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1. Introduction: Hard edges

The Observed Asymptotic Variance is a non-parametric estimator for squared standard error in high frequency
data (Mykland and Zhang, 2017a). The earlier paper develops the estimator in the case where edge effects are small
to moderate. In practical data, it is often safer to assume that edge effects can be large, and this is the problem that we
seek to tackle in this paper.

We consider integrated parameters and their estimators' over time intervals (S, T] C [0, T1:

T
O, = / 6.dt and @(5;] = a consistent estimator of O 7, @)
s
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where 6; is a semi-martingale representing spot volatility, skewness, a regression coefficient, or other. See Mykland and
Zhang (2017a) for examples (Section 7) and general principles for how to find estimators of this type, and for the removal
of jumps (Sections 5-6).

The typical statistical situation is as follows: there is a semimartingale M, ; and edge effects e, s and €, r, so that,

(:)((g,)TJ —6s11= Myt —Mys + (N?n’T —eps forS<TeT, (2)
S——— ——
semimartingale edge effects

where 7, = {T,; : i = 0,...,By}. The edge effect is essentially anything that disarranges the semimartingaleness of
the difference (:)(o,n — Oo,17, and it occurs in many shapes. The edge effect has a component es relating to phasing in
the estimator at the beginning of the time interval, and component er for the phasing out at T. (For examples, see ibid.,
Remark 5, p. 206, and Section 7, p. 219-226.) In the presence of microstructure noise, no estimator is without edge effect.

Our concern in this paper is that the edge effects can be fairly large, and even if they are negligible from a theoretical
standpoint, it is wiser to not neglect them in actual data. As example in this paper, we shall use the non-tapered smoothed
TSRV, whose edge effects are small, but not too small (Appendix A.1 in Mykland et al., 2019). Tapering will make the edge
effect smaller (Mykland et al., 2019), and also Kalnina and Linton (2008).

In the following, we review earlier results and introduce the quadratic variations QVg g, as well as the two-scales
observed AVAR and the two-scales volatility estimate of the spot parameter 6; (Section 2). We then present the concept
of hard edge and find an expansion for QV x for this more difficult case (Section 3). This gives rise to new and more robust
regression (or multi-scale) estimators of AVAR and the volatility of the spot parameter (Section 4). The question of using
soft vs. hard edge assumptions is then discussed through a data example (Section 5, trade data for the S&P 500 E-mini
futures on the Chicago Mercantile Exchange). As applications, we show how to optimize tuning parameters (Section 6) and
we show how to set standard errors for the nearest neighbor truncation estimator (Section 7). A simulation experiment
is reported in Section 8.

2. The observed asymptotic variance in high frequency data: Review of earlier findings

As in the earlier paper, we set

Definition 1 (Rolling Quadratic Variations of Integrated Processes). Divide the time interval [0, 7] into B basic blocks of
time periods (days, five minutes, thirty seconds, or other) (T;_1, T;] from Ty = 0 to Tz = 7. The blocks are assumed to be
of equal size?: Set AT = T /B, and assume that T; = iAT. We shall permit rolling overlapping intervals, and so let K be a
number no greater than B. We define

B—K

1
The quadratic variation of @: QVp x(®) = X Z(@(TivTHKJ - @(TH(,TI.J)Z, and
i=K
B—K
o ~ Lo R . ,
The quadratic variation of ®: QVp x(®) = X Z(@(Ti-mk] — O, .11) (3)
i=K
We emphasize that the above quadratic variations are defined on the discrete grid {0, AT, 2AT, ..., 7}, as opposed to

the continuous-time quadratic variation [X, X]; of a semi-martingale (X;). The quantities B, AT, and K depend (explicitly
or implicitly) on the index n, which usually denotes the number of observations. We may then write AT = AT, or omit
the index n if the meaning is obvious.

A main condition is the following, cf. Section 3.1 in the earlier paper for background and implications, and Section 7
for examples.

Condition 1 (Standard Convergence Result in the Literature). Assume (2), and that one can show the following. There is an
a > 0 so that as n — oo,

n“M,., 5 I, stably in law (4)

with respect to a sigma-field G.>

The quadratic variation [L, L] is measurable with respect to G, and L, is a local martingale conditionally on G. Also,
ent, = 0p(n™*) and é,s, = o,(n™*) for any S,, T, € T. Finally, the sequence n“M, is Predictably Uniformly Tight (P-UT)
(Jacod and Shiryaev, 2003, Chapter V1.3.b, and Definition V1.6.1, p. 377).

2 See Mykland and Zhang (2017a, Sections 5.2 and 6, pp. 215-216, and 218-219) for a more general formulation.
3 See Definition 3 (p. 207) of Mykland and Zhang (2017a).
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The development in Mykland and Zhang (2017a) was based on the expansion
N 2
Qpx(©) = 2AVAR, + Z(KaATo)’10, 01— + 0p(KnATo)*) + 0p(n~*) (5)

where AVAR, is the asymptotic variance of &, = é<g_>ﬂ. The expansion is valid under “soft edge” conditions.
This leads to the definition of Two Scales AVAR, Volatility of Spot 8, and standard error:

1/1 1\ '/ 1 . 1 .
TSAVAR, = = | — — — —QV, ®)— —QV, ® and 6
"= (Kf I<22> <K12Q Bk, (©) KZZQ B,y ( )) (6)

— 3 ~
[0:01r- = (G — KD ™(A1) 2 (Qai(0) — Qe (). ™

as well as se(®,) = |TSAVAR,1|% The consistency of the two-scales constructions was guaranteed by Theorem 4 in the
earlier paper. The two scales estimators TSAVAR,, and [6, 8]+_ satisfy an empirical decomposition similar to (5), cf. Fig. 1:

~ 2 —
QVsx(®) = 2 TSAVAR, + E(KAT)Z[O,G]T_, i=1,2. (8)

3. A general expansion result for QVp, K(@,,) under hard edge effects

One cannot always take the edge effect to be negligible in the sense of (29) in Theorem 4 of Mykland and Zhang
(2017a). We shall see that this will give rise to an extra term in the expansion of QVp x(®), one due to the edge effects
e; and/or e,. Instead of a two scales estimator, we shall require a linear combination of three or more scales K, in other
words a multi-scale AVAR,.* .

To warm up, we first state an expansion QVg x(©) which permits larger edge effects than Theorem 3 in the earlier
paper. We make the following set of assumptions.

Condition 2 (Hard Edge Assumptions). Suppose that there is an integer J, for which e,r,, = e,’”m_ + e;"Tn,l_ and éy1,; =
ey, + e, S0 that (e, e )are Fr, . -measurable,” and for which Eeyr,, | Froiy,) = E@ g, | Fr,iy,) = 0and
where Zi(eﬂi)z = 0,(n~%*) and Zi(éﬂi)z = 0,(n~2%). Also suppose that, for all i, E(e,’”n'i)2 < oo and E(é;ﬂm)2 < oo, and
that

SL;pE n (022;5” |e;1.r,-| —+ maxlé;,Tl_|> < o0. (9)

In other words, we let the edge effects be larger, but they must have more structure and uniformity. As a complement,
Condition 2 is argued from a mixing perspective in Appendix B.1. We recall that we assume (Condition 1) that each e,
and e, is of order 0,(n™*), so that assumption (9) refers only to the tail behavior of the edge effects.

A~

The edge effects are now potentially the dominating terms in the expansion of QVp x(® ). Define autocovariances
& S Bty Bnyy  for (a,b) = (1,1)

ik =\ & Lick Ennent,i for (a.b) =(1,2) (10)
By Litk eny €, for (a,b) = (2,2)

The aggregated main and lagged edge effects are now given by, respectively,

Bn
1 N 3
MAEE, = Gy + Cig + Crg = & > (@ +ef +Erer)
" iz
enik = = (Caie + 2Cok + Cii) + Cuog (11)

The following is our main result for large edge effects, which parallels the earlier result on small edge effects in Mykland
and Zhang (2017a, Theorem 3, pp. 208-209). )

We discuss the behavior of the aggregated edge effects. We then seek linear combinations of QVj x(®) to remove the
edge effects.

4 This is comparable to the extension from Zhang et al. (2005) to Zhang (2006). Though the edge effects resemble microstructure, the parallel
should not be taken too far, since two scales are normally required even in the case where the edge effect is negligible. The conceptual similarity
between edge effects and microstructure noise does, however, suggest that edge effects can be more safely ignored for larger values of AT, in
analogy with the findings for microstructure in Ait-Sahalia and Xiu (2019). Bear in mind, however, that one should exercise particular caution in
high dimension (Chen et al., 2020, Section 6-7). A detailed investigation is beyond the scope of this paper.

5 In other words, we allow the edge effect to depend on the future. This would, for example, be relevant for the Backward Estimators discussed
in Section 5.1 of Mykland and Zhang (2017a).
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Fig. 1. These plots illustrate the empirical decomposition (8) of the apparent volatility QVB,K((;)) in data, for the S&P 500 E-mini futures as traded
on the Chicago Mercantile Exchange, for the trading days of four months in 2007-08. The total curve is the total volatility QVp ¢ for each day, the

red part is 2 x TSAVAR for each day, and the blue part is %(KlAT)ZmT,, as given in Section 2. In the estimation, the underlying parameter is

the spot volatility: 6, = af. @(S,T] is based on the S-TSRV (Mykland et al.,, 2019): first pre-average the data (trade prices) to 15 s, and then compute
a TSRV on these pre-averages, with j = 20 and k = 40. (This is the non-tapered version of the S-TSRV.) The estimator is thus of integrated volatility

Os1) = fST oldt, and [0, 017 = [0?, 0] For QVsx(®), we take AT to also be fifteen seconds (the smallest meaningful value). The TSAVAR (6), is

computed with K; = 20 and K, = 40, and similarly for mT from (7). In other words, K; AT is a rolling five minute period that ends every 15 s,
using the forward half interval method (Mykland and Zhang, 2017a, Section 5.1, p. 215). Daily volumes are reported in Table 1.

Theorem 1 (Representation of QVB,K(@)). Suppose 6; is a semimartingale, and that Conditions 1-2 hold. Assume the balance
condition.®

K, AT, are of the same order as n™*. (12)

6 This is in analogy with the discussion in Mykland and Zhang (2017a, Remark 7(iv), p. 211) There may be other approaches, but this is beyond
the scope of the present paper.
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Table 1
Daily volumes for Figs. 1 and 2.
Min Max Mean Median
May 2007 37000 111300 69919 67130
Aug 2007 99310 447200 226800 197700
May 2008 95220 179700 138700 135700
October 2008 289400 981100 547 400 562 600

Summary statistics for the daily volume of trades (M6 messages) for the S&P E-mini
futures, for the four months in Figs. 1 and 2. Min is the volume on the least active
trading day, and similarly for max, mean, and median. Quote volumes are 5-10 times
higher.

Also assume that
]nATn = Op(n_a)' (13)
Then
N 2
Qs k,(©) = 2AVAR, + S(Kn AT 16, 01— + 27 (Kn AT,) ™' MAEE,

+ 2T (Kn ATy) 'eni, + 0p(n2%). (14)

Proof of Theorem 1. See Appendix A.1.

Our strategy in the following will be to use linear combinations to remove the main edge effect term MAEE,, but to
live with the lagged term &, x,. We pursue this further in the next section, but lay the groundwork in a further analysis
of the edge effects and their magnitude.

Proposition 1 (Behavior of Aggregated Edge Effects). Assume the conditions of Theorem 1. Then,
2T (Ky AT,)”'MAEE, = 0,(n™®) or less. (15)
2T(Kn ATy) enk, = Op (n*(nAT,)">VAEE)?)
= 0, (n7“UnATy)"/?) or less, (16)

Also assume that K, > 2J,. Then

where
BH

1 -
VAEE, = = Y (@7, 175, + E@) 5, P 155, )
" iz0

= o0, (n7*) or less. (17)
More generally, if K, > 2],
(Caks ik Co%) = Op (UnAT.VAEE,)'/?). (18)

Also, if 2], < K1 < Kya < -+ Ky, with Ky i1 —Kn > 2J, for each |, then unATHVAEE)—l/Z(C,}}K’, C,}?K‘, Cﬁl), I=1,...,m,
are asymptotically uncorrelated.

Proof of Proposition 1. See Appendix B.2.

DISCUSSION OF THE IMPACT OF EDGE EFFECTS IN Theorem 1. Proposition 1 permits a discussion of the behavior of
aggregated edge effects in Theorem 1. First, from (15), the main edge effect MAEE can be as large as 0,(n™%), and so
could easily overshadow the AVAR, and [6, ]+_ terms in (14). Obviously, MAEE may be smaller, and if MAEE = O(n—3%),
we retrieve the result in Theorem 3 in Mykland and Zhang (2017a) in the balanced case (12).”

Second, the lagged edge effect (16) ought to be of order op(n‘z"‘) so as to not dominate AVAR, and [0, #]+_ in the
representation (14). In other words, from (16), we require

(nAT,VAEE, = o,(n~%). (19)
The mathematically simplest path would be to require that J, AT, = 0,(n~2*), but this depends on the bandwidth of the

time-dependence of the edge effects, and thus both on the data and on the specific estimator.

7 This is because MAEE is of the same order as ave(e%) + ave(é%) in the notation of (21) in the earlier paper.
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Fig. 2. This plot shows the observed AVAR using the two-scales method (red) and the multi-scale method (black). The AVARs are based on the
same data and estimator (the S-TSRV, Mykland et al,, 2019) and on the same trading days, as in Fig. 1. The TSAVARs are as in the former figure.
The multi-scale AVARs are generated as in Section 4. We have used J, = 4 based on time series methods (Section 4.1). We use AT = 15 s, and K
takes the values 8, 15, 23, 31, and 39, to comply with (20) and (37). The apparent volatility is here taken to be the mean of QVyx, K = 20, ..., 40.
The data and the estimator (S-TSRV with the stated tuning parameters) are the same as in Fig. 1, and volumes are as reported in Table 1.

Alternatively, if, say, in an average and fairly uniform sense, the ey, and ér, are of order Op(n‘/j ), the lagged edge effect

(16) is of order Op(n“*ZﬂUnATn)%) = Op(n%"“zﬁ) under the conditions of Theorem 1. Thus the lagged edge effect will
disappear if 8 > %a. This is in practice much easier to verify than Theorem 3 in Mykland and Zhang (2017a), which
would require g > %a. Thus the range where Theorem 1 is effective is 8 € (%cx, %a], and possibly including larger values
of B if J,AT, is small. For comparison, under the same assumptions, and with 8 in this interval, the main edge effect
2T (KaAT,)"'MAEE, = 0p(n*~?#), which dominates the AVAR, and [0, 6]7_ terms in (14).

Finally, note that while the condition K, 1 > 2J, is there to prevent bias in the AVAR estimator, the réle of K, ;.1 —Kp; >

2 is ((l)nly to guarantee asymptotic uncorrelatedness of the (J,AT,VAEE)™"/*(C,} , C;% . Ca%, ), which is not crucial to the
procedure.
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We shall leave the question of the precise size of the lagged edge effect open, so as to have an incentive to minimize
this term. We shall do this next.

4. Estimation of AVAR and [0, 6]+_ under hard edge: Multi-scale and regression estimation

We proceed through linear combinations of QVBH,KH((:)) over m scales, i.e.,
2n < Knq < Knp < - Kym. (20)

It will be convenient to rescale® so that QVB (O ) QVs,, ( )J(K AT,), and define a multi-scale estimator of the form

MSQV Zgle Bn.K; O)

= gnY,, (21)
where g: = (8n.1,-- -, &n.m) Is a vector of coefficients to be determined (“x” denotes transpose), and where
Vo= (( Q.0 Qv (©) o Qv () ). (22)
Also set
B% = ( MAEE,, AVAR,, [0, 6]7_ ), (23)
2T 2T 2T
Xy = 2(Kn14Ty)  2(Kn24Tn) -+ 2(KqamATy) , and (24)
$EKna ATy S(Kn2ATa) - (KumATa)
&y = ( Enky  Enky " EnKnm ) (25)

Theorem 1 and Proposition 1 then yield, subject to (20), that
Y = XaB, + 2T, + 0p(n~>)
=XuB, +0p (n~*(Jn AT,VAEE,)"?) + 0,(n>%), (26)
the second line provided K; ;1 — Ky 1 > 2J, foreach I € [1,m — 1].

REGRESSION INTERPRETATION OF (26). Our whole notation, and the first line of (26), suggests linear regression. Ordinary
least squares (OLS) in the regression of Y on X from (22)-(24) yields

B, = (MAEE,, AVAR,, [0, 0];_)*, where B = (X;X,) "X}V, O (27)

MULTI-SCALE INTERPRETATION OF (26). Consider the following constraint on (21):

Xg,=b (28)
where b = (0, by, b,)*. Then (21) and the second line of (26) yields
MSQV,(©) = b1AVAR, + b,[0, 67— + 0, (n"“(a AT,VAEE,)'2€}/) + 0p(n>*€}/?) (29)

with ¢, = g*g. Hence,
e To estimate AVAR(@n), choose
b = (0,1,0)". (30)
e To estimate the quadratic variation [0, 6],_, choose
b = (0,0, )*. (31)
To minimize the error in (29), one solves the optimization problem
ming*g subject to X;g =b. (32)
The standard solution (e.g., Boyd and Vandenberghe, 2004, p. 304) to (32) is g, = Xn(X:X,)~1b. For this value of g,

MSQVn(©) = g"Y = b*(X*X)'X*Y = b*B. D (33)

8 See the discussion after Theorem 2. The rescaling is without loss of generality.
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Hence the regression and Multi-Scale approaches coincide. Does the solution work?
From the theoretical standpoint, consistency is backed by a theorem. It also holds in the soft edge case.

Theorem 2 (Consistency of mn and WT, in Both the Soft and Hard Edge Cases). Suppose 6; is a semimartingale, and
that Condition 1 holds. Let Ky, 1, . . ., Kn.m satisfy (20), Suppose that K, 1 satisfies the balance condition (12), and that there are
constants c_ and cy, with 1 < c_ < ¢, < oo, for which

Kom

c_ < < Cq. (34)

n,1
Suppose that either (i) Mykland and Zhang (2017a, eq. (29), p. 209) holds (soft edge case), or (ii) Conditions 1-2 (in this paper)
hold, with (13) and 1(19) (hard edge case).
Let AVAR, and [0, 6]+_ be given by (27). Then

AVAR, = AVAR,(1+ 0,(1)) and [0, 01— = [6.60]+_(1 + 0,(1)). (35)
In particular, if Lt is conditionally Gaussian given G, then
On— 6O
"~ £ N(0, 1) stably in law. (36)
se(®y)

Proof. See Appendix B.3.

From the practical standpoint, the rescaling QVéf?K(@) = QVBH.K((:))(K AT,) achieves two things. On the one hand, the
&n.k,, term will often be close to homoscedastic (see Proposition 1 and its proof). In the multi-scale formulation, this
manifests itself in the form of the remainder term &, = g*g. In addition, the rescaling turns the main edge effect MAEE,

into an intercept term. This is computationally advantageous since Mzn and mT, can now be calculated without
the contribution of MAEE,, cf,, Weisberg (1985, Chapter 2.2, p. 43-44). See also the proof of Theorem 2 in Appendix B.3.
While the ¢, ¢k may be close to homoscedastic, they are not independent. A first order solution lies in requiring that
Kn.i+1 — K1 > 2J, in (20). This assures the second line in (26). From definition (11), however, the ¢, x are dependent. For
example, &, x and &5 contain a shared autocovariance C,%. One solution to this is to require that the Ky, satisfy

Kpg: I=1,....m} N 2Ky : I=1,....m}) = 9. (37)

This assures that the &, g, , are asymptotically uncorrelated, in view of Proposition 1. In particular, (37) holds if one only
uses odd K, say,

Koy = (21 +2p — 1)K. (38)

for non-negative integer p. Even if one does not do this, the solution in Theorem 2 is consistent, and one can alternatively
construct a weighted least squares procedure based on the dependence structure given by (11) and Proposition 1.
Finally, observe that if m — oo, it may be possible to get around the requirement (19), along the lines of Zhang (2006).

Remark 1. In the volatility estimation problem, a modified realized kernel estimator (Barndorff-Nielsen et al., 2008) is

very similar to that of the multi-scale estimator of Zhang (2006), cf. Bibinger and Mykland (2016). It is conjectured that
a similarly modified realized kernel approach will work also in this problem. O

Remark 2 (A Three Scales IWA\RH). If one uses a three-scales estimator, m = 3, the three g, are determined by the three
linear equations given through (28) and (30). The solution is

1
g =——(K3 = K3,),
Un

1
g2 =—(K3; —K? ), and
Un ’ ’
1
&3 = —v—(Ki2 — K3 ,), where
n
Up = ZATn(Kn,l + Kn4,2 + Kn,B)(Kn,Z - Kn,])(Kn,3 - Kn,l)(Kn,3 - Kn,2)~ (39)

4.1. Choice of | = ],

The J parameter is tied up with the dependence structure of the edge effects, as spelled out in Condition 2 in Section 3.
Unless there are reasons to expect non-linear dependence, the standard applied time series path to determining the length
of dependence is via the autocorrelation and partial autocorrelation plots (acf, pacf) (Brockwell and Davis, 1987; Chan,
2011).
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One can most straightforwardly use the pacf directly on @Tw and subject to regularity conditions, infer strong mixing
from Withers (1981), from which in turn Condition 2 is satisfied with the help of Appendix B.1 in this paper. It is
important to note that the first order autocorrelation will be close to one, since @y, contains @r;, but the higher order
partial autocorrelations seem to mainly reflect the edge effects. For the same reason, however, the acf is not a meaningful
diagnostic when applied to this problem.

Another path to determmmg J is to use the acf or pacf on Or - Or ;- In view of the representation (2), this is close
to analyzing e, 1, — e, 7, , (for a forward estimator, Mykland and Zhang, 2017a, Section 5.1).

The situation is similar to choosing the shorter scale j in a TSRV or S-TSRV (Zhang et al., 2005; Mykland et al., 2019).
It may also be possible to use a signature plot to select J, but this question is beyond the scope of this paper. O

5. Two- vs. multi-scale estimators

There remains a choice between

i. THE TWO-SCALES ESTIMATOR (6). Consistency is assured by Mykland and Zhang (2017a, Theorem 4 in Section 3.2).
ii. THE MULTI-SCALE ESTIMATOR, from Section 4, as given by (27). Theorem 2 assures consistency.

There are two paths: one can either check the theoretical conditions, or, at least for a prima facie impression, try both
estimators on the data. We show an example of the latter approach in Fig. 2. For these data, the choice of method does
not substantively affect the estimates. We emphasize that the multi-scale estimator from Section 4 is valid under both soft
and hard edge conditions (Theorem 2). In fact, TSAVAR is a special case when using only K; and K. The difference between
TSAVAR and the regression/multiscale AVAR is substantial only on a few days. This motivates that one should try both
the soft- and hard-edge procedures on actual data.

5.1. Applying AVAR

After the above, one is in possession of an estimate AVAR. Subject to the regularity conditions imposed, thlS estimator
is consistent in the sense of Section 2. In particular, under the conditions of Theorem 2, if se(@n) = |AVARn| then
@n —®

—~ 5 N(0, 1) stably in law. (40)
se(&n)

6. Selection of tuning parameters in the hard edge case

It frequently occurs that estimators depend on tuning parameters. In the following, we suppose that the estimator and
its asymptotic variance have the form &, . and AVAR, = AVAR, ., where c is the tuning parameter. Our purpose is to
choose ¢ so that @n,c has minimal asymptotic variance.

For example, in the case of the S-TSRV (Mykland et al., 2019), there is a need to determine the two scale parameters
j and k, as well and the length of the data smoothing window. It would be standard procedure to determine the shorter
scale j by the same time series methods as in Section 4.1. The longer scale k may be determined by a volatility signature

plot.
A more direct path to an optimal estimator, however, is to find a k which approximately minimizes AVAR.
In the more general case, call the tuning parameter ¢ (so ¢ = k for the S-TSRV). It is shown in Mykland and

Zhang (20174, Section 4) that under regularity conditions, in particular that ¢ take values in a finite set (and this is
the case for the S-TSRV when computed from intervals of size oc n'/?), the choice ¢, = argmin. AVAR,  results in an
estimator @, with minimal asymptotic variance, and where the asymptotic normality is still valid. In other words,

—~ — 1p
(One — ©)/|AVAR, ;| / A N(0, 1) stably in law. We emphasize that this is not generally true without the conditions
stated.

We shall here see that it is not actually necessary to estimate AVAR to obtain the optimal c, so long as the [0, 6]
component remains stable in ¢ (which is, at least, true asymptotically). In view of the development above, one may still
use a multi-scale estimator from Section 4. This time, however, only two constraints are needed. The criterion MSQV(®y, )
is obtained by minimizing ¢, = g*g (from Section 4) subject to

m m
Zgn,l = 0and ZgnJ(Kn,zATn) =1. (41)

In analogy with (33), the resulting MSQV(()n ¢) is the estimated slope in the regression of Y on tt the two last columns of X
(from Eqgs. (22) and (24)). By standard regression considerations, this estimated slope equals AVARn ¢ +tn[0 017, where
v, is spelled out in (B.8) in Appendix B.3. In this Appendix, we show the following proposition. Recall that (K AT;)? is of
the same order as n=2*,
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For the proposition below, assume that AVAR, . = n~22V,.” We set c* = arg min. AVAR ¢, which we for simplicity of
discussion take to be unique. C is a finite set of values for the tuning parameters within which one wishes to optimize.
As noted above, this is realistic, for example, in the case of the S-TSRV (Mykland et al., 2019).

Proposition 2 (Asymptotic Validity of Simplified Optimization Procedure). Let MSQV(@M) be as described, and assume that
the conditions of Theorem 2 are satisfied. Let K, be the mean of the K, ;. Then, as n — oo,

MSQV(O,c) = (AVARyc + ta(KAT, (6, 017—) x (1+0,(1)), (42)

where v, is of exact order O(1) and does not depend on c; the formula is given in (B.8) in Appendix B.3. Also, if the definition
of €, is changed to ¢, = argminccc MSQV(O,.), then & — c*, and (O néa — @)/AVAR”2 A — N(0, 1) and (@n,@n - 0)/
—1)2

AVAR, . 5 N(0, 1), both stably.

7. A new application: Nearest neighbor truncation

To illustrate the ease with which the current theory can be applied to a new problem, we consider the nearest neighbor
truncation developed in the important paper by Andersen et al. (2012), where estimators are defined and studied for the
case where there is no microstructure noise. See also Andersen et al. (2014) on quarticity. In both cases, pre-averaging is
actually used on the data, but not taken account of in the asymptotics.

We here adapt the estimation problem from Andersen et al. (2012) to the setting where microstructure noise is
present in the model. To get a point estimator, we extend their estimator with the help of pre-averaging and a two scales
construction, which is straightforward. We then show that the Observed Asymptotic Variance can be used to assess the
statistical error, and hence to create a feasible estimator.

Suppose for simplicity that observations are of the form Yy = Xy + €, where the ¢; are i.i.d., and the efficient log price
process X; is an Itd semimartingale with finite activity jumps, as assumed by Andersen et al. (2012). Using pre-averaging,
and in analogy with Eq. (4) of their paper, we consider an estimator based on

ln/M]—2
MedRVy , = Z med(AYu i—2, AYu i, Ay i2) (43)
i—3

where AYMl = YMI — YM, 1 and YMI = Z'M"I DMp1 Yoo FOL simplicity, suppose that the t; are equidistant, i.e.,

t —ti_y = At = T/n for all j. 10 The statistic Yy ; is thus based on observations in the time interval (t;_1, 7;], where
1; = iIMAt, and At = MAt. When taking the median, we have used every second AYMJ to avoid autocorrelation. As
n — oo, we let M = M, with M,//n — c.

To suitably adjust (43), and to verify the conditions of our current theorems, we invoke results on contiguity for
pre-averaged processes. Set Yj = Xj + ¢, and similarly YC, where X{ is the continuous part of the latent process.
Following Mykland and Zhang (2016, 2020), there is a contiguous (sequence of) probability measures Q,, and “super-
blocks” of 2M Y{'s, with starting points A, = 2IMM, At, so that, conditionally on sigma-field at the start of each block,

Ar*”zm_(fM ps - ATTV2AYG, ) is @ Gaussian MA(1) process with marginal variance 077 +2 2=, where v? = Var(e).
Thus, if (7;) is the filtration generated by the X{s and the es,

2(+1)M—4
_ _ _ 2 6 —4+/3 47
Eo, 1 Y. med(AYy ., AYg . AYy o) |Fy | = (M —8)At(Sa} 42 ) V3 (44)
i=2IM+5 " " " 37 T T

in analogy with Andersen et al. (2012): if Z1,Zz,23 are i.i.d. N(0, 1), then Emed(Z;, Z,, Z3)*> = (6 — 43+ 7 )/7. One
now needs to dispose of the nuisance parameter v2. To stay in the spirit of Andersen et al. (2012) we adjust by using
the MedRV, but doubling the block size: AYay, i = (AYMmz,,1 + AYMH,ZI)/Z (which is based on observations in (;_2, To;l.
Now observe that, also under Q,,

v 6—43+7
(26)27') T 8

(I4+1)M—2 )
Eq, { D med(AYgy, . AYSy i AVsy ) m,} = (M —4)(241) (507 +2

) 3
i=IM+3
where we have in both cases used samples from the time interval (zan144, T2g+1)Mm—4] C (Ants Anggal.

9 This assumption is for the current section only. There is some choice as to what to regard as the true theoretical asymptotic variance; another
possibility would be the continuous quadratic variation of M, . So long as two versions of the theoretical AVAR are within op(n‘z"‘) of each other,
this ambiguity does not pose difficulties for consistency of m, or for consistency of confidence intervals based on AVAR.

10 Otherwise, a term-by-term correction applies, see Mykland and Zhang (2016, Theorem 5, p. 249). For comparison, see also the expression for
the pre-averaged RV in Mykland et al. (2019, eq. (7)-(9), p. 104). We emphasize that the correction is available so long as one has faith in the time
stamps, which is plausible for the CME data that we have used, due to the centralized trading system for this contract.
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1 2 ,36-—43
Eq. (45) — , x Eq.(44) =2(M—4)At§az 6-4v3+x

Mg b/
6—4V3+7
= (TrM-a = Tam+a)0—— —— (46)
2
In view of the development in Mykland and Zhang (2016, 2020), the aggregated (over M) terms
(+1)M =2 2+1)M—4
v v v 2 v v v 2
> med(AYsy 5. Ay i AYsy o) — 2 D med(AYy . AV LAYy )
i=IM+3 i=2IM+5
6—4V3+nm
— (T2 M4 — Taim44)0f ———— (47)

2
satisfy stable convergence and also the other assumptions of Conditions 1-2 (and in particular also Proposition 1
in Mykland and Zhang, 2017a) under Q,, with @ = 1/4. One can take the T; to be the same as the ;. This is easily
seen to carry over to the original measure. The left-out terms (around the boundaries A;) are handled with the big-block-
small-block device described in Mykland and Zhang (2012, Chapter 2.6.2, pp. 170-172). Also, the jumps are negligible
since assumed to be of finite activity. The interface between jumps and the P-UT condition is handled as in Mykland and
Zhang (2017a, Example 2, Section 7).

The edge effects are essentially on the block estimation form described in Mykland and Zhang (2017a, Remark 14,
pp. 223-224), and are (singly and by averages) of order Op(n‘zo‘ ). It follows that the assumptions of Theorem 1 are satisfied.
In conclusion:

Proposition 3 (Median Realized Volatility under Microstructure Noise). Let ® be the integrated volatility on [0, T]. A
pre-averaged extension of the median realized volatility of Andersen et al. (2012) is given by!!
~ 2 1
O = ——— ( MedRVyy, » — ~MedRVy, ) , (48)
6—4V3+m < "4 !
Then, with the T; taken to be the same as the =, Condition 1 is satisfied, as well as the assumptions of Theorems 1-2. In
particular, both the two-scales and multi-scale (regression) AVAR and [0, 6]_ are consistent.

8. Simulation: The Heston model

In the following, we present a simulated month where the underlying process is a Heston model, contaminated by
microstructure noise. The latent log price is thus dX; = (u — 02)dt + 0,dB;, with do? = k(a — o2)dt + yo,dW;, where
B: and W, are Brownian motions with constant correlation p = —.5, and other parameters have values (i, x, o, y) =
(0.05, 5,0.04, 0.5). We simulate 20 trading days, with observations every second for 23,400 (trading) seconds per day.
The microstructure noise is Gaussian with mean zero and standard deviation 5 x 10~* (see Fig. 3).

Appendix A. Proofs and technical issues

Because of the close connection to the earlier paper, in the following we refer to Mykland and Zhang (2017a) as MZ
and Mykland and Zhang (2017b) as MZ-A.

A.1. Proof of Theorem 1

The strategy is to take the proof of Theorem 8 in MZ-A as a point of departure, but to intercept it at the point of
equation (C.10) in MZ-A. which we write more generally as

QVpx(O) = QVpx(O) + Rox +2QV(6, & and e) + 2QV(M, & and e). (A1)

Since the behavior of Q7VB, 1<(@) is given in (C.4) in MZ-A, we need to deal with the three last terms in (A.1). The expressions,
and the additional conditions, are given in Lemma 1 and Corollary 1 below, thus yielding Theorem 1. O

Lemma 1 (Representation of Ry, k, ). Assume Conditions 1-2, as well as the balance condition (12). Let MAEE, and e, x be given
by (11) in Theorem 1. Then

Roky = 2T (KyAT,) ™" (MAEE, + &n.x,) + 0p(n~>%). (A2)

11 The estimator can be small sample adjusted as in the original paper, without affecting the conclusion of this proposition. One can also use the
average of rolling windows.
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TSAVAR (red), Multi-Scale AVAR (black), theoretical AVAR (gold)

2.5e-10
|

2.0e-10
|

AVAR
1.5e-10
|

1.0e-10
|

T T T T
5 10 15 20

trading days

Fig. 3. Simulation of Heston model. This plot shows the observed AVAR using the two-scales method (red) and the multi-scale method (black). The
AVARs are based on the same data (from the simulated Heston model) and estimator (the non-tapered S-TSRV). We use AT = 15 s, and for the
multi-scale AVAR, K takes the values 8, 15, 23, 31, and 39. The golden curve is the true estimation variance.

Proof of Lemma 1. Without loss of generality we can go back and forth between e by e’. Consider the main term consisting

of terms of the form é%i + e%_ + eéger,. The difference between this term in R, g, as defined in (C.1) in MZ-A, and the

representation 27 (K, AT,) 'MAEE, is thus on the overall edges (near 0 and 7). To see that the difference is negligible,

note that

2Kn 1 Bn

— Y +&)=0(n ™) and — Y (e} +&,)=0p(n™) (A3)
i M i=Bp—2Kn+1

The reason for (A.3) is on the one hand that by Condition 1, for each i, nz‘)‘(e%i + é%,)—p>0. On the other hand, by invoking
(C.1) in Remark 3, we may, without loss of generality, take each term to be bounded by 2I"? (for some constant I"),
whence (A.3) follows by dominated convergence.

The lagged terms behave similarly. O

WE NOW TURN To THE CRosS TERMS QV(®, e and e) AND QV(M, é and e). In analogy with the development in Appendices
A-B in MZ-A, it is easy to see that

B—K

~ _ o/ oY =~/ o (3 _
QV(©,eand e) = K Z(O(Tn.ian.iJrKJ + O(Tn.i—KsTn.i]) <(eTn.i+K eTn.i) (eTn,i ik )>
i=K

1 Bn Tn,i+K Bn
1 5 Hh.n)
= KAt ;em/ Fem(e)do: + ;ETHJ/T

Tnit2K

Tn,i—2x n,i—K

f“fv")(r)det) : (A4)

where [f%"(t) < 1 and [{%"(¢t)| < 1, where I; = i[3K] in the sense of Definition 6 in MZ-A, but with 3K replacing 2K.
Also, we take 6; to be constant on the intervals (—oo, 0] and [T, c0).
For example, away from the edge, t € (Tk, Tp_2x], we have that when i = [[3K],

= (t — Toiak) when t € (Tni—ak, Tni—x],

ey = 1 when t € (Tyi_g, Tni], and (A5)

oo Tk — t) when t € (Toi, T igox .

This is in analogy with the definition of f™ in (B.1) in MZ-A.
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A similar but more elementary derivation yields that

B—K
QV(M, e and e) = E Z ((MTn‘H—K - MTn,i) - (MTn,i - MTn,i—K )) <(é/T,-+K - e/T,-) - (é/T,- - e/T,-,K )>
i=K
Bn Titox
Z ér, / 5 (0)dLy, + Z er, / N(t)dLy | . (A6)
Ti—ak Tix

where [gli™(t) < 1 and |g™(t)] < 1, where ; = i[3K]. Also, we take L, = n*M,, and let L, be constant on the
intervals (—o0, 0] and [T, o).
Again, for example, away from the edge, t € (Tyk, Tz_2¢], we have that when i = [[3K]

ﬁ(l’n)([) _ —% whent € (Tn,jle(, Thi—k]U (Tn,i» Thivok], and
1 when t € (Tyi—k, Tn,il-

The above situations both satisfy the conditions of the following lemma:

Lemma 2 (Sharper Bounds on the Cross-Term). Assume that ,8}”) is an 0,(1) sequence (in n) of semimartingales.'? Let fUi-"
be nonrandom, caglad,'® and satisfy |n%"(t)| < 1. Also, let H be the set of functions t — §-"(t+), and construct H' from
H as in (A4) in MZ-A except that Tik,+1)i+1 is replaced by Tik,+1)j+i—j,- Assume that H' is relatively compact for the Skorokhod
topology.14 Assume Condition 2, and let J,, < Ky, with J, AT, = op(n™*). Also assume the balance condition (12). Then

1, [T o m
ey eTi/ b ()dB™ = 0p(1). (A8)
Ky i=0 Tik

The corresponding & sum has the same order."”

Hence

Corollary 1 (Sharper Bounds for the Cross Terms). Under Condition 2, the balance condition (12), and if ], AT, = 0,(n~%), then
QV(®, & and e) and QV(M, & and e) are both of order o,(n=%).

Proof of Lemma 2. In conformity with Definition 8 in Appendix A in MZ-A, we use that ﬂﬁ") has decomposition
B = By + B(h) + B, where B = By(h), + BM(h). D(B™)(h), is given in analogy with (A.8) in the earlier
paper. By invoking (C.1) in Remark 3, we see that we can take, without loss of generality,

In“er| < T, (A.9)

for some constant I". We shall assume this throughout the proof of this lemma.
We split the term (A.8) in four parts. First,

[ (nR)
w1y e [ s
i=0

Tiy
<F|eT|Zf h0e)d ™|
Ticjn

Bn o Tigy
=iy [ e

i=0 i—Jn
< I'3,,D(B™)r
:OpUn) (A.lO)

from Condition 2 and since D(8™)s = 0,(1) by Jacod and Shiryaev (2003, Theorem VL6.15(i) and (iii), p. 380).

12 “0p(1)” here means that ij") is tight with respect to the Skorokhod topology, as well as P-UT (Definition 5 in MZ-A). For the case (A.4), i”) =6,
so this is immediate, while for the case (A.6), ,sﬁ") = Ly, it follows from Condition 1.

13 Left continuous with right limits. In other words, t — H%M(t4) is in D.

14 This is satisfied by the families §™, M, M, and " above.

15 1f one does not assume Ja AT, = 0p(n™*) and the balance condition, the right hand side of (A.8) is given by (A.22) at the end of the proof of
the lemma.
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Second, by Hélder’s inequality,

n |Zer, / DB (R,

Bn—Jn Tiy
<r Z| " (B )|
Tijn

1/2
Bn—Jn /

<r @)Y (/TH”
- Ti

i=/ n
= 0,(AT, V212, (A11)

2
h“’"”)(t)dﬁ(”)(h)f>

. 2
This is because Z I (fTE]" h(’f*”)(t)dﬂ(")(h)[> is Lenglart dominated (Jacod and Shiryaev, 2003, Lemma 1.3.20, p. 35) by

Bn—Jn Bn—Jn

P R M R (a2
Tipn

where C[(") is the second modified characteristic of ﬂ}"), cf. Definition 8 in Appendix A in MZ-A (or refer directly to Jacod
and Shiryaev, 2003). %" = 0,(1) by Jacod and Shiryaev (2003, Theorem VL6.15(ii), p. 380).
Third, consider

Sur = Zer, [ seoap (a13)

1 —K
and set
- Owhent € U Tnig, Thi , and
Fno)e) = 1 i=l(3kn)(Tn.i—J > Tniv2k ] (A14)
h(bm(¢) for all other t € (0, 7.

Sn.s is @ multi-lag martingale in the sense of Lemma 4 (with lag length N = 2J) in Appendix C. We calculate in the notation
of Lemma 4 (with N = 2J),

I 2

1 Tiey
(Su s < 2L / BB
K Ti x

m =0
I

2 1 Tk (=) (=) ’
= ([ s,
n i—o Ti—x

3Kn
<,<zZ f b e 2d g, ﬂ<">]T>(1+op(1))

no=1

3K—F2[ﬂ M, BN (1 + 0,(1)), (A.15)

n

in analogy with Theorem 7 in MZ-A (use 3K, rather than 2K,). We have here used the relative compactness assumption
on H'. Thus, by Lemma 4,

Sn.p, = Op(Un/Kn)]/z)- (A.16)

Fourth, set

— 0 when t € Uiz, (Tn,i—k, Tniy], and
h(l,n, )(t) — o o(ln) (A7)
n er,-h (t) for all other t € (0, 7.
Consider
Bn T;

‘l i+2K
e e [ s

K i=0 Tiy

1

Tiyox
> / b (e)dp”

K i=0 Tik
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1 3K T
- tn=)r)d (n)
< 2121 /0 b 0)dp;

-
/ - ()dp”, (A.18)

0

where
L
Hm() = A Z BHEm=)(e), (A.19)
" =1
[p-m=)(t)] < I', and hence |§™7)(t)| < 3I. Also, (" ~)(t) is predicable. Now write
Bn
- oo (i,
h(n )(t) = Ki Zn eT,-h( n)(t)l(fe(Tn,i+j«Tn,i+Zl(]]

" =0

= Z n”e’Tih“‘"”)(t)

i:t€(Tp ity Tn,it2k]

1 j=1=Jn
= > % b)) when t € (Tj_1, Tjl. (A.20)
i=j—2Ky

For fixed t, 5™ 7)(t) is, therefore the endpoint of a multi-lag martingale in the sense of Lemma 4 (with lag length N = 2J)
in Appendix C. As in the proof of Lemma 4 (with N = 2J), we see that E(h:»)(t)?) < (4], — 1)K ' I"2. Thus, following
Lenglart’s inequality (Jacod and Shiryaev, 2003, Lemma 1.3.20, p. 35), supy-,<+ 6™ (t)| = 0,((J»/Kx)"/?). Hence, by Ibid.,
Corollary V1.6.20(b) (p. 381), it follows that o

(A18) = Op(Un/Kn)'"?). (A21)
Combining (A.10), (A.11), (A.16), and (A.21) yields that (A.8) has order
0 In + In " (14 (K, AT,)"?) (A.22)
ave K, e ' :

By imposing the balance condition (12) along with J, AT, = 0,(n™%), the right hand side of (A.8) follows. O

Appendix B. Properties and convergence of the edge effect, and consistency of the multi-scale method

B.1. About Condition 2 on the edge effects

The formulation means that the main edge effect at T; is allowed to depend on observations in J time periods on each
side of T;.

The specific conditions can be verified under mixing assumptions. The following is a complement to our examples.
This is not intended to provide minimal conditions, just to explain why our conditions are reasonable.

The Decomposition ey, = e’Ti + e/T’i and ér, = e} + §¥i. We have chosen this way of stating the conditions on the edge
effect since, in our examples, this is readily verifiable. To tie the condition to the literature, however, we observe that,
subject to mixing conditions, we require (er,, ér;) to be a mixingale, see, e.g., McLeish (1975) and Hall and Heyde (1980,
pp. 19-21, 41). As the name suggests, it is tied up with the concept of mixing. See also Wu and Woodroofe (2004).

a-and ¢- mixing. For a more general treatment, see McLeish (1975, p. 834) and Hall and Heyde (1980, Chapter 5 and
Appendix I11). For simplicity, we here focus on ¢-mixing.'® If A and B are two sigma-fields, then the ¢-fixing coefficient is

#(A, B)= sup [P(B|A) — P(B)| (B.1)
A€ A,BEB,P(A)>0

The Decomposition, again. Set E/T’l_ = er; — E(er; | Fr,_,), and similarly for e’T/i. The difference é/ri =er — E/T’l_ will then have
the martingale-like properties described, as will e’Ti.

16 One can do similar things with «-mixing, using the definition and lemma of McLeish (1975, p. 834). Condition (B.2) becomes ), a(Fr_,

Ap.i)20) = o(1), with McLeish’s definition of «. Thus, in this case, we need § > 1.
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+3) oo, for some § > 0, and also

that }_,(Eenr,)* + (E&y1,)* = o(n~>), then the lemma on McLeish (1975, p. 834) assures that our conditions on (ef,, )
are satisfied provided

Meanwhile, if we require, say, that sup, (maxof,-ig,1 Eln"‘en,rilp”s + max E[n“e, |

1)

> B Fr, Ani) T = 0(1), (B2)

where A, ; is the sigma-field generated by (er,;, éTm.) (use p = 2 and r = 1 + §). Normally, however, the number
of observations in each interval (Ti_j,, T;] will go to infinity with n, thus under exponential mixing (in the original
microstructure noise), (B.2) will normally hold.

B.2. Proof of Proposition 1

Proof of Proposition 1. We show (18) and the asymptotic uncorrelatedness below. From (18) follows the first line of
(16), by definition of ¢, k. The worst case statements in (15)-(17) follow as in the proof of Lemma 1, using Condition 2.
One such term (and the others are all handled the same way) is C,% = é S érer._ .. By Condition 2, this term
has the same asymptotic behavior (up to o,(n~2*)) as é S erer._ . We then invoke statement (C.1) in Remark 3. Now
identify the sum ZLK erer.  with Sy in Lemma 4 (with #,; = Fr,,;, and N = 2J.). The multi lag angle bracket process

is (Sp, SH)EN )= Zf’:x (E((é’Tl_ )2|]'—T.;z]n )(e,r,- )2), which is in turn Lenglart-dominated by

I

VAEE, = > (E(@P17n 5 Bl PIFr 4 ) (B.3)
i=K

which in turn is Lenglart-dominated by VAEE, (independent of K). Hence, as in Lemma 4, Sg, = O,((JnB,VAEE,)!/?),

and so % = 0p((Jn AT,VAEE,)!/2). The rest of (18) follows by the exact same reasoning. The uncorrelatedness arises
since, by the same methods, C; .  and G . are small sample uncorrelated. This carries over asymptotically by uniform

integrability. O
B.3. Proof of Theorem 2 (Section 4) and Proposition 2 (Section 6)
Proof of Theorem 2 in Section 4. We first proceed in the hard edge case. Let K, be the mean of the Ky, and set

9, = diag(1, K, ATy, (K, AT,)?). Rescale so that 9, = (K, AT,) Yy, b, = (KnATn)*3©nén, and %, = X,©; 1. To spell
out the latter two,

br = ( (KyAT,)">MAEE,, (K, AT,)"2AVAR,, [0, 61— ), and (B.4)
2T 2T 2T
o= | 2Kea/Kn)  2Kn2/Ka) oo 2(Kam/Kn) . (B.5)
2(Kn1/Kn)  5(Kna/Kn)® oo 3(Knm/Kn)®

Also, let En be the least squares estimator from the regression of ), on X, i.e, En = (_%ﬁ%n)”%ﬁﬁjn.
With this setup, Xb, = (K;AT,) X, 8, and X;X, = D, 'X;X, D, !, whence b, = (K,AT,) D, , and so

B, — B, = (KaAT,)’D, (b, — b,,)- (B.6)
Eq. (26) becomes, in view of (19),
Dy = Xnby + 0p(1). (B.7)

Now let B, ﬁn be the last two elements in, respectively b, and En. Also let X;* be the submatrix consisting of the two
last rows of X}, and let D, be the 2 x 2 submatrix in the lower right corner of ©,. Let $§ = J — m~13, where 7 is the
m x m identity matrix, and J is the m x m matrix all of whose entries are 1.

Following Weisberg (1985, Chapter 2.2, p. 43-44), B, = (HX) HX,) " 1(HX,)* HYn. Meanwhile, from (B.7), HY, =
NXpby + Op(l) = HX By + Op(l)‘ Thus, En —-B, = ((ﬁi()ZﬁXn)_l((ﬁX):ﬁXn)Bn + Op(l) = Bp + Op(l)- since (HX);f)xn is
nonsingular (uniformly in n) by condition (34). Since B, — B, = 0,(1) and in view of (B.6), the consistency (35) follows.
In the soft edge case, the conditions imposed guarantee Theorem 3 (in Section 3.2 of AZ), and hence (B.7) is valid with
MAEE,, = 0. As above, Theorem 2 follows. O

Proof of Proposition 2 in Section 6. Linear regression theory (e.g., Weisberg, 1985, p. 203) yields that r, is the slope in
the regression of the third on the two first columns of X. If we set ¢, to be the slope in the comparable regression of the
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third on two first columns of X, we obtain

- 1 (Kn,i — Kn)K2,
rw = t(KAT,)? and v, = Lica(Knt = (BS)
3K2 S (Kot — Kol

which is of exact order O(1) by assumption (34) in Theorem 2. Thus, in the notation of the preceding proof, MSQV(OH )=
ﬁ +rnﬁ where we use ﬁ (,3 © 3(1) /3 ) Hence MSQV/( @n ) = (KAT,)? (B + 0B ) Hence, eventually, ¢, = c*,

and also (42) holds. The stable convergence holds as in AZ. O
Appendix C. Technical lemmas

To handle general moments, we shall use the following.
Lemma 3 (Truncating the Edge Effects). Suppose Condition 2. Then, for any § > 0, there exists (possibly on an extension of the
space) e nr, and e ey 1, and a nonrandom constant I', so that

tr 5/ str __ 3/ H .
1. Foreachn ey = e, . and &, =€, 1 for alli € [0, By], on a measurable set A,, and P(A,) < §;
tr Str ; itd : s in i / 50 .
2. e, 1, and e, . satisfy the conditions in Condition 2 in lieu of e ;. and e} ;.; and
tr —o Str —o y
3. |en.T,-| <I'n % and |en,T,-| < I'n™ forall i and n.

Remark 3 (Using Lemma 3). We shall use the lemma to assert, in various places, that
|n”e;,,Ti| and |n"‘én’Ti| can without loss of generality be taken to be bounded by a constant I". (C.1)

Here is the specific mechanism that we refer to.

Let Y, be a sequence of random variables, involving a functional form of e I and en I (as well as any of the other
random quantities in our setup). Let D be a countable set, D C (0, 1), with a 11m1t point at zero.

For given § € D, create Y, s by replacing the e/ nT, and e en I by the e“T and e¥ nt, aS described by Lemma 3. Then Y, = Yy 5

on the set A,. Suppose one can show that there is a random variable Y (independent of §) so that Yn,5—>Y asn — oo.
Then, for any € > 0, and since P(A;) < 4,
P(IYn = Y| > €) < P({|Yns — Y| > €} NA}) + P(Ay)
<P(|Yns —Y|>€)+$6

—dasn— 0. (C2)

Since D has limit point at zero, it follows that Yn—p>Y asn— oo. O

Proof of Lemma 3. For L = 1,...,2], set S/ L) Z,E[] 1 and i=112)] n T where i = L[N] means that i is of the form

i = L + jN for some integer j. Then for each L and n, Sn, is a martingale with respect to the filtration H,; = Fr,,,- We
now invoke the construction from Mykland (1994, eq. (4.8), p. 27), which produces e ,. (i = L[2]]), satisfying items (1),
(2) and (3) in the Lemma, with, say A, 1 and I7 1, and with P(A, 1) < 8/4]. We repeat this constructlon for all L, and
similarly for & n T in the latter case giving rise to A, and I7,. By construction, the whole set of e T, and é¥ T, satisfy
items (1), (2) and (3) in the Lemma, with A, = UA, 1, and I" = max[},. O

To handle cross-terms, we use the following.

Lemma 4 (Negligibility of Multi-lag Martingales). Let S,; = Zle ¢n,i» where we suppose that ¢, ; is H{-measurable and
satisfies that E(¢]' | Hi—n) = 0. 17 Define (Sy, S,,)(N) = 2521 E((¢n.i)? | Hi—n). (It is an Nth-lag angle bracket process.) Let a,
be a nonrandom sequence so that (S,, S, )(N) = 0p(an). Then supy | <g |Sn1| = op((Nozn)l/z).

Proof of Lemma 4. For0 <L <N — 1, let 5,(3 = icrv.n) and i=yn) Sni» Where i = L[N] means that i is of the form i = L
+ jN for some mteger ]
Thus, Sp; = Z 15,.,; Since no two different S¢ e change value for the same I, we also get that [S,, S;]; = Z ][S(L)

j=
S,(f)],. Meanwhile,

1
snI)Z_EZ fn: +2EZZ§nz§nl —j
i=K

i=K j=1

17 As convenient, we can take some ¢’s in the beginning to be zero if the sum starts at K or similar. Definitely ¢,; = 0 for i < N. For an example
of such a structure, one can take ¢, ; = e;.T, or = E,’”l, with #Hp; = Friy and N = 2J. This construction is also used in Lemma 3.
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1 N—-1 1
=EY il +2EY D Cnibnisj
i=K j=1 i=Kk
1
<E Y (&ni)® +2(N — 1EISy. Syl (Cauchy-Schwarz)
i=K
= (2N — 1)E[Sn, Slr- (C3)

Hence, (S,)? is Lenglart-dominated (Jacod and Shiryaev, 2003, Section 1.3¢, pp. 35-36, Jacod and Protter, 2012, Section
2.1.7, p. 45) by (2N — 1)[S,, Su]1, and hence also by (2N — 1)(S,, SH)EN). By the same reasoning as in the proof of Jacod and
Protter (2012, Proposition 2.2.5, p. 574), the result follows. O
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