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ABSTRACT. Resolving a conjecture of Kühn and Osthus from 2012, we show that p = 1/
√
n is the threshold for

the random graph Gn,p to contain the square of a Hamilton cycle.

1. INTRODUCTION

Understanding thresholds for various properties of interest has been central to the study of random
graphs since its initiation by Erdős and Rényi [4], and thresholds for containment of (copies of) specific
graphs in the random graphs Gn,p and Gn,m have been the subject of some of the most powerful work in
the area. (See e.g. [3, 11, 10], to which we also refer for threshold basics.)

Hamilton cycles in random graphs in particular are the subject of an extensive literature, with, to begin,
the question of when they appear posed in [4] and answered in [18, 14, 2, 1]; see [9] for a thorough account.
Here we consider a related question first raised by Kühn and Osthus [15]: when does the square of a Hamilton
cycle appear in the random graph? (The kth power of a graph G is the graph on V (G) with two vertices joined
iff their distance in G is at most k.)

For this discussion we write Hk
n for the kth power of an n-vertex cycle (so a Hamilton cycle of Kn). The

expected number of copies of Hk
n in Gn,p is (n − 1)!pkn/2, implying that the threshold for appearance of

Hk
n in Gn,p (henceforth simply “threshold for Hk

n”) is at least n−1/k. (We follow a standard abuse in using
“the” threshold for an order of magnitude rather than a specific value.) For k = 1, it was famously shown by
Pósa [18] that the threshold for a Hamilton cycle is log n/n—this is driven not by expectation considerations,
but by the need to avoid isolated vertices—while for k ≥ 3, it follows from a general result of Riordan [19],
based on the second-moment method, that the threshold for Hk

n is n−1/k.

The case k = 2 has proved more stubborn: here there is no obvious analogue of isolated vertices pushing
the threshold above n−1/2, but, unlike for larger k, the second-moment method yields only weak upper
bounds. Kühn and Osthus [15] conjectured that n−1/2 is correct and showed that the threshold is n−1/2+o(1),
a bound subsequently improved to (log n)4n−1/2 by Nenadov and Škorić [17]; to (log n)3n−1/2 by Fischer,
Škorić, Steger and Trujić [5]; and to (log n)2n−1/2 in unpublished work of Montgomery (see [9]). Here we
resolve the question, proving the conjecture of [15]:

Theorem 1.1. There is a universal K such that for p ≥ K/
√
n,

P(Gn,p contains the square of a Hamilton cycle)→ 1 as n→∞.

While the aforementioned attempts are all rooted in the notion of ‘absorption’ introduced in [20], the
proof of Theorem 1.1 takes a different approach, based on the recent resolution, by Frankston and the
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present authors [6], of Talagrand’s relaxation [21] of the ‘expectation threshold’ conjecture of [12]. We will
say (not quite following [6]) that a hypergraph G on a finite vertex set V is q-spread if

|G ∩ 〈I〉| ≤ q|I||G| (1)

for each I ⊆ V , where 〈I〉 is the increasing family generated by I ; in this language, the main result of [6]
says that there is a fixed C such that if a hypergraph G with edges of size at most ` is q-spread, then a
(Cq log `)-random subset of V is likely to contain some edge of G.

Applied to the hypergraph G consisting of all copies of H2
n (which is q-spread with q ∼

√
e/n; see below),

the result of [6] says that the threshold for H2
n is at most log n/

√
n. A key point in our proof of Theorem 1.1,

which eliminates the offending log n, is the observation that large “local spreads” (|G ∩ 〈I〉|/|G|)1/|I| are
relatively rare, a typical value being more like 1/n than 1/

√
n.

Formally, we prove the following slight weakening of Theorem 1.1.

Theorem 1.2. For each ε > 0 there is a K such that for p ≥ K/
√
n,

P(Gn,p contains the square of a Hamilton cycle) ≥ 1− ε

for sufficiently large n.

Getting Theorem 1.1 from this just requires applying the machinery of Friedgut [7, 8] to say that the property
of containing H2

n has a sharp threshold. We omit this by now routine step (and the relevant definitions),
and refer the reader to (e.g.) [16] for a similar argument.

Though there seems little hope of proving such a statement along the present lines, it is natural to guess
that the above expectation considerations drive the threshold more precisely, namely:

Conjecture 1.3. For fixed ε > 0 and p > (1 + ε)
√
e/n,

P(Gn,p contains the square of a Hamilton cycle)→ 1 as n→∞.

The proof of Theorem 1.2 is given in Section 3, with some basic calculations supporting the argument
provided in Section 2.

2. PRELIMINARIES

We will use M for E(Kn) and from now on write H for H2
n. As above, G is the (2n)-uniform hypergraph

on vertex set M consisting of all copies of H in Kn. Thus |G| = (n− 1)!/2, and it is not hard to see that G is
q-spread with q = [2/(n− 1)!]

1/(2n) ∼
√
e/n, meaning (recall)

|G ∩ 〈I〉| ≤ q|I||G| ∀I ⊆M. (2)

The next two statements implement the basic idea mentioned above, that large values of |G ∩ 〈I〉|/|G| are
rare.

Proposition 2.1. For an I ⊆M with ` ≤ n/3 edges and c components,

|G ∩ 〈I〉| ≤ (16)`
(
n−

⌈
`+ c

2

⌉
−1

)
!

Proposition 2.2. For an F ⊆ H of size h, the number of subgraphs of F with ` edges and c components is at most

(8e)`
(

2h

c

)
.
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Proof of Proposition 2.1. Let I1, . . . , Ic be the components of I and v = |V (I)| (where V (E) is the set of vertices
used by E ⊆M). The upper bound on ` implies that no Ij can “wrap around,” so |E(Ij)| ≤ 2|V (Ij)| − 3 for
each j and

` ≤ 2v − 3c. (3)

We first designate a root vertex vj for each Ij and order V (Ij) by some ≺j that begins with vj and in
which each v 6= vj appears later than at least one of its neighbors. We may then bound |G ∩ 〈I〉| as follows.

To specify a J (∈ G) containing I , we first specify a cyclic permutation of {v1, . . . , vc} ∪ (V (Kn) \ V (I)).
By (3), the number of ways to do this (namely, (n− v + c− 1)!) is at most

(
n−

⌈
`+c

2

⌉
−1
)
!

We then extend to a full cyclic ordering of V (Kn) (thus determining J) by inserting, for j = 1, . . . , c, the
vertices of V (Ij) \ {vj} in the order ≺j . This allows at most four places to insert each vertex (since one of
its neighbours has been inserted before it and the edge joining them must belong to J), so the number of
possibilities here is less than 4v ≤ (16)`, and the proposition follows. �

Proof of Proposition 2.2. We need the following standard bound, which follows from the fact (e.g. [13, p. 396,
Ex.11]) that the infinite ∆-branching rooted tree contains precisely(

∆v
v

)
(∆− 1)v + 1

≤ (e∆)v−1

rooted subtrees with v vertices.

Lemma 2.3. For a graph G of maximum degree ∆, the number of connected, h-edge subgraphs of G containing a
given vertex is less than (e∆)h. �

To specify a subgraph J of F as in Proposition 2.2, we proceed as follows. We first choose root vertices
v1, . . . , vc for the components, say J1, . . . , Jc, of J , the number of possibilities for this being at most

(
2h
c

)
.

We then choose the sizes, say `1, . . . , `c, of J1, . . . , Jc; here the number of possibilities is at most
(
`−1
c−1

)
(the

number of c-compositions of `, that is, positive integer solutions of `1 + · · · + `c = `). Finally, we specify
for each i a connected Ji of size `i rooted at vi, which according to Lemma 2.3 can be done in at most∏

(4e)`i = (4e)` ways. Combining these estimates (with the crude
(
`−1
c−1

)
< 2`) yields the bound in the

proposition. �

3. PROOF OF THE MAIN RESULT

Recall that M = E(Kn) and G is the hypergraph of copies of H = H2
n in Kn, and set m = |M| (=

(
n
2

)
).

For S ∈ G and X ⊆M, an (S,X)-fragment is a set of the form J \X with J ∈ G contained in S ∪X . Our
main point, Lemma 3.1, says that for a suitably large w, most pairs (S,W ) with S ∈ G and W ∈

(
M
w

)
admit

small fragments. (We will later need the usual easy transfer of the present discussion to a “binomial” W .)

Set k = 4
√
n and (for S,X as above) call the pair (S,X) good if some (S,X)-fragment has size at most k,

and bad otherwise. In what follows we will always assume S, J ∈ G and W ∈
(
M
w

)
, where w will be Cn3/2

for some large constant C.

Lemma 3.1. There is a fixed C0 such that for all C ≥ C0 and n ∈ N, with w = Cn3/2,

|{(S,W ) : (S,W ) is bad}| ≤ 2C−k/3|G|
(
m

w

)
. (4)
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Proof. We may of course assume n is large, since values below any fixed n0 can be handled trivially by
adjusting C0. It is enough to show

|{(S,W ) : (S,W ) is bad, |W ∩ S| = t}| ≤ 2C−k/3|G|
(

2n

t

)(
m− 2n

w − t

)
(5)

for t ∈ {0, . . . , 2n}, since summing over t then gives (4).

Now aiming for (5), we fix t, set w′ = w − t, and bound the number of bad (S,W )’s with |W ∩ S| = t (so
|W \ S| = w′ and |W ∪ S| = w′ + 2n). Call Z ∈

(
M

w′+2n

)
pathological if

|{S ⊆ Z : (S,Z \ S) is bad}| > C−k/3|G|
(
m− 2n

w′

)/( m

w′ + 2n

)
= C−k/3|G|

(
w′ + 2n

2n

)/(m
2n

)
,

and, when |S ∪ X| = w′ + 2n, say (S,X) is pathological if X ∪ S is. We bound the nonpathological and
pathological parts of (5) separately.

Nonpathological contributions. We claim that the number of nonpathological (S,W )’s in (5) is less than

C−k/3|G|
(

2n

t

)(
m− 2n

w′

)
. (6)

To see this we specify (S,W ) by specifying first Z := S∪W , then S, and thenW . The number of possibilities
for Z is at most (

m

w′ + 2n

)
,

while, since (S,W ) bad implies (S,Z \ S) bad (and Z is nonpathological), the number of possibilities for S
given Z is at most

C−k/3|G|
(
m− 2n

w′

)/( m

w′ + 2n

)
;

and of course the number of possibilities for W given Z and S is at most
(

2n
t

)
. So we have (6).

Pathological contributions. The main point here is the following estimate. (Recall S, J ∈ G.)

Claim 3.2. For a given S, Y chosen uniformly from
(
M\S
w′

)
, and large enough C,

E [|{J ⊆ Y ∪ S : |J ∩ S| ≥ k}|] ≤ C−2k/3|G|
(
w′ + 2n

2n

)/(m
2n

)
. (7)

This is proved below. Assuming for the moment it is true, we show that the number of pathological
(S,W )’s in (5) is (for C as in the claim) less than

C−k/3|G|
(

2n

t

)(
m− 2n

w′

)
. (8)

To see this we think of choosing (S,W ∩ S)—which can be done in at most |G|
(

2n
t

)
ways—and then W \ S.

For the latter, notice that (S,W ) bad means that every J ⊆ S ∪W has |J ∩S| (≥ |J \W |)≥ k; so, since (S,W )

is pathological,

|{J ⊆ S ∪ (W \ S) : |J ∩ S| ≥ k}| ≥ C−k/3|G|
(
w′ + 2n

2n

)/(m
2n

)
.

But then Claim 3.2 (with Markov’s Inequality) says the number of possibilities for W \ S is at most

C−k/3
(
m− 2n

w′

)
.

Thus we have (8) and combining with (6) completes the proof of Lemma 3.1. �
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Proof of Claim 3.2. With fi the fraction of J ’s (in G) with |J ∩ S| = i, the left-hand side of (7) is∑
i≥k

|G|fi
(

w′

2n− i

)/(m− 2n

2n− i

)
,

so it is enough to show

fi

[(
w′

2n− i

)/(m− 2n

2n− i

)][(
w′ + 2n

2n

)/(m
2n

)]−1

= eO(i)C−i, (9)

where—here and below—implied constants do not depend on C. The terms other than fi on left-hand side
of (9) reduce to

(w′)2n−i

(w′ + 2n)2n−i
· (m)2n−i

(m− 2n)2n−i
· (m− 2n+ i)i

(w′ + i)i
= eO(i)C−ini/2

(we omit the routine calculation, just noting that
√
n = O(i) since i ≥ k), so for (9) we just need

fi ≤ eO(i)n−i/2. (10)

For n/3 ≤ i ≤ 2n, this follows from the fact that G is q-spread with q ∼
√
e/n (see (2)), which gives

fi ≤
(

2n

i

)
qi = eO(i)n−i/2.

For k ≤ i ≤ n/3, Propositions 2.1 and 2.2 (with Stirling’s formula) give

fi ≤ |G|−1(128e)i
i∑

c=1

(
4n

c

)(
n−

⌈
i+ c

2

⌉
−1

)
! = eO(i)n−i/2

i∑
c=1

(
√
n/c)c = eO(i)n−i/2,

where at the end we use (a/x)x ≤ ea/e and i ≥ k. �

Proof of Theorem 1.2. We prove this for K = 3C0 + C, with C0 as in Lemma 3.1 and C a suitable function of
ε (essentially 1/ε). Let p0 = 3C0/

√
n, p1 = C/

√
n and p = p0 + p1 − p0p1 < K/

√
n. We generate Gn,p in two

rounds, as W0 ∪W1, where W0, W1 are independent with Wν distributed as Gn,pν (and W1 chosen after W0,
at which point we are really interested in W1 \W0).

Call W0 successful if
|{S : (S,W0) is bad}| ≤ |G|/2.

We first observe that W0 is (very) likely to be successful: standard concentration estimates give (say)

P(|W0| < C0n
3/2) = exp[−n3/2],

and Lemma 3.1 gives
P(W0 unsuccessful | |W0| ≥ C0n

3/2) < 4C
−k/3
0 ;

in particular W0 is successful with probability 1− o(1).

Suppose now that W0 is successful. For each S with (S,W0) good, let χ(S,W0) be some k-element subset
of S containing an (S,W0)-fragment, and letR be the k-uniform (multi)hypergraph

{χ(S,W0) : (S,W0) is good}. (11)

To finish we use the second moment method to show that W1 is reasonably likely to contain a member
ofR. Setting

X = |{A ∈ R : A ⊆W1}|,
we have

µ := EX = |R|pk1
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and
Var(X) ≤ p2k

1

∑
{p−|A∩B|1 : A,B ∈ R, A ∩B 6= ∅}. (12)

For R ∈ R and 1 ≤ i ≤ k, Propositions 2.1 and 2.2 (with Stirling) give

|{A ∈ R : |A ∩R| = i}| ≤
∑

I⊆R,|I|=i

|R ∩ 〈I〉| ≤
∑

I⊆R,|I|=i

|G ∩ 〈I〉|

= eO(i)
∑

1≤c≤i

(
2k

c

)(
n−

⌈
i+ c

2

⌉
−1

)
! = eO(i)n−i/2|G|;

so (recall W0 successful means |R| ≥ |G|/2) the sum in (12) is at most

2|R|2p2k
1

k∑
i=1

eO(i)p−i1 n−i/2 = O(µ2/C)

for large enough C (where, again, the implied constant doesn’t depend on C). Thus, finally, Chebyshev’s
Inequality gives

P(X = 0) ≤ Var(X)/µ2 = O(1/C),

and we are done. �
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14. J. Komlós and E. Szemerédi, Limit distribution for the existence of Hamiltonian cycles in a random graph,
Discrete Math. 43 (1983), 55–63. 1
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