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ABSTRACT. In this short note, we survey some basic results related to the
New Weyl criterion for the essential spectrum. We then use the language of
Gromov-Hausdorff convergence to prove a spectral gap theorem.

1. Introduction

Let X be a complete noncompact Riemannian manifold of dimension n and de-
note by A the Laplacian acting on smooth functions with compact support C§°(X).
It is well known that the self-adjoint extension of A on L?(X) exists, and is a unique
nonpositive definite and densely defined linear operator.

The spectrum of —A, denoted by o(—A), consists of all A\ € C for which
A + M fails to be invertible. The essential spectrum of —A, gess(—A), consists of
the cluster points in the spectrum and of isolated eigenvalues of infinite multiplicity.
The pure point spectrum is defined by

Upp(_A) = 0(=A)\0ess(—A).

The spectral structure of a noncompact complete manifold is in general more
complex than in the compact case. For a compact Riemannian manifold, by the
Hodge Theorem, all spectral points of the Laplacian belong to the pure point spec-
trum. However, interestingly enough, while for most compact manifolds it is impos-
sible to accurately compute the pure point spectrum, for a complete noncompact
Riemannian manifold it is possible to locate the essential spectrum of the Laplacian
in a large class of manifolds.

In this note, we will first survey some major results about the essential spectrum
of a complete Riemannian manifold. Then we will use the language of Gromov-
Haudorff to discuss a spectra gap phenomenon similar to a recent result of Schoen-
Tran [25].

2. The New Weyl criterion

Donnelly pioneered the study of the essential spectrum using the Weyl criterion.
In 1981, he proved the following result [11]
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THEOREM 2.1. Let ¢ > 0 be a positive number. If there exists an infinite
dimensional subspace G in the domain of A such that

(1) [Au + Aul|> < oljul| >

for alluw € G, then
Oess(—A)N (A=, A+ 0) #0.

The functions u are referred to as the approzximate eigenfunctions corresponding
to the eigenvalue A\. The above criterion is simple to apply and has directed the
study of the essential spectrum of the Laplacian for the last three decades. A
related result of the above is as follows: let u be a nonzero smooth function with
compact support. If (1) is satisfied, then

o(=A)NA—oa,A+0)#0.

Using this criterion, it is not hard to prove that R™ has essential spectrum
[0, 00). Moreover, with additional assumptions on the curvature and geometry of the
manifold we can locate the essential spectrum (see for example [8,12,14,15,18,29])
by comparing the manifold to the n-dimensional Euclidean space.

The main difficulty in applying Donnelly’s Weyl criterion stems from the fact
that it requires canonical smooth functions on a manifold. There are many canonical
smooth functions on a manifold, including the heat kernel and the Green’s function.
However, on a general manifold we do not have an explicit expression for these
functions. It is possible to give upper and / or lower bounds for these functions,
but those require another canonical function, namely the distance function on the
manifold. Due to the presence of cut-loci, the distance function is in general not
smooth. It is however Lipschitz and locally L' (cf. Cheeger [6, Chap 4], also
see [21,28]). Thus in order to use the Weyl criterion, we must be in a setting
where the distance function is smooth, or the manifold has a pole.

In [4] the following example is given which illustrates the non-regular nature of
the distance function. Take M = S x (—o0, 00), letting (6, z) be the coordinates.
Then the radial r function which gives the distance of (6, ) to the point (0,0) is

r(0,x) = /22 + (min(0, 27 — 0))2.
A straightforward computation gives

2
Ar = —7ﬁ5{9:ﬂ} + a smooth function,

N
where 0gg—ry is the Delta function along the submanifold {6 = 7}. Therefore Ar
is not locally L?.

As was observed in [28] and [4], although in most problems the ideal space to
work with is the L? function space, in comparison to L? spaces, this is not the case
when considering the spectrum of the Laplacian. On a Riemannian manifold, most
of the approximate eigenfunctions we can write out explicitly must be related to
the distance function. As the above example illustrates however, the Laplacian of
the distance function is locally bounded in L', but not in L?, thus making it easier
to compute the L' spectrum of the Laplacian instead of the L? spectrum.

The failure of the L? integrability of the Laplacian of the distance function was
one of the main difficulties in applying the classical criterion above. In fact, it was
not possible to prove that the L? essential spectrum of the Laplacian on a manifold
with nonnegative Ricci curvature is [0, 00) by directly computing the L? spectrum
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via the classical Weyl criterion. Around 1999, two papers addressed this difficulty.
Donnelly [12] proved that the essential spectrum of the Laplacian is [0,00) over
manifolds with nonnegative Ricci curvature and maximal volume growth. Under
his assumptions, the cone of the manifold at infinity is locally Euclidean and the
result follows from spectrum continuity. On the other hand, J-P. Wang [28], by
employing the seminal theorem of K. T. Sturm [27], removed the maximal volume
growth condition. Wang’s result confirmed the conjecture that the spectrum of
manifolds with nonnegative Ricci curvature is [0,00). In [21], Lu-Zhou gave a
technical generalization of Wang’s result which includes the case of manifolds of
finite volume. We further elaborate on Sturm’s result and its consequences in
Section 3.

What was lacking from these results, was the direct relationship between the
L? spectrum and LP spaces. In [4], we found such a link.

THEOREM 2.2. Let X be a Riemannian manifold and let A be the Laplacian.
Assume that for X € RT, there exists a nonzero function u in the domain of A such
that

(2) lull 2 - | Au + ul| 12 < 6ljull7
for some positive number § > 0. Then
o(=A)N(A—g,X+e) #£0,
where
e = min(1, (A + 2)8/3).
Moreover,
Oess(—A)N(A—e, A +¢) #0,

if for any compact subset K of X, there exists a nonzero function u in the domain
of A satisfying (2) whose support is outside K.

Using this theorem, we are able to compute the spectrum of a Ricci nonnegative
manifold directly, using functions constructed from the distance function. The
above theorem also allowed us to find the most general conditions possible so that
the spectrum of the Laplacian on functions is maximal, in other words it is [0, c0).

THEOREM 2.3. Let X be a complete noncompact Riemannian manifold. Take a
fized point z,, and let r(z) = d(x, z,) be the radial distance to x,. Assume that the
radial Ricci curvature away from x, is asymptotically nonnegative, in other words,
there exists a continuous positive function 5(r) on R* such that

(i). lim 6(r) =0 and
T—>00
(ii). Ricx(9r,0r) > —(n—1)d(r) away from the cut-locus of z,.
If the volume of the manifold is finite we additionally assume that its volume does
not decay exponentially at x,. Then the L? spectrum of the Laplacian is [0, 00).

3. On a theorem of Sturm

In 1993, Sturm [27] proved an interesting result, which relates the L? spectrum
to the LP spectrum of the Laplacian.

The L? spectrum, denoted by o,(—A) for p > 1, is defined as the set of complex
numbers A such that the operator A+ A1 fails to be invertible on the space LP(X).
Note that unlike the case of L? spectrum, the LP spectrum may contain complex
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numbers. For example, over real hyperbolic space, for p # 2 the LP spectrum is a
parabolic region in complex plane depending on p and the order of the form [9].

We say that a noncompact Riemannian manifold has uniformly subexponential
volume growth, if for any € > 0, there is a constant C' = C(g), depending only on
€ such that

vol(B;(R)) < C(e) vol(Bg(1))e".
for any z € X, and R > 1, where B,(R) denotes the geodesic ball of radius R
centered at z.

It should be noted that a manifold with finite volume does not necessarily have
uniformly subexponential volume growth. For example, let X be a noncompact
hyperbolic space with finite volume. Assume that X has a cusp at infinity. Then
for x, — oo, vol(B,, (1)) has exponential decay with respect to the distance to
a fixed point x,. On the other hand, if X has uniformly subexponential volume
growth, then for any ¢ > 0, there exists C'(¢) > 0 such that

vol(B,, (R)) < C(g) vol(B,, (1))e*f
for any R > 1. If we take R = d(zy,, z,) + 2, then we have
Vol(B,, (1)) < vol(B,, (R)) < C(e) vol(By, (1))esdlensse)
which is a contradiction.

THEOREM 3.1 (Sturm). Assume that X is a complete Riemannian manifold
of uniformly subexponential volume growth. Assume furthermore that the Ricci
curvature of X has a lower bound. Then for any p > 1, 0,(—A) = 02(—A), that
18, all the LP spectra coincide.

Using the above result, J-P. Wang [28] proved that

THEOREM 3.2. Let X be a complete Riemannian manifold and denote by r(x)
the radial distance to a fixed point x, € X. Suppose that

. 4]
RICX(Z‘) Z —W,
where 6 = §(n) > 0 is a constant that depends only on the dimension n. Then, for
allp>1, op(—A) =[0,00).

In [21], the following generalization of Wang’s result has been proved, also by
applying Sturm’s Theorem

THEOREM 3.3. Let X be a complete Riemannian manifold and again denote
by r(x) the radial distance to a fized point x, € X. Let e(r) be a positive function
such that e(r) — 0 as r — oo. Assume that

Ricx (z) > —e(r(x)),
Then for allp > 1, o,(—A) = [0, 00).

One can compare the consequences of Sturm’s Theorem about the spectrum to
those of Theorem 2.2. When we assume that the volume has uniformly subexponen-
tial growth and the Ricci curvature is bounded below, then we can get information
about all of the LP spectra. On the other hand, by applying Theorem 2.2, we can
obtain stronger information for just the L? spectrum without any assumptions on
the smooothness of the distance function.



SPECTRAL GAPS 5

4. Spectral continuity and a gap theorem

In the previous sections we have studied results that allow us to find large sets
of noncompact manifolds whose essential spectrum is a connected subset of the real
line. There are however many known cases where the essential spectrum has an
arbitrary number of gaps [1,19,20,22,25]. In the last part of the paper we are
interested in further exploring this set of manifolds. We will first turn our attention
to spectral continuity and then study the evolution of the spectrum of a manifold
under Gromov-Hausdorff convergence. We will then use these ideas to prove the
existence of gaps in the essential spectrum of a periodic manifold, which is close in
spirit to a recent result by Schoen and Tran [25].

The first natural case to consider is the evolution of eigenvalues under the
continuous deformation of a manifold or its Riemannian metric. Dodziuk proved
the following result in [10].

THEOREM 4.1 (Dodziuk). Let X be a compact manifold and let gy be a family
of Riemannian metrics on X. Assume that

gt — g
in the C° topology. Then the spectrum (eigenvalues) of g; converges to the spectrum
of g.

In the recent paper [5] (also see [23] for related results), we generalized spectral
continuity to the case when the quadratic forms of two self-adjoint operators are
e-close.

Let H be a Hilbert space with two inner products (-, -)o and (-, -);. We consider
two densely defined nonnegative operators Hy and H; on H that are self-adjoint
with respect to the inner products (-, ) and (-, )1 respectively. Let Qo, @1 be their
respective quadratic forms and denote the two norms on H by || |lo and || - ||;. Note
that both Qg and @1 are nonnegative.

We denote the domain of the Friedrichs extension of Hy and Hy by Dom(Hy)
and Dom(H;) respectively. We assume that there exists a dense subspace C C H
such that C is contained in ®om(Hy) N Dom(H;) (in the case of the Laplacian, C
will be the space of smooth functions/forms with compact support).

DEFINITION 1. We say that the operators Hy, H, are e-close, if there exists a

positive constant 0 < € < 1 such that for all v € C the following two inequalities
hold

(3) (1 =) fullg < lullf < X+ e) flulld;

(4) (1-2)Qo(u,u) <Q1(u,u) < (1+¢)Qo(u,u).
We note that if Hy, H; are e-close, then for any u,v € C

(5) [(u,0)1 = (u,v)o| < e([|ullo [|v]lo);

(6) |Q1(u,v) — Qo(u, v)| < £ [Qo(u,u) Qo(v,v)]"/.

Moreover, it can be shown that the resolvents of the two operators are also ¢ close.

In [5] we showed that two e-close operators have nearby spectra. This result
has an important application in the context of the Laplacian over a Riemannian
manifold with two e-close metrics over it. In particular, it allows us to prove the
following theorem which holds even in the noncompact case, thus generalizing the
result of Dodziuk.
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THEOREM 4.2. Let X" be an orientable manifold, and let gy, g1 be two smooth
complete Riemannian metrics on X that are e-close for some 0 < e < 1/2.

Fiz A > 0. Then for any A € o(k, A1) N[0, 4]
dist(X, o (k, Ag)) < c(A,n)e?

for some constant c(A) depending only on A. A similar result holds for the essential
spectra of the operators. In particular,

dy(o(k, A1), 0(k, Ag)) = o(1),
where o(1) = 0, as € — 0.

In the above theorem dy denotes the pointed Gromov-Hausdorff distance be-
tween the spectra as subsets of the real line, and with a common fixed point {—1}.

In the setting of a family of compact Riemannian manifolds which is convergent
in the Gromov-Hausdorff sense, we have the following important results due to
Fukaya [16] and Cheeger-Colding [7].

THEOREM 4.3 (Fukaya). Let X; be a family of compact Riemannian manifolds
which is Gromov-Hausdorff convergent to a compact metric space X. We assume
that X is not a point. Assume that the curvatures of the manifolds X, are uniformly
bounded. Then the eigenvalues of X; converge to those of X.

Cheeger and Colding generalized the above theorem and proved

THEOREM 4.4 (Cheeger-Colding). Let X; be a family of compact Riemannian
manifolds which is Gromov-Hausdorff convergent to a compact metric space X. We
assume that X is not a point. Assume that the Ricci curvatures of the manifolds
X; are uniformly bounded below. Then the eigenvalues of X; converge to those of
X.

There is no known common generalization of the results of Dodziuk and Fukaya-
Cheeger-Colding. In this paper we will study a special case, which will allow us to
find manifolds with gaps in the L? essential spectrum.

Let (X1,91), (X2, g2) be two complete Riemannian manifolds. Let z; € X; and
o € X3 be two fixed points on the manifolds respectively.

Let

N =8""1x(-2,2)

be the product manifold equipped with the metric gy = €2go, where go is the
standard product metric.

For any € > 0, we construct the manifold X, by glueing the three manifolds
X1, X5, N in the following way.

Let f1: 5" ! x (=2,—1) — X; be the function

J1(0,t) = exp,, (—teb),

where exp,,, is the exponential map from T3, X; — X;. In particular exp,, (0) = z;.
Similarly, let fo: S"~! x (1,2) — X5 be the function

f2(0,t) = exp,, (teh),

where exp,,, is the exponential map from 7, Xo — X». In particular exp,, (0) = xs.
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It is clear that f; (i = 1,2) are diffeomorphisms between their domains and
ranges. Let X, denote the composite manifold defined by (X, X2, N, f1, f2), such
that

(7) Xe = (X1\Bz, (€)) U (X2\Bu, (€)) UN/ ~,

where we identify f; with their images respectively for i = 1,2. Roughly speaking,
X, is constructed from X7, X5 by removing two balls of radius € and adding a neck
connecting them.

Abusing notation, we will identify g; with f(g;) for i = 1,2 on the sets where
they are defined.

We construct the metric g. on X, as follows. Outside the neck region N,
we do not change the metric, i.e., g = g; on X; \ N. On N, let po, p1,p2 be a
partition of unity for R in the following sense. p; are nonnegative smooth functions
with compact support. pg is identically 1 on [—1,1] and supp(po) C [-2,2]; p1 is
identically 1 on (—oo, —2] and ps is identically 1 on [2, 00), and

po+p1+p2=1
We define

ge = PogN + p1g1 + p2g2.

We use M to denote the manifold obtained by taking X; = Xy = R", 7 =
22 =0€ R" and e = 1. Let 29 = (1,0) € N be a fixed middle point of M. In order
words, M consists of two copies of R™ joint by a tube of radius 1 and length 2.
We prove that

PrOPOSITION 4.1. Let X1, Xy be two compact Riemannian manifolds. Using
the above notations, we have

(1) (X, ge) is Gromov-Hausdorff convergent to the metric space Xo, which is
the union X1 U X5 with x1 identified with xo ;

(2) Let x¢ be a reference point in the middle of the neck N. The pointed
Riemannian manifolds (Xc,e 2g.,x0) are Gromov-Hausdorff convergent
to (M, .To).

ProoF. For (1), consider the Gromov-Hausdorff approximations ¢ : X, — X
and ¢ : Xg — X, defined by

()_ x ifze X1UXy
L) = xr1 = T2 1f£L’€N/(X1UX2)

and

Ty ifx =21 =a9

1/’(37):{ r ifx# x; and = # xo

It’s easy to see that

ldx,(o(x), () — dx. (z,y)| < 4, |dx. (¥ (a), ¥ (b)) — dx,(a,b)| < 4e
Vz,y € X.,a,b, € Xg, where L. is the length of the neck N. As 111% L.=0, X, is
z—

Gromov-Hausdorff convergent to Xj.
Note that in this setting the collar region (where the cylinder is glued to the
manifold) shrinks to a point.
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For (2), it is easy to see convergence on the neck N\ (X7 UX5), so let’s consider
the congergence (X;,672g;) — R™. Let 6 > 0 be less than the injectivity radius of
(X, 9:;) at ©;. We know that

d(expmi)z =1+ 0(62)3
where exp,, is the exponential map with respect to the metric g;, d(x,z;) < d.
Given R > 0, choose ¢ < 2 so that the ball B,,(R) C (X;,e 2g;) is a subset

R
of By, (0) C (X;,g:), and therefore

|d(exps;)*g — 1| = 0(6?)

in B,,(R) C (X;,e72g;), which proves the convergence.
O

LEMMA 1. The Sobolev constants for both (X, g.) and (Xc,e 2g.) are uni-
formly bounded.

PROOF. The limit of (X.,e 2g.,z.) is the space M, which is obtained by
connecting two copies of R™ by a neck with fixed size. By continuity, in order to
prove the uniform bound for the Sobolev space, it suffices to prove the Sobolev
inequality on the limiting space.

Let f be a smooth function of compact support on the limiting space M. As
before, we can write

f=h+f+/fs
where f1, fo has their support within one copy of R™ and f3 has its support within
a fixed geodesic ball. Since on Euclidean space we have uniform Sobolev constants,

we have
n—2

(f1s17=) " < [war

for ¢ = 1,2. On the other hand, we have the usual Sobolev inequality on a compact

manifold, thus we have
n—2
(1) " <c [

with a possibly different Sobolev constant C’. Combining the above we get

< s ) <mas(C,c)y [ VAP <C ( Iz |f|2) .
=1

Since the Sobolev constant is independent of scaling, we have also proved the
existence of a uniform Sobolev constant for (X., g.). O

In what follows we prove the main technical theorem of this paper.

THEOREM 4.5. Let X1, X5 be two compact Riemannian manifolds and take
A & Spec(X1) U Spec(Xso). Consider the manifold (X., g.) defined above. Set 26 =
dist(X, Spec(X1) U Spec(Xs)) and take N € (A — §,\+6). Then, for any € > 0
small enough, N\ & Spec(X.).

Proor. We will prove the theorem by contradiction. Assume that for any
€ > 0, there is a A\; € (A —d, A+ 0) such that \. is an eigenvalue of X.. Let f. be
the corresponding eigenfunction. Then

Aefa + >\€fe = 0.
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By a standard Moser iteration argument using the uniform Sobolev inequality, we
have

Ifel3e < C / 1512
Xe

As a result, if we normalize the L? norm of f. to be 1 and given that vol(X.) is
uniformly bounded, we get that the f. are uniformly bounded in L*°. At the same
time must have a sequence ¢; such that A., = Ao € [\ — J, A + §]. By passing to a
subsequence if necessary, we must have f., — &, converging to an L? function ¢ on
Xo. Let & = &|x,\{a,} for i = 1,2. By the above argument, since ¢ is bounded, it
follows that each &; extends to a smooth function on X;. Moreover, we have

A& + M =0

for i = 1,2 with \g € [\ — J, X\ + 6]. Since each of the f. is bounded, with L?
norm equal to 1 for all ¢, at least one of the & is not zero. This contradicts the
assumption on A.. O

REMARK 1. The above theorem can be interpreted as a spectral continuity
result: let A\;(X:) be the k-th eigenvalue of X.. Then a subsequence A\p(X¢,) is
convergent to the corresponding eigenvalue of the limit space.

REMARK 2. Since the Ricci curvature of X, has no lower bound, Theorem 4.5
is not a special case of the theorem of Cheeger-Colding. It is neither a special case
of the theorem of Dodziuk because the limit space is singular.

Let X be a fixed compact manifold. Let 1,22 € X two distinct points. Con-
struct a metric space by first making Z copies of X, and labelling them X;. Then
glue the point z2 of X; onto the point z; of X;; for each j € Z. Denote by M
the metric space obtained through this gluing process.

DEFINITION 2. A smoothing X.ps of M is a smooth manifold constructed as
in (7) at each x1,z. Oviously, under the Gromov-Hausdorff convergence, we have

lim X, = M.

e—0

Similar to to Lemma 1, we have
LEMMA 2. The Sobolev constant for X. is independent to €.
Using Theorem 4.5 we can prove the following.

THEOREM 4.6. Let X, be a smoothing of M constructed in a similar process as
in the beginning of the section. That is, X, is smooth and the Gromov-Hausdorff
limit of X, is M. Then, for e small enough, the essential spectrum of X. has gaps.

PRrROOF. Note that since X, is a periodic manifold, its spectrum must coincide
with its essential spectrum.

Our proof is a generalization of the method used in the proof of Theorem 4.5.
Let A; € Spec(X., g-). We shall prove that a subsequence A., should be convergent
to Ao € Spec(X). Fix § > 0. Let f. be the approximating eigenfunction by the
Weyl criterion such that

HAfe + /\6fs||L2 < 5||fs||L2-
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It is not difficult to see that there exist AL such that A\. — A, = o(1) and for which
we can find a function f! that is the Dirichlet eigenfunction corresponding to A on
the support of f.. That is,

Afl+AfL=0.

We normalize f! so that the L? norm of f/ on K is 1. By using the uniform
Sobolev inequality, we can prove that the f. are uniformly bounded.

Let y. be the maximum point of f.. By the periodic property of X,, by trans-
lating if necessary, we may assume that y. is within a fixed copy of X. Normalizing
f1 so that the maximum of it is 1. Then a subsequence of f! will be convergent to
a non-zero function fy on the copy X which, by elliptic estimates, must be smooth
on the smooth part of M. Since f is also bounded, f must be an eigenfunction of
X. Therefore Ay € Spec(X).

O

REMARK 3. It should be noted that the convergence rate depends on A. For
larger A the rate of convergence may in fact be slower. It would therefore be
interesting to know whether there is an infinite number of gaps in the spectrum of
X, for & small enough.

References

[1] C. Anné, G. Carron, and O. Post, Gaps in the differential forms spectrum on cyclic coverings,
Math. Z. 262 (2009), no. 1, 57-90, DOI 10.1007/s00209-008-0363-0. MR2491601
[2] G. A. Baker and J. Dodziuk, Stability of spectra of Hodge-de Rham Laplacians, Math. Z. 224
(1997), no. 3, 327-345, DOI 10.1007/PL00004293. MR1439194
[3] N. Charalambous, On the equivalence of heat kernel estimates and logarithmic Sobolev in-
equalities for the Hodge Laplacian, J. Differential Equations 233 (2007), no. 1, 291-312, DOI
10.1016/j.jde.2006.10.007. MR2290281
[4] N. Charalambous and Z. Lu, On the spectrum of the Laplacian, Math. Ann. 359 (2014),
no. 1-2, 211-238, DOI 10.1007/s00208-013-1000-8. MR3201899
[6] N. Charalambous and Z. Lu, The spectrum of continuously perturbed operators
and the Laplacian on forms, Differential Geom. Appl. 65 (2019), 227-240, DOI
10.1016/j.difgeo.2019.05.002. MR3948872
[6] J. Cheeger, Degeneration of Riemannian metrics under Ricci curvature bounds, Lezioni Fer-
miane. [Fermi Lectures], Scuola Normale Superiore, Pisa, 2001. MR2006642
[7] J. Cheeger and T. H. Colding, On the structure of spaces with Ricci curvature bounded below.
I11, J. Differential Geom. 54 (2000), no. 1, 37-74. MR1815411
[8] Z. H. Chen and Z. Q. Lu, Essential spectrum of complete Riemannian manifolds, Sci. China
Ser. A 35 (1992), no. 3, 276-282. MR1183713
[9] E. B. Davies, B. Simon, and M. Taylor, L? spectral theory of Kleinian groups, J. Funct. Anal.
78 (1988), no. 1, 116-136, DOI 10.1016,/0022-1236(88)90135-8. MR937635
(10] J. Dodziuk, Eigenvalues of the Laplacian on forms, Proc. Amer. Math. Soc. 85 (1982), no. 3,
437-443, DOI 10.2307/2043863. MR656119
[11] H. Donnelly, On the essential spectrum of a complete Riemannian manifold, Topology 20
(1981), no. 1, 1-14, DOI 10.1016,/0040-9383(81)90012-4. MR592568
[12] H. Donnelly, Ezhaustion functions and the spectrum of Riemannian manifolds, Indiana Univ.
Math. J. 46 (1997), no. 2, 505-527, DOI 10.1512/iumj.1997.46.1338. MR1481601
[13] H. Donnelly, Spectrum of the Laplacian on asymptotically Euclidean spaces, Michigan Math.
J. 46 (1999), no. 1, 101-111, DOI 10.1307/mmj/1030132362. MR1682891
[14] J. F. Escobar, On the spectrum of the Laplacian on complete Riemannian manifolds, Comm.
Partial Differential Equations 11 (1986), no. 1, 63-85, DOI 10.1080/03605308608820418.
MR814547
[15] J. F. Escobar and A. Freire, The spectrum of the Laplacian of manifolds of positive curvature,
Duke Math. J. 65 (1992), no. 1, 1-21, DOI 10.1215/S0012-7094-92-06501-X. MR1148983


https://www.ams.org/mathscinet-getitem?mr=2491601
https://www.ams.org/mathscinet-getitem?mr=1439194
https://www.ams.org/mathscinet-getitem?mr=2290281
https://www.ams.org/mathscinet-getitem?mr=3201899
https://www.ams.org/mathscinet-getitem?mr=3948872
https://www.ams.org/mathscinet-getitem?mr=2006642
https://www.ams.org/mathscinet-getitem?mr=1815411
https://www.ams.org/mathscinet-getitem?mr=1183713
https://www.ams.org/mathscinet-getitem?mr=937635
https://www.ams.org/mathscinet-getitem?mr=656119
https://www.ams.org/mathscinet-getitem?mr=592568
https://www.ams.org/mathscinet-getitem?mr=1481601
https://www.ams.org/mathscinet-getitem?mr=1682891
https://www.ams.org/mathscinet-getitem?mr=814547
https://www.ams.org/mathscinet-getitem?mr=1148983

[16]
(17]

18]

19]

[20]
21]
(22]
(23]

[24]

[25]

[26]

27]
(28]

29]

SPECTRAL GAPS 11

K. Fukaya, Collapsing of Riemannian manifolds and eigenvalues of Laplace operator, Invent.
Math. 87 (1987), no. 3, 517-547, DOI 10.1007/BF01389241. MR874035

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Classics
in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR1814364

J. Y. Li, Spectrum of the Laplacian on a complete Riemannian manifold with nonnegative
Ricci curvature which possess a pole, J. Math. Soc. Japan 46 (1994), no. 2, 213-216, DOI
10.2969/jmsj/04620213. MR1264938

F. Lledé and O. Post, Ezxistence of spectral gaps, covering manifolds and residually finite
groups, Rev. Math. Phys. 20 (2008), no. 2, 199-231, DOI 10.1142/S0129055X08003286.
MR2400010

J. Lott, On the spectrum of a finite-volume negatively-curved manifold, Amer. J. Math. 123
(2001), no. 2, 185-205. MR1828220

Z. Lu and D. Zhou, On the essential spectrum of complete non-compact manifolds, J. Funct.
Anal. 260 (2011), no. 11, 3283-3298, DOI 10.1016/j.jfa.2010.10.010. MR2776570

O. Post, Periodic manifolds with spectral gaps, J. Differential Equations 187 (2003), no. 1,
23-45, DOI 10.1016/S0022-0396(02)00006-2. MR1946544

O. Post, Spectral convergence of quasi-one-dimensional spaces, Ann. Henri Poincaré 7 (2006),
no. 5, 933-973, DOI 10.1007/s00023-006-0272-x. MR2254756

M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of oper-
ators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978.
MR0493421

R. Schoen and H. Tran, Complete manifolds with bounded curvature and spectral gaps, J. Dif-
ferential Equations 261 (2016), no. 4, 2584-2606, DOI 10.1016/j.jde.2016.05.002. MR3505201
R. Schoen and S.-T. Yau, Lectures on differential geometry, Conference Proceedings and
Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994.
Lecture notes prepared by Wei Yue Ding, Kung Ching Chang [Gong Qing Zhang], Jia Qing
Zhong and Yi Chao Xu; Translated from the Chinese by Ding and S. Y. Cheng; With a
preface translated from the Chinese by Kaising Tso. MR1333601

K.-T. Sturm, On the LP-spectrum of uniformly elliptic operators on Riemannian manifolds,
J. Funct. Anal. 118 (1993), no. 2, 442-453, DOI 10.1006/jfan.1993.1150. MR1250269

J. Wang, The spectrum of the Laplacian on a manifold of nonnegative Ricci curvature, Math.
Res. Lett. 4 (1997), no. 4, 473-479, DOI 10.4310/MRL.1997.v4.nd.a4. MR1470419

D. T. Zhou, Essential spectrum of the Laplacian on manifolds of nonnegative curvature, In-
ternat. Math. Res. Notices 5 (1994), 209 ff., approx. 6 pp., DOI 10.1155/S1073792894000231.
MR1270134

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF CYPRUS, NICOSIA, 1678,

CYPRUS

Email address, Nelia Charalambous: nelia®@ucy.ac.cy

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, IRVINE, IRVINE, CA 92697,

USA

Email address, Helton: hleal@uci.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, IRVINE, IRVINE, CA 92697,

USA

Email address, Zhiqin Lu: zlu@uci.edu


https://www.ams.org/mathscinet-getitem?mr=874035
https://www.ams.org/mathscinet-getitem?mr=1814364
https://www.ams.org/mathscinet-getitem?mr=1264938
https://www.ams.org/mathscinet-getitem?mr=2400010
https://www.ams.org/mathscinet-getitem?mr=1828220
https://www.ams.org/mathscinet-getitem?mr=2776570
https://www.ams.org/mathscinet-getitem?mr=1946544
https://www.ams.org/mathscinet-getitem?mr=2254756
https://www.ams.org/mathscinet-getitem?mr=0493421
https://www.ams.org/mathscinet-getitem?mr=3505201
https://www.ams.org/mathscinet-getitem?mr=1333601
https://www.ams.org/mathscinet-getitem?mr=1250269
https://www.ams.org/mathscinet-getitem?mr=1470419
https://www.ams.org/mathscinet-getitem?mr=1270134

	1. Introduction
	2. The New Weyl criterion
	3. On a theorem of Sturm
	4. Spectral continuity and a gap theorem
	References

