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Abstract. In this short note, we survey some basic results related to the
New Weyl criterion for the essential spectrum. We then use the language of
Gromov-Hausdorff convergence to prove a spectral gap theorem.

1. Introduction

Let X be a complete noncompact Riemannian manifold of dimension n and de-
note by Δ the Laplacian acting on smooth functions with compact support C∞

0 (X).
It is well known that the self-adjoint extension of Δ on L2(X) exists, and is a unique
nonpositive definite and densely defined linear operator.

The spectrum of −Δ, denoted by σ(−Δ), consists of all λ ∈ C for which
Δ + λI fails to be invertible. The essential spectrum of −Δ, σess(−Δ), consists of
the cluster points in the spectrum and of isolated eigenvalues of infinite multiplicity.
The pure point spectrum is defined by

σpp(−Δ) = σ(−Δ)\σess(−Δ).

The spectral structure of a noncompact complete manifold is in general more
complex than in the compact case. For a compact Riemannian manifold, by the
Hodge Theorem, all spectral points of the Laplacian belong to the pure point spec-
trum. However, interestingly enough, while for most compact manifolds it is impos-
sible to accurately compute the pure point spectrum, for a complete noncompact
Riemannian manifold it is possible to locate the essential spectrum of the Laplacian
in a large class of manifolds.

In this note, we will first survey some major results about the essential spectrum
of a complete Riemannian manifold. Then we will use the language of Gromov-
Haudorff to discuss a spectra gap phenomenon similar to a recent result of Schoen-
Tran [25].

2. The New Weyl criterion

Donnelly pioneered the study of the essential spectrum using the Weyl criterion.
In 1981, he proved the following result [11]
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Theorem 2.1. Let σ > 0 be a positive number. If there exists an infinite
dimensional subspace G in the domain of Δ such that

(1) ‖Δu+ λu‖L2 ≤ σ‖u‖L2

for all u ∈ G, then

σess(−Δ) ∩ (λ− σ, λ+ σ) �= ∅.

The functions u are referred to as the approximate eigenfunctions corresponding
to the eigenvalue λ. The above criterion is simple to apply and has directed the
study of the essential spectrum of the Laplacian for the last three decades. A
related result of the above is as follows: let u be a nonzero smooth function with
compact support. If (1) is satisfied, then

σ(−Δ) ∩ (λ− σ, λ+ σ) �= ∅.
Using this criterion, it is not hard to prove that R

n has essential spectrum
[0,∞). Moreover, with additional assumptions on the curvature and geometry of the
manifold we can locate the essential spectrum (see for example [8,12,14,15,18,29])
by comparing the manifold to the n-dimensional Euclidean space.

The main difficulty in applying Donnelly’s Weyl criterion stems from the fact
that it requires canonical smooth functions on a manifold. There are many canonical
smooth functions on a manifold, including the heat kernel and the Green’s function.
However, on a general manifold we do not have an explicit expression for these
functions. It is possible to give upper and / or lower bounds for these functions,
but those require another canonical function, namely the distance function on the
manifold. Due to the presence of cut-loci, the distance function is in general not
smooth. It is however Lipschitz and locally L1 (cf. Cheeger [6, Chap 4], also
see [21, 28]). Thus in order to use the Weyl criterion, we must be in a setting
where the distance function is smooth, or the manifold has a pole.

In [4] the following example is given which illustrates the non-regular nature of
the distance function. Take M = S1 × (−∞,∞), letting (θ, x) be the coordinates.
Then the radial r function which gives the distance of (θ, x) to the point (0, 0) is

r(θ, x) =
√
x2 + (min(θ, 2π − θ))2.

A straightforward computation gives

Δr = − 2π√
x2 + π2

δ{θ=π} + a smooth function,

where δ{θ=π} is the Delta function along the submanifold {θ = π}. Therefore Δr

is not locally L2.
As was observed in [28] and [4], although in most problems the ideal space to

work with is the L2 function space, in comparison to Lq spaces, this is not the case
when considering the spectrum of the Laplacian. On a Riemannian manifold, most
of the approximate eigenfunctions we can write out explicitly must be related to
the distance function. As the above example illustrates however, the Laplacian of
the distance function is locally bounded in L1, but not in L2, thus making it easier
to compute the L1 spectrum of the Laplacian instead of the L2 spectrum.

The failure of the L2 integrability of the Laplacian of the distance function was
one of the main difficulties in applying the classical criterion above. In fact, it was
not possible to prove that the L2 essential spectrum of the Laplacian on a manifold
with nonnegative Ricci curvature is [0,∞) by directly computing the L2 spectrum
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via the classical Weyl criterion. Around 1999, two papers addressed this difficulty.
Donnelly [12] proved that the essential spectrum of the Laplacian is [0,∞) over
manifolds with nonnegative Ricci curvature and maximal volume growth. Under
his assumptions, the cone of the manifold at infinity is locally Euclidean and the
result follows from spectrum continuity. On the other hand, J-P. Wang [28], by
employing the seminal theorem of K. T. Sturm [27], removed the maximal volume
growth condition. Wang’s result confirmed the conjecture that the spectrum of
manifolds with nonnegative Ricci curvature is [0,∞). In [21], Lu-Zhou gave a
technical generalization of Wang’s result which includes the case of manifolds of
finite volume. We further elaborate on Sturm’s result and its consequences in
Section 3.

What was lacking from these results, was the direct relationship between the
L2 spectrum and Lp spaces. In [4], we found such a link.

Theorem 2.2. Let X be a Riemannian manifold and let Δ be the Laplacian.
Assume that for λ ∈ R

+, there exists a nonzero function u in the domain of Δ such
that

(2) ‖u‖L∞ · ‖Δu+ λu‖L1 ≤ δ‖u‖2L2

for some positive number δ > 0. Then

σ(−Δ) ∩ (λ− ε, λ+ ε) �= ∅,
where

ε = min(1, (λ+ 2)δ1/3).

Moreover,

σess(−Δ) ∩ (λ− ε, λ+ ε) �= ∅,
if for any compact subset K of X, there exists a nonzero function u in the domain
of Δ satisfying (2) whose support is outside K.

Using this theorem, we are able to compute the spectrum of a Ricci nonnegative
manifold directly, using functions constructed from the distance function. The
above theorem also allowed us to find the most general conditions possible so that
the spectrum of the Laplacian on functions is maximal, in other words it is [0,∞).

Theorem 2.3. Let X be a complete noncompact Riemannian manifold. Take a
fixed point xo, and let r(x) = d(x, xo) be the radial distance to xo. Assume that the
radial Ricci curvature away from xo is asymptotically nonnegative, in other words,
there exists a continuous positive function δ(r) on R

+ such that

(i). lim
r→∞

δ(r) = 0 and

(ii). RicX(∂r, ∂r) ≥ −(n− 1)δ(r) away from the cut-locus of xo.

If the volume of the manifold is finite we additionally assume that its volume does
not decay exponentially at xo. Then the L2 spectrum of the Laplacian is [0,∞).

3. On a theorem of Sturm

In 1993, Sturm [27] proved an interesting result, which relates the L2 spectrum
to the Lp spectrum of the Laplacian.

The Lp spectrum, denoted by σp(−Δ) for p ≥ 1, is defined as the set of complex
numbers λ such that the operator Δ+λI fails to be invertible on the space Lp(X).
Note that unlike the case of L2 spectrum, the Lp spectrum may contain complex
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numbers. For example, over real hyperbolic space, for p �= 2 the Lp spectrum is a
parabolic region in complex plane depending on p and the order of the form [9].

We say that a noncompact Riemannian manifold has uniformly subexponential
volume growth, if for any ε > 0, there is a constant C = C(ε), depending only on
ε such that

vol(Bx(R)) ≤ C(ε) vol(Bx(1))e
εR.

for any x ∈ X, and R ≥ 1, where Bx(R) denotes the geodesic ball of radius R
centered at x.

It should be noted that a manifold with finite volume does not necessarily have
uniformly subexponential volume growth. For example, let X be a noncompact
hyperbolic space with finite volume. Assume that X has a cusp at infinity. Then
for xn → ∞, vol(Bxn

(1)) has exponential decay with respect to the distance to
a fixed point xo. On the other hand, if X has uniformly subexponential volume
growth, then for any ε > 0, there exists C(ε) > 0 such that

vol(Bxn
(R)) ≤ C(ε) vol(Bxn

(1))eεR

for any R > 1. If we take R = d(xn, xo) + 2, then we have

vol(Bxo
(1)) ≤ vol(Bxn

(R)) ≤ C(ε) vol(Bxn
(1))eεd(xn,xo)

which is a contradiction.

Theorem 3.1 (Sturm). Assume that X is a complete Riemannian manifold
of uniformly subexponential volume growth. Assume furthermore that the Ricci
curvature of X has a lower bound. Then for any p ≥ 1, σp(−Δ) = σ2(−Δ), that
is, all the Lp spectra coincide.

Using the above result, J-P. Wang [28] proved that

Theorem 3.2. Let X be a complete Riemannian manifold and denote by r(x)
the radial distance to a fixed point xo ∈ X. Suppose that

RicX(x) ≥ − δ

r(x)2
,

where δ = δ(n) > 0 is a constant that depends only on the dimension n. Then, for
all p ≥ 1, σp(−Δ) = [0,∞).

In [21], the following generalization of Wang’s result has been proved, also by
applying Sturm’s Theorem

Theorem 3.3. Let X be a complete Riemannian manifold and again denote
by r(x) the radial distance to a fixed point xo ∈ X. Let ε(r) be a positive function
such that ε(r) → 0 as r → ∞. Assume that

RicX(x) ≥ −ε(r(x)),

Then for all p ≥ 1, σp(−Δ) = [0,∞).

One can compare the consequences of Sturm’s Theorem about the spectrum to
those of Theorem 2.2. When we assume that the volume has uniformly subexponen-
tial growth and the Ricci curvature is bounded below, then we can get information
about all of the Lp spectra. On the other hand, by applying Theorem 2.2, we can
obtain stronger information for just the L2 spectrum without any assumptions on
the smooothness of the distance function.
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4. Spectral continuity and a gap theorem

In the previous sections we have studied results that allow us to find large sets
of noncompact manifolds whose essential spectrum is a connected subset of the real
line. There are however many known cases where the essential spectrum has an
arbitrary number of gaps [1,19,20,22,25]. In the last part of the paper we are
interested in further exploring this set of manifolds. We will first turn our attention
to spectral continuity and then study the evolution of the spectrum of a manifold
under Gromov-Hausdorff convergence. We will then use these ideas to prove the
existence of gaps in the essential spectrum of a periodic manifold, which is close in
spirit to a recent result by Schoen and Tran [25].

The first natural case to consider is the evolution of eigenvalues under the
continuous deformation of a manifold or its Riemannian metric. Dodziuk proved
the following result in [10].

Theorem 4.1 (Dodziuk). Let X be a compact manifold and let gt be a family
of Riemannian metrics on X. Assume that

gt → g

in the C0 topology. Then the spectrum (eigenvalues) of gt converges to the spectrum
of g.

In the recent paper [5] (also see [23] for related results), we generalized spectral
continuity to the case when the quadratic forms of two self-adjoint operators are
ε-close.

Let H be a Hilbert space with two inner products (·, ·)0 and (·, ·)1. We consider
two densely defined nonnegative operators H0 and H1 on H that are self-adjoint
with respect to the inner products (·, ·)0 and (·, ·)1 respectively. Let Q0, Q1 be their
respective quadratic forms and denote the two norms on H by ‖ ·‖0 and ‖ ·‖1. Note
that both Q0 and Q1 are nonnegative.

We denote the domain of the Friedrichs extension of H0 and H1 by Dom(H0)
and Dom(H1) respectively. We assume that there exists a dense subspace C ⊂ H
such that C is contained in Dom(H0) ∩Dom(H1) (in the case of the Laplacian, C
will be the space of smooth functions/forms with compact support).

Definition 1. We say that the operators H0, H1 are ε-close, if there exists a
positive constant 0 < ε < 1 such that for all u ∈ C the following two inequalities
hold

(1− ε) ‖u‖20 ≤ ‖u‖21 ≤ (1 + ε) ‖u‖20;(3)

(1− ε)Q0(u, u) ≤ Q1(u, u) ≤ (1 + ε)Q0(u, u).(4)

We note that if H0, H1 are ε-close, then for any u, v ∈ C
|(u, v)1 − (u, v)0| ≤ ε(‖u‖0 ‖v‖0);(5)

|Q1(u, v)−Q0(u, v)| ≤ ε [Q0(u, u)Q0(v, v)]
1/2.(6)

Moreover, it can be shown that the resolvents of the two operators are also ε close.
In [5] we showed that two ε-close operators have nearby spectra. This result

has an important application in the context of the Laplacian over a Riemannian
manifold with two ε-close metrics over it. In particular, it allows us to prove the
following theorem which holds even in the noncompact case, thus generalizing the
result of Dodziuk.
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Theorem 4.2. Let Xn be an orientable manifold, and let g0, g1 be two smooth
complete Riemannian metrics on X that are ε-close for some 0 < ε < 1/2.

Fix A > 0. Then for any λ ∈ σ(k,Δ1) ∩ [0, A]

dist(λ, σ(k,Δ0)) < c(A, n) ε
1
3

for some constant c(A) depending only on A. A similar result holds for the essential
spectra of the operators. In particular,

dh(σ(k,Δ1), σ(k,Δ0)) = o(1),

where o(1) → 0, as ε → 0.

In the above theorem dh denotes the pointed Gromov-Hausdorff distance be-
tween the spectra as subsets of the real line, and with a common fixed point {−1}.

In the setting of a family of compact Riemannian manifolds which is convergent
in the Gromov-Hausdorff sense, we have the following important results due to
Fukaya [16] and Cheeger-Colding [7].

Theorem 4.3 (Fukaya). Let Xt be a family of compact Riemannian manifolds
which is Gromov-Hausdorff convergent to a compact metric space X. We assume
that X is not a point. Assume that the curvatures of the manifolds Xt are uniformly
bounded. Then the eigenvalues of Xt converge to those of X.

Cheeger and Colding generalized the above theorem and proved

Theorem 4.4 (Cheeger-Colding). Let Xt be a family of compact Riemannian
manifolds which is Gromov-Hausdorff convergent to a compact metric space X. We
assume that X is not a point. Assume that the Ricci curvatures of the manifolds
Xt are uniformly bounded below. Then the eigenvalues of Xt converge to those of
X.

There is no known common generalization of the results of Dodziuk and Fukaya-
Cheeger-Colding. In this paper we will study a special case, which will allow us to
find manifolds with gaps in the L2 essential spectrum.

Let (X1, g1), (X2, g2) be two complete Riemannian manifolds. Let x1 ∈ X1 and
x2 ∈ X2 be two fixed points on the manifolds respectively.

Let

N = Sn−1 × (−2, 2)

be the product manifold equipped with the metric gN = ε2g0, where g0 is the
standard product metric.

For any ε > 0, we construct the manifold Xε by glueing the three manifolds
X1, X2, N in the following way.

Let f1 : Sn−1 × (−2,−1) → X1 be the function

f1(θ, t) = expx1
(−tεθ),

where expx1
is the exponential map from Tx1

X1 → X1. In particular expx1
(0) = x1.

Similarly, let f2 : Sn−1 × (1, 2) → X2 be the function

f2(θ, t) = expx2
(tεθ),

where expx2
is the exponential map from Tx2

X2 → X2. In particular expx2
(0) = x2.
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It is clear that fi (i = 1, 2) are diffeomorphisms between their domains and
ranges. Let Xε denote the composite manifold defined by (X1, X2, N, f1, f2), such
that

(7) Xε = (X1\Bx1
(ε)) ∪ (X2\Bx2

(ε)) ∪N/ ∼,

where we identify fi with their images respectively for i = 1, 2. Roughly speaking,
Xε is constructed from X1, X2 by removing two balls of radius ε and adding a neck
connecting them.

Abusing notation, we will identify gi with f∗
i (gi) for i = 1, 2 on the sets where

they are defined.
We construct the metric gε on Xε as follows. Outside the neck region N ,

we do not change the metric, i.e., gε = gi on Xi \ N . On N , let ρ0, ρ1, ρ2 be a
partition of unity for R in the following sense. ρi are nonnegative smooth functions
with compact support. ρ0 is identically 1 on [−1, 1] and supp(ρ0) ⊂ [−2, 2]; ρ1 is
identically 1 on (−∞,−2] and ρ2 is identically 1 on [2,∞), and

ρ0 + ρ1 + ρ2 = 1.

We define

gε = ρ0gN + ρ1g1 + ρ2g2.

We use M to denote the manifold obtained by taking X1 = X2 = Rn, x1 =
x2 = 0 ∈ R

n and ε = 1. Let x0 = (1, 0) ∈ N be a fixed middle point of M . In order
words, M consists of two copies of Rn joint by a tube of radius 1 and length 2.

We prove that

Proposition 4.1. Let X1, X2 be two compact Riemannian manifolds. Using
the above notations, we have

(1) (Xε, gε) is Gromov-Hausdorff convergent to the metric space X0, which is
the union X1 ∪X2 with x1 identified with x2 ;

(2) Let x0 be a reference point in the middle of the neck N . The pointed
Riemannian manifolds (Xε, ε

−2gε, x0) are Gromov-Hausdorff convergent
to (M,x0).

Proof. For (1), consider the Gromov-Hausdorff approximations ϕ : Xε → X0

and ψ : X0 → Xε defined by

ϕ(x) =

{
x if x ∈ X1 ∪X2

x1 = x2 if x ∈ N/(X1 ∪X2)

and

ψ(x) =

{
x if x �= x1 and x �= x2

x0 if x = x1 = x2

It’s easy to see that

|dX0
(ϕ(x), ϕ(y))− dXε

(x, y)| ≤ 4ε, |dXε
(ψ(a), ψ(b))− dX0

(a, b)| ≤ 4ε

∀x, y ∈ Xε, a, b,∈ X0, where Lε is the length of the neck N . As lim
x→0

Lε = 0, Xε is

Gromov-Hausdorff convergent to X0.
Note that in this setting the collar region (where the cylinder is glued to the

manifold) shrinks to a point.



8 NELIA CHARALAMBOUS, HELTON LEAL, AND ZHIQIN LU

For (2), it is easy to see convergence on the neck N \(X1∪X2), so let’s consider
the congergence (Xi, ε

−2gi) → Rn. Let δ > 0 be less than the injectivity radius of
(Xi, gi) at xi. We know that

d(expxi
)x = I + o(δ2),

where expxi
is the exponential map with respect to the metric gi, d(x, xi) < δ.

Given R > 0, choose ε < δ
R so that the ball Bxi

(R) ⊂ (Xi, ε
−2gi) is a subset

of Bxi
(δ) ⊂ (Xi, gi), and therefore

|d(expxi
)∗g − I| = o(δ2)

in Bxi
(R) ⊂ (Xi, ε

−2gi), which proves the convergence.
�

Lemma 1. The Sobolev constants for both (Xε, gε) and (Xε, ε
−2gε) are uni-

formly bounded.

Proof. The limit of (Xε, ε
−2gε, xε) is the space M , which is obtained by

connecting two copies of Rn by a neck with fixed size. By continuity, in order to
prove the uniform bound for the Sobolev space, it suffices to prove the Sobolev
inequality on the limiting space.

Let f be a smooth function of compact support on the limiting space M . As
before, we can write

f = f1 + f2 + f3

where f1, f2 has their support within one copy of Rn and f3 has its support within
a fixed geodesic ball. Since on Euclidean space we have uniform Sobolev constants,
we have (∫

|fi|
2n

n−2

)n−2
n

≤ C

∫
|∇fi|2

for i = 1, 2. On the other hand, we have the usual Sobolev inequality on a compact
manifold, thus we have (∫

|f3|
2n

n−2

)n−2
n

≤ C ′
∫

|∇f3|2

with a possibly different Sobolev constant C ′. Combining the above we get(∫
|fi|

2n
n−2

)n−2
n

≤ max(C,C ′)
3∑

i=1

∫
|∇fi|2 ≤ C

(∫
|∇f |2 + |f |2

)
.

Since the Sobolev constant is independent of scaling, we have also proved the
existence of a uniform Sobolev constant for (Xε, gε). �

In what follows we prove the main technical theorem of this paper.

Theorem 4.5. Let X1, X2 be two compact Riemannian manifolds and take
λ �∈ Spec(X1) ∪ Spec(X2). Consider the manifold (Xε, gε) defined above. Set 2δ =
dist(λ, Spec(X1) ∪ Spec(X2)) and take λ′ ∈ (λ − δ, λ + δ). Then, for any ε > 0
small enough, λ′ �∈ Spec(Xε).

Proof. We will prove the theorem by contradiction. Assume that for any
ε > 0, there is a λε ∈ (λ− δ, λ+ δ) such that λε is an eigenvalue of Xε. Let fε be
the corresponding eigenfunction. Then

Δεfε + λεfε = 0.
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By a standard Moser iteration argument using the uniform Sobolev inequality, we
have

‖fε‖2L∞ ≤ C

∫
Xε

‖fε‖2.

As a result, if we normalize the L2 norm of fε to be 1 and given that vol(Xε) is
uniformly bounded, we get that the fε are uniformly bounded in L∞. At the same
time must have a sequence εi such that λεi → λ0 ∈ [λ− δ, λ+ δ]. By passing to a
subsequence if necessary, we must have fεi → ξ, converging to an L2 function ξ on
X0. Let ξi = ξ|Xi\{xi} for i = 1, 2. By the above argument, since ξ is bounded, it
follows that each ξi extends to a smooth function on Xi. Moreover, we have

Δξi + λ0ξi = 0

for i = 1, 2 with λ0 ∈ [λ − δ, λ + δ]. Since each of the fε is bounded, with L2

norm equal to 1 for all ε, at least one of the ξi is not zero. This contradicts the
assumption on λε. �

Remark 1. The above theorem can be interpreted as a spectral continuity
result: let λk(Xε) be the k-th eigenvalue of Xε. Then a subsequence λk(Xεi) is
convergent to the corresponding eigenvalue of the limit space.

Remark 2. Since the Ricci curvature of Xε has no lower bound, Theorem 4.5
is not a special case of the theorem of Cheeger-Colding. It is neither a special case
of the theorem of Dodziuk because the limit space is singular.

Let X be a fixed compact manifold. Let x1, x2 ∈ X two distinct points. Con-
struct a metric space by first making Z copies of X, and labelling them Xj . Then
glue the point x2 of Xj onto the point x1 of Xj+1 for each j ∈ Z. Denote by M
the metric space obtained through this gluing process.

Definition 2. A smoothing Xeps of M is a smooth manifold constructed as
in (7) at each x1, x2. Oviously, under the Gromov-Hausdorff convergence, we have

lim
ε→0

Xε = M.

Similar to to Lemma 1, we have

Lemma 2. The Sobolev constant for Xε is independent to ε.

Using Theorem 4.5 we can prove the following.

Theorem 4.6. Let Xε be a smoothing of M constructed in a similar process as
in the beginning of the section. That is, Xε is smooth and the Gromov-Hausdorff
limit of Xε is M . Then, for ε small enough, the essential spectrum of Xε has gaps.

Proof. Note that since Xε is a periodic manifold, its spectrum must coincide
with its essential spectrum.

Our proof is a generalization of the method used in the proof of Theorem 4.5.
Let λε ∈ Spec(Xε, gε). We shall prove that a subsequence λεi should be convergent
to λ0 ∈ Spec(X). Fix δ > 0. Let fε be the approximating eigenfunction by the
Weyl criterion such that

‖Δfε + λεfε‖L2 ≤ δ‖fε‖L2 .
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It is not difficult to see that there exist λ′
ε such that λε − λ′

ε = o(1) and for which
we can find a function f ′

ε that is the Dirichlet eigenfunction corresponding to λ′
ε on

the support of fε. That is,

Δf ′
ε + λ′

εf
′
ε = 0.

We normalize f ′
ε so that the L2 norm of f ′

ε on K is 1. By using the uniform
Sobolev inequality, we can prove that the f ′

ε are uniformly bounded.
Let yε be the maximum point of fε. By the periodic property of Xε, by trans-

lating if necessary, we may assume that yε is within a fixed copy of X. Normalizing
f ′
ε so that the maximum of it is 1. Then a subsequence of f ′

ε will be convergent to
a non-zero function f0 on the copy X which, by elliptic estimates, must be smooth
on the smooth part of M . Since f is also bounded, f must be an eigenfunction of
X. Therefore λ0 ∈ Spec(X).

�

Remark 3. It should be noted that the convergence rate depends on λ. For
larger λ the rate of convergence may in fact be slower. It would therefore be
interesting to know whether there is an infinite number of gaps in the spectrum of
Xε for ε small enough.
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