increased from 2% (purple)
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to 3% (yellow). (C) Comparison

of the z score normalized MIB when the directions of motion in the chosen and nonchosen targets matched or did not match. The MIB is
z score normalized for each monkey separately within each session. The asterisk shows a significant difference between the two contrasts using

two-sided t-test (p<.05).
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position of the grating aperture, motion in the drifting sinu-
soid nonetheless induces a shift in the perceived position of
the aperture in human participants (De Valois & De Valois,
1991) and biases saccadic end points in the direction of grat-
ing drift in monkeys (Schafer & Moore, 2007). By examining
the MIB in different conditions, we established that it can
provide a measure of sensitivity to visual motion even when
the grating motion is not behaviorally relevant.

First, we found that the magnitude of the MIB depended
on the grating contrast. More specifically, the MIB
increased by 27% when the (Michaelson) contrast of
grating increased from 2% to 3% (two-sided independent
measures f test, p = 7.85 X 107 Figure 2B). Second, we
observed that the MIB depended almost exclusively on
the motion direction of the selected target as it was only
slightly affected by nonmatching motion in the unchosen
target (Figure 2C). Specifically, the average z score nor-
malized MIB measured in two monkeys across all trials
(mean = 0.38) was altered by only 9% when the unchosen
target differed in direction of the grating motion. Together,
these results demonstrate that the MIB in our task is sensi-
tive to the properties of sensory signal (grating motion
direction and contrast) and thus can be used to measure
the influence of internal factors such as subjective reward
value on visual processing.

Effects of Objective Reward Value on
Choice Behavior

To examine the effects of global and objective reward value
on monkeys’ choice behavior, we first measured how

monkeys’ choice behavior tracked the target location
that was globally (session-wise) more valuable, which in
our task is set by reward parameter . We found that
target selection was sensitive to reward parameter in
both monkeys and the harvested reward rate was high,
averaging 0.66 and 0.65 across all sessions (including
those with penalty) in Monkeys 1 and 2, respectively
(Figure 3A, B, D, and E). To better quantify monkeys’
performance, we also computed the overall harvested
reward by a model that selects between the two targets
with the optimal but fixed choice probability in a given
session (optimal static model; see example in Figure 1C
in Methods) or a model in which the target with a higher
probability of reward was chosen on each trial (optimal
dynamic model; see Methods). We found that the perfor-
mance of both monkeys was suboptimal; however, the
pattern of performance as a function of reward parameter
for Monkeys 1 and 2 resembled the behavior of the optimal
static and dynamic models, respectively (Figure 3B and E).
Because each session of the experiment for Monkey 2 was
longer, we confirmed that there was no significant differ-
ence in task performance between the first and second
halves of sessions for Monkey 2 (difference: mean =
0.003, SEM = 0.008; two-sided paired ¢ test: p = .7,d =
0.03). Together, these results suggest that both monkeys
followed the reward schedule on each session closely,
whereas their choice behavior was suboptimal.

We also examined the global effects of reward on choice
by measuring matching behavior. To that end, we compared
choice and reward fractions in each session and found
that both monkeys exhibited undermatching behavior

Figure 3. Global (session-wise)

effects of reward on choice A
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was sensitive to reward < 80

parameter. Percentage of 7; 1S 60

selections is plotted as a g 0
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Monkey 1. The colored lines are - 00 20 40 60 80 100
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Each data point corresponds to
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harvested reward rates of the optimal dynamic and static models, respectively. (C) Proportion of 7} selections is plotted as a function of the fraction
of harvested reward on the left target. The colored lines are linear fits, and the gray dashed line shows the diagonal line corresponding to matching
behavior. Monkey 1 showed significant undermatching by selecting the more rewarding target with a choice fraction smaller than reward fraction.
The inset shows the difference between choice and reward fractions with negative and positive values corresponding to undermatching and
overmatching. The gray dashed lines indicate the medians of the distributions and asterisks show the significant difference from 0 (i.e., matching)
using Wilcoxon signed rank test (p < .05). (D-F) Similar to A-C but for Monkey 2.
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(Figure 3C and F). More specifically, they selected the more
rewarding location with a probability that was smaller than
the relative reinforcement obtained on that location
(Monkey 1 median [choice fraction — reward fraction] =
—0.115; Wilcoxon signed rank test, p = 1.67 X 102, d =
—1.35; Figure 3C inset; Monkey 2 median [choice fraction —
reward fraction] = —0.03, p = 1.76 X 107, d = —0.83;
Figure 3F inset). Furthermore, the degree of undermatch-
ing was larger for Monkey 1 than Monkey 2 (difference =
—0.086; Wilcoxon rank sum test, p = 2.57 X 10_6, d=-037).

Effects of Objective Reward Value on Sensitivity to
Visual Motion

In the previous section, we observed that choice behavior is
affected by objective measures of reward value in a given
session. We repeated similar analyses to examine whether
objective reward values have similar effects on sensitivity
to visual motion measured by MIB. To that end, we first
computed the correlation between the difference in the
session-based average MIB for saccades to the more and less
rewarding target locations and reward parameter 7 in each
session. However, we did not find any evidence for such
correlation for either of the two monkeys (Spearman corre-
lation; Monkey 1: 7 = .04, p = .8; Monkey 2: 7 = .11, p = .39).
Second, we examined whether the average MIB for all sac-
cades in a given session was affected by the overall perfor-
mance in that session. Again, we did not find any evidence
for correlation between the session-based average MIB and
performance for either of the two monkeys (Spearman cor-
relation; Monkey 1: » = —.07, p = .54; Monkey 2: 7 = .13,
p = .21). Finally, we did a similar analysis to matching behav-
ior to examine whether differential MIB on the two target
locations is related to objective reward values of those loca-
tions. In this analysis, we computed correlation between the
difference in average MIB on the better and worse target
locations and the difference in total reward obtained on
those locations but found no evidence for such correlation
(Spearman correlation; Monkey 1: 7 = .003, p = .99; Monkey
2:r=.03,p = .83).

Together, these results indicate that, unlike choice,
the MIB is not affected by objective reward value of the
foveated target or the overall harvested reward. Observing
this dissociation, we next examined the effects of subjec-
tive reward value on choice and the MIB.

Effects of Subjective Reward Value on
Choice Behavior

The analyses presented above show that the overall choice
behavior was influenced by global or objective reward
value of the two target locations in a given session. In
contrast, sensitivity to visual motion was not affected by
global or objective reward value. This difference between
the influence of objective reward value on choice and
MIB could simply reflect the fact that, because of task
design, monkeys’ choices and not MIB determine reward

outcomes on current trials and influence reward probability
on subsequent trials (reward probability was a function of »
and monkeys’ choices on the preceding trials). Therefore,
we next examined similarities and differences between
effects of subjective reward value on choice behavior and
sensitivity to visual motion.

To investigate how reward outcomes were integrated
over time to estimate subjective reward values and guide
monkeys’ choice behavior on each trial, we used multiple
RL models to fit the choice behavior of individual monkeys
on each session of the experiment. These models assume
that selection between the two targets is influenced by
subjective values associated with each target, which are
updated on each trial based on reward outcome (see
Methods). Although reward was assigned based on the
location of the two targets (left vs. right) in our experiment,
the monkeys could still assume that motion direction is
informative about reward. Therefore, we considered RL
models in which subjective values were associated with
target locations as well as RL models in which subjective
values were associated with the motion of the two targets,
using four different learning rules. Considering the observed
undermatching behavior, we grouped learning rules de-
pending on whether they result in the estimation of subjec-
tive value in terms of local (in time) return or income.

In RL. models, only the subjective value of the chosen
target (in terms of location or motion) was updated, mak-
ing them return-based models. In RL;,.(1) models, in addi-
tion to updating the subjective value of the chosen target,
the subjective value of the unchosen target was discounted
on the subsequent trials similarly to the subjective value of
the chosen target, making these models income-based. In
RLi,(2) models, the subjective values of chosen and
unchosen targets were allowed to be discounted on the
subsequent trials differently. Finally, in RL;,.(3) models,
we also assumed a change in the subjective value of the
unchosen target or motion direction in addition to the
discounting across trials. Because the subjective values of
both chosen and unchosen target locations were updated
on each trial in RLj,-(2) and RL},(3) models, we refer to
these models as income-based similarly to RLy,.(1).
However, we note that only RLy,.(1) models are able to
estimate local income accurately.

We first compared the goodness-of-fit between the
location-based and motion-based RLs using —LL, AIC,
and BIC to test which of the two types of models can
predict choice behavior better. Such comparisons based
on the three measures yield the same results because the
two types of models have the same number of parameters
for a given learning rule. We found that, for both monkeys,
all the location-based models outperformed the motion-
based RLs (Table 1). This demonstrates that both monkeys
attributed reward outcomes to target locations more
strongly than to target motions and used subjective value
attributed to target locations to perform the task.

After establishing that monkeys used target location to
integrate reward outcomes, we next examined how this
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Table 1. Comparison of Goodness-of-Fit between Location-based and Motion-based RL Models Using —LL, AIC, or BIC

RLye, RLpye(1) RLpyc(2) RLpyc(3)
Monkey 1 A(—LL, AIC, or BIC) = A(—LL, AIC, or BIC) = A(—LL, AIC, or BIC) = A(—LL, AIC, or BIC) =
—5.48 —7.19 —6.53 —8.06
p=255x10"7 p=258x10"° p =139 x10°° p=532x%x10"1°
Monkey 2 A(—LL, AIC, or BIC) = A(—LL, AIC, or BIC) = A(—LL, AIC, or BIC) = A(—LL, AIC, or BIC) =

—60.96
p =274 %10

—-105.71
p =258 x%x107%

—103.46
p =258 %102

-107.25
p =258 x%x107%

A(—LL, AIC, or BIC) shows the median of the difference between location-based and motion-based RL models fitted for each session separately.

Note that all differences in goodness-of-fit measures (based on —LL, AIC,

and BIC) are similar because the number of parameters is the same

across location-based and motion-based models. p Values indicate the significance of the statistical test (two-sided sign test) for comparing the

goodness-of-fit between the location-based and motion-based RLs.

integration was performed by comparing the quality of fit
in location-based models with different learning rules.
We found that, for Monkey 1, RL,, and Rly,.(1) models
provided the best fit of choice data; although goodness-
of-fit measures were not significantly different between
these models, these models provided better fits than
the RLy,(2) and RLy,.(3) models (Figure 4). Interestingly,
fitting choice behavior with the RLj,(1) model resulted in
the discount factors («) that were close to 1 for many
sessions (mean and median of a were equal to 0.77 and
1.0, respectively). This result indicates that Monkey 1
integrated reward over many trials to guide its choice
behavior. This is compatible with the pattern of perfor-
mance as a function of reward parameter for this monkey
(Figure 3B), which resembles the pattern of the optimal
static model.

The same analysis for Monkey 2 revealed a similar inte-
gration of reward outcomes but on a different timescale.
More specifically, we found that the RLy,.(1) model pro-
vided the best fit for choice behavior as the goodness-of-fit
in this model was better than the return-based model
(RL;ep) and more detailed income-based models (RLy,[2]
and the RLy,.[3]; Figure 4). In contrast to Monkey 1, the
estimated discount factors based on the RLj,.(1) model
were much smaller than 1 for many sessions for Monkey
2 (mean and median a were equal to 0.32 and 0.33, respec-
tively). These results indicate that Monkey 2 integrated re-
ward over a shorter timescale (a few trials) than Monkey 1
to guide its choice behavior. This is compatible with the
pattern of performance as a function of reward parameter
for this monkey (Figure 3E), which more closely resembles
the pattern of the optimal dynamic model.

Figure 4. Comparison of

goodness-of-fit between A B

different location-based RL 10 p=23107" p=1x107" 10 p=2x1077 p=1x10"°
models reveals that the RLj,.(1)

model provided the best overall 5 5 e =z
fit. (A) The difference between - 3 5 o+ § 8 ]
BIC for fits based on the Rl % or—1 . % [ | EN 3
(1) model and the three 3 s ! I 5 =
competing models (indicated

on the x axis). Bars show the -10 -10

median of the difference in BIC,

and errors are SEM. Reported -15 -15

p values are based on a ®- Rt aoed® _ Rw\?’\ »- pbe B RLxmm N el
two-sided sign test. Each data R ELLWkﬂ RW‘O\ LI e R

point shows the goodness-of-fit

for one session of the C D

experiment. For Monkey 1, fits p=1310"p=1x10"" p=51x107"7 p=1x107"

based on the RLj,(1) and Rl 01 e — 0 L 4 —
models were not significantly L’J T} ‘

different. (B) The same as in A -50 _50 z
but based on the difference in Q g 9
AIC. (C, D) Similar to A and B o_, 00 $_100 3
but for Monkey 2. An asterisk 4 4 f)
indicates that the difference

between two models is —~150 -150

significantly different from 0

using two-sided sign test -200 gL w[m w@\ -200 e wa@\ Lwc(s\
(p<.05). BL‘“D\“ RLV”“\“ - RLwLm - I‘L‘M@ RLw“m - RLWm -
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Together, fitting of choice behavior shows that both
monkeys associated reward outcomes with the location
of the chosen target. Moreover, both monkeys estimated
subjective reward values in terms of income by integrating
reward outcomes over multiple trials and used these values
to make decisions.

Effects of Subjective Reward Value on Sensitivity to
Visual Motion

Our experimental design allowed us to simultaneously
measure choice and the MIB, as an implicit measure of
sensitivity to visual motion, on each trial. We next exam-
ined whether subjective reward value based on the integra-
tion of reward outcomes over time influenced sensitivity
to visual motion.

To that end, we first examined whether reward feed-
back had an immediate effect on the MIB in the following
trial. Combining the data of both monkeys, we found that
the MIB was larger in the trials that were preceded by a
rewarded rather than an unrewarded trial (mean = 0.03,
SEM = 0.009; two-sided ¢ test: p = 6.95 X 10 % d =
0.18). When considering data from each monkey individ-
ually, however, this effect only retained significance for
Monkey 1 (Monkey 1: mean = 0.05, SEM = 0.01; two-sided
rtest, p = 6.5 X 107 d = 0.09; Monkey 2: mean = 0.01,
SEM = 0.01; two-sided ¢ test, p = .21, d = 0.09). These
results suggest that the MIB is weakly affected by the imme-
diate reward outcome in the preceding trial.

In the previous section, we showed that the best model
for fitting choice behavior was one that estimates subjec-
tive reward value based on the income on each target loca-
tion and uses the difference in incomes to drive choice
behavior (RLy,.[1] model; Figure 4). However, it is not clear
if the MIB is influenced by subjective reward values of the
two targets in a similar fashion. To test this relationship, we
computed correlations between the trial-by-trial MIB and
estimated subjective reward values of the chosen target
location, the unchosen target location, and their sum and
difference. We considered subjective reward values based
on both income and return (see Effects of Subjective
Reward Value on MIB section in Methods).

We made several key observations. First, we found that the
MIB was positively correlated with subjective reward values
of both the chosen and unchosen targets (Figure SA, B, E,
and F) and, as a result, was most strongly correlated with
the sum of subjective reward values of the two targets
(Figure 5C and G). In contrast to choice, the MIB was
poorly correlated with the difference in subjective reward
values of the chosen and unchosen targets (Figure SD and
H; Supplementary Figure 1 [http://ccnl.dartmouth.edu/
Soltani_etal 20 _JoCN/SuppFigl.pdf]). Therefore, choice
was most strongly correlated with the difference in subjec-
tive reward values, whereas the MIB was most strongly cor-
related with the sum of subjective reward values from the
two targets. Second, although the aforementioned rela-
tionships were true for subjective reward value based on
return and income, we found that correlations between

A B C

corr(MIB, Vmc) corr(MIB, V’"u)

0.06 0.06
|: 00—
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Figure 5. MIB was most strongly correlated with the sum of subjective reward values of the two targets based on return. (A-D) Plotted are the
correlations between the MIB and subjective reward values of the chosen (A) and unchosen (B) targets based on return as well as their sum (C) and
their difference (D) for different values of T and A,,. The inset in each panel shows the correlation between the MIB and the corresponding subjective
return values for different values of T and a specific value of A,, (indicated with an arrow in the main panel C) for Monkey 1. The arrow in C points
to the value of A,, that results in the maximum correlation between the MIB and the sum of subjective return values of the two targets for Monkey 1.
(E-H) The same as in A-D but for Monkey 2. The arrow in G points to the value of A,, that results in the maximum correlation between the MIB and
the sum of subjective return values of the two targets for Monkey 2.
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Figure 6. The choice probability for both monkeys was largely determined by the difference in estimated subjective values, whereas the MIB was
largely determined by the sum of subjective values of targets. (A, B) Plots show the probability of choosing the left target as a function of subjective
values of the left and right targets for Monkey 1, using T = 15 and two values of A,, as indicated on the top. (C, D) Plots show the MIB as a function of
subjective values of the chosen and unchosen targets for Monkey 1, using T = 15 and two values of A,, as indicated on the top. (E-H) The same as in

A-D but for Monkey 2.

the MIB and subjective return values were stronger than
correlations between the MIB and subjective income values
(compare Figure 5 and Supplementary Figure 2 http://ccnl
.dartmouth.edu/Soltani_etal 20 JoCN/SuppFig2.pdf).
Third, the maximum correlation occurred for the values
of T at around 15-20 trials and for negative values of A,,,
similarly for both monkeys. This indicates that, for both
monkeys, the MIB was influenced by reward integrated
over many trials, and the absence of reward on a given
trial had a negative influence on the MIB on the following
trials (4, < 0).

Considering that local choice fraction (f;, in Equation 1)
has opposite effects on p,; and p,x because of task design,
we also tested the relationship between estimated subjec-
tive values (based on return) for the two target locations.
We found that the correlation between estimated reward
values depends on the values of T and A,, and is not always
negative (data not shown). Nevertheless, for all values of
T and 4A,,, the MIB was most strongly correlated with the
sum of subjective reward values while being positively
correlated with the value of both chosen and unchosen
targets. These results indicate that the dependence of the
MIB on the sum of subjective value is not driven by our
specific task design.

Finally, to better illustrate distinct effects of reward on
decision-making and visual processing, we used two sets
of parameters (t = 15and A,, = 0; T = 15and A, = —0.5)
that resulted in significant correlations between choice and
targets’ subjective income values (Supplementary Figure 1)
and between the MIB and targets’ subjective return values in
all cases (Figure 5). We then used these two sets of

258  Journal of Cognitive Neuroscience

parameters and choice history of the monkeys on the pre-
ceding trials to estimate subjective income values and return
values in each trial (see Effects of Subjective Reward Value
on MIB section in Methods). We then grouped trials into
bins according to estimated subjective reward values of 77,
(left target) and 7§ (right target) for choice or of the chosen
and unchosen targets for the MIB and computed the aver-
age probability of choosing the left target and the average
MIB for each bin. We found that the probability of choosing
the left target for both monkeys was largely determined by
the difference in subjective values of the left and right tar-
gets, as can be seen from contours being parallel to the di-
agonals (Figure 6A, B, E, and F). In contrast, the MIB was
largely determined by the sum of subjective values, as can
be seen from contours being parallel to the second diago-
nals (Figure 6C, D, G, and H). These results clearly demon-
strate that reward has distinct effects on choice behavior
and sensitivity to visual motion.

DISCUSSION

Experimental paradigms with dynamic reward schedules
have been extensively used in different animal models to
study how reward shapes choice behavior on a trial-by-trial
basis (Donahue & Lee, 2015; Li, McClure, King-Casas, &
Montague, 2006; Lau & Glimcher, 2005; Barraclough
et al., 2004; Sugrue et al., 2004; Herrnstein, Loewenstein,
Prelec, & Vaughan, 1993). A general finding is that animals
integrate reward outcomes on one or more timescales to
estimate subjective reward value and determine choice.
In contrast, the influence of reward on selective processing
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of visual information, which is often described as atten-
tional deployment, has been mainly studied using fixed
reward schedules with unequal reward outcomes (Barbaro
et al., 2017; Hickey & Peelen, 2017; Hickey et al., 2010,
2014; Anderson et al., 2011a, 2011b; Della Libera &
Chelazzi, 2006, 2009; Peck et al., 2009). The main findings
from these studies are that targets or features associated
with larger reward can more strongly capture attention
and alter visual processing immediately or even after
extended periods (reviewed in Anderson, 2013, 2016).

However, it has proven difficult to link the effects of
reward on saccadic choice and selective processing of
visual information mainly because of separate measure-
ments of these effects in different tasks. Indeed, the poorly
described relationship between reward expectation and
the processing of visual information has been implicated
as a confounding factor in the interpretation of many past
behavioral and neurophysiological results (Maunsell, 2004,
2015). An exception to this is a study by Serences (2008) in
which the author utilized a task with a dynamic reward
schedule to demonstrate that the activity in visual cortex
is modulated by reward history (i.e., integrated reward
outcomes over many trials). Compatible with these results,
we find that processing of visual information is affected by
subjective reward value estimated by integration of reward
outcomes over many trials.

Using tasks designed specifically to dissociate subjective
reward value from a target’s behavioral significance, or
salience, a few studies have identified brain areas that
respond primarily to the expected reward or the salience
of a target (or both) in various species including rats (Lin
& Nicolelis, 2008), monkeys (Roesch & Olson, 2004), and
humans (Litt, Plassmann, Shiv, & Rangel, 2011; Cooper &
Knutson, 2008; Jensen et al., 2007; Anderson et al., 2003).
However, in these studies, the saliency signal observed in
neural responses might reflect a number of different pro-
cesses, such as motivation, attention, motor preparation,
or some combination of these. In the present work, we
exploited the influence of visual motion on saccades as
an independent and implicit measure of visual processing
during value-based decision-making. This enabled us for
the first time to measure choice and visual processing
simultaneously and to test whether reward has differential
effects on these two processes.

Although motion was not predictive of reward and thus
processing of motion direction was not required to obtain a
reward, we found that, similar to decision-making, visual
processing was influenced by subjective reward values of
the two targets. However, subjective reward values of the
two targets affected visual processing differently than how
they affected choice in three ways. First, although choice
was correlated most strongly with the difference between
subjective values of chosen and unchosen targets, visual
processing was most strongly correlated with the sum of
subjective values of the two targets. The latter indicates
that the overall subjective value of targets in a given envi-
ronment could influence the quality of sensory processing

in that environment. Second, choice was more strongly
affected by the subjective income value of the target,
whereas sensitivity to visual motion was more strongly
affected by subjective return values of the targets. Third,
the time constant of reward integration and the impact of
no reward were different between decision-making and
visual information processing. In contrast to subjective
reward value, we found that objective reward value only
affected choice and not sensitivity to visual motion.
Together, these results point to multiple systems for reward
integration in the brain.

We found certain differences between the results for the
two monkeys that could indicate that they used different,
idiosyncratic strategies for performing the task. For exam-
ple, fitting results of RL models indicated that Monkey 1
used the reward history over many trials to direct its choice
behavior. In contrast, Monkey 2 used the reward history
over few trials to direct its choice behavior. This difference
was also apparent in the correlation between choice and
the difference in subjective values of the two target loca-
tions. Despite this difference in integration time constant,
choice in both monkeys was most strongly correlated with
the difference between estimated subjective values of the
two targets. Furthermore, the MIB for both monkeys was
most strongly correlated with the sum of estimated subjec-
tive values of the two targets, although they integrated
reward outcomes on different timescales.

The observed differences in reward effects on visual pro-
cessing and decision-making have important implications
for the involved brain structures and underlying neural
mechanisms. First, they suggest that brain structures
involved in decision-making and processing of visual infor-
mation receive distinct sets of value-based input, for exam-
ple, ones that integrate reward over a different number of
trials. The set of input affecting decision-making carries
information about subjective reward value of individual
targets, whereas the set that affects visual processing
carries information about the sum of subjective values of
targets. Indeed, there are more neurons in ACC and other
prefrontal areas that encode the sum of subjective value of
available options than the subjective value of a given option
(Kim, Hwang, Seo, & Lee, 2009), and these neurons might
contribute to enhanced sensory processing. In addition, it
has been shown that the activity of basal forebrain neurons
increases with the sum of subjective values of choice array
options (Ledbetter, Chen, & Monosov, 2016), and this could
enable basal forebrain to guide visual processing and atten-
tion based on reward feedback independently of how
reward controls choice behavior (Monosov, 2020). Finally,
the FEF also receives inputs from the supplementary eye
field, which contains neurons whose activity reflects sub-
jective reward value of the upcoming saccade (Chen &
Stuphorn, 2015). Such input from the supplementary eye
field could drive target selection in the FEF. Importantly,
our findings can be used in future experiments to tease
apart neural substrates by which reward influences visual
processing and decision-making.
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Second, a plausible mechanism that could contribute to
the observed differences in the effects of reward is the
differential influence of dopaminergic signaling on the
functions of FEF neurons. Recent work demonstrates that
the modulatory influence of the FEF on sensory activity
within visual cortex is mediated principally by D1 receptors
and that D2-mediated activity is not involved (Noudoost &
Moore, 2011). However, activity mediated through both
receptor subtypes contributes to target selection, albeit
in different ways (Soltani, Noudoost, & Moore, 2013;
Noudoost & Moore, 2011). This evidence indicates that
the neural mechanisms underlying target selection and
visual processing are separable if only in terms of the
involvement of different dopaminergic signals. Con-
sidering the known role of dopamine in reward processing
(Schultz, 2007) and synaptic plasticity (Calabresi, Picconi,
Tozzi, & Di Filippo, 2007), these two dopaminergic signaling
pathways may provide a mechanism for the separate
effects of reward on sensory processing and selection.

Third, in most choice tasks with dynamic reward sched-
ules, local subjective return and income values are typically
correlated, and the question of which quantity is the critical
determinant of behavior has been debated for many years
(Soltani & Wang, 2006; Corrado et al., 2005; Gallistel, Mark,
King, & Latham, 2001; Gallistel & Gibbon, 2000; Mark &
Gallistel, 1994; Herrnstein & Prelec, 1991). The observa-
tion that differences in subjective income values are a
better predictor of choice behavior may reflect the fact that
income values provide information about which target is
globally more valuable in each session of the task. In con-
trast, the dependence of visual processing on the sum of
subjective return values is more unexpected. This indicates
that visual processing may more strongly depend on target-
specific reward integration because the return value of a
given target is updated only after selection of that target.

Finally, the separable influences of reward could be
crucial for flexible behavior required in dynamic and high-
dimensional reward environments (Farashahi, Rowe, et al.,
2017). For example, processing of visual information of
the saccade target that has multiple visual features based
on the sum of subjective reward values of available targets
could allow processing of previously neglected informa-
tion from the less rewarding targets and thus improve
exploration. Future studies are needed to test whether
disruption of this processing can reduce flexibility in target
selection and choice behavior.
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