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a b s t r a c t

High frequency financial data has become an essential component of the digital econ-
omy, yielding an increasing number of estimators. However, it is hard to reliably assess
the uncertainty of such estimators. The Observed Asymptotic Variance (observed AVAR)
is a non-parametric estimator for (squared) standard error in high frequency data. The
device is related to observed information in likelihood theory, but in this case it is non-
parametric and uses the high-frequency data structure. An earlier paper has developed
the estimator in the case where edge effects are small to moderate. In practical data, it
is often more realistic to assume that edge effects can be large, and this is the problem
that we tackle in the current paper. We here find a regression approach to observed
AVAR which is highly robust to large edges. This approach covers most high frequency
estimators.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction: Hard edges

The Observed Asymptotic Variance is a non-parametric estimator for squared standard error in high frequency
data (Mykland and Zhang, 2017a). The earlier paper develops the estimator in the case where edge effects are small
to moderate. In practical data, it is often safer to assume that edge effects can be large, and this is the problem that we
seek to tackle in this paper.

We consider integrated parameters and their estimators1 over time intervals (S, T ] ⊂ [0, T ]:

Θ(S,T ] =

∫ T

S
θtdt and Θ̂(S,T ] = a consistent estimator of Θ(S,T ], (1)
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here θt is a semi-martingale representing spot volatility, skewness, a regression coefficient, or other. See Mykland and
Zhang (2017a) for examples (Section 7) and general principles for how to find estimators of this type, and for the removal
of jumps (Sections 5–6).

The typical statistical situation is as follows: there is a semimartingale Mn,t and edge effects en,S and ẽn,T , so that,

Θ̂
(n)
(S,T ]

− Θ(S,T ] = Mn,T − Mn,S  
semimartingale

+ ẽn,T − en,S  
edge effects

for S < T ∈ Tn, (2)

where Tn = {Tn,i : i = 0, . . . , Bn}. The edge effect is essentially anything that disarranges the semimartingaleness of
the difference Θ̂(0,T ] − Θ(0,T ], and it occurs in many shapes. The edge effect has a component eS relating to phasing in
the estimator at the beginning of the time interval, and component ẽT for the phasing out at T . (For examples, see ibid.,
Remark 5, p. 206, and Section 7, p. 219–226.) In the presence of microstructure noise, no estimator is without edge effect.

Our concern in this paper is that the edge effects can be fairly large, and even if they are negligible from a theoretical
standpoint, it is wiser to not neglect them in actual data. As example in this paper, we shall use the non-tapered smoothed
TSRV, whose edge effects are small, but not too small (Appendix A.1 in Mykland et al., 2019). Tapering will make the edge
effect smaller (Mykland et al., 2019), and also Kalnina and Linton (2008).

In the following, we review earlier results and introduce the quadratic variations QVB,K , as well as the two-scales
observed AVAR and the two-scales volatility estimate of the spot parameter θt (Section 2). We then present the concept
of hard edge and find an expansion for QVB,K for this more difficult case (Section 3). This gives rise to new and more robust
regression (or multi-scale) estimators of AVAR and the volatility of the spot parameter (Section 4). The question of using
soft vs. hard edge assumptions is then discussed through a data example (Section 5, trade data for the S&P 500 E-mini
futures on the Chicago Mercantile Exchange). As applications, we show how to optimize tuning parameters (Section 6) and
we show how to set standard errors for the nearest neighbor truncation estimator (Section 7). A simulation experiment
is reported in Section 8.

2. The observed asymptotic variance in high frequency data: Review of earlier findings

As in the earlier paper, we set

Definition 1 (Rolling Quadratic Variations of Integrated Processes). Divide the time interval [0, T ] into B basic blocks of
time periods (days, five minutes, thirty seconds, or other) (Ti−1, Ti] from T0 = 0 to TB = T . The blocks are assumed to be
of equal size2: Set ∆T = T /B, and assume that Ti = i∆T . We shall permit rolling overlapping intervals, and so let K be a
number no greater than B. We define

The quadratic variation of Θ: QVB,K (Θ) =
1
K

B−K∑
i=K

(Θ(Ti,Ti+K ] − Θ(Ti−K ,Ti])
2, and

The quadratic variation of Θ̂: QVB,K (Θ̂) =
1
K

B−K∑
i=K

(Θ̂(Ti,Ti+K ] − Θ̂(Ti−K ,Ti])
2 (3)

e emphasize that the above quadratic variations are defined on the discrete grid {0, ∆T , 2∆T , . . . , T }, as opposed to
he continuous-time quadratic variation [X, X]t of a semi-martingale (Xt ). The quantities B, ∆T , and K depend (explicitly
r implicitly) on the index n, which usually denotes the number of observations. We may then write ∆T = ∆Tn, or omit
he index n if the meaning is obvious.

A main condition is the following, cf. Section 3.1 in the earlier paper for background and implications, and Section 7
or examples.

ondition 1 (Standard Convergence Result in the Literature). Assume (2), and that one can show the following. There is an
> 0 so that as n → ∞,

nαMn,t
L
→ Lt stably in law (4)

ith respect to a sigma-field G.3
The quadratic variation [L, L]T is measurable with respect to G, and Lt is a local martingale conditionally on G. Also,

n,Tn = op(n−α) and ẽn,Sn = op(n−α) for any Sn, Tn ∈ T . Finally, the sequence nαMn,t is Predictably Uniformly Tight (P-UT)
Jacod and Shiryaev, 2003, Chapter VI.3.b, and Definition VI.6.1, p. 377).

2 See Mykland and Zhang (2017a, Sections 5.2 and 6, pp. 215–216, and 218–219) for a more general formulation.
3 See Definition 3 (p. 207) of Mykland and Zhang (2017a).
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The development in Mykland and Zhang (2017a) was based on the expansion

QVB,K (Θ̂) = 2AVARn +
2
3
(Kn∆Tn)2[θ, θ]T − + op((Kn∆Tn)2) + op(n−2α) (5)

where AVARn is the asymptotic variance of Θ̂n = Θ̂
(n)
(0,T ]

. The expansion is valid under ‘‘soft edge’’ conditions.
This leads to the definition of Two Scales AVAR, Volatility of Spot θ , and standard error:

TSAVARn =
1
2

(
1
K 2
1

−
1
K 2
2

)−1 ( 1
K 2
1
QVB,K1 (Θ̂) −

1
K 2
2
QVB,K2 (Θ̂)

)
and (6)

[̂θ, θ]T − =
3
2
(K 2

2 − K 2
1 )

−1(∆T )−2
(
QVB,K2 (Θ̂) − QVB,K1 (Θ̂)

)
, (7)

as well as se(Θ̂n) = |TSAVARn|
1
2 The consistency of the two-scales constructions was guaranteed by Theorem 4 in the

earlier paper. The two scales estimators TSAVARn and [̂θ, θ]T − satisfy an empirical decomposition similar to (5), cf. Fig. 1:

QVB,K (Θ̂) = 2 TSAVARn +
2
3
(K∆T )2 [̂θ, θ]T − , i = 1, 2. (8)

3. A general expansion result for QVB,K (Θ̂n) under hard edge effects

One cannot always take the edge effect to be negligible in the sense of (29) in Theorem 4 of Mykland and Zhang
2017a). We shall see that this will give rise to an extra term in the expansion of QVB,K (Θ̂), one due to the edge effects
t and/or ẽt . Instead of a two scales estimator, we shall require a linear combination of three or more scales K , in other
ords a multi-scale ÂVARn.4
To warm up, we first state an expansion QVB,K (Θ̂) which permits larger edge effects than Theorem 3 in the earlier

aper. We make the following set of assumptions.

ondition 2 (Hard Edge Assumptions). Suppose that there is an integer Jn for which en,Tn,i = e′

n,Tn,i
+ e′′

n,Tn,i
and ẽn,Tn,i =

˜′

n,Tn,i
+ ẽ′′

n,Tn,i
, so that (e′

n,Tn,i
, ẽ′

n,Tn,i
) are FTn,i+Jn

-measurable,5 and for which E(e′

n,Tn,i
| FTn,i−Jn

) = E(ẽ′

n,Tn,i
| FTn,i−Jn

) = 0 and
here

∑
i(e

′′

Tn,i
)2 = op(n−2α) and

∑
i(ẽ

′′

Tn,i
)2 = op(n−2α). Also suppose that, for all i, E(e′

n,Tn,i
)2 < ∞ and E(ẽ′

n,Tn,i
)2 < ∞, and

hat

sup
n

E nα

(
max
0≤i≤Bn

|e′

n,Ti | + max |ẽ′

n,Ti |

)
< ∞. (9)

In other words, we let the edge effects be larger, but they must have more structure and uniformity. As a complement,
ondition 2 is argued from a mixing perspective in Appendix B.1. We recall that we assume (Condition 1) that each eTi
nd ẽTi is of order op(n−α), so that assumption (9) refers only to the tail behavior of the edge effects.
The edge effects are now potentially the dominating terms in the expansion of QVB,K (Θ̂). Define autocovariances

Cab
n,K =

⎧⎪⎪⎨⎪⎪⎩
1
Bn

∑Bn
i=K ẽn,Tn,i ẽn,Tn,i−K for (a, b) = (1, 1)

1
Bn

∑Bn
i=K ẽn,Tn,ien,Tn,i−K for (a, b) = (1, 2)

1
Bn

∑Bn
i=K en,Tn,ien,Tn,i−K for (a, b) = (2, 2)

(10)

he aggregated main and lagged edge effects are now given by, respectively,

MAEEn = C11
n,0 + C12

n,0 + C22
n,0 =

1
Bn

Bn∑
i=0

(ẽ2Ti + e2Ti + ẽTieTi )

εn,K = −
(
C11
n,K + 2C12

n,K + C22
n,K

)
+ C12

n,2K (11)

The following is our main result for large edge effects, which parallels the earlier result on small edge effects in Mykland
and Zhang (2017a, Theorem 3, pp. 208–209).

We discuss the behavior of the aggregated edge effects. We then seek linear combinations of QVB,K (Θ̂) to remove the
edge effects.

4 This is comparable to the extension from Zhang et al. (2005) to Zhang (2006). Though the edge effects resemble microstructure, the parallel
should not be taken too far, since two scales are normally required even in the case where the edge effect is negligible. The conceptual similarity
between edge effects and microstructure noise does, however, suggest that edge effects can be more safely ignored for larger values of ∆T , in
analogy with the findings for microstructure in Aït-Sahalia and Xiu (2019). Bear in mind, however, that one should exercise particular caution in
high dimension (Chen et al., 2020, Section 6-7). A detailed investigation is beyond the scope of this paper.
5 In other words, we allow the edge effect to depend on the future. This would, for example, be relevant for the Backward Estimators discussed

in Section 5.1 of Mykland and Zhang (2017a).
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Fig. 1. These plots illustrate the empirical decomposition (8) of the apparent volatility QVB,K (Θ̂) in data, for the S&P 500 E-mini futures as traded
n the Chicago Mercantile Exchange, for the trading days of four months in 2007–08. The total curve is the total volatility QVB,K for each day, the
ed part is 2 × TSAVAR for each day, and the blue part is 2

3 (K1∆T )2 [̂θ, θ]T − , as given in Section 2. In the estimation, the underlying parameter is
he spot volatility: θt = σ 2

t . Θ̂(S,T ] is based on the S-TSRV (Mykland et al., 2019): first pre-average the data (trade prices) to 15 s, and then compute
TSRV on these pre-averages, with j = 20 and k = 40. (This is the non-tapered version of the S-TSRV.) The estimator is thus of integrated volatility
(S,T ] =

∫ T
S σ 2

t dt , and [θ, θ]T = [σ 2, σ 2
]T . For QVB,K (Θ̂), we take ∆T to also be fifteen seconds (the smallest meaningful value). The TSAVAR (6), is

omputed with K1 = 20 and K2 = 40, and similarly for [̂θ, θ]T from (7). In other words, K1∆T is a rolling five minute period that ends every 15 s,
sing the forward half interval method (Mykland and Zhang, 2017a, Section 5.1, p. 215). Daily volumes are reported in Table 1.

heorem 1 (Representation of QVB,K (Θ̂)). Suppose θt is a semimartingale, and that Conditions 1–2 hold. Assume the balance
ondition.6

Kn∆Tn are of the same order as n−α. (12)

6 This is in analogy with the discussion in Mykland and Zhang (2017a, Remark 7(iv), p. 211) There may be other approaches, but this is beyond
he scope of the present paper.
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Table 1
Daily volumes for Figs. 1 and 2.

Min Max Mean Median

May 2007 37000 111300 69919 67130
Aug 2007 99310 447200 226800 197700
May 2008 95220 179700 138700 135700
October 2008 289400 981100 547400 562600

Summary statistics for the daily volume of trades (M6 messages) for the S&P E-mini
futures, for the four months in Figs. 1 and 2. Min is the volume on the least active
trading day, and similarly for max, mean, and median. Quote volumes are 5–10 times
higher.

lso assume that

Jn∆Tn = op(n−α). (13)

hen

QVBn,Kn (Θ̂) = 2AVARn +
2
3
(Kn∆Tn)2[θ, θ]T − + 2T (Kn∆Tn)−1MAEEn

+ 2T (Kn∆Tn)−1εn,Kn + op(n−2α). (14)

Proof of Theorem 1. See Appendix A.1.

Our strategy in the following will be to use linear combinations to remove the main edge effect term MAEEn, but to
live with the lagged term εn,Kn . We pursue this further in the next section, but lay the groundwork in a further analysis
of the edge effects and their magnitude.

Proposition 1 (Behavior of Aggregated Edge Effects). Assume the conditions of Theorem 1. Then,

2T (Kn∆Tn)−1MAEEn = op(n−α) or less. (15)

Also assume that Kn ≥ 2Jn. Then

2T (Kn∆Tn)−1εn,Kn = Op
(
nα(Jn∆Tn)1/2VAEE1/2

n

)
= op

(
n−α(Jn∆Tn)1/2

)
or less, (16)

where

VAEEn =
1
Bn

Bn∑
i=0

(
E((ẽ′

n,Tn,i )
2
|FTi−2Jn

)2 + E((e′

n,Tn,i )
2
|FTi−2Jn

)2
)

= op
(
n−4α) or less. (17)

More generally, if Kn ≥ 2Jn

(C11
n,K , C12

n,K , C22
n,K ) = Op

(
(Jn∆TnVAEEn)1/2

)
. (18)

Also, if 2Jn ≤ Kn,1 < Kn,2 < · · · Kn,m, with Kn,l+1−Kn,l ≥ 2Jn for each l, then (Jn∆TnVAEE)−1/2(C11
n,Kl

, C12
n,Kl

, C22
n,Kl

), l = 1, . . . ,m,
are asymptotically uncorrelated.

Proof of Proposition 1. See Appendix B.2.

Discussion of the Impact of Edge Effects in Theorem 1. Proposition 1 permits a discussion of the behavior of
aggregated edge effects in Theorem 1. First, from (15), the main edge effect MAEE can be as large as op(n−α), and so
could easily overshadow the AVARn and [θ, θ]T − terms in (14). Obviously, MAEE may be smaller, and if MAEE = O(n−3α),
we retrieve the result in Theorem 3 in Mykland and Zhang (2017a) in the balanced case (12).7

Second, the lagged edge effect (16) ought to be of order op(n−2α) so as to not dominate AVARn and [θ, θ]T − in the
representation (14). In other words, from (16), we require

(Jn∆Tn)VAEEn = op(n−6α). (19)

The mathematically simplest path would be to require that Jn∆Tn = Op(n−2α), but this depends on the bandwidth of the
time-dependence of the edge effects, and thus both on the data and on the specific estimator.

7 This is because MAEE is of the same order as ave(e2 ) + ave(ẽ2 ) in the notation of (21) in the earlier paper.
Ti Ti
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Fig. 2. This plot shows the observed AVAR using the two-scales method (red) and the multi-scale method (black). The AVARs are based on the
ame data and estimator (the S-TSRV, Mykland et al., 2019) and on the same trading days, as in Fig. 1. The TSAVARs are as in the former figure.
The multi-scale AVARs are generated as in Section 4. We have used Jn = 4 based on time series methods (Section 4.1). We use ∆T = 15 s, and K
takes the values 8, 15, 23, 31, and 39, to comply with (20) and (37). The apparent volatility is here taken to be the mean of QVK , K = 20, . . . , 40.
The data and the estimator (S-TSRV with the stated tuning parameters) are the same as in Fig. 1, and volumes are as reported in Table 1.

Alternatively, if, say, in an average and fairly uniform sense, the eTi and ẽTi are of order Op(n−β ), the lagged edge effect
16) is of order Op(nα−2β (Jn∆Tn)

1
2 ) = Op(n

1
2 α−2β ) under the conditions of Theorem 1. Thus the lagged edge effect will

isappear if β > 5
4α. This is in practice much easier to verify than Theorem 3 in Mykland and Zhang (2017a), which

would require β > 3
2α. Thus the range where Theorem 1 is effective is β ∈ ( 54α, 3

2α], and possibly including larger values
f β if Jn∆Tn is small. For comparison, under the same assumptions, and with β in this interval, the main edge effect

2T (Kn∆Tn)−1MAEEn = Op(nα−2β ), which dominates the AVARn and [θ, θ]T − terms in (14).
Finally, note that while the condition Kn,1 ≥ 2Jn is there to prevent bias in the AVAR estimator, the rôle of Kn,l+1−Kn,l ≥

Jn is only to guarantee asymptotic uncorrelatedness of the (Jn∆TnVAEE)−1/2(C11
n,Kl

, C12
n,Kl

, C22
n,Kl

), which is not crucial to the
rocedure.
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We shall leave the question of the precise size of the lagged edge effect open, so as to have an incentive to minimize
his term. We shall do this next.

. Estimation of AVAR and [θ, θ]T − under hard edge: Multi-scale and regression estimation

We proceed through linear combinations of QVBn,Kn (Θ̂) over m scales, i.e.,

2Jn ≤ Kn,1 < Kn,2 < · · · Kn,m. (20)

It will be convenient to rescale8 so that QV (R)
Bn,K (Θ̂) = QVBn,K (Θ̂)(K∆Tn), and define a multi-scale estimator of the form

MSQVn(Θ̂) =

m∑
l=1

gn,lQV
(R)
Bn,Kl

(Θ̂)

= g∗

n
Yn (21)

where g∗

n
= (gn,1, . . . , gn,m) is a vector of coefficients to be determined (‘‘∗’’ denotes transpose), and where

Y∗

n =

(
QV (R)

Bn,Kn,1
(Θ̂) QV (R)

Bn,Kn,2
(Θ̂) · · · QV (R)

Bn,Kn,m (Θ̂)
)

. (22)

Also set

β∗

n
=

(
MAEEn,AVARn, [θ, θ]T −

)
, (23)

X∗

n =

⎛⎝ 2T 2T · · · 2T
2(Kn,1∆Tn) 2(Kn,2∆Tn) · · · 2(Kn,m∆Tn)
2
3 (Kn,1∆Tn)3 2

3 (Kn,2∆Tn)3 · · ·
2
3 (Kn,m∆Tn)3

⎞⎠ , and (24)

ε∗

n =
(

εn,K1 εn,K2 · · · εn,Km
)
. (25)

heorem 1 and Proposition 1 then yield, subject to (20), that

Yn = Xnβn
+ 2T εn + op(n−3α)

= Xnβn
+ Op

(
n−α(Jn∆TnVAEEn)1/2

)
+ op(n−3α), (26)

the second line provided Kn,l+1 − Kn,l ≥ 2Jn for each l ∈ [1,m − 1].

Regression Interpretation of (26). Our whole notation, and the first line of (26), suggests linear regression. Ordinary
least squares (OLS) in the regression of Y on X from (22)–(24) yields

β̂
n

= (M̂AEEn, ÂVARn, [̂θ, θ]T −)∗, where β̂
n

= (X∗

nXn)−1X∗

nYn. □ (27)

Multi-Scale Interpretation of (26). Consider the following constraint on (21):

X∗

ngn
= b (28)

where b = (0, b1, b2)∗. Then (21) and the second line of (26) yields

MSQVn(Θ̂) = b1AVARn + b2[θ, θ]T − + Op
(
n−α(Jn∆TnVAEEn)1/2E1/2

n

)
+ op(n−3αE1/2

n ) (29)

with En = g∗g . Hence,

• To estimate AVAR(Θ̂n), choose

b = (0, 1, 0)∗ . (30)

• To estimate the quadratic variation [θ, θ]T −, choose

b = (0, 0, 1)∗ . (31)

o minimize the error in (29), one solves the optimization problem

min g∗

n
g
n
subject to X∗

ngn
= b. (32)

The standard solution (e.g., Boyd and Vandenberghe, 2004, p. 304) to (32) is g
n

= Xn(X∗
nXn)−1b. For this value of g

n
,

MSQVn(Θ̂) = g∗

n
Y = b∗(X∗X)−1X∗Y = b∗β̂. □ (33)

8 See the discussion after Theorem 2. The rescaling is without loss of generality.
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Hence the regression and Multi-Scale approaches coincide. Does the solution work?
From the theoretical standpoint, consistency is backed by a theorem. It also holds in the soft edge case.

heorem 2 (Consistency of ÂVARn and [̂θ, θ]T − in Both the Soft and Hard Edge Cases). Suppose θt is a semimartingale, and
that Condition 1 holds. Let Kn,1, . . . , Kn,m satisfy (20), Suppose that Kn,1 satisfies the balance condition (12), and that there are
constants c− and c+, with 1 < c− < c+ < ∞, for which

c− ≤
Kn,m

Kn,1
≤ c+. (34)

Suppose that either (i) Mykland and Zhang (2017a, eq. (29), p. 209) holds (soft edge case), or (ii) Conditions 1–2 (in this paper)
hold, with (13) and (19) (hard edge case).

Let ÂVARn and [̂θ, θ]T − be given by (27). Then

ÂVARn = AVARn(1 + op(1)) and [̂θ, θ]T − = [θ, θ]T −(1 + op(1)). (35)

In particular, if LT is conditionally Gaussian given G, then

Θ̂n − Θ

se(Θ̂n)
L
→ N(0, 1) stably in law. (36)

roof. See Appendix B.3.

From the practical standpoint, the rescaling QV (R)
Bn,K (Θ̂) = QVBn,K (Θ̂)(K∆Tn) achieves two things. On the one hand, the

n,Kn,l term will often be close to homoscedastic (see Proposition 1 and its proof). In the multi-scale formulation, this
manifests itself in the form of the remainder term En = g∗g . In addition, the rescaling turns the main edge effect MAEEn

into an intercept term. This is computationally advantageous since ÂVARn and [̂θ, θ]T − can now be calculated without
the contribution of MAEEn, cf., Weisberg (1985, Chapter 2.2, p. 43-44). See also the proof of Theorem 2 in Appendix B.3.

While the εn,K may be close to homoscedastic, they are not independent. A first order solution lies in requiring that
n,l+1 − Kn,l ≥ 2Jn in (20). This assures the second line in (26). From definition (11), however, the εn,K are dependent. For

example, εn,K and εn,2K contain a shared autocovariance C12
n,2K . One solution to this is to require that the Kn,l satisfy

{Kn,l : l = 1, . . . ,m} ∩ {2Kn,l : l = 1, . . . ,m} = ∅. (37)

This assures that the εn,Kn,l are asymptotically uncorrelated, in view of Proposition 1. In particular, (37) holds if one only
uses odd Kn,l, say,

Kn,l = (2l + 2p − 1)K . (38)

for non-negative integer p. Even if one does not do this, the solution in Theorem 2 is consistent, and one can alternatively
construct a weighted least squares procedure based on the dependence structure given by (11) and Proposition 1.

Finally, observe that if m → ∞, it may be possible to get around the requirement (19), along the lines of Zhang (2006).

Remark 1. In the volatility estimation problem, a modified realized kernel estimator (Barndorff-Nielsen et al., 2008) is
very similar to that of the multi-scale estimator of Zhang (2006), cf. Bibinger and Mykland (2016). It is conjectured that
a similarly modified realized kernel approach will work also in this problem. □

Remark 2 (A Three Scales ÂVARn). If one uses a three-scales estimator, m = 3, the three gn,l are determined by the three
linear equations given through (28) and (30). The solution is

gn,1 = −
1
vn

(K 3
n,3 − K 3

n,2),

gn,2 =
1
vn

(K 3
n,3 − K 3

n,1), and

gn,3 = −
1
vn

(K 3
n,2 − K 3

n,1), where

vn = 2∆Tn(Kn,1 + Kn,2 + Kn,3)(Kn,2 − Kn,1)(Kn,3 − Kn,1)(Kn,3 − Kn,2). (39)

.1. Choice of J = Jn

The J parameter is tied up with the dependence structure of the edge effects, as spelled out in Condition 2 in Section 3.
nless there are reasons to expect non-linear dependence, the standard applied time series path to determining the length
f dependence is via the autocorrelation and partial autocorrelation plots (acf, pacf) (Brockwell and Davis, 1987; Chan,
011).
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One can most straightforwardly use the pacf directly on Θ̂Ti , and subject to regularity conditions, infer strong mixing
from Withers (1981), from which in turn Condition 2 is satisfied with the help of Appendix B.1 in this paper. It is
important to note that the first order autocorrelation will be close to one, since Θ̂Ti contains ΘTi , but the higher order
partial autocorrelations seem to mainly reflect the edge effects. For the same reason, however, the acf is not a meaningful
diagnostic when applied to this problem.

Another path to determining J is to use the acf or pacf on Θ̂Ti − Θ̂Ti−1 . In view of the representation (2), this is close
to analyzing ẽn,Ti − ẽn,Ti−1 (for a forward estimator, Mykland and Zhang, 2017a, Section 5.1).

The situation is similar to choosing the shorter scale j in a TSRV or S-TSRV (Zhang et al., 2005; Mykland et al., 2019).
It may also be possible to use a signature plot to select J , but this question is beyond the scope of this paper. □

5. Two- vs. multi-scale estimators

There remains a choice between

i. The Two-scales estimator (6). Consistency is assured by Mykland and Zhang (2017a, Theorem 4 in Section 3.2).
ii. The Multi-scale estimator, from Section 4, as given by (27). Theorem 2 assures consistency.

here are two paths: one can either check the theoretical conditions, or, at least for a prima facie impression, try both
stimators on the data. We show an example of the latter approach in Fig. 2. For these data, the choice of method does
ot substantively affect the estimates. We emphasize that the multi-scale estimator from Section 4 is valid under both soft
nd hard edge conditions (Theorem 2). In fact, TSAVAR is a special case when using only K1 and K2. The difference between
SAVAR and the regression/multiscale AVAR is substantial only on a few days. This motivates that one should try both
he soft- and hard-edge procedures on actual data.

.1. Applying ÂVAR

After the above, one is in possession of an estimate ÂVAR. Subject to the regularity conditions imposed, this estimator

s consistent in the sense of Section 2. In particular, under the conditions of Theorem 2, if se(Θ̂n) = |ÂVARn|
1
2 , then

Θ̂n − Θ

se(Θ̂n)
L
→ N(0, 1) stably in law. (40)

. Selection of tuning parameters in the hard edge case

It frequently occurs that estimators depend on tuning parameters. In the following, we suppose that the estimator and
ts asymptotic variance have the form Θ̂n,c and AVARn = AVARn,c , where c is the tuning parameter. Our purpose is to
hoose c so that Θ̂n,c has minimal asymptotic variance.
For example, in the case of the S-TSRV (Mykland et al., 2019), there is a need to determine the two scale parameters

and k, as well and the length of the data smoothing window. It would be standard procedure to determine the shorter
cale j by the same time series methods as in Section 4.1. The longer scale k may be determined by a volatility signature
lot.
A more direct path to an optimal estimator, however, is to find a k which approximately minimizes AVAR.
In the more general case, call the tuning parameter c (so c = k for the S-TSRV). It is shown in Mykland and

hang (2017a, Section 4) that under regularity conditions, in particular that c take values in a finite set (and this is
he case for the S-TSRV when computed from intervals of size ∝ n1/2), the choice ĉn = argminc ÂVARn,c results in an
stimator Θ̂n,ĉ with minimal asymptotic variance, and where the asymptotic normality is still valid. In other words,
Θ̂n,ĉ − Θ)/|ÂVARn,ĉ |

1/2 L
→ N(0, 1) stably in law. We emphasize that this is not generally true without the conditions

tated.
We shall here see that it is not actually necessary to estimate AVAR to obtain the optimal c , so long as the [θ, θ]

omponent remains stable in c (which is, at least, true asymptotically). In view of the development above, one may still
se a multi-scale estimator from Section 4. This time, however, only two constraints are needed. The criterion MSQV (Θ̂n,c)
s obtained by minimizing En = g∗g (from Section 4) subject to

m∑
l=1

gn,l = 0 and
m∑
l=1

gn,l(Kn,l∆Tn) = 1 . (41)

In analogy with (33), the resulting MSQV (Θ̂n,c) is the estimated slope in the regression of Y on the two last columns of X
(from Eqs. (22) and (24)). By standard regression considerations, this estimated slope equals ÂVARn,c + rn [̂θ, θ]T −,c , where
rn is spelled out in (B.8) in Appendix B.3. In this Appendix, we show the following proposition. Recall that (K̄∆Tn)2 is of
the same order as n−2α .
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For the proposition below, assume that AVARn,c = n−2αVc .9 We set c∗
= argminc AVARc∈C , which we for simplicity of

discussion take to be unique. C is a finite set of values for the tuning parameters within which one wishes to optimize.
As noted above, this is realistic, for example, in the case of the S-TSRV (Mykland et al., 2019).

Proposition 2 (Asymptotic Validity of Simplified Optimization Procedure). Let MSQV (Θ̂n,c) be as described, and assume that
he conditions of Theorem 2 are satisfied. Let K̄n be the mean of the Kn,l. Then, as n → ∞,

MSQV (Θ̂n,c) =
(
AVARn,c + rn(K̄∆Tn)2[θ, θ]T −

)
× (1 + op(1)), (42)

here rn is of exact order O(1) and does not depend on c; the formula is given in (B.8) in Appendix B.3. Also, if the definition
f ĉn is changed to ĉn = argminc∈C MSQV (Θ̂n,c), then ĉn → c∗, and (Θ̂n,ĉn − Θ)/AVAR1/2

c∗
L
→ N(0, 1) and (Θ̂n,ĉn − Θ)/

V̂AR
1/2
n,ĉn

L
→ N(0, 1), both stably.

. A new application: Nearest neighbor truncation

To illustrate the ease with which the current theory can be applied to a new problem, we consider the nearest neighbor
runcation developed in the important paper by Andersen et al. (2012), where estimators are defined and studied for the
ase where there is no microstructure noise. See also Andersen et al. (2014) on quarticity. In both cases, pre-averaging is
ctually used on the data, but not taken account of in the asymptotics.
We here adapt the estimation problem from Andersen et al. (2012) to the setting where microstructure noise is

resent in the model. To get a point estimator, we extend their estimator with the help of pre-averaging and a two scales
onstruction, which is straightforward. We then show that the Observed Asymptotic Variance can be used to assess the
tatistical error, and hence to create a feasible estimator.
Suppose for simplicity that observations are of the form Ytj = Xtj + ϵj, where the ϵj are i.i.d., and the efficient log price

rocess Xt is an Itô semimartingale with finite activity jumps, as assumed by Andersen et al. (2012). Using pre-averaging,
nd in analogy with Eq. (4) of their paper, we consider an estimator based on

MedRVM,n =

⌊n/M⌋−2∑
i=3

med(∆ȲM,i−2, ∆ȲM,i, ∆ȲM,i+2)2 (43)

here ∆ȲM,i = ȲM,i − ȲM,i−1 and ȲM,i =
1
M

∑iMn
j=(i−1)Mn+1 Ytj . For simplicity, suppose that the tj are equidistant, i.e.,

j − tj−1 = ∆t = T /n for all j.10 The statistic ȲM,i is thus based on observations in the time interval (τi−1, τi], where
i = iM∆t , and ∆τ = M∆t . When taking the median, we have used every second ∆ȲM,i to avoid autocorrelation. As
→ ∞, we let M = Mn, with Mn/

√
n → c .

To suitably adjust (43), and to verify the conditions of our current theorems, we invoke results on contiguity for
pre-averaged processes. Set Y c

tj = X c
tj + ϵj, and similarly Ȳ c

i , where X c
t is the continuous part of the latent process.

Following Mykland and Zhang (2016, 2020), there is a contiguous (sequence of) probability measures Qn, and ‘‘super-
blocks’’ of 2M Ȳ c

i ’s, with starting points λn,l = 2lMMn∆t , so that, conditionally on sigma-field at the start of each block,
∆τ−1/2∆Ȳ c

lM+1, . . . , ∆τ−1/2∆Ȳ c
(l+1)M is a Gaussian MA(1) process with marginal variance 2

3σ
2
λl

+2 ν2

c2T , where ν2
= Var(ϵ).

Thus, if (Ft ) is the filtration generated by the X c
t s and the ϵs,

EQn

{2(l+1)M−4∑
i=2lM+5

med(∆Ȳ c
Mn,i−2, ∆Ȳ c

Mn,i, ∆Ȳ c
Mn,i+2)

2
|Fλl

}
= (2M − 8)∆τ (

2
3
σ 2

λl
+ 2

ν2

c2T
)
6 − 4

√
3 + π

π
(44)

n analogy with Andersen et al. (2012): if Z1, Z2, Z3 are i.i.d. N(0, 1), then Emed(Z1, Z2, Z3)2 = (6 − 4
√
3 + π )/π . One

now needs to dispose of the nuisance parameter ν2. To stay in the spirit of Andersen et al. (2012), we adjust by using
the MedRV, but doubling the block size: ∆Ȳ2Mn,i = (∆ȲMn,2i−1 +∆ȲMn,2i)/2 (which is based on observations in (τ2i−2, τ2i].
ow observe that, also under Qn,

EQn

{(l+1)M−2∑
i=lM+3

med(∆Ȳ c
2Mn,i−2, ∆Ȳ c

2Mn,i, ∆Ȳ c
2Mn,i+2)

2
|Fλl

}
= (M − 4)(2∆τ )(

2
3
σ 2

λl
+ 2

ν2

(2c)2T
)
6 − 4

√
3 + π

π
, (45)

here we have in both cases used samples from the time interval (τ2lM+4, τ2(l+1)M−4] ⊂ (λn,l, λn,l+1].

9 This assumption is for the current section only. There is some choice as to what to regard as the true theoretical asymptotic variance; another
ossibility would be the continuous quadratic variation of Mn,t . So long as two versions of the theoretical AVAR are within op(n−2α) of each other,

this ambiguity does not pose difficulties for consistency of ÂVAR, or for consistency of confidence intervals based on ÂVAR.
10 Otherwise, a term-by-term correction applies, see Mykland and Zhang (2016, Theorem 5, p. 249). For comparison, see also the expression for
he pre-averaged RV in Mykland et al. (2019, eq. (7)–(9), p. 104). We emphasize that the correction is available so long as one has faith in the time
tamps, which is plausible for the CME data that we have used, due to the centralized trading system for this contract.
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Eq. (45) −
1
4

× Eq. (44) = 2(M − 4)∆τ
2
3
σ 2

λl

3
4
6 − 4

√
3 + π

π

= (τ2(l+1)M−4 − τ2lM+4)σ 2
λl

6 − 4
√
3 + π

2π
. (46)

In view of the development in Mykland and Zhang (2016, 2020), the aggregated (over M) terms
(l+1)M−2∑
i=lM+3

med(∆Ȳ c
2Mn,i−2, ∆Ȳ c

2Mn,i, ∆Ȳ c
2Mn,i+2)

2
−

1
4

2(l+1)M−4∑
i=2lM+5

med(∆Ȳ c
Mn,i−2, ∆Ȳ c

Mn,i, ∆Ȳ c
Mn,i+2)

2

− (τ2(l+1)M−4 − τ2lM+4)σ 2
λl

6 − 4
√
3 + π

2π
(47)

satisfy stable convergence and also the other assumptions of Conditions 1–2 (and in particular also Proposition 1
in Mykland and Zhang, 2017a) under Qn, with α = 1/4. One can take the Ti to be the same as the λi. This is easily
een to carry over to the original measure. The left-out terms (around the boundaries λl) are handled with the big-block–
mall-block device described in Mykland and Zhang (2012, Chapter 2.6.2, pp. 170–172). Also, the jumps are negligible
ince assumed to be of finite activity. The interface between jumps and the P-UT condition is handled as in Mykland and
hang (2017a, Example 2, Section 7).
The edge effects are essentially on the block estimation form described in Mykland and Zhang (2017a, Remark 14,

p. 223–224), and are (singly and by averages) of order Op(n−2α). It follows that the assumptions of Theorem 1 are satisfied.
n conclusion:

roposition 3 (Median Realized Volatility under Microstructure Noise). Let Θ be the integrated volatility on [0, T ]. A
re-averaged extension of the median realized volatility of Andersen et al. (2012) is given by11

Θ̂ =
2π

6 − 4
√
3 + π

(
MedRV2Mn,n −

1
4
MedRVMn,n

)
, (48)

Then, with the Ti taken to be the same as the τi, Condition 1 is satisfied, as well as the assumptions of Theorems 1–2. In
particular, both the two-scales and multi-scale (regression) AVAR and [̂θ, θ]T− are consistent.

8. Simulation: The Heston model

In the following, we present a simulated month where the underlying process is a Heston model, contaminated by
microstructure noise. The latent log price is thus dXt = (µ − σ 2

t )dt + σtdBt , with dσ 2
t = κ(α − σ 2

t )dt + γ σtdWt , where
Bt and Wt are Brownian motions with constant correlation ρ = −.5, and other parameters have values (µ, κ, α, γ ) =

(0.05, 5, 0.04, 0.5). We simulate 20 trading days, with observations every second for 23,400 (trading) seconds per day.
The microstructure noise is Gaussian with mean zero and standard deviation 5 × 10−4 (see Fig. 3).

Appendix A. Proofs and technical issues

Because of the close connection to the earlier paper, in the following we refer to Mykland and Zhang (2017a) as MZ
and Mykland and Zhang (2017b) as MZ-A.

A.1. Proof of Theorem 1

The strategy is to take the proof of Theorem 8 in MZ-A as a point of departure, but to intercept it at the point of
equation (C.10) in MZ-A. which we write more generally as

QV B,K (Θ̂) = QV B,K (Θ̂) + Rn,K + 2QV (Θ, ẽ and e) + 2QV (M, ẽ and e). (A.1)

ince the behavior of QV B,K (Θ̂) is given in (C.4) in MZ-A, we need to deal with the three last terms in (A.1). The expressions,
nd the additional conditions, are given in Lemma 1 and Corollary 1 below, thus yielding Theorem 1. □

emma 1 (Representation of Rn,Kn ). Assume Conditions 1–2, as well as the balance condition (12). Let MAEEn and εn,K be given
y (11) in Theorem 1. Then

Rn,Kn = 2T (Kn∆Tn)−1 (MAEEn + εn,Kn
)
+ op(n−2α). (A.2)

11 The estimator can be small sample adjusted as in the original paper, without affecting the conclusion of this proposition. One can also use the
average of rolling windows.
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n

T

Fig. 3. Simulation of Heston model. This plot shows the observed AVAR using the two-scales method (red) and the multi-scale method (black). The
AVARs are based on the same data (from the simulated Heston model) and estimator (the non-tapered S-TSRV). We use ∆T = 15 s, and for the
multi-scale AVAR, K takes the values 8, 15, 23, 31, and 39. The golden curve is the true estimation variance.

Proof of Lemma 1. Without loss of generality we can go back and forth between e by e′. Consider the main term consisting
of terms of the form ẽ2Ti + e2Ti + ẽTieTi . The difference between this term in Rn,Kn as defined in (C.1) in MZ-A, and the
representation 2T (Kn∆Tn)−1MAEEn is thus on the overall edges (near 0 and T ). To see that the difference is negligible,
ote that

1
Kn

2Kn∑
i=0

(e2Ti + ẽ2Ti ) = op(n−2α) and
1
Kn

Bn∑
i=Bn−2Kn+1

(e2Ti + ẽ2Ti ) = op(n−2α) (A.3)

The reason for (A.3) is on the one hand that by Condition 1, for each i, n2α(e2Ti + ẽ2Ti )
p

→0. On the other hand, by invoking
(C.1) in Remark 3, we may, without loss of generality, take each term to be bounded by 2Γ 2 (for some constant Γ ),
whence (A.3) follows by dominated convergence.

The lagged terms behave similarly. □

We now turn to the Cross Terms QV (Θ, ẽ and e) and QV (M, ẽ and e). In analogy with the development in Appendices
A–B in MZ-A, it is easy to see that

QV (Θ, ẽ and e) =
1
K

B−K∑
i=K

(Θ ′

(Tn,i,Tn,i+K ]
+ Θ ′′

(Tn,i−K ,Tn,i])
(
(ẽ′

Tn,i+K
− e′

Tn,i ) − (ẽ′

Tn,i − e′

Tn,i−K
)
)

=
1
K
K∆T

(
Bn∑
i=0

ẽTn,i

∫ Tn,i+K

Tn,i−2K

f̃(li,n)(t)dθt +

Bn∑
i=0

eTn,i

∫ Tn,i+2K

Tn,i−K

f(li,n)(t)dθt

)
, (A.4)

where |f(li,n)(t) ≤ 1 and |f̃(li,n)(t)| ≤ 1, where li ≡ i[3K ] in the sense of Definition 6 in MZ-A, but with 3K replacing 2K .
Also, we take θt to be constant on the intervals (−∞, 0] and [T , ∞).

For example, away from the edge, t ∈ (T2K , TB−2K ], we have that when i ≡ l[3K ],

f̃(l,n)(t) =

⎧⎪⎨⎪⎩
1

K∆T (t − Tn,i−2K ) when t ∈ (Tn,i−2K , Tn,i−K ],

1 when t ∈ (Tn,i−K , Tn,i], and
1

K∆T (Tn,i+K − t) when t ∈ (Tn,i, Tn,i+2K ].

(A.5)

his is in analogy with the definition of f (l,n) in (B.1) in MZ-A.
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A similar but more elementary derivation yields that

QV (M, ẽ and e) =
1
K

B−K∑
i=K

(
(MTn,i+K − MTn,i ) − (MTn,i − MTn,i−K )

) (
(ẽ′

Ti+K
− e′

Ti ) − (ẽ′

Ti − e′

Ti−K
)
)

=
2
K
n−α

(
Bn∑
i=0

ẽTi

∫ Ti+K

Ti−2K

g̃(li,n)(t)dLn,t +

Bn∑
i=0

eTi

∫ Ti+2K

Ti−K

g(li,n)(t)dLn,t

)
, (A.6)

where |g(li,n)(t) ≤ 1 and |g̃(li,n)(t)| ≤ 1, where li ≡ i[3K ]. Also, we take Ln,t = nαMn,t , and let Ln,t be constant on the
intervals (−∞, 0] and [T , ∞).

Again, for example, away from the edge, t ∈ (T2K , TB−2K ], we have that when i ≡ l[3K ]

g̃(l,n)(t) =

{
−

1
2 when t ∈ (Tn,i−2K , Tn,i−K ] ∪ (Tn,i, Tn,i+2K ], and

1 when t ∈ (Tn,i−K , Tn,i].
(A.7)

The above situations both satisfy the conditions of the following lemma:

Lemma 2 (Sharper Bounds on the Cross-Term). Assume that β
(n)
t is an Op(1) sequence (in n) of semimartingales.12 Let h(li,n)

e nonrandom, càglàd,13 and satisfy |h(li,n)(t)| ≤ 1. Also, let H be the set of functions t → h(l,n)(t+), and construct H′ from
as in (A.4) in MZ-A except that T(Kn+1)j+l is replaced by T(Kn+1)j+l−Jn . Assume that H′ is relatively compact for the Skorokhod

opology.14 Assume Condition 2, and let Jn ≤ Kn, with Jn∆Tn = op(n−α). Also assume the balance condition (12). Then

nα 1
Kn

Bn∑
i=0

e′

Ti

∫ Ti+2K

Ti−K

h(li,n)(t)dβ (n)
t = op(1). (A.8)

he corresponding ẽ′

Tn,i
sum has the same order.15

Hence

orollary 1 (Sharper Bounds for the Cross Terms). Under Condition 2, the balance condition (12), and if Jn∆Tn = op(n−α), then
V (Θ, ẽ and e) and QV (M, ẽ and e) are both of order op(n−2α).

roof of Lemma 2. In conformity with Definition 8 in Appendix A in MZ-A, we use that β
(n)
t has decomposition

(n)
t = β0

(n) + β (n)(h)t + β
(n,R)
t , where β

(n,R)
t = Bn(h)t + β̆ (n)(h)t . D(β (n))(h)t is given in analogy with (A.8) in the earlier

aper. By invoking (C.1) in Remark 3, we see that we can take, without loss of generality,

|nαe′

Ti | ≤ Γ , (A.9)

or some constant Γ . We shall assume this throughout the proof of this lemma.
We split the term (A.8) in four parts. First,

nα
|

Bn∑
i=0

e′

Ti

∫ Ti+J

Ti−J

h(li,n)(t)dβ (n,R)
t |

≤ Γ |e′

Ti |

Bn∑
i=0

|

∫ Ti+Jn

Ti−Jn

h(li,n)(t)dβ (n,R)
t |

≤ Γ |

Bn∑
i=0

∫ Ti+Jn

Ti−Jn

|h(li,n)(t)|dD(β (n))t

≤ Γ 3JnD(β (n))T
= Op(Jn) (A.10)

rom Condition 2 and since D(β (n))T = Op(1) by Jacod and Shiryaev (2003, Theorem VI.6.15(i) and (iii), p. 380).

12 ‘‘Op(1)’’ here means that β
(n)
t is tight with respect to the Skorokhod topology, as well as P-UT (Definition 5 in MZ-A). For the case (A.4), β (n)

t = θt ,
so this is immediate, while for the case (A.6), β

(n)
t = Ln,t , it follows from Condition 1.

13 Left continuous with right limits. In other words, t → h(li,n)(t+) is in D.
14 This is satisfied by the families f(l,n) , f̃(l,n) , g(l,n) , and g̃(l,n) above.
15 If one does not assume Jn∆Tn = op(n−α) and the balance condition, the right hand side of (A.8) is given by (A.22) at the end of the proof of
he lemma.
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Second, by Hölder’s inequality,

nα
|

Bn∑
i=0

e′

Ti

∫ Ti+Jn

Ti−Jn

h(li,n)(t)dβ (n)(h)t |

≤ Γ

Bn−Jn∑
i=J

|

∫ Ti+Jn

Ti−Jn

h(li,n)(t)dβ (n)(h)t |

≤ Γ (Bn)1/2

⎛⎝Bn−Jn∑
i=J

(∫ Ti+Jn

Ti−Jn

h(li,n)(t)dβ (n)(h)t

)2
⎞⎠1/2

= op(∆T−1/2
n J1/2n ). (A.11)

his is because
∑Bn−Jn

i=J

(∫ Ti+Jn
Ti−Jn

h(li,n)(t)dβ (n)(h)t
)2

is Lenglart dominated (Jacod and Shiryaev, 2003, Lemma I.3.20, p. 35) by

Bn−Jn∑
i=J

∫ Ti+Jn

Ti−Jn

(h(li,n)(t))2dC̃ (n)
t ≤

Bn−Jn∑
i=J

(C̃ (n)
Ti+Jn

− C̃ (n)
Ti−Jn

) ≤ 2JnC̃
(n)
T (A.12)

here C̃ (n)
t is the second modified characteristic of β

(n)
t , cf. Definition 8 in Appendix A in MZ-A (or refer directly to Jacod

nd Shiryaev, 2003). C̃ (n)
T = Op(1) by Jacod and Shiryaev (2003, Theorem VI.6.15(ii), p. 380).

Third, consider

Sn,I = nα 1
Kn

I∑
i=0

e′

Ti

∫ Ti−J

Ti−K

h(li,n)(t)dβ (n)
t , (A.13)

nd set

h̃(l,n,−)(t) =

{
0 when t ∈ ∪i≡l[3Kn](Tn,i−J , Tn,i+2K ], and
h(l,n)(t) for all other t ∈ (0, T ].

(A.14)

n,I is a multi-lag martingale in the sense of Lemma 4 (with lag length N = 2J) in Appendix C. We calculate in the notation
of Lemma 4 (with N = 2J),

⟨Sn, Sn⟩
(2J)
Bn ≤ Γ 2 1

K 2
n

I∑
i=0

(∫ Ti−J

Ti−K

h(li,n)(t)dβ (n)
t

)2

= Γ 2 1
K 2
n

I∑
i=0

(∫ Ti+2K

Ti−K

h(li,n,−)(t)dh(li,n,−)(t)t

)2

= Γ 2

(
1
K 2
n

3Kn∑
l=1

∫ T

0
h(li,n,−)(t)2d[β (n), β (n)

]T

)
(1 + op(1))

≤ 3
1
Kn

Γ 2
[β (n), β (n)

]T (1 + op(1)), (A.15)

n analogy with Theorem 7 in MZ-A (use 3Kn rather than 2Kn). We have here used the relative compactness assumption
n H′. Thus, by Lemma 4,

Sn,Bn = Op((Jn/Kn)1/2). (A.16)

Fourth, set

h̃(l,n,−)(t) =

{
0 when t ∈ ∪i≡l[3Kn](Tn,i−K , Tn,i+J ], and
nαe′

Ti
h(l,n)(t) for all other t ∈ (0, T ].

(A.17)

onsider

nα 1
K

Bn∑
i=0

e′

Ti

∫ Ti+2K

Ti+J

h(li,n)(t)dβ (n)
t

=
1
K

Bn∑∫ Ti+2K

h(li,n,−)(t)dβ (n)
t

i=0 Ti−K
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F
i
L
C

C

T

=
1
K

3K∑
l=1

∫ T

0
h(l,n,−)(t)dβ (n)

t

=

∫ T

0
h(n,−)(t)dβ (n)

t , (A.18)

where

h(n,−)(t) =
1
Kn

3K∑
l=1

h(l,n,−)(t). (A.19)

|h(l,n,−)(t)| ≤ Γ , and hence |h(n,−)(t)| ≤ 3Γ . Also, h(n,−)(t) is predicable. Now write

h(n,−)(t) =
1
Kn

Bn∑
i=0

nαe′

Tih
(li,n)(t)I{t∈(Tn,i+J ,Tn,i+2K ]}

=

∑
i:t∈(Tn,i+J ,Tn,i+2K ]

nαe′

Tih
(li,n)(t)

=
1
K

j−1−Jn∑
i=j−2Kn

nαe′

Tih
(li,n)(t) when t ∈ (Tj−1, Tj]. (A.20)

or fixed t , h(n,−)(t) is, therefore the endpoint of a multi-lag martingale in the sense of Lemma 4 (with lag length N = 2J)
n Appendix C. As in the proof of Lemma 4 (with N = 2J), we see that E(h(l,n,−)(t)2) ≤ (4Jn − 1)K−1

n Γ 2. Thus, following
englart’s inequality (Jacod and Shiryaev, 2003, Lemma I.3.20, p. 35), sup0≤t≤T |h(n,−)(t)| = Op((Jn/Kn)1/2). Hence, by Ibid.,
orollary VI.6.20(b) (p. 381), it follows that

(A.18) = Op((Jn/Kn)1/2). (A.21)

ombining (A.10), (A.11), (A.16), and (A.21) yields that (A.8) has order

Op

(
Jn
Kn

+

(
Jn
Kn

)1/2

(1 + (Kn∆Tn)−1/2)

)
. (A.22)

By imposing the balance condition (12) along with Jn∆Tn = op(n−α), the right hand side of (A.8) follows. □

Appendix B. Properties and convergence of the edge effect, and consistency of the multi-scale method

B.1. About Condition 2 on the edge effects

The formulation means that the main edge effect at Ti is allowed to depend on observations in J time periods on each
side of Ti.

The specific conditions can be verified under mixing assumptions. The following is a complement to our examples.
his is not intended to provide minimal conditions, just to explain why our conditions are reasonable.

The Decomposition eTi = e′

Ti
+ e′′

Ti
and ẽTi = ẽ′

Ti
+ ẽ′′

Ti
. We have chosen this way of stating the conditions on the edge

effect since, in our examples, this is readily verifiable. To tie the condition to the literature, however, we observe that,
subject to mixing conditions, we require (eTi , ẽTi ) to be a mixingale, see, e.g., McLeish (1975) and Hall and Heyde (1980,
pp. 19–21, 41). As the name suggests, it is tied up with the concept of mixing. See also Wu and Woodroofe (2004).

α-and φ- mixing. For a more general treatment, see McLeish (1975, p. 834) and Hall and Heyde (1980, Chapter 5 and
Appendix III). For simplicity, we here focus on φ-mixing.16 If A and B are two sigma-fields, then the φ-fixing coefficient is

φ(A,B) = sup
A∈A,B∈B,P(A)>0

|P(B|A) − P(B)| (B.1)

The Decomposition, again. Set ẽ′′

Ti
= ẽTi − E(ẽTi | FTi−J ), and similarly for e′′

Ti
. The difference ẽ′

Ti
= ẽTi − ẽ′′

Ti
will then have

the martingale-like properties described, as will e′

Ti
.

16 One can do similar things with α-mixing, using the definition and lemma of McLeish (1975, p. 834). Condition (B.2) becomes
∑

i α(FTi−Jn
,

A )
δ−1

2(1+δ) = o(1), with McLeish’s definition of α. Thus, in this case, we need δ > 1.
n,i
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Meanwhile, if we require, say, that supn

(
max0≤i≤Bn E|nαen,Ti |

1+δ
+ max E|nα ẽn,Ti |

1+δ
)

< ∞, for some δ > 0, and also
hat

∑
i(Een,Ti )

2
+ (Eẽn,Ti )

2
= o(n−2α), then the lemma on McLeish (1975, p. 834) assures that our conditions on (e′′

Ti
, ẽ′′

Ti
)

re satisfied provided∑
i

φ(FTi−Jn
,An,i)

2δ
1+δ = o(1), (B.2)

here An,i is the sigma-field generated by (eTn,i , ẽTn,i ) (use p = 2 and r = 1 + δ). Normally, however, the number
of observations in each interval (Ti−Jn , Ti] will go to infinity with n, thus under exponential mixing (in the original
microstructure noise), (B.2) will normally hold.

.2. Proof of Proposition 1

roof of Proposition 1. We show (18) and the asymptotic uncorrelatedness below. From (18) follows the first line of
16), by definition of εn,K . The worst case statements in (15)–(17) follow as in the proof of Lemma 1, using Condition 2.

One such term (and the others are all handled the same way) is C12
n,K =

1
Bn

∑Bn
i=K ẽTieTi−K . By Condition 2, this term

has the same asymptotic behavior (up to op(n−2α)) as 1
Bn

∑Bn
i=K ẽ′

Ti
e′

Ti−K
. We then invoke statement (C.1) in Remark 3. Now

identify the sum
∑I

i=K ẽ′

Ti
e′

Ti−K
with Sn,I in Lemma 4 (with Hn,i = FTi+J , and N = 2J .). The multi lag angle bracket process

is ⟨Sn, Sn⟩
(N)
I =

∑I
i=K

(
E((ẽ′

Ti
)2|FTi−2Jn

)(e′

Ti
)2
)
, which is in turn Lenglart-dominated by

VAEE′

n,K =

I∑
i=K

(
E((ẽ′

Ti )
2
|FTi−2Jn

)E((e′

Ti−K
)2|FTi−K−2Jn

)
)

, (B.3)

which in turn is Lenglart-dominated by VAEEn (independent of K ). Hence, as in Lemma 4, SBn = Op((JnBnVAEEn)1/2),
and so C12

n,Kn = Op((Jn∆TnVAEEn)1/2). The rest of (18) follows by the exact same reasoning. The uncorrelatedness arises
since, by the same methods, C ··

n,Kn,l
and C ··

n,Kn,l+1
are small sample uncorrelated. This carries over asymptotically by uniform

integrability. □

B.3. Proof of Theorem 2 (Section 4) and Proposition 2 (Section 6)

Proof of Theorem 2 in Section 4. We first proceed in the hard edge case. Let K̄n be the mean of the Kn,l, and set
Dn = diag(1, K̄n∆Tn, (K̄n∆Tn)3). Rescale so that Yn = (K̄n∆Tn)−3Yn, bn = (K̄n∆Tn)−3Dnβn

, and Xn = XnD
−1
n . To spell

out the latter two,

b∗

n =
(

(K̄n∆Tn)−3MAEEn, (K̄n∆Tn)−2AVARn, [θ, θ]T −

)
, and (B.4)

X∗

n =

⎛⎜⎝ 2T 2T · · · 2T

2(Kn,1/K̄n) 2(Kn,2/K̄n) · · · 2(Kn,m/K̄n)
2
3 (Kn,1/K̄n)3 2

3 (Kn,2/K̄n)3 · · ·
2
3 (Kn,m/K̄n)3

⎞⎟⎠ . (B.5)

lso, let b̂n be the least squares estimator from the regression of Yn on Xn, i.e., b̂n = (X∗
nXn)−1X∗

nYn.
With this setup, Xbn = (K̄n∆Tn)−3Xnβn

and X∗
nXn = D−1

n X∗
nXnD

−1
n , whence b̂n = (K̄n∆Tn)−3Dnβ̂n

, and so

β̂
n
− β

n
= (K̄n∆Tn)3D−1

n (b̂n − bn). (B.6)

q. (26) becomes, in view of (19),

Yn = Xnbn + op(1). (B.7)

Now let Bn, B̂n be the last two elements in, respectively bn and b̂n. Also let X ∗
n be the submatrix consisting of the two

last rows of X∗
n, and let Dn be the 2 × 2 submatrix in the lower right corner of Dn. Let H = I − m−1J, where I is the

× m identity matrix, and J is the m × m matrix all of whose entries are 1.
Following Weisberg (1985, Chapter 2.2, p. 43–44), Bn = ((HXn)∗HXn)−1(HXn)∗HYn. Meanwhile, from (B.7), HYn =

Xnbn + op(1) = HXnBn + op(1). Thus, B̂n − Bn = ((HX )∗nHXn)−1((HX )∗nHXn)Bn + op(1) = Bn + op(1), since (HX )∗nHXn is
nonsingular (uniformly in n) by condition (34). Since B̂n − Bn = op(1) and in view of (B.6), the consistency (35) follows.
In the soft edge case, the conditions imposed guarantee Theorem 3 (in Section 3.2 of AZ), and hence (B.7) is valid with
MAEEn ≡ 0. As above, Theorem 2 follows. □

roof of Proposition 2 in Section 6. Linear regression theory (e.g., Weisberg, 1985, p. 203) yields that rn is the slope in
he regression of the third on the two first columns of X. If we set r to be the slope in the comparable regression of the
n
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β

o

third on two first columns of X, we obtain

rn = rn(K̄∆Tn)2 and rn =
1

3K̄ 2
n

∑m
l=1(Kn,l − K̄n)K 3

n,l∑m
l=1(Kn,l − K̄n)2

(B.8)

which is of exact order O(1) by assumption (34) in Theorem 2. Thus, in the notation of the preceding proof, MSQV (Θ̂n,c) =

ˆ
(1)

n
+rnβ̂

(2)

n
, where we use β̂ = (β̂

(0)

n
, β̂

(1)

n
, β̂

(2)

n
)∗. Hence MSQV (Θ̂n,c) = (K̄∆Tn)2

(
B̂
(1)
n + rnB̂

(2)
n

)
. Hence, eventually, ĉn = c∗,

and also (42) holds. The stable convergence holds as in AZ. □

Appendix C. Technical lemmas

To handle general moments, we shall use the following.
Lemma 3 (Truncating the Edge Effects). Suppose Condition 2. Then, for any δ > 0, there exists (possibly on an extension of the
space) etrn,Ti and ẽtrn,Ti , and a nonrandom constant Γ , so that

1. For each n etrn,Ti = e′

n,Ti
and ẽtrn,Ti = ẽ′

n,Ti
for all i ∈ [0, Bn], on a measurable set An, and P(An) < δ;

2. etrn,Ti and ẽtrn,Ti satisfy the conditions in Condition 2 in lieu of e′

n,Ti
and ẽ′

n,Ti
; and

3. |etrn,Ti | ≤ Γ n−α and |ẽtrn,Ti | ≤ Γ n−α for all i and n.

Remark 3 (Using Lemma 3). We shall use the lemma to assert, in various places, that

|nαe′

n,Ti | and |nα ẽ′

n,Ti | can without loss of generality be taken to be bounded by a constant Γ . (C.1)

Here is the specific mechanism that we refer to.
Let Yn be a sequence of random variables, involving a functional form of e′

n,Ti
and ẽ′

n,Ti
(as well as any of the other

random quantities in our setup). Let D be a countable set, D ⊂ (0, 1), with a limit point at zero.
For given δ ∈ D, create Yn,δ by replacing the e′

n,Ti
and ẽ′

n,Ti
by the etrn,Ti and ẽtrn,Ti as described by Lemma 3. Then Yn = Yn,δ

on the set An. Suppose one can show that there is a random variable Y (independent of δ) so that Yn,δ
p

→Y as n → ∞.
Then, for any ϵ > 0, and since P(An) < δ,

P(|Yn − Y | > ϵ) ≤ P({|Yn,δ − Y | > ϵ} ∩ Ac
n) + P(An)

≤ P(|Yn,δ − Y | > ϵ) + δ

→ δ as n → ∞. (C.2)

Since D has limit point at zero, it follows that Yn
p

→Y as n → ∞. □

Proof of Lemma 3. For L = 1, . . . , 2J , set S(L)n,I =
∑

i∈[1,I] and i≡L[2J] e
′

n,Ti
, where i ≡ L[N] means that i is of the form

i = L + jN for some integer j. Then for each L and n, S(L)n,I is a martingale with respect to the filtration Hn,i = FTi+J . We
now invoke the construction from Mykland (1994, eq. (4.8), p. 27), which produces etrn,Ti (i ≡ L[2J]), satisfying items (1),
(2) and (3) in the Lemma, with, say An,L,1 and ΓL,1, and with P(An,L,1) < δ/4J . We repeat this construction for all L, and
similarly for ẽ′

n,Ti
, in the latter case giving rise to An,L,2 and ΓL,2. By construction, the whole set of etrn,Ti and ẽtrn,Ti satisfy

items (1), (2) and (3) in the Lemma, with An = ∪An,L,r and Γ = maxΓL,r . □

To handle cross-terms, we use the following.

Lemma 4 (Negligibility of Multi-lag Martingales). Let Sn,I =
∑I

i=1 ζn,i, where we suppose that ζn,i is Hn
i -measurable and

satisfies that E(ζ n
i | Hi−N ) = 0.17 Define ⟨Sn, Sn⟩

(N)
I =

∑I
i=1 E((ζn,i)

2
| Hi−N ). (It is an Nth-lag angle bracket process.) Let αn

be a nonrandom sequence so that ⟨Sn, Sn⟩
(N)
B′
n

= op(αn). Then sup1≤|≤B′
n
|Sn,I | = op((Nαn)1/2).

Proof of Lemma 4. For 0 ≤ L ≤ N − 1, let S(L)n,I =
∑

i∈[1,I] and i≡L[N]
ζn,i, where i ≡ L[N] means that i is of the form i = L

+ jN for some integer j.
Thus, Sn,I =

∑N
j=1 S

(L)
n,I . Since no two different S(L)n,I change value for the same I , we also get that [Sn, Sn]I =

∑N
j=1[S

(L)
n ,

S(L)n ]I . Meanwhile,

E(Sn,I )2 = E
I∑

i=K

(ζn,i)2 + 2E
I∑

i=K

N−1∑
j=1

ζn,iζn,i−j

17 As convenient, we can take some ζ ’s in the beginning to be zero if the sum starts at K or similar. Definitely ζn,i = 0 for i < N . For an example
f such a structure, one can take ζ = e′ or = ẽ′ , with H = F and N = 2J . This construction is also used in Lemma 3.
n,i n,Ti n,Ti n,i Ti+J
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R

A
A
A
B

B

B
B
C
C

H
J
J
K

M
M
M

M

M
M

M
M

W
W
W
Z
Z

= E
I∑

i=K

(ζn,i)2 + 2E
N−1∑
j=1

I∑
i=K

ζn,iζn,i−j

≤ E
I∑

i=K

(ζn,i)2 + 2(N − 1)E[Sn, Sn]I (Cauchy–Schwarz)

= (2N − 1)E[Sn, Sn]I . (C.3)

ence, (Sn,I )2 is Lenglart-dominated (Jacod and Shiryaev, 2003, Section I.3c, pp. 35–36, Jacod and Protter, 2012, Section
.1.7, p. 45) by (2N − 1)[Sn, Sn]I , and hence also by (2N − 1)⟨Sn, Sn⟩

(N)
I . By the same reasoning as in the proof of Jacod and

rotter (2012, Proposition 2.2.5, p. 574), the result follows. □
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