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Abstract

■ Primate vision is characterized by constant, sequential pro-

cessing and selection of visual targets to fixate. Although expected

reward is known to influence both processing and selection of

visual targets, similarities and differences between these effects

remain unclear mainly because they have been measured in

separate tasks. Using a novel paradigm, we simultaneously mea-

sured the effects of reward outcomes and expected reward on

target selection and sensitivity to visual motion in monkeys.

Monkeys freely chose between two visual targets and received a

juice reward with varying probability for eye movements made to

either of them. Targets were stationary apertures of drifting

gratings, causing the end points of eye movements to these

targets to be systematically biased in the direction of motion.

We used this motion-induced bias as a measure of sensitivity to

visual motion on each trial. We then performed different analyses

to explore effects of objective and subjective reward values on

choice and sensitivity to visual motion to find similarities and

differences between reward effects on these two processes.

Specifically, we used different reinforcement learning models to

fit choice behavior and estimate subjective reward values based

on the integration of reward outcomes over multiple trials.

Moreover, to compare the effects of subjective reward value on

choice and sensitivity to motion directly, we considered correla-

tions between each of these variables and integrated reward out-

comes on a wide range of timescales. We found that, in addition

to choice, sensitivity to visual motion was also influenced by

subjective reward value, although the motion was irrelevant for

receiving reward. Unlike choice, however, sensitivity to visual

motion was not affected by objective measures of reward value.

Moreover, choice was determined by the difference in subjective

reward values of the two options, whereas sensitivity to motion

was influenced by the sum of values. Finally, models that best

predicted visual processing and choice used sets of estimated

reward values based on different types of reward integration

and timescales. Together, our results demonstrate separable

influences of reward on visual processing and choice, and point

to the presence of multiple brain circuits for the integration of

reward outcomes. ■

INTRODUCTION

Primates make approximately three to four saccadic eye

movements each second, and thus, the choice of where

to fixate next is our most frequently made decision. The

next fixation location is determined in part not only by

visual salience (Itti & Koch, 2000) but also by internal goals

and reward expected from the foveated target (Schütz,

Trommershäuser, & Gegenfurtner, 2012; Markowitz,

Shewcraft, Wong, & Pesaran, 2011; Navalpakkam, Koch,

Rangel, & Perona, 2010). Brain structures known to be

involved in the control of saccadic eye movement have

been extensively studied as a means of understanding

the neural basis of decision-making (Sugrue, Corrado, &

Newsome, 2005; Glimcher, 2003). Interestingly, the same

structures also appear to contribute to the selective pro-

cessing of targeted visual stimuli that tend to accompany

saccades (Squire, Noudoost, Schafer, & Moore, 2013).

Thus, it is conceivable that reward outcomes and expected

reward (i.e., subjective reward value) control saccadic

choice and processing of targeted visual stimuli via similar

mechanisms.

Our current knowledge of how reward outcomes and

subjective reward value influence the processing of visual

information and saccadic choice comes from separate

studies using different experimental paradigms. For

instance, the effects of reward on saccadic choice are

studied using tasks that involve probabilistic reward

outcomes (Farashahi, Azab, Hayden, & Soltani, 2018;

Chen & Stuphorn, 2015; Strait, Blanchard, & Hayden,

2014; Liston & Stone, 2008; Platt & Glimcher, 1999) as well

as tasks with dynamic reward schedules (Costa, Dal

Monte, Lucas, Murray, & Averbeck, 2016; Donahue &

Lee, 2015; Schütz et al., 2012; Lau & Glimcher, 2007;

Barraclough, Conroy, & Lee, 2004; Sugrue, Corrado, &

Newsome, 2004), both of which require estimation of

subjective reward value. In contrast, the effects of reward

on the processing of visual information have been mainly

examined using tasks involving unequal expected reward

outcomes without considering the subjective valuation of

reward outcomes (Rakhshan et al., 2020; Barbaro, Peelen,

& Hickey, 2017; Hickey & Peelen, 2017; Anderson, 2016;
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Hickey, Chelazzi, & Theeuwes, 2010, 2014; Anderson,

Laurent, & Yantis, 2011a, 2011b; Della Libera & Chelazzi,

2006, 2009; Peck, Jangraw, Suzuki, Efem, & Gottlieb,

2009). More importantly, none of the previous studies

has explored the effects of reward on choice and process-

ing of visual information simultaneously. As a result, the

relationship between these effects is currently unknown.

Understanding this relationship is important because the

extent to which reward influences sensory processing could

impact decision-making independently of the direct effects

of reward on choice. For example, in controlled decision-

making paradigms or natural foraging settings, recent

harvest of reward after saccade or visits to certain parts of

the visual field or space could enhance processing of

features of the targets that appear in those parts of space,

ultimately biasing choice behavior. Such an influence of

reward on sensory processing could have strong effects

on choice behavior during tasks with dynamic reward

schedules that require flexible integration of reward out-

comes over time (Bari et al., 2019; Farashahi, Donahue,

et al., 2017; Farashahi, Rowe, Aslami, Lee, & Soltani, 2017;

Donahue & Lee, 2015; Soltani & Wang, 2006, 2008; Lau &

Glimcher, 2007; Sugrue et al., 2004). In addition to better

understanding choice behavior, elucidating the relation-

ship between sensory and reward processing can also be

used to disambiguate neural mechanisms underlying

attention and reward (Maunsell, 2004, 2015; Hikosaka,

2007) andhowdeficits in deployment of selective attention,

which is characterized by changes in sensory processing,

are affected by abnormalities in reward circuits (Volkow

et al., 2009).

Here, we used a novel experimental paradigm with a

dynamic reward schedule to simultaneously measure the

influences of reward on choice between available targets

and processing of visual information of these targets. We

exploited the influence of visual motion on the trajectory

of saccadic eye movements (Schafer & Moore, 2007),

motion-induced bias (MIB), to quantify sensitivity to visual

motion as a behavioral readout of visual processing in a

criterion-free manner. Using this measure in the context

of a saccadic free-choice task in monkeys allowed us to si-

multaneously estimate how reward feedback is integrated

to determine both visual processing and decision-making

on a trial-by-trial basis. We then used different approaches

to compare the effects of objective reward value (i.e., total

harvested reward, andmore vs. less rewarding target based

on task parameters) and subjective reward value (i.e., esti-

mated reward values of the two targets using choice data)

on decision-making and visual processing. To estimate sub-

jective reward values on each trial, we fit choice behavior

using multiple reinforcement learning (RL) models to ex-

amine how animals integrated reward outcomes over time

and to determine choice. On the basis of the literature on

reward learning, the difference in subjective values should

drive choice behavior. The MIB could be independent of

subjective reward value, or it could depend on subjective

values similarly to or differently than choice. To test these

alternative possibilities, we then used correlation between

the MIB and estimated subjective values based on different

integrations of reward feedback and on different timescales

to examine similarities and differences between the effects

of subjective reward value on choice and visual processing.

We found that both choice and sensitivity to visual

motion were affected by reward although visual motion

was irrelevant for obtaining reward in our experiment.

However, there were separable influences of reward on

these two processes. First, choice was modulated by both

objective and subjective reward values, whereas sensitivity

to visual motion was mainly influenced by subjective re-

ward value. Second, choice was most strongly correlated

with the difference in subjective values of the chosen

and unchosen targets, whereas sensitivity to visual motion

was most strongly correlated with the sum of subjective

values. Finally, choice and sensitivity to visual motion were

best predicted based on different types of reward integra-

tion and integration on different timescales.

METHODS

Subjects

Two male monkeys (Macaca mulatta) weighing 6 kg

(Monkey 1) and 11 kg (Monkey 2) were used as subjects

in the experiment. The two monkeys completed 160 ex-

perimental sessions (74 and 86 sessions for Monkeys 1

and 2, respectively) on separate days in the free-choice

task for a total of 42,180 trials (10,096 and 32,084 trials

for Monkeys 1 and 2, respectively). Each session consisted

of approximately 140 and 370 trials for Monkeys 1 and 2,

respectively. All surgical and behavioral procedures were

approved by the Stanford University Administrative Panel

on Laboratory Animal Care and the consultant veterinarian

and were in accordance with National Institutes of Health

and Society for Neuroscience guidelines.

Visual Stimuli

Saccade targets were drifting sinusoidal gratings within

stationary, 5°–8° Gaussian apertures. Gratings had a spatial

frequency of 0.5 cycle/degree and Michelson contrast

between 2% and 8%. Target parameters and locations

were held constant during an experimental session. Drift

speed was 5°/sec in a direction perpendicular to the sac-

cade required to acquire the target. Targets were identical

on each trial with the exception of drift direction, which

was selected randomly and independently for each target.

Experimental Paradigm

After acquiring fixation on a central fixation spot, the mon-

key waited for a variable delay (200–600 msec) before the

fixation spot disappeared and two targets appeared on the

screen simultaneously (Figure 1A). Targets appeared equi-

distant from the fixation spot and diametrically opposite
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one another. The monkeys had to make a saccadic eye

movement to one of the two targets to select that target

and obtain a possible reward allocated to it (see Reward

Schedule section). Both targets disappeared at the start

of the eye movement. If the saccadic eye movement

shifted the monkey’s gaze to within a 5–8°-diameter error

window around the target within 400 msec of target ap-

pearance, the monkeys received a juice reward according

to the variable reward schedule described below.

Quantifying the MIB

Eye position was monitored using the scleral search coil

method ( Judge, Richmond, & Chu, 1980; Fuchs &

Robinson, 1966) and digitized at 500 Hz. Saccades were

detected using previously described methods (Schafer &

Moore, 2007). Directions of drifting gratings were perpen-

dicular to the saccade required to choose the targets.

Saccades directed to drifting–grating targets are displaced

in the direction of visual motion, an effect previously re-

ferred to as the MIB (Schafer & Moore, 2007). The MIB

for each trial was measured as the angular deviation of

the saccade vector in the direction of the chosen target’s

drift, with respect to the mean saccade vector from all

selections of that target within the session. This method

of measuring deviation would yield approximately the

same results as vertical displacement because the loca-

tions of targets were held constant throughout the session

and angles were small, making angles a good approxima-

tion for the tangent of angles times the horizontal distance

of the targets (vertical displacement). To compare MIB

values across sessions with different target contrasts and

locations, we used z score values of the MIB in each ses-

sion to avoid confounds because of systematic biases.

Reward Schedule

For each correct saccade, themonkey could receive a juice

reward with a probability determined by a dynamic reward

schedule based on the location of the foveated target (Abe

& Takeuchi, 1993). More specifically, the probability of

reward given a selection of the left (TLÞor right (TRÞ target,
prL and prR, was equal to

prL fL; r; xð Þ ¼
1

1þ exp −
−fL þ r þ 10

s

� �− x

prR fL; r; xð Þ ¼
1

1þ exp −
þfL − r þ 10

s

� �− x

(1)

Figure 1. The free-choice task

and reward schedule example.

(A) Task design. On each trial,

a fixation point appeared on

the screen, followed by the

presentation of two drifting–

grating targets. The monkeys

indicated their selection with

a saccade. Targets disappeared

at the onset of the saccade. A

juice reward was delivered on

a variable schedule after the

saccade. Event plots indicate

the sequence of presentation of

the visual targets; dashed lines

denote variable time intervals.

Horizontal eye position traces

are from a subset of trials of

an example experiment and

show selection saccades to both

the left target (TL, downward

deflecting traces) and the right

target (TR, upward deflecting

traces). (B) Examples of reward

probability as a function of the

percentage of left choices, fL,

separately for the left and right

targets ( prL[ fL, r, x] and prR[ fL,

r, x]) for different values of

reward parameter r and penalty

parameter x (see Equation 1).

(C) Plotted is the reward harvest

rate on each target as a function of the percentage of TL selections, fL, for r = 80 and x = 0. (D) Total reward harvest rate as a function of reward

parameter r and fL for x = 0. The gray dashed line shows fL = r corresponding to matching behavior. The black dashed line indicates the percentage

of TL selections that results in the optimal reward rate. Slight undermatching corresponds to optimal choice behavior in this task. rew. = reward.

250 Journal of Cognitive Neuroscience Volume 33, Number 2

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://d

ire
c
t.m

it.e
d
u
/jo

c
n
/a

rtic
le

-p
d
f/3

3
/2

/2
4
8
/1

8
6
2
5
2
1
/jo

c
n
_
a
_
0
1
6
4
7
.p

d
f b

y
 D

A
R

T
M

O
U

T
H

 C
O

L
L
E

G
E

 u
s
e
r o

n
 0

8
 J

u
ly

 2
0
2
1



where fL is the local fraction (in percentage) of TL selec-

tions estimated using the previous 20 trials, r (reward

parameter) is a task parameter that was fixed on a given

session of the experiment and determined which option

was globally more valuable (TL for r > 50 and TR for r <

50), s is another task parameter that determines the extent

to which the deviation from matching (corresponding to

fL = r) results in a decrease in reward probability and was

set to 7 in all experimental sessions, and x is a penalty

parameter that reduced the global probability of a reward.

Positive values of x decreased reward probability on sac-

cades to both left and right targets to further motivate

monkeys to identify and choose the more rewarding loca-

tion at the time. x was kept constant throughout a session

andwas assigned to one of the following values on a fraction

of sessions (reported in the parentheses in percentage): 0

(77%), 0.15 (6%), 0.30 (6%), or 0.40 (11%). Although the in-

troduction of penalty decreased the reward probability and

rate on both targets, it did not change the local choice frac-

tion ( fL) at which the optimal reward rate ormatching could

be achieved. Because of the penalty parameter and the

structure of the reward schedule, prL( fL, r, x) and prR( fL, r,

x) are not necessarily complementary. Finally, to ensure that

the reward probabilities would not have negative values, any

negative reward probability (based on Equation 1) is

replaced with 0.

On the basis of the above equations, the reward prob-

abilities on saccades to the left and right targets are equal

at fL = r, corresponding to matching behavior, which is

slightly suboptimal in this task. As shown in Figure 1C

and D, an optimal reward rate is obtained via slight un-

dermatching. As the value of s approaches zero, matching

and optimal behaviors become closer to each other.

RL Models

In our experiment, reward was assigned based on target

location (left vs. right), and thus, the targets’motion direc-

tions were irrelevant for obtaining reward. Nevertheless,

we considered the possibility that monkeys could incor-

rectly assign value to motion direction. We used various

RL models to fit choice behavior to determine whether

monkeys attributed reward outcomes to target locations

or target motions and how they integrated these outcomes

over trials to estimate subjective values and guide choice

behavior. Therefore, we considered RL models that esti-

mate subjective reward values associated with target loca-

tions as well as RL models that estimate subjective reward

values associated with the motion of the two targets.

In themodels basedon the locationof the targets (location-

based RLs), the left and right targets (TL and TR) were

assigned subjective values VL(t) and VR(t), respectively. In

the models based on motion direction of the targets

(motion-based RLs), subjective values VU(t) and VD(t) were

assigned to the upward and downward motion (TU and

TD), respectively. For both types of models, values were

updated at the end of each trial according to different

learning rules described below. In addition, we assumed

that the probability of selecting TL (or TU in motion-based

RLs) is a sigmoid function of the difference in subjective

values as follows:

p TL=U
� �

¼
1

1þ exp − VL=U tð Þ− VR=D tð Þ− b
� �� � (2)

where b quantifies the bias in choice behavior toward the

left target (or upwardmotion) and VL/U denotes the subjec-

tive value of the left target in the location-based RL or

upward motion in the motion-based RL, respectively.

Similarly, VR/D denotes the subjective value of the right

target in the location-based RL or downward motion in

the motion-based RL, respectively.

At the end of each trial, subjective reward values of one

or both targets were updated depending on the choice and

reward outcome on that trial. We considered different

types of learning rules for how reward outcomes are

integrated over trials and grouped these learning rules

depending on whether they estimate a quantity similar to

“return” (average reward per selection) or “income” (aver-

age reward per trial). More specifically, on each trial, the

monkeys could update subjective reward value of the

chosen target only, making the estimated reward values

resemble local (in time) return. Alternatively, the monkeys

could update subjective reward values of both the chosen

and unchosen targets, making these values resemble local

income. We adopted these two methods for updating

subjective reward values because previous work has shown

that both local return and income can be used to achieve

matching behavior (Soltani & Wang, 2006; Corrado,

Sugrue, Seung, & Newsome, 2005; Sugrue et al., 2004).

In addition, subjective reward values for the chosen and

unchosen targets could be discounted when updating

these values on subsequent trials similarly or differently,

andmonkeys could learn differently frompositive (reward)

and negative (no reward) outcomes. We tested all these

possibilities using four different types of RL models.

In return-based RL models (RLret), only the subjective

value of the chosen target (in terms of location or motion

direction) was updated. More specifically, if TL(TU) was

selected and rewarded on trial t, subjective reward values

were updated as the following:

VL=U t þ 1ð Þ ¼ αVL=U tð Þ þ Δ r

VR=D t þ 1ð Þ ¼ VR=D tð Þ
(3)

where Δr quantifies the change in subjective reward value

after a rewarded trial andα (0≤ α≤ 1) is the discount factor

measuring how much the estimated subjective reward

value from the previous trial is carried to the current trial.

As a result, values of α closer to 1 indicates longer lasting

effects of reward or integration of reward on longer time-

scales, both of which indicate slower learning. In contrast,

values of α closer to 0 indicate integration of reward on

shorter timescales corresponding to faster learning. We

note that our learning rule is not a delta rule, and because

Soltani et al. 251
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of its form, (1 − α) in our models more closely resembles

learning rate in RLmodels based on the delta rule. If TL(TU)

was selected but not rewarded, subjective reward values of

the two target locations ormotion directions were updated

as the following:

VL=U t þ 1ð Þ ¼ αVL=U tð Þ þ Δn

VR=D t þ 1ð Þ ¼ VR=D tð Þ
(4)

where Δn quantifies the change in subjective reward value

after a nonrewarded trial. Similar equations governed the

update of subjective reward values when TR(TD) was

selected. Importantly, in these models, subjective reward

value of the unchosen target (in terms of location or

motion) is not updated, making these models return-

based.

In contrast, in all othermodels, subjective reward values of

both chosen and unchosen targets were updated in every

trial, making them income-based models. Specifically, in

the RLInc(1) models, the subjective value of the unchosen

target was discounted on the subsequent trial similarly

to the subjective value of the chosen target. For example,

when TL(TU) was selected, the subjective values were

updated as follows:

VL=U t þ 1ð Þ ¼ αVL=U tð Þ þ Δr or Δn for no rewardð Þ

VR=D t þ 1ð Þ ¼ αVR=D tð Þ
(5)

In the RLInc(2)models, subjective values of chosen and un-

chosen targets were discounted on the subsequent trial

differently:

VL=U t þ 1ð Þ ¼ αcVL=U tð Þ þ Δr or Δn for no rewardð Þ

VR=D t þ 1ð Þ ¼ αuVR=D tð Þ
(6)

where αc, and αu are the discount factors for the chosen

and unchosen targets or motion directions.

In the RLInc(3) models, we updated the subjective value

of unchosen target location (or unchosen motion direc-

tion) in addition to discounting the subjective values of

chosen and unchosen locations:

VL=U t þ 1ð Þ ¼ αcVL=U tð Þ þ Δr or Δn for no rewardð Þ

VR=D t þ 1ð Þ ¼ αuVR=D tð Þ þ Δu

(7)

Note that themotion directions of the two targets were the

same in half of the trials. This makes updating of subjective

value of motion directions nontrivial in trials in which the

chosen and unchosen motion directions are the same

(referred to as match trials). Therefore, we tested different

update rules for match trials to identify the model that best

describes the monkeys’ choice behavior. Specifically, we

tested two possibilities: (1) update the subjective value of

motion direction that was presented on a given match trial

only and (2) update the subjective values of both present

and nonpresent motion directions but in the opposite

direction. We found that the second model, in which

subjective values of both motion directions were updated,

provided a better fit for our data (data not shown).

Finally, we also tested hybrid RLmodels in which subjec-

tive values of both target locations and motion directions

were updated at the end of each trial and subsequently

used to make decisions. Fitting based on these hybrid

models was not significantly better than those using the

RL models that consider only subjective values of target

locations. Therefore, the results from these hybrid models

are not presented here.

Model Fitting and Comparison

We used the maximum likelihood ratio method to fit

choice behavior with different RL models described above

and estimated the parameters of those models. To com-

pare the goodness-of-fit based on different models while

considering the number of model parameters, we used

the negative log-likelihood (−LL), Akaike information

criterion (AIC), and Bayesian information criterion (BIC).

AIC is defined as

AIC ¼ −2� LLþ 2� k (8)

where LL is log-likelihood of the fit and k is the number of

parameters in a given model. BIC is defined as

BIC ¼ −2� LLþ ln nð Þ � k (9)

where LL is log-likelihood of the fit, k is the number of pa-

rameters in a givenmodel, and n is the number of trials in a

given session. We then used the best RL model in terms of

predicting choice behavior to examine whether the MIB is

also affected by subjective reward value similarly to or

differently than choice (see below).

Effects of Subjective Reward Value on MIB

To estimate subjective reward values associated with a

given target location, we used twomethods of reward inte-

gration corresponding to income and return. To calculate

the subjective income for a given target location on a given

trial, we filtered the sequences of reward outcomes on

preceding trials (excluding the current trial) using an expo-

nential filter with a given time constant τ, assigning +1 to

rewarded trials and Δn to nonrewarded trials if that target

location was chosen and 0 if that target location was not

chosen on the trial. To calculate the subjective return of

a given target location, we filtered reward sequence on pre-

ceding trials (again excluding the current trial) in which

that target location was chosen using an exponential filter

with a given time constant τ, assigning+1 to rewarded trials

and Δn to nonrewarded trials. Finally, we calculated the

correlation between the MIB and the obtained filtered

values for different values of τ and Δn.

252 Journal of Cognitive Neuroscience Volume 33, Number 2
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Data Analysis

To assess the overall performance of themonkeys, we used

static and dynamicmodels to harvestmaximum rewards. In

the static model, we assumed that selection between the

two target locations in a given session was a stochastic pro-

cess with a fixed probability that is optimized for a given set

of parameters. Replacing fL with to-be-determined proba-

bility p(TL) in Equation 1, one can obtain the total average

reward on the two targets, Rtot, as follows:

Rtot ¼ p TLð Þ * prL fL; r; xð Þ þ p TRð Þ * prR fL; r; xð Þ

¼ p TLð Þ *
1

1þ exp −
−p TLð Þ þ r þ 10

s

� �−x

0

B

B

@

1

C

C

A

þ 1−p TLð Þð Þ *
1

1þ exp −
þp TLð Þ− r þ10

s

� �− x

0

B

B

@

1

C

C

A

;

(10)

The optimal probability, popt(TL), was then determined by

maximizing Rtot:

popt TLð Þ ¼ argmaxp TLð Þ Rtotð Þ (11)

In the optimal dynamic model, we assumed that the deci-

sion maker has access to all the parameters of the reward

schedule (r, s, x) and perfectmemory of their own choices

in terms of fL. Having this knowledge, the optimal decision

maker could compute the probability of reward on the two

options, prL( fL, r, x) and prR( fL, r, x); (using Equation 1)

and choose the option with the higher reward probability

on every trial.

We also compared the monkeys’ choice behavior with

the prediction of the matching law. The matching law

states that the animals allocate their choices in a proportion

that matches the relative reinforcement obtained by the

choice options. In our experiment, this is equivalent to

the relative fraction of left (respectively, right) choices to

match the relative fraction of incomes on the left (respec-

tively, right) choices. Therefore, to quantify deviations

from matching, we calculated the difference between the

relative fraction of choosing the more rewarding target

(left when r > 50 and right when r < 50) and the relative

fraction of the income for the more rewarding target.

Negative and positive values correspond to undermatching

(choosing the better option less frequently than the rela-

tive reinforcement) and overmatching, respectively.

RESULTS

We trained twomonkeys to freely select between two visual

targets via saccadic eye movement (Figure 1A). Saccades to

each target resulted in delivery of a fixed amount of juice

reward with a varying probability. Targets were stationary

apertures of drifting gratings, and the reward probability

was determined based on the location of the grating targets

independently of the direction of visual motion contained

within the gratings. More specifically, on a given trial, prob-

abilities of reward on the left and right targets were deter-

mined by the reward parameter (r) and the choice history

on the preceding 20 trials (Equation 1; Figure 1B). Critical

for our experimental design, the motion contained within

the targets caused the end points of eye movements made

to those targets to be systematically biased in the direction

of grating motion (MIB). We first show that this MIB can be

used as a measure of sensitivity to visual motion on a trial-

by-trial basis. Next, we use an exploratory approach to study

whether and how the effects of reward on choice are differ-

ent or similar to the effects of reward on sensitivity to visual

motion measured by the MIB. In this approach, we rely on

known effects of objective and subjective reward values on

choice and then test those effects for the MIB.

MIB Measures Sensitivity to Visual Motion

The MIB of a saccadic eye movement quantifies the extent

to which the end points of saccades directed toward the

drifting gratings were biased in the direction of grating

motion (Figures 1A and 2A). Despite the stationary

Figure 2. MIB measures

sensitivity to visual motion.

(A) Plotted are the example

distributions of the angle of

saccade vector (relative to

the fixation dot) for upward

(open) and downward (filled)

drifting targets. (B) MIB

significantly increased as

the contrast of grating is

increased from 2% (purple)

to 3% (yellow). (C) Comparison

of the z score normalized MIB when the directions of motion in the chosen and nonchosen targets matched or did not match. The MIB is

z score normalized for each monkey separately within each session. The asterisk shows a significant difference between the two contrasts using

two-sided t-test (p<.05).
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position of the grating aperture, motion in the drifting sinu-

soid nonetheless induces a shift in the perceived position of

the aperture in human participants (De Valois & De Valois,

1991) andbiases saccadic endpoints in the direction of grat-

ing drift inmonkeys (Schafer &Moore, 2007). By examining

the MIB in different conditions, we established that it can

provide ameasure of sensitivity to visual motion even when

the grating motion is not behaviorally relevant.

First, we found that themagnitude of theMIB depended

on the grating contrast. More specifically, the MIB

increased by 27% when the (Michaelson) contrast of

grating increased from 2% to 3% (two-sided independent

measures t test, p = 7.85 × 10−9; Figure 2B). Second, we

observed that the MIB depended almost exclusively on

the motion direction of the selected target as it was only

slightly affected by nonmatching motion in the unchosen

target (Figure 2C). Specifically, the average z score nor-

malized MIB measured in two monkeys across all trials

(mean = 0.38) was altered by only 9% when the unchosen

target differed in direction of the gratingmotion. Together,

these results demonstrate that the MIB in our task is sensi-

tive to the properties of sensory signal (grating motion

direction and contrast) and thus can be used to measure

the influence of internal factors such as subjective reward

value on visual processing.

Effects of Objective Reward Value on
Choice Behavior

To examine the effects of global and objective reward value

on monkeys’ choice behavior, we first measured how

monkeys’ choice behavior tracked the target location

that was globally (session-wise) more valuable, which in

our task is set by reward parameter r. We found that

target selection was sensitive to reward parameter in

both monkeys and the harvested reward rate was high,

averaging 0.66 and 0.65 across all sessions (including

those with penalty) in Monkeys 1 and 2, respectively

(Figure 3A, B, D, and E). To better quantify monkeys’

performance, we also computed the overall harvested

reward by a model that selects between the two targets

with the optimal but fixed choice probability in a given

session (optimal static model; see example in Figure 1C

in Methods) or a model in which the target with a higher

probability of reward was chosen on each trial (optimal

dynamic model; see Methods). We found that the perfor-

mance of both monkeys was suboptimal; however, the

pattern of performance as a function of reward parameter

forMonkeys 1 and 2 resembled the behavior of the optimal

static and dynamic models, respectively (Figure 3B and E).

Because each session of the experiment for Monkey 2 was

longer, we confirmed that there was no significant differ-

ence in task performance between the first and second

halves of sessions for Monkey 2 (difference: mean =

0.003, SEM = 0.008; two-sided paired t test: p = .7, d =

0.03). Together, these results suggest that both monkeys

followed the reward schedule on each session closely,

whereas their choice behavior was suboptimal.

We also examined the global effects of reward on choice

bymeasuringmatching behavior. To that end, we compared

choice and reward fractions in each session and found

that both monkeys exhibited undermatching behavior

Figure 3. Global (session-wise)

effects of reward on choice

behavior. (A) Choice behavior

was sensitive to reward

parameter. Percentage of TL
selections is plotted as a

function of r, which varied

across experimental sessions for

Monkey 1. The colored lines are

linear fits, and the black dashed

line shows the optimal fL for a

given value of r assuming

selection between the two

targets with a fixed probability

(optimal static model). The gray

dashed line shows unit slope.

Each data point corresponds to

one session of the experiment.

(B) The overall performance

was suboptimal. Plotted is

harvested rewards per trial as a

function of reward parameter r

for zero penalty sessions for Monkey 1. The solid colored lines show fit using a quadratic function. The colored and black dashed lines indicate

harvested reward rates of the optimal dynamic and static models, respectively. (C) Proportion of TL selections is plotted as a function of the fraction

of harvested reward on the left target. The colored lines are linear fits, and the gray dashed line shows the diagonal line corresponding to matching

behavior. Monkey 1 showed significant undermatching by selecting the more rewarding target with a choice fraction smaller than reward fraction.

The inset shows the difference between choice and reward fractions with negative and positive values corresponding to undermatching and

overmatching. The gray dashed lines indicate the medians of the distributions and asterisks show the significant difference from 0 (i.e., matching)

using Wilcoxon signed rank test ( p < .05). (D–F) Similar to A–C but for Monkey 2.
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(Figure 3C and F).More specifically, they selected themore

rewarding location with a probability that was smaller than

the relative reinforcement obtained on that location

(Monkey 1 median [choice fraction − reward fraction] =

−0.115; Wilcoxon signed rank test, p = 1.67 × 10−12, d =

−1.35; Figure 3C inset;Monkey 2median [choice fraction−

reward fraction] = −0.03, p = 1.76 × 10−12, d = −0.83;

Figure 3F inset). Furthermore, the degree of undermatch-

ing was larger for Monkey 1 than Monkey 2 (difference =

−0.086;Wilcoxon rank sum test,p=2.57×10−6,d=−0.37).

Effects of Objective Reward Value on Sensitivity to
Visual Motion

In the previous section, we observed that choice behavior is

affected by objective measures of reward value in a given

session. We repeated similar analyses to examine whether

objective reward values have similar effects on sensitivity

to visual motion measured by MIB. To that end, we first

computed the correlation between the difference in the

session-based averageMIB for saccades to themore and less

rewarding target locations and reward parameter r in each

session. However, we did not find any evidence for such

correlation for either of the two monkeys (Spearman corre-

lation;Monkey 1: r=.04,p=.8;Monkey 2: r=.11,p=.39).

Second, we examined whether the average MIB for all sac-

cades in a given session was affected by the overall perfor-

mance in that session. Again, we did not find any evidence

for correlation between the session-based average MIB and

performance for either of the two monkeys (Spearman cor-

relation; Monkey 1: r = −.07, p = .54; Monkey 2: r = .13,

p= .21). Finally, we did a similar analysis tomatching behav-

ior to examine whether differential MIB on the two target

locations is related to objective reward values of those loca-

tions. In this analysis, we computed correlation between the

difference in average MIB on the better and worse target

locations and the difference in total reward obtained on

those locations but found no evidence for such correlation

(Spearman correlation;Monkey 1: r=.003,p=.99;Monkey

2: r = .03, p = .83).

Together, these results indicate that, unlike choice,

the MIB is not affected by objective reward value of the

foveated target or the overall harvested reward. Observing

this dissociation, we next examined the effects of subjec-

tive reward value on choice and the MIB.

Effects of Subjective Reward Value on
Choice Behavior

The analyses presented above show that the overall choice

behavior was influenced by global or objective reward

value of the two target locations in a given session. In

contrast, sensitivity to visual motion was not affected by

global or objective reward value. This difference between

the influence of objective reward value on choice and

MIB could simply reflect the fact that, because of task

design, monkeys’ choices and not MIB determine reward

outcomes on current trials and influence reward probability

on subsequent trials (reward probability was a function of r

and monkeys’ choices on the preceding trials). Therefore,

we next examined similarities and differences between

effects of subjective reward value on choice behavior and

sensitivity to visual motion.

To investigate how reward outcomes were integrated

over time to estimate subjective reward values and guide

monkeys’ choice behavior on each trial, we used multiple

RL models to fit the choice behavior of individual monkeys

on each session of the experiment. These models assume

that selection between the two targets is influenced by

subjective values associated with each target, which are

updated on each trial based on reward outcome (see

Methods). Although reward was assigned based on the

location of the two targets (left vs. right) in our experiment,

the monkeys could still assume that motion direction is

informative about reward. Therefore, we considered RL

models in which subjective values were associated with

target locations as well as RL models in which subjective

values were associated with the motion of the two targets,

using four different learning rules. Considering the observed

undermatching behavior, we grouped learning rules de-

pending on whether they result in the estimation of subjec-

tive value in terms of local (in time) return or income.

In RLret models, only the subjective value of the chosen

target (in terms of location or motion) was updated, mak-

ing them return-based models. In RLInc(1) models, in addi-

tion to updating the subjective value of the chosen target,

the subjective value of the unchosen target was discounted

on the subsequent trials similarly to the subjective value of

the chosen target, making these models income-based. In

RLInc(2) models, the subjective values of chosen and

unchosen targets were allowed to be discounted on the

subsequent trials differently. Finally, in RLInc(3) models,

we also assumed a change in the subjective value of the

unchosen target or motion direction in addition to the

discounting across trials. Because the subjective values of

both chosen and unchosen target locations were updated

on each trial in RLInc(2) and RLInc(3) models, we refer to

these models as income-based similarly to RLInc(1).

However, we note that only RLInc(1) models are able to

estimate local income accurately.

We first compared the goodness-of-fit between the

location-based and motion-based RLs using −LL, AIC,

and BIC to test which of the two types of models can

predict choice behavior better. Such comparisons based

on the three measures yield the same results because the

two types of models have the same number of parameters

for a given learning rule. We found that, for both monkeys,

all the location-based models outperformed the motion-

based RLs (Table 1). This demonstrates that both monkeys

attributed reward outcomes to target locations more

strongly than to target motions and used subjective value

attributed to target locations to perform the task.

After establishing that monkeys used target location to

integrate reward outcomes, we next examined how this
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integration was performed by comparing the quality of fit

in location-based models with different learning rules.

We found that, for Monkey 1, RLret and RLInc(1) models

provided the best fit of choice data; although goodness-

of-fit measures were not significantly different between

these models, these models provided better fits than

the RLInc(2) and RLInc(3) models (Figure 4). Interestingly,

fitting choice behavior with the RLInc(1) model resulted in

the discount factors (α) that were close to 1 for many

sessions (mean and median of α were equal to 0.77 and

1.0, respectively). This result indicates that Monkey 1

integrated reward over many trials to guide its choice

behavior. This is compatible with the pattern of perfor-

mance as a function of reward parameter for this monkey

(Figure 3B), which resembles the pattern of the optimal

static model.

The same analysis for Monkey 2 revealed a similar inte-

gration of reward outcomes but on a different timescale.

More specifically, we found that the RLInc(1) model pro-

vided the best fit for choice behavior as the goodness-of-fit

in this model was better than the return-based model

(RLret) and more detailed income-based models (RLInc[2]

and the RLInc[3]; Figure 4). In contrast to Monkey 1, the

estimated discount factors based on the RLInc(1) model

were much smaller than 1 for many sessions for Monkey

2 (mean andmedian αwere equal to 0.32 and 0.33, respec-

tively). These results indicate that Monkey 2 integrated re-

ward over a shorter timescale (a few trials) than Monkey 1

to guide its choice behavior. This is compatible with the

pattern of performance as a function of reward parameter

for this monkey (Figure 3E), whichmore closely resembles

the pattern of the optimal dynamic model.

Table 1. Comparison of Goodness-of-Fit between Location-based and Motion-based RL Models Using −LL, AIC, or BIC

RLret RLInc(1) RLInc(2) RLInc(3)

Monkey 1 Δ(−LL, AIC, or BIC) =

−5.48

Δ(−LL, AIC, or BIC) =

−7.19

Δ(−LL, AIC, or BIC) =

−6.53

Δ(−LL, AIC, or BIC) =

−8.06

p = 2.55 × 10−7 p = 2.58 × 10−9 p = 1.39 × 10−8 p = 5.32 × 10−10

Monkey 2 Δ(−LL, AIC, or BIC) =

−60.96

Δ(−LL, AIC, or BIC) =

−105.71

Δ(−LL, AIC, or BIC) =

−103.46

Δ(−LL, AIC, or BIC) =

−107.25

p = 2.74 × 10−21 p = 2.58 × 10−26 p = 2.58 × 10−26 p = 2.58 × 10−26

Δ(−LL, AIC, or BIC) shows the median of the difference between location-based and motion-based RL models fitted for each session separately.
Note that all differences in goodness-of-fit measures (based on −LL, AIC, and BIC) are similar because the number of parameters is the same
across location-based and motion-based models. p Values indicate the significance of the statistical test (two-sided sign test) for comparing the
goodness-of-fit between the location-based and motion-based RLs.

Figure 4. Comparison of

goodness-of-fit between

different location-based RL

models reveals that the RLInc(1)

model provided the best overall

fit. (A) The difference between

BIC for fits based on the RLInc
(1) model and the three

competing models (indicated

on the x axis). Bars show the

median of the difference in BIC,

and errors are SEM. Reported

p values are based on a

two-sided sign test. Each data

point shows the goodness-of-fit

for one session of the

experiment. For Monkey 1, fits

based on the RLInc(1) and RLret
models were not significantly

different. (B) The same as in A

but based on the difference in

AIC. (C, D) Similar to A and B

but for Monkey 2. An asterisk

indicates that the difference

between two models is

significantly different from 0

using two-sided sign test

(p<.05).
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Together, fitting of choice behavior shows that both

monkeys associated reward outcomes with the location

of the chosen target. Moreover, both monkeys estimated

subjective reward values in terms of income by integrating

reward outcomes overmultiple trials and used these values

to make decisions.

Effects of Subjective Reward Value on Sensitivity to
Visual Motion

Our experimental design allowed us to simultaneously

measure choice and the MIB, as an implicit measure of

sensitivity to visual motion, on each trial. We next exam-

ined whether subjective reward value based on the integra-

tion of reward outcomes over time influenced sensitivity

to visual motion.

To that end, we first examined whether reward feed-

back had an immediate effect on the MIB in the following

trial. Combining the data of both monkeys, we found that

the MIB was larger in the trials that were preceded by a

rewarded rather than an unrewarded trial (mean = 0.03,

SEM = 0.009; two-sided t test: p = 6.95 × 10−4, d =

0.18). When considering data from each monkey individ-

ually, however, this effect only retained significance for

Monkey 1 (Monkey 1: mean= 0.05, SEM=0.01; two-sided

t test, p = 6.5 × 10−4, d = 0.09; Monkey 2: mean = 0.01,

SEM = 0.01; two-sided t test, p = .21, d = 0.09). These

results suggest that theMIB is weakly affected by the imme-

diate reward outcome in the preceding trial.

In the previous section, we showed that the best model

for fitting choice behavior was one that estimates subjec-

tive reward value based on the income on each target loca-

tion and uses the difference in incomes to drive choice

behavior (RLInc[1]model; Figure 4). However, it is not clear

if the MIB is influenced by subjective reward values of the

two targets in a similar fashion. To test this relationship, we

computed correlations between the trial-by-trial MIB and

estimated subjective reward values of the chosen target

location, the unchosen target location, and their sum and

difference. We considered subjective reward values based

on both income and return (see Effects of Subjective

Reward Value on MIB section in Methods).

Wemade several key observations. First, we found that the

MIB was positively correlated with subjective reward values

of both the chosen and unchosen targets (Figure 5A, B, E,

and F) and, as a result, was most strongly correlated with

the sum of subjective reward values of the two targets

(Figure 5C and G). In contrast to choice, the MIB was

poorly correlated with the difference in subjective reward

values of the chosen and unchosen targets (Figure 5D and

H; Supplementary Figure 1 [http://ccnl.dartmouth.edu/

Soltani_etal_20_JoCN/SuppFig1.pdf]). Therefore, choice

was most strongly correlated with the difference in subjec-

tive reward values, whereas the MIB was most strongly cor-

related with the sum of subjective reward values from the

two targets. Second, although the aforementioned rela-

tionships were true for subjective reward value based on

return and income, we found that correlations between

Figure 5. MIB was most strongly correlated with the sum of subjective reward values of the two targets based on return. (A–D) Plotted are the

correlations between the MIB and subjective reward values of the chosen (A) and unchosen (B) targets based on return as well as their sum (C) and

their difference (D) for different values of τ and Δn. The inset in each panel shows the correlation between the MIB and the corresponding subjective

return values for different values of τ and a specific value of Δn (indicated with an arrow in the main panel C) for Monkey 1. The arrow in C points

to the value of Δn that results in the maximum correlation between the MIB and the sum of subjective return values of the two targets for Monkey 1.

(E–H) The same as in A–D but for Monkey 2. The arrow in G points to the value of Δn that results in the maximum correlation between the MIB and

the sum of subjective return values of the two targets for Monkey 2.
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the MIB and subjective return values were stronger than

correlations between theMIB and subjective income values

(compare Figure 5 and Supplementary Figure 2 http://ccnl

.dartmouth.edu/Soltani_etal_20_JoCN/SuppFig2.pdf).

Third, the maximum correlation occurred for the values

of τ at around 15–20 trials and for negative values of Δn,

similarly for both monkeys. This indicates that, for both

monkeys, the MIB was influenced by reward integrated

over many trials, and the absence of reward on a given

trial had a negative influence on the MIB on the following

trials (Δn < 0).

Considering that local choice fraction ( fL in Equation 1)

has opposite effects on prL and prR because of task design,

we also tested the relationship between estimated subjec-

tive values (based on return) for the two target locations.

We found that the correlation between estimated reward

values depends on the values of τ and Δn and is not always

negative (data not shown). Nevertheless, for all values of

τ and Δn, the MIB was most strongly correlated with the

sum of subjective reward values while being positively

correlated with the value of both chosen and unchosen

targets. These results indicate that the dependence of the

MIB on the sum of subjective value is not driven by our

specific task design.

Finally, to better illustrate distinct effects of reward on

decision-making and visual processing, we used two sets

of parameters (τ = 15 and Δn = 0; τ = 15 and Δn = −0.5)

that resulted in significant correlations between choice and

targets’ subjective income values (Supplementary Figure 1)

and between theMIB and targets’ subjective return values in

all cases (Figure 5). We then used these two sets of

parameters and choice history of the monkeys on the pre-

ceding trials to estimate subjective income values and return

values in each trial (see Effects of Subjective Reward Value

on MIB section in Methods). We then grouped trials into

bins according to estimated subjective reward values of TL
(left target) and TR (right target) for choice or of the chosen

and unchosen targets for the MIB and computed the aver-

age probability of choosing the left target and the average

MIB for each bin. We found that the probability of choosing

the left target for both monkeys was largely determined by

the difference in subjective values of the left and right tar-

gets, as can be seen from contours being parallel to the di-

agonals (Figure 6A, B, E, and F). In contrast, the MIB was

largely determined by the sum of subjective values, as can

be seen from contours being parallel to the second diago-

nals (Figure 6C, D, G, and H). These results clearly demon-

strate that reward has distinct effects on choice behavior

and sensitivity to visual motion.

DISCUSSION

Experimental paradigms with dynamic reward schedules

have been extensively used in different animal models to

study how reward shapes choice behavior on a trial-by-trial

basis (Donahue & Lee, 2015; Li, McClure, King-Casas, &

Montague, 2006; Lau & Glimcher, 2005; Barraclough

et al., 2004; Sugrue et al., 2004; Herrnstein, Loewenstein,

Prelec, & Vaughan, 1993). A general finding is that animals

integrate reward outcomes on one or more timescales to

estimate subjective reward value and determine choice.

In contrast, the influence of reward on selective processing

Figure 6. The choice probability for both monkeys was largely determined by the difference in estimated subjective values, whereas the MIB was

largely determined by the sum of subjective values of targets. (A, B) Plots show the probability of choosing the left target as a function of subjective

values of the left and right targets for Monkey 1, using τ = 15 and two values of Δn as indicated on the top. (C, D) Plots show the MIB as a function of

subjective values of the chosen and unchosen targets for Monkey 1, using τ = 15 and two values of Δn as indicated on the top. (E–H) The same as in

A–D but for Monkey 2.
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of visual information, which is often described as atten-

tional deployment, has been mainly studied using fixed

reward schedules with unequal reward outcomes (Barbaro

et al., 2017; Hickey & Peelen, 2017; Hickey et al., 2010,

2014; Anderson et al., 2011a, 2011b; Della Libera &

Chelazzi, 2006, 2009; Peck et al., 2009). The main findings

from these studies are that targets or features associated

with larger reward can more strongly capture attention

and alter visual processing immediately or even after

extended periods (reviewed in Anderson, 2013, 2016).

However, it has proven difficult to link the effects of

reward on saccadic choice and selective processing of

visual information mainly because of separate measure-

ments of these effects in different tasks. Indeed, the poorly

described relationship between reward expectation and

the processing of visual information has been implicated

as a confounding factor in the interpretation of many past

behavioral and neurophysiological results (Maunsell, 2004,

2015). An exception to this is a study by Serences (2008) in

which the author utilized a task with a dynamic reward

schedule to demonstrate that the activity in visual cortex

is modulated by reward history (i.e., integrated reward

outcomes over many trials). Compatible with these results,

we find that processing of visual information is affected by

subjective reward value estimated by integration of reward

outcomes over many trials.

Using tasks designed specifically to dissociate subjective

reward value from a target’s behavioral significance, or

salience, a few studies have identified brain areas that

respond primarily to the expected reward or the salience

of a target (or both) in various species including rats (Lin

& Nicolelis, 2008), monkeys (Roesch & Olson, 2004), and

humans (Litt, Plassmann, Shiv, & Rangel, 2011; Cooper &

Knutson, 2008; Jensen et al., 2007; Anderson et al., 2003).

However, in these studies, the saliency signal observed in

neural responses might reflect a number of different pro-

cesses, such as motivation, attention, motor preparation,

or some combination of these. In the present work, we

exploited the influence of visual motion on saccades as

an independent and implicit measure of visual processing

during value-based decision-making. This enabled us for

the first time to measure choice and visual processing

simultaneously and to test whether reward has differential

effects on these two processes.

Although motion was not predictive of reward and thus

processing ofmotion directionwas not required to obtain a

reward, we found that, similar to decision-making, visual

processing was influenced by subjective reward values of

the two targets. However, subjective reward values of the

two targets affected visual processing differently than how

they affected choice in three ways. First, although choice

was correlated most strongly with the difference between

subjective values of chosen and unchosen targets, visual

processing was most strongly correlated with the sum of

subjective values of the two targets. The latter indicates

that the overall subjective value of targets in a given envi-

ronment could influence the quality of sensory processing

in that environment. Second, choice was more strongly

affected by the subjective income value of the target,

whereas sensitivity to visual motion was more strongly

affected by subjective return values of the targets. Third,

the time constant of reward integration and the impact of

no reward were different between decision-making and

visual information processing. In contrast to subjective

reward value, we found that objective reward value only

affected choice and not sensitivity to visual motion.

Together, these results point tomultiple systems for reward

integration in the brain.

We found certain differences between the results for the

two monkeys that could indicate that they used different,

idiosyncratic strategies for performing the task. For exam-

ple, fitting results of RL models indicated that Monkey 1

used the reward history over many trials to direct its choice

behavior. In contrast, Monkey 2 used the reward history

over few trials to direct its choice behavior. This difference

was also apparent in the correlation between choice and

the difference in subjective values of the two target loca-

tions. Despite this difference in integration time constant,

choice in both monkeys was most strongly correlated with

the difference between estimated subjective values of the

two targets. Furthermore, the MIB for both monkeys was

most strongly correlated with the sum of estimated subjec-

tive values of the two targets, although they integrated

reward outcomes on different timescales.

The observed differences in reward effects on visual pro-

cessing and decision-making have important implications

for the involved brain structures and underlying neural

mechanisms. First, they suggest that brain structures

involved in decision-making and processing of visual infor-

mation receive distinct sets of value-based input, for exam-

ple, ones that integrate reward over a different number of

trials. The set of input affecting decision-making carries

information about subjective reward value of individual

targets, whereas the set that affects visual processing

carries information about the sum of subjective values of

targets. Indeed, there are more neurons in ACC and other

prefrontal areas that encode the sum of subjective value of

available options than the subjective value of a given option

(Kim, Hwang, Seo, & Lee, 2009), and these neurons might

contribute to enhanced sensory processing. In addition, it

has been shown that the activity of basal forebrain neurons

increases with the sum of subjective values of choice array

options (Ledbetter, Chen, &Monosov, 2016), and this could

enable basal forebrain to guide visual processing and atten-

tion based on reward feedback independently of how

reward controls choice behavior (Monosov, 2020). Finally,

the FEF also receives inputs from the supplementary eye

field, which contains neurons whose activity reflects sub-

jective reward value of the upcoming saccade (Chen &

Stuphorn, 2015). Such input from the supplementary eye

field could drive target selection in the FEF. Importantly,

our findings can be used in future experiments to tease

apart neural substrates by which reward influences visual

processing and decision-making.
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Second, a plausible mechanism that could contribute to

the observed differences in the effects of reward is the

differential influence of dopaminergic signaling on the

functions of FEF neurons. Recent work demonstrates that

the modulatory influence of the FEF on sensory activity

within visual cortex is mediated principally by D1 receptors

and that D2-mediated activity is not involved (Noudoost &

Moore, 2011). However, activity mediated through both

receptor subtypes contributes to target selection, albeit

in different ways (Soltani, Noudoost, & Moore, 2013;

Noudoost & Moore, 2011). This evidence indicates that

the neural mechanisms underlying target selection and

visual processing are separable if only in terms of the

involvement of different dopaminergic signals. Con-

sidering the known role of dopamine in reward processing

(Schultz, 2007) and synaptic plasticity (Calabresi, Picconi,

Tozzi, &Di Filippo, 2007), these two dopaminergic signaling

pathways may provide a mechanism for the separate

effects of reward on sensory processing and selection.

Third, in most choice tasks with dynamic reward sched-

ules, local subjective return and income values are typically

correlated, and the question of which quantity is the critical

determinant of behavior has been debated for many years

(Soltani &Wang, 2006; Corrado et al., 2005; Gallistel, Mark,

King, & Latham, 2001; Gallistel & Gibbon, 2000; Mark &

Gallistel, 1994; Herrnstein & Prelec, 1991). The observa-

tion that differences in subjective income values are a

better predictor of choice behaviormay reflect the fact that

income values provide information about which target is

globally more valuable in each session of the task. In con-

trast, the dependence of visual processing on the sum of

subjective return values ismore unexpected. This indicates

that visual processingmaymore strongly depend on target-

specific reward integration because the return value of a

given target is updated only after selection of that target.

Finally, the separable influences of reward could be

crucial for flexible behavior required in dynamic and high-

dimensional reward environments (Farashahi, Rowe, et al.,

2017). For example, processing of visual information of

the saccade target that has multiple visual features based

on the sum of subjective reward values of available targets

could allow processing of previously neglected informa-

tion from the less rewarding targets and thus improve

exploration. Future studies are needed to test whether

disruption of this processing can reduce flexibility in target

selection and choice behavior.
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