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We consider an inverse boundary value problem for a semilinear wave equation on
a time-dependent Lorentzian manifold with time-like boundary. The time-dependent
coefficients of the nonlinear terms can be recovered in the interior from the knowledge
of the Neumann-to-Dirichlet map. Either distorted plane waves or Gaussian beams can

be used to derive uniqueness.

1 Introduction

Let (M,g) be a (1 + 3)-dimensional Lorentzian manifold with boundary oM, where the
metric g is of signature (—,+,+,+). We assume that M = R x N where N is a manifold

with boundary 9N, and write the metric g as
g=—B(tx)dt* + k(t,x), (1)

where x = (t,x) = (x%,x!,x%,x%) are local coordinates on M; here, 8 : R x N — (0, 00)

is a smooth function and «(t,-) is a Riemannian metric on N depending smoothly on
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2 P. Hintz

t € R. The boundary dM = R x dN of M is then timelike. Let v denote the unit outer
normal vector field to 0M. Assume that dM is null-convex, which means that II(V, V) =
g(Vyv, V) > 0 for all null vectors V € T(dM); see [18] for a discussion of this condition.

We consider the semilinear wave equation on M

Dgu(x) + H(x,u(x)) =0, onM,
9,u(x) = f(x), ondoM, (2)

u(t,x)=0, t<0,

where O, = |detg|~'/%9,(\/]| det g|g’*;) is the wave operator (d'Alembertian) on (M, g).

We assume that H(x, z) is smooth in z near 0 with Taylor expansion
o
H(x,z)~ Y h(0zZF, Ry e C®@).
k=2

As Neumann data, we take f which are small in C"™*! for fixed large m. The Neumann-
to-Dirichlet (ND) map A is defined as

Af = u|3M,

where u is the solution of (2). We will investigate the inverse problem of determining
hj(X),j =2,3,..., from A.

We remark that for the linear equation Uju + Vu = 0, the problem of recovering
V from the ND map is still open in general. Stefanov and Yang [36] proved that the
light ray transform of V can be recovered from boundary measurements; however, the
invertibility of the light ray transform is still unknown on general Lorentzian manifolds.
We refer to [14, 30, 40] for an overview and recent results on the light ray transform.

In [26], the nonlinearity was exploited to solve inverse problems for a nonlinear
equation where the corresponding inverse problem is still open for linear equations. The
starting point of the approach is the higher order linearization, which we shall briefly
introduce here. We take boundary Neumann data of the form f = 3V  ¢,f;, where ¢,
i = 1,...,N are small parameters. Since A is a nonlinear map, A(vaz1 €;f;) contains

more information than {A(f;)};,_; _y:indeed, useful information can be extracted from

.....

N
- A £ ).
ey -+ ey ley==ey=0 (Z qﬂ)

i=1
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An Inverse Boundary Value Problem 3

This higher order linearization technique has been extensively used in the literature
[1,5,6,9, 10, 16, 20, 22-24, 26-29, 31, 32, 37, 38, 41]

The recovery of nonlinear terms from source-to-solution map was considered
in [32], where the authors use the nonlinear interactions of distorted plane waves.
The approach originated from [26], and has been successfully used to study inverse
problems for nonlinear hyperbolic equations [6, 9, 10, 24, 31, 32, 38, 41]. For some similar
problems, Gaussian beams are used instead of distorted plane waves [15, 25, 39]. The
two approaches are actually closely related; both enable a pointwise recovery of the
coefficients in the interior.

In this article, we will study the above inverse boundary value problem using
both distorted plane waves and Gaussian beams. The two approaches will be discussed
and compared in the last section.

To state our main result, recall that a smooth curve u : (a,b) — M is causal if
g(p(s), i1(s)) < 0 and p(s) # 0 for all s € (a,b). Given p,q € M, we write p < qif p =qor
p can be joined to g by a future directed causal curve. We say p < qif p < gand p # q.
We denote the causal future of p € M by J*(p) = {g € M : p < q} and the causal past
ofge MbyJ (q) ={p € M : p < q}. We shall restrict the ND map to (0,T) x dN, and

correspondingly work in

= U Jsonie.

p.qe(0,T)xdN

Theorem 1.1. Consider the semilinear wave equations
Ooux) +H? (x,ux) =0, j=1,2.

Assume H?(x, z) are smooth in z near 0 and have a Taylor expansion!
HO(x,2)~ > ) 0z",  hY ec®).
k=2
Assume that null geodesics in U do not have cut points. If the Neumann-to-Dirichlet

maps AP acting on C8([0, T] x dN) are equal, AV = A®, then

Y x) =hPx), xeU, k=2

) v
1 The notation means that h](c]) (%) = % :Z—kH(]) (x,0).
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4 P. Hintz

The strategy of the proof is to send in distorted plane waves (or Gaussian beams)
from outside the manifold M (within a small extension M) and analyze contributions to
the ND map from nonlinear interactions in the interior of M as well as from subsequent
reflections at the boundary M of M.

The rest of this paper is organized as follows. In Section 2, we establish the
well-posedness of the initial boundary value problem (2) for small boundary data. In
Section 3, we use the nonlinear interaction of distorted plane waves to prove the main
theorem. In Section 4, we give another proof of the main theorem using Gaussian beam
solutions, assuming h, is already known. Finally, the two approaches will be compared

and discussed in Section 5.

2 Well-posedness for small boundary data

We establish well-posedness of the initial boundary value problem (2) in this section
with small boundary value f.

Fix m > 5. We assume f € C"™"1([0, T] x dN) and I lem+1 o, T1xan) < €0 for a small
number ¢, > 0. Assume also that f satisfies the compatibility condition % = 0 at
{t=0)}forany £ =0,1,...,m — 1. We can find a function h € C™*1([0, T] x N) such that

d,hlo,r1xon = f and

Ihllemergo,m1xary < Cllf llem+1go,m1xam)-

Let u = u — h, where u solves the initial boundary value problem (2). Then u satisfies

the equation
ggﬁ =F(x,u,h) = —Dgh — H(x,u+ h),

supplemented with the boundary condition d,u = 0 on (0, T') x 9N and initial conditions

u= ad_? = 0 at {0} x N. The above equation can be written in the form

O,u=F(x,u,h), in(0,T) x aN,

u=0, on(0, T) x 9N, (3)

u=—=0, ont = 0.
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An Inverse Boundary Value Problem 5

This equation is of the form [8,equation (5.12)]. For R > 0, define Z(R, T) as the set of all

functions w satisfying

m m
w e (W0, T); H™*@)),  |wlif = sup > [9fw(@®)|5m . < R

k=0 telo,T1 .

We can write F(x,u, h) = % (x, h) + G(x, U, h)u where % = —0gh — H(x, h) and

1
Gx,u,h) = —/ 0, H(x,h + tu)dr.
0

We can write % (x, h) = % (t,y, h) using the notation x = (¢, y). Since H(x, z) is smooth in

z, we have
m—1 m—1
sup D 10fF (¢, W) gm-k-1 < C sup > |9FEF(t, -, W) em-k1 < Ceg.
tel0,T] k=0 tel0,T] k=0

Moreover, d,H(x, z) vanishes linearly in z, hence we have

m
G(x,u,h) € [ Wh=(0, T); H"*(), 11G(x, @ )iz < C(Ihllz + 1Tlz) < C'(eq + ITllz)
k=0

for u € Z(py, T) with p, small enough.

Given W € Z(pg, T), consider first the linear initial boundary value problem

0,4 — Gx, W, i = F(x,h),  te(,T),

9. u=0, te (0,7, (4)

v

- u
u(0) = E(O) =0.

By [8,Theorem 3.1], there exists a unique solution & € [y, ck(o, T1; H™ %)) to (4), and

it satisfies the estimate
~ ~ ~ 12
ITll; < Cleg + €ollWlly + W5)eXT,

where C, K are positive constants depending on the coefficients of the equation. Denote

7 to be the map which maps w € Z(py, T) to the solution @ of (4). Notice that we can
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6 P. Hintz

take py small enough and ¢, = % Po such that
C(eg + €gpg + pg)eKT < pg-

Then 7 maps Z(py, T) to itself.

Now assume ﬁj,j =1, 2, solve the equation

Dgﬁ] — G(x, ﬁ/],h)ﬁ/] = gi(X, h), te (0, T)

(0 —aajo =0
7(0) =~ (0) = 0.

We have ﬁj = ﬂﬁvj,jz 1,2 and

1
Dg(al - az) = - (/(; 8ZH(X/h + "/‘JVZ + ‘L’(V~V1 - Wz))dt) (VT/l - {/VVZ)
Then
| 7w, — TWylly = Uy — Uylly < Cleg + pe)eT Wy — Wyll5.

Choosing p, small enough such that C(¢, + po)eKT < 1, the map 7 is a contraction.
Consequently, the equation (3) has a unique solution u in Z(py, T). Using [8,Theorem 3.1]

again, we have

u e (1) ckdo, TI; E™ ).
k=0

In summary, we have shown:

Theorem 2.1. Let T > 0 be fixed. Assume that f € C"*1([0, T) x dN), m > 5, and % =0
at {t = 0} forany ¢ = 0,1--- ,m — 1 at t = 0. Then there exists ¢; > 0 such that for

m < €, there exists a unique solution
C 0 q

ue () ckdo, T1; H™ @)
k=0
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An Inverse Boundary Value Problem 7

of equation (2). It satisfies the estimate

sup ||8tmflc

u(t)”Hm*k(N) = C”f”Cerl([o,T]XaN),
tel0,T]

where C > 0 is independent of f.

If f = ¢f, where ¢ > 0 is small, then for any N = 1,2,..., we can write (cf.

[7,Appendix III] and the discussion in [26,Section 3.1])

N
u:ZeJWj+RN, (5)
j=1

where wj € Nito ck{o, T); H™*(W)) forj=1,--- N, Ry € Nito cko, T1; H™ k(1)) and

sup |18 Ry (&)l gm-xay, < Cye™ !,

tel0,T]

where Cy > 0 is a constant depending on N. Indeed, this follows by plugging (5) as an
ansatz into equation (2), solving inductively for the coefficients w; (which only involves

the solution of linear wave equations), and solving a nonlinear equation for Ry with

N+1

forcing term of size ¢ 7". Hence one can denote

aN
Wy = ae—Nu|E:0. (6)
The proof presented later will heavily depend on the above asymptotic expansion.
3 Recovery using distorted plane waves
In this section we will show how to recover h;, k = 2,3,... by using the nonlinear

interaction of distorted plane waves. First we extend the metric g on M smoothly to

a metric g on a larger manifold M = R, x N such that

1. N is contained in the interior of NV, and thus M is contained in the interior of
M;

2. Nis closed, i.e., compact without boundary,

3. gis a warped product metric, g = —E(t,x’)dt2 +x(t, x"), with E =pBandk =«

on M in the notation of (1).
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8 P. Hintz

We can for example take N to be the double of N, and define ,E to be an arbitrary but
smooth and positive extension of 8 to M, and similarly ¥ to be an arbitrary but smooth
positive section of S2T*N over R, x N extending «. The advantage of this construction is

that M is globally hyperbolic, which will occasionally be useful.

3.1 Notations and preliminaries

For p € M, denote the set of light-like vectors at p by
L,M = {¢ € T,M\ {0} : g(¢,¢) = O}.

The set of light-like covectors at p is denoted by L;;fw. The sets of future and past
light-like vectors (covectors) are denoted by L;IVI and L;ZVI (L;‘,’+1\~/[ and LI*,'+Z|7I). Define

the future directed light-cone emanating from p by
LY(p) ={y,, () e M: ¢ € LI M,t > 0} C M.

Distorted plane waves have singularities conormal to a submanifold of M and
can be viewed as Lagrangian distributions. We review them briefly, closely following
the notation used in [32]. Recall that T*M is a symplectic manifold with canonical 2-
form, given in local coordinates by w = Zj;l d§; A dx/. A submanifold A C T*M is called
Lagrangian if n := dim A = 4 and w vanishes on A. For K a smooth submanifold of M,

its conormal bundle
N*K ={(x,0) e T"M :x € K, (¢,0) =0, 6 € T,K}

is a Lagrangian submanifold of T*M. Let A be a smooth conic Lagrangian submanifold
of T*M \ 0. We denote by Z#(A) the space of Lagrangian distributions of order u
associated with A. If A = N*K for some submanifold K c M, then Z#(K) := I*(N*K)
denotes the space of conormal distributions to K. For u € Z#(A), one can define the

principal symbol 6P (u) = Jl(f’)(u) of u with
oP(u) e S*T1(A, Q2 @ L)/ i (A, QY2 L),

where ©1/2 is the half-density on M and L is the Maslov—Keller line bundle of A. We

refer to [12,Chapter 4] for the precise definition and more discussions.
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An Inverse Boundary Value Problem 9

For waves described by nonlinear wave equations, the distorted plane waves,
characterized by Lagrangian distributions, can have nonlinear interactions and gen-
erate new propagating singularities. Such new singularities can be characterized by
paired Lagrangian distributions, which will be reviewed below. The detailed analysis
of the singularities and principal symbols of the waves generated by nonlinear interac-
tions is the key to the study of various inverse problems for nonlinear wave equations
[6, 9, 10, 24, 26, 31, 32, 38, 41]. Let Ay, A; C T*M \ 0 be two Lagrangian submanifolds

intersecting cleanly, i.e.,
T,AgNTpA; =Ty(AgNA;) VpeAgNA,.

We denote the space of paired Lagrangian distributions associated with (Ay, A;) by
TPL(Ag, A;). We mention here that if u € ZP4(Ay, A;), then microlocally away from Ay N
Ay, we have u Ip‘H(A0 \A;) and u € ZP(A; \ Ay) with well defined principal symbols
aj(\l;)(u) and aj(\l;)(u). For more details, we refer to [17, 33].

Fix a Riemannian metric gt on M. Given X, € M\ M, o € Lj{ofl/[, and s, > 0, put

Wiorcowso = 11 € LEM < [l = &ollg+ < So, Inllgs = 110l g+,

K (X0, 80,S0) = {Vygy() EM: n €W

xo.t0.s0’ S € (0,00)},

A (X, 20:50) = { Vg g () TV n(8)") € T*M; 1 € Wy g 50,8 € (0,00), 7 > 0},
Notice that K(x,, ¢y, So) is a subset of codimension 1 of the light cone £*(x), and
N*K(XOI LorSo) = A(Xg, &g/ Sp)-

By [26,Lemma 3.1], one can construct distributions u, € ZH(M \ {x,}, A(Xo, o, 50))
which on M satisfy Ugug € C*°(M), and whose principal symbol is nonzero on
(on,go(s)'l}xo,;o(s)b)- Thus, u, is a nontrivial distorted plane wave propagating on the
surface K(xg, {g, Sg)-

We consider four distorted plane waves

uJ € IM(MIA(lesjl SO))I J = 1121 3141
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10 P. Hintz

which are approximate solutions of the linearized wave equation in M, that is, Ogu; €
C*®(M). Let

K] = K(Xj,é’jj,so), A] = A(Xj,";“j,so) = N*I<] (7)

As in [32], we make the following assumptions.

Assumption 3.1. Assume that
1. K, Kj, i # j, intersect at a codimension 2 submanifold Kij c M;
2. K, K;, Ky, i,j, k distinct, intersect at a codimension 3 submanifold Ky C M;
3. K;, K,, K3, K, intersect at a point g, € M.

Assume further that for any two disjoint subsets I,J C {1, 2, 3,4}, the intersection of

NierK; and Nje;K; is transversal if not empty.

We use the notations

AZN*K, Aljk:N*K

ij ij ijk Agy = Tg,M\O;

which are all Lagrangian submanifolds in T*M. For any I' C T*M, we denote by I'9 the
flow-out of I' N L**M under the null-geodesic flow of g lifted to T*M. To define this
precisely, denote by H; € C(T*M; TT*M) the Hamilton vector field of the dual metric
function G: T*M > ¢ — g~ 1(¢, ¢); in particular L*M = G~1(0). We then put

9 := {exp(sHg)¢: 0 < s < s,(¢), ¢ € TNL*TM}, 8)

where s — exp(sHg)¢ is the integral curve of H; with initial condition ¢, and s (¢) €
(0, 0c0)U{+00} is the supremum of the maximal interval of existence of this integral curve.
We assume x; € (0, T) x N; we can take sp small enough so that U; is smooth near

t = 0. Denote f; = 3, u;|,,.; then the solutions v; of the linear equations

ngi(x) =0, onl\,
0,v;(x) = fi(x), onoM,

v;(t,x) =0, t <0,
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An Inverse Boundary Value Problem 11

are equal to u; modulo C*(M). We will use nonlinear interactions of three or four

distorted plane waves for our study. For N = 3 or 4, consider then
N
f=> ¢ 9
i=1

and denote v = 3" | €,v;. We write w = Q,(F) if w solves the linear wave equation

Dgw(x) =F, onM,
o,w(x) =0, ondM,

w=0, t<0O0. (10)
The solution u to (2) is then given by the asymptotic expansion [32,(2.9)]

u=v—Q,hyv?) + 20,(hyvQ,(hyv?) — 4Q,(hyvQy(hyvQy(hyv?)))
— Qy(hyQ,(hyv?)Qy(hyv®)) 4 20 (hyvQ,(hv?)) — Qy(hav®) + 3Qy(Rav* Qg (hyv?))

- Qg(h4v4) + higher order terms ine, ..., €y. (11)

We will use the singularities from the terms in (11) to recover the coefficients of (2).
Notice that those terms involve nonlinear interactions of distorted plane waves v;, j =
1,...,N, and thus new singularities can be created. Recovery of a Lorentzian metric from
the source-to-solution map using those newly generated singularities was first carried

out in [26]. For recovery of the coefficients of nonlinear terms, we refer to [10, 32].

3.2 Nonlinear interactions of three waves and recovery of (h;)2 and hs

First, we will first use three distorted plane waves, i.e., taking N = 3 in (9) and using

Neumann data

3
f=2 ¢
i=1

withe; > 0,i=1,2,3, small parameters. We will construct suitable sources f;,i =1, 2, 3,

and denote by v; the corresponding distorted plane wave.
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12 P. Hintz

Forany p € M and ¢ € L;;’JrM define y(s) = Vp,e(S) to be the geodesic such that
y(0) = p and y(0) = &%, Define

sT(p,&) =inf{s > 0: y(s) € M}, s (p,&) =sup{s <0:y(s) € IM}.
Fix a point g, € U. There exist £, M e L}*"M such that
X" =Yg :w(5(qo,EM)) € (0,T) x IN,  xo =y, :0(57(qp, &) € (0,T) xaN.  (12)

Indeed, by definition of U, there exists a point (ty, yy) € (0, T) x 0N and a future causal
curve lying inside M which joins (¢,y) and gq,. Since the t-coordinate of g, is less than
T, the set of t € [ty, T) for which there exists a future causal curve inside the larger
manifold M joining (t, Vo) and g, has a least upper bound ¢ < T. Standard compactness
arguments on the globally hyperbolic manifold M imply that there exists a future
causal curve y from (¢,y,) to g, which by short-cut arguments must be a positive
reparameterization of a null-geodesic without cut points [34,8§10]. Upon normalizing
y so that y(0) = (t,y,) and y(1) = g, the backwards null-geodesic u: [0,s,] — M
with initial data (g, —y (1)) coincides with y until it reaches u(sy) = (¢, y,). Note that
tou: [0,s4] — (0, T) is monotonically decreasing; thus, for the smallest s € (0, sy] so that
x~ = u(s) € (0,T) x N, we necessarily have (t o w)(s) € [(t o u)(sy), (t o w)(0)] C (0,T).
This shows that x~ € (0, T) x 3N is of the form (12) with € = —/i(s)’, and in particular
proves the existence of £1). The argument for £© is analogous.

Put y¥) = Vg0 J = 0,1 and denote x; = yV(s7(gp, V) — ¢) for € > 0 small;
thus, x; € M \ M lies just barely outside of M.

Choose local coordinates so that g coincides with the Minkowski metric at
qp- Using further linear changes of coordinates which leave the Minkowski metric
unchanged (that is, rotations in the spatial variables, Lorentz boosts), and upon scaling
£© £M by a positive scalar, one can assume without loss of generality (cf. [6,Lemma 1])
that

S(O) = (_1l _\/ 1 - r%l rOI O)I S(l) = (_1l ]-l O, O)I

for some ry € [—1,1]. Take a small parameter ¢ > O and introduce two perturbations
of £

§@=(-1,1-¢%50, §9=(-11-¢%-5,0.

120z AeN G uo 1senb Aq 8/£€/29/880GBUL/UIWIEGOL 0 L/I0P/S[OIHE-SOUBAPE/UIWI/LOY"ANO"OILISPEDE//:SARY WO PAPEOIUMOQ



An Inverse Boundary Value Problem 13

Notice £@,&® e Ly"M. One can then write £© as a linear combination of £, £® £®),

EO — g gW 4 g 2@ | g @),

with
—J1-¢2—/1-13 1+,/1-7r3 T 1+ ,/1-73 ry
o) = Py =+, U= — .
! 1-J/1-c2 2T 2a-V1-¢2) 25" " 20-J1-¢%) 2

Denote b(ry) =1 + H. By direct calculation, and using the asymptotics /1 — ¢2 =
1-— %gz + O(¢*), we obtain

o €V + a,6P)2 = 2b(rp)’c 2+ 07,

oy ED + azE®12 = 2b(rg)?c %+ O(c™H,

logE @ + @12 = —ab(rg)*c >+ O(c™H.

Therefore,
016D + opE D% 4 g 6D g @2 + gt @ + gt @2 = 4b(?;0)2 210, (13)
By taking ¢ small enough, the quantity
> \aa(z)s“"z)) +a,@E @] 2 (14)

0ex(3)

is nonvanishing; here, ¥(3) denotes the permutation group of {1, 2, 3}.

Forj=2,3,let y? = Ygo.c0)» and denote
X] = y(])(s_(q()r‘i:(])) - 6)1 J= 2/ 31

for € > 0 small. Here, if we took ¢ = 0, then we could choose ¢ small enough so that
Xj € (0, T) x dN; fixing ¢ in this manner, we can then take ¢ > 0 small enough so that Xj €
M\Mandt > 0 at x; still. Here we used the fact that null-geodesics are nontangential,

hence transversal, to dM due to the null-convexity of dM. Now for j = 1, 2,3 denote

5 = Vg0,50 (S (@0, §) — € € Ly M.
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14 P. Hintz

Use these (Xj,éj),j =1,2,3,1in (7) and denote associated distorted plane waves by
UjEIM(Aj), J= 1,2,3.

We note that §© e N3K 5.
Let u denote the solution of (2) with f = Zf’zl €;f;, and put
u® =9_3_9

€1 “eg Yeg u|€1=62:€3:0’

which can be defined analogous to (6). We can then decompose

U =u¥ + U, UY =—-60,(hgvyvavy), U =2 D Qy(haV, ) QhyVy ) Ves)-

ce(3)
(15)

Recall that Qg is the solution operator associated with the equation (10). On globally
hyperbolic manifolds (no boundary!), the wave operator [J;, has a causal (retarded)

inverse (cf. [3,Theorem 3.3.1]). Denote by 5g = Dg*1 the causal inverse of Dg on M. Then

U = (I 4 YD = 60 (Rgvyvpv) +2 D QyhyV, ) QhaV, 5 Ve))  (16)
0eX(3)

is the incident wave before reflection on the boundary. We have (cf. [32,Proposition 3.7]

and the subsequent discussion):

Proposition 3.2. Let AJ,, be the flow-out of Ajy3 N L*tM, as defined in general in (8).
Then

i 11
U € THF272 (A g3, ATp3)

away from U} | A;. Forany q € K 53 and ¢ € NK;,3, there exists a unique decomposition
. = Z}Ll g with ¢ € NgK; (cf. [32]). Assume that (y,n) lies along the forward null-
bicharacteristic of 0, starting at (g, ¢). The principal symbol of %{/®1%¢ can be written

as

3

P US) (y, ) = P U )y, ) = —621) 2P (@ (v, 1.9, Ohs(@ [ [P (v))(q,¢)).
j=1

(17)
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An Inverse Boundary Value Problem 15

Note here that K, is a 1-dimensional spacelike submanifold since its conormal
bundle at p € K5 is timelike, being the 1-codimensional vector space NyK;;3 =
NpK, + NpK, + N;K; C TyM which by assumption contains 3 linearly independent null
covectors. This implies that the intersection of A,5 and the flowout A“‘1723 along its null
directions is clean. (Note here also that a future null-geodesic starting at K;,; does not
intersect K, ,; again.) For our purposes, { = a&® and ¢; = ;€0 for some o, «; € R. We
are particularly interested in this expression for g = g, and y = x;,. Notice that gy € K55
and q, and x, is joined by the null-geodesic y©.

Now, the solution 2/® of the initial-boundary value problem can be written as

the sum of the incident wave /"¢ and wave &/® ™! arising from reflection at M

U® — @ine | 7/@)ref

The reflected wave vanishes prior to the intersection of supp ¢/®2¢ with the boundary
OM, and in a small neighborhood of y, satisfies Dgu@)'mf = 0 with Neumann data
d Ut — 5 1/®inc Near y and in view of the null-convexity assumption on dM,
the incident wave ¢/®"¢ is a conormal distribution relative to the conormal bundle
of a submanifold transversal to dM; therefore, so is U f. Moreover, the principal
symbols of the restrictions of /3¢ and ¢/®)rf to 9M agree due to the Neumann
boundary condition. (Indeed, following [36], we can write &/®* in a neighborhood of
y in the form U®* = (27)73 [€9**9a*(x,0) d9 for e = inc, ref and suitable symbols

a®, where the phase functions ¢*® solve the eikonal equation |d¢®|5 = 0 with boundary

2
conditions ¢°*(x,0) = x -0, x € dM, and 8U¢ref = —3V¢>inc. ThegNeumann boundary
condition 3 ,U®|,,, = 0 implies (3,¢")a™® + (3,¢")a™ = 0, thus a'™® = a™ at aM,
as claimed.)

Denote R(U®") to be the trace of &/®12¢ on 9M; the trace operator R an FIO of

order é ([12,Chapter 5.1]) with canonical relation

Fr ={ .y, € (T*(dM) x T*M) \Gy =y = ’7|Ty(aM)}'

For any (y|,n)) € T*(dM), there exists at most one outward pointing n € L;‘,M such that
n = ’7|Ty(aM)- For such (yl, n. Y, n), the principal symbol oc® (R)(y|, n. Y, n) is nonzero (cf.
[12,Chapter 5.1]). Using the multiplicativity of principal symbols, we then have

1 3)i
507 (06,0500 A (i + €0 + €3f3) I —pmesm0) W1 1) = 0 PRI 1y, v, o P U™y, ).

(18)
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16 P. Hintz

We refer to [12,Chapter 4] for a discussion on the compositions of FIOs.

We now show how to use this to recover h; from the principal symbol of ¢4 (3)inc,

for j = 1,2, let u® solve the equation (2) with H = H? and 3,u?) = f = 33 ¢f.

Decompose U7 = 9_ a0, u| _.,_.,_o as
Ui =7y,

as in (15); moreover, decompose

U(S)’inc’j _ ué3),inc,j + u1(3),inc,j’

as in (16). By assumption, we have
06,0, 0es AV (N ey —eymes=0 = ey 00y AP (Pl ey —epmes =0 (13)
the expression (18) shows that this implies
o DUy, m) = o P U (). (20)
By the explicit formula for ¢ ® (Z/Iég)’inc’j)(y, 1) given by (17), and taking y = x,, we get

h (qo) = Y (qo).

Since gy was an arbitrary point in U, we conclude that hél) = hél) inU

Now we analyze

3
u‘) —9 Z Qy(hyv, 1y Qg(hyV, 2V (3)))-
oeX(3)

Since hy has already been recovered, we can subtract its contribution to U®; we
can thus determine U(3)|8M More precisely, the fact 8€ 362 63A(1)(f)|61_62 10
O¢, Oc, E3A(2)(f)|61 —ey—es—0 implies

3), 3), 3),2 3),2
U + U s = UL +UPP) s

Recall that Z/{éS)J = —6Q (h V,V,V3) and h(l) h(z) in U; therefore, L{és) 1 L{és)’z on oM,
hence Z/l{3) = Z/l{3) 2 on OM.
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An Inverse Boundary Value Problem 17

Similarly to before, we write Lll(s) = Z/{I(S) Ane Z/Il(s)'mf, where

3).i Q Q
Uy =2 2. 0y(hav,0)0g(haV, 3) Ve 3)
seX(3)

UI(S),ref

is the incident wave and is the reflected wave. By [32,Lemma 3.3, 3.4], we have

ag(hZViVj) S Iﬂ_lrﬂ (Al]’ Al) + IM_I'M (Al]’ A_])

Then using [32,Lemma 3.6 and Proposition 2.1], one can obtain (cf. [32,Proposition 3.7]

and the discussion after it):

Proposition 3.3.  For any q € K;,3 and ¢ € NgKj,3, assume (y, ) is joined from (g, {) by

a null-bicharacteristic. If h, is nonvanishing on K3, then
i 3 1
U € T2 (A 5, AY,g),

away from U?zlAi, with principal symbol

P Uy, ) =22m) 20 P @)y, 1. 4. Oh @ | D @ +lor
cex(3)

3
< [Te® wp(a.¢.

J=1

3),inc,1 3),inc,2 . 3),1
Now we can conclude that o ® U P! (y, n) = o ® U ™%)(y, n) since UP" =
2/11(3)'2 on dM; we use this for y = x; and g = g,. As shown in equations 1314, the sum

D 6es3) |§U(2) + %53 ] ;(%10) appearing here is nonvanishing; therefore,

(W (g)? = (KP (go))?.

3.3 Nonlinear interactions of four waves and recovery of hy and hg

In this section, we use nonlinear interaction of four distorted plane waves. Thus, we

take N = 4 in (9) and consider Neumann data

4
f=2 ef
=1
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18 P. Hintz

Take x;,X,,X3,%, € M\ M in a neighborhood of x_, where x_ is as in (12) for some point
qo € U; suppose yy .. joins x; to q,. Take u; € Z"(A(x;,§;,59)) and let f; = 9,u;lyy, for i =
1,2,3,4. One can ensure that A; = N*K; = A(x;,&;,59),1=1,2,3,4 satisfy Assumption 3.1
in Section 3.1.

In this section, we will use the notations

1 4 .

i

2 _ 4 . 3) _ 4 .
O =V Ay O =Up e A

), 4 . 2 _ 4 . 3 _ 4
KV Ul K; K® =uf_ Ky K9 = Ul K

E=00ue®9uA
qo°
Write

V@ =5 9 9.0 ul

€17€2%€3%€q Plej =€p=€3=€4=0

= =4 QuhyV,1)Qq(hoV,()Qg(RoV, 3V )

ogeEX
= D Qy(hyQy(haV,(1) V5 2) Qg MoV 3) Vo))
oeEX
+2 2 Qg(hyv, 1) Q(R3Vy ) Vo) Vo) +3 D, Qg(hsVy(1) Ve 2)Qg(RaVy ) Vo a)
oex ogeEX
— 24Q4(hyv,vyv3vy).

Assume V@ = y@inc L p@ref yhere Y®inc ig the incident wave, and V@ e ig the
reflected wave. Part of the results in [32,Proposition 3.11, 3.12] can be summarized in

the following proposition.
Proposition 3.4. If h,(gy) # 0, we have
; 3
y@ine ¢ 7atz (A9 \ B)

away from U?ZlAi, with principal symbol

4
o @ VB (y, ) = —2427) 20 P Q) (v, 1, 4o, ORa(qe) [ [oP (v (ap. ), (21)
j=1

for (y,n) € AZO \ E. Here (y, n) is joined with (qgy, ¢) by a null-bicharacteristic of [J;, and
¢ € Liy7"M has the unique decomposition ¢ = >t ¢ withy e N K;.
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An Inverse Boundary Value Problem 19

Assume h$”, Y # 0 at g,. Denote K& = 7(©®9) C M. By taking s, — 0, the set
KD UK® tends to a set of Hausdorff dimension 2 (cf. [26,Section 4]). Thus we can choose
so small enough such that there exists ¢ € Ay \ ©D U ©®®) such that y € (0, T) x dN.
But then

1 2
851852 863 8€4A( )(f)|61262:€3:€4:0 = 851852 aeg 8€4A( )(f)|61:62:€3264:0
implies
o P (YBinely(y ) = o P W)y ),
By the explicit expression for o ® (V®¢)(y, ) given in (21), we obtain
1 2
i (ae) = R (o).
With h, thus recovered in U, we can determine
4 _ @
V7 =V 4240, (hyv vyv3v,).

at the boundary (0, T') x dN. Here we use the fact that, by the finite speed of propagation,
Qg (hyviv,V3Vy)l(o,1)<sn depends only on the value of hyv,v,v3v, in J~((0, T) x dN) and
v; vanishes on M \ JT((0,T) x dN). Similar as the previous section, we can write VYL) =

Vid‘)’inc—i—)/{‘})’mf, which is the sum of the incident wave and reflected wave. The microlocal

(4),inc
1

property of V is analyzed carefully in the proofs of [32,Proposition 3.11, 3.12]. We

summarize the results that we need in the following proposition.

—

Proposition 3.5. Assume (y,n) € AZO \ E is joined from (gy.¢) € Ag, by a null-

bicharacteristic.

1. If hy(qy) # 0, we have Vf4)'inc € I‘W*%(Azo \ E) with principal symbol

4
o P WV (v, 1) = (2m) "2 hy(qe)hs(90) 9, () P Q) (v, 1,40, ) [ | o P (v))(go, &),

j=1

where

GO = ( > 2 )

+
2 2
oeT(4) |§a(1) + §rr(2>|g<qo) |§6(2) Tt g“<7(4)|g(qo)
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20 P. Hintz

2. If hy = 0 in a neighborhood of gy, we have V1™ ¢ 74:-3(AY \ E) with

principal symbol
. 4
P VP (v, 1) = (27m)"*hy(q0)° 05 ()0 P Q) (v, 1, 40, O) [ [ 0P (V) (@0, ¢,
j=1

where

Ga()= > ( 4 . ) .

+
2 2
ven \Use@ T 8@ T owlggy 1500 T 8@ g

Now AV = A® implies
4),inc,1 4),inc,2
a @Bl gy = @ VB2 ),

Using Proposition 3.5, and the (generic) nonvanishing of G, and G; ([32,Proposition

3.12]), we now have
ny @o)hS (go) = kY (@p)hS (o)
it hY (go) # 0 or
hy(@0)° = by (ap)*. (22)
if hg) vanishes near q,. For either case, we can obtain

hY (qo) = b (),

invoking the facts hg)(qo)2 = h(zz) (qo)? and h;l)(qo) = héz) (qo)- If hg) vanishes at g, but
not nearby, then we are in case (22) at a sequence of points tending to g,, hence obtaining

the equality hgl)(qo) = héz) (qg) = 0 by continuity.

3.4 Recovery of hy, k> 5

Finally, we recover h; for k = 5,6,..., using the interaction of three waves. The

coefficients h,, hy, h, have already been determined above. Inductively, assume that all

—
1%53)  So@ |g(q0)
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An Inverse Boundary Value Problem 21

hy,, k <N —1 (N > 5), have already be recovered; we proceed to recover hj. Denote

U™ =9N-25_

€9 Veg |€1=62=63=0’
where u is the solution to (2) with f = 2?21 €;f;. We observe that
Z/{(N) == _N' Q (hNVN V2V3) + RN(VI’ V2, V3, hz, ceey hN*l)'
where Ry (v,,V,, V3, hy, ..., hy_;) depends on vy, v,, vy and h,,...,hy_; only. We note
here that the singularities in Ry, are very complicated. The Sobolev regularity of Ry
was analyzed in [32,Section 5] on boundaryless Lorentzian manifolds. We avoid the
complication by using the following inductive procedure.
Now, Ry, ..., hy_; have already been recovered in U; moreoever, v,, v,, V5 (which

vanish on M \ J*((0, T) x dN)) are known; hence, Ry is known on (0, T) x dN by finite

speed of propagation. Thus we can recover
Ug" = —N1Q, (hyvy 2v,v3)
on the boundary (0, T) x 9N from A. Assume Z/l(()N) = L{éN)'inC + U(()N)’ref, where
U = —N1 Gy (hy v 2v,vy).
By [32,Lemma 5.1], we have VIIV_2 € I“+(N*3)(“+%)(A1), with

o P2 = 21) "7 o P (1) k0P (v)) 5 k0P (v)) = (27) 7 AV D),

N-2 factors, N—3 convolutions

By the proof of [32,Proposition 5.6], AiNﬁZ) is nonvanishing at (g, ¢;). By [32,Lemma 3.3],
VoVg € TRHFTL(Ayg, Ay) + THHFL(A g, A3), and then by [32,Lemma 3.6]

3
v 2v,vy € I3t (A1 ,0)  away from US| A;.

By [32,Proposition 2.1], we have
Proposition 3.6. If hy is nonvanishing on K;,5, we have

(IV),inc 3u+WN-3)(u+3)+5,—1 g
Uy e T30 DT 272 (A 53, Alpy),
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22 P. Hintz

away from U?ZlAl-, with principal symbol

o P g™ v, m)

3
= NI (21) 2T 0P (@) (7, 1. 4o, Oy (@AY P (@ 0D [[o P (V) (@o ). (23)
j=2

As around (13) and (20) (and using the same notation), the equality

08 200, AV Pl —epmerm0 = 020,06, A (Pl cp=camo

€2 €3 =e3=0 — €9 Veg
thus implies

o P UM ™y, n) = e P UM (v, ).

(N),inc,j
UO

By the explicit formula for o P )(y,n) given by (23), we get

hy' (o) = hy (@o)-

This completes the proof of Theorem 1.1.

4 Recovery using Gaussian beams

In this section, we give an alternative approach to recover H, assuming h, is a priori
known, using Gaussian beam solutions to the linear wave equation. Such approach
for nonlinear wave equations have been undertaken in [15, 25, 35]. We note here that
Gaussian beams have also been used for various inverse problems [2, 4, 11, 13, 15, 16,
211.

We still use higher order linearization of the Neumann-to-Dirichlet map A,
but will obtain an integral identity and use it to recover the parameters. Gaussian
beams will be used in the integral identity. A similar technique was applied to a
nonlinear elastic wave equation in [39]. Higher order linearizations of the Dirichlet-
to-Neumann map and the resulting integral identities for semilinear and quasilinear
elliptic equations have been used in [1, 5, 16, 20, 22, 23, 28, 29, 37].
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An Inverse Boundary Value Problem 23

Let Vj,j =1,2,..., solve

Ogv;=0 1in(0,T) x N,
9,v;=f; on(0,T) x dN, (24)

Vj = 8th =0 On{t = O}
Let v, be the solution to the backward wave equation

Ovp=0 1in(0,T) x N,
9,vo=fy, on(,T)x N, (25)
Vg =0Vy=0 onf{t=T}

First let us recover hy. Take f = €,f] + €,f, + €3f3, and let u solve (2). Denote

U123 — 93 ul

() — _9*
= Je19ez0¢3 u u|

ice - = v, @)
€1=€y—€3=0" = Je05 o- Notice 5-ul,_o = v; and U7 solves

€j=¢€j=

U@ + hz(X)ViVj =0 in(0,T)xN
3,UP =0 on(0,T) x 3N,

UD = U =0 onft=0}.
Applying ﬁ to (2) evaluated at at €; = ¢, = €5 = 0, we get

U 4 hyx) S UCDT Oy 4 6y (x)v,vyvs = 0.
oeX(3)

Integration by parts gives

83

:/ hav,v,yvav, dVg—i—/ hy(x) Z L{("(l)“(z))vgw)vo dv,. (26)
M M seZ(3)

Aerfi + 6xfy + €3f3)fp AV

€1=€3=€3=0

we note here that by finite speed of propagation for solutions of the wave equation, the
functions v;, v; and thus also Y% vanish in M\J"((0,T) x dN), i,j = 1,2,3, and likewise
vy vanishes in M \ J~((0, T) x aN); therefore, our knowledge of h, in U is sufficient to
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24 P. Hintz

compute the second summand in (26). Therefore, we can recover

/ hyvyv,va v, AV, (27)
M

We will use special solutions vy, vy, V3, Vg in the above identity and thereby recover the
coefficient h;. Concretely, we shall use Gaussian beam solutions for the wave equation
ng = 0 on M of the form

v(x) = €**%a (x) + R, (x),

with a large parameter p. The phase function ¢ is complex-valued. The principal term
e??®q(x) is concentrated near a null geodesic y in the manifold R x N. The remainder
term R, will vanish rapidly as p — 4o0.

Fermi coordinates on M. Assume y passes through a point p € M and joins two
points y(r_) and y(r, ) on the boundary R x dN. We will use the Fermi coordinates ¢ on M
in a neighborhood of y(Ir_, 7, 1), denoted by (2° := r, 2!, 22, 2*), such that ®(y(r)) = (r,0)
(cf. [15,Lemma 1]).

Construction of Gaussian beams. We will construct asymptotic solutions of the

form u, = apeip‘/’ on M with

N N N
12| —k

— / /N / N /

¢—]§]<ﬂk(r,z), a,(t,z) = x (T ];J,o ay(z,2), ak(f'z)—g,ak,j(ffz)

in a neighborhood of y,

V={rz,Z)eM:te[r_ 12| < §}. (28)

€ €
- TE,T+ + \/_E]'

Here for each j, ¢; and a ; are a complex valued homogeneous polynomials of degree j
with respect to the variables Z,i=1,2,3 and § > 0is a small parameter. The smooth
function x : R — [0, +00) satisfies x(t) = 1 for |t| < % and x(¢) = O for |t| > %

1
We have

O, (a,e) = €7 (p*(Sp)a, —ipTa, +O,a,),
S¢ = (de, dg),,

Ta=2(dy,da), — (Oyp)a. (29)
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An Inverse Boundary Value Problem 25

We need to construct ¢ and a, such that

9© 9© 9@
az—®(8<p)(r, 0)=0, BZ—Q(TaO)(t,O) =0, az—®(—i7'ak +0,a;_1)(x,00=0  (30)

for ® = (0, ®,,0,, ©3) with |®| < N. For more details we refer to [15]. Following [13], we
take

0=0, ¢ =z, @r,2)= > Hy1)zd.
1<i,j<3

Here H is a symmetric matrix with JH(r) > 0; the matrix H satisfies a Riccati ODE,

i — __ € € _ s o~
GH+HCH+D=0, te (t_—%5,1,.+%), H() =H,, with3H; > 0, (31)
T

where C, D are matrices with C;; =0, C; =2,1=2,3, CiJ- =0,i#jand Dij = }-L(af].g“).

Lemma 4.1 ([13,Lemma 3.2]). The Ricatti equation (31) has a unique solution. Moreover

the solution H is symmetric and J(H(r)) > 0 forall r € (z_ — % T, + %). For solving the

above Ricatti equation, one has H(t) = Z(t)Y(r)~!, where Y(r) and Z(r) solve the ODEs

d

EY(T) =CZ(r), Y0 =Y,

d

aZ(‘L’) =-D(0)Y(r), Z(0)=Y, = H,Y,.
In addition, Y(7) is nondegenerate.

Lemma 4.2 ([13,Lemma 3.3]). The following identity holds:
det(3(H(r))| det(Y(2))|? = ¢,

with ¢, independent of 7.

We see that the matrix Y(z) satisfies

2

d d
—Y+CDY =0, Y(0) =Y, -—Y(0) =CY;. 2
2y tce 0 0) =Yy, -Y(O0)=CY, (32)
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26 P. Hintz

As in [15], we have the following estimate by the construction of u,, (cf. (30))

_ N+1-k

> - 1. (33)

I0gullgkan < Co~%, K

Consider a point p € U, let Xj,j =0,1,2,3 be the points on (0,T) x N chosen in

Section 3.2, and ¥ the null-geodesics passing through xj and ¢,. The null-geodesic y®

could not be self-intersecting by the global hyperbolicity of M. Also ¢7) LZ'J’M is the

cotangent vector to y ) at qo- By the discussions in Section 3.2, there exits constant «;,
j=0,1,2,3 such that

Kog(o) + Klf(l) + Kzs(z) + K3$(3) =0. (34)

We construct Gaussian beams ug),j =0,1, 2,3 as above of the form

u,()i) = ei’(fp“’(i) agp,
which is compactly supported in the neighborhood V of the null-geodeisc y @ (cf. (28)).
The parameter § can be taken small enough such that ug) =Onear{t=0}forj=1,2,3
and uﬁ)o) =Onear {t=T}.

For j = 1,2,3, we can construct a solution v; for the initial boundary value
problem (24) of the form v; = ug) + RY, where the remainder term Rfol) is a solution
of

O,RY = -0,u)  onaN x (0, T),
a,RY =0 ondN x (0, T),
RY =9RY =0 on{t = 0}.

We note here that v; = u,g) —i—R,(,i) is the solution to (24) with boundary value f; = 9, ug) lang-
Invoking (33), the solution Rg) satisfies the estimate (cf. [8, Theorem 3.1], [35,Proposition

2.2)
IR gk gy < Co 7.

Using Sobolev embedding, we can choose IV large enough such that

_ntl_o

IRY lloan < Cp™ "2 (35)
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Similarly, we can construct a solution to (25) of the form v, = u(po) —i—RE)O). We only

need to take the remainder term Rfoo) to be the solution to the initial value problem

o _ 0)
Dng = —Dgup
9,R”) = 0 ondN x (0, T),

RY =3,RY =0 onft = 0}.

Now vy is the solution to (25) with g =9 u(0)|aM

Then by the estimate (35), the Neumann-to-Dirichlet map determines

n+l

n+1 )4 (N @4 3y (0 1 2 3
/h ip (0@ +i1 0P 120D i3 )a:(co?oa/(q)pa/(@?o fQLdV +O(p~ Y (36)

Lemma 4.3 ([15,Lemma 5]). The function

(0) 1) (2)

S 1= koY + 110 +100@ + k30

is well-defined in a neighborhood of g, and
1. S(gy) =0
2. VS(gy) =0;
3. 35(q) > cd(q, q,)? for q in a neighborhood of g, where ¢ > 0 is a constant.

The four null-geodesics y, j = 0, 1,2, 3 intersect only at the point gy, invoking
the condition that cut points do not exist. Therefore the product a,((g)pa,({ﬂ)a,%)pa,g)p is
supported in a neighborhood of g,. By the above lemma, and applying stationary phase

(cf., for example, [19,Theorem 7.7.5]) to (36), we have

T = hy(gp)al’ (@n)al’ (qnal (gg)al’ (q) + O™,

for some explicit constant ¢ # 0. Hence the Neumann-to-Dirichlet map A determines
h3(qp)-

Next we recover the higher order coefficients h;, k = 4,5,.... Recursively,
assume we have already recovered hy,...,hy_;, N > 4, in U. To recover hy, take

f = Zk 1 € and apply ds — to (2) evaluated at at ¢; = --- = ¢y = 0, we get the
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1z2--Ny _ ¥

equation for U = Jeaa U

N
U2 M) 4 Ry(vy, ..., vyi by, hy_y) + NV hy [] v = 00 x (0, ),
k=1
9,U1?" M) = 0 ondN x (0, T).

By the recursive assumption, Ry (vy,..., vy, by, ..., hy_;) is already known. By integra-

tion by parts, we have
o u
- A ds
/azv.r dey - Dey ler——en=0 ];kak gds,

:/ N!hNV1~-~VNV0dVg+/ Ry(y,...,vyihyooo o hy v dVy.
M M

Thus, we can recover

/ hNVOVI AR VN dVg. (37)
M
Take
0) _ pixope® L(0)

u,  =e a

u;(;i) _ einP(pU) ag)p, _] =1,2,

ug) = eilvaW(S)(l(BK)3 , j=3,...,N.

N-zP

Takef} = BVVU)|3M,j =1,...,N,g= avV§O)|3M this time. Then we can recover

@% HV2dv, + 0.
N-2P

ntl ipSo 1(0) (1) (2)
p 2 /MhNe Ueop Y1 0%z

Again applying stationary phase, we can recover hy(qg).

5 Discussion

We can see that h, is more difficult to recover than h;, k = 3,4, .... Indeed, we need to
exploit the interaction of four waves (associated with four future light-like vectors) in

Section 3; three light-like vectors are not sufficient. (And certainly not two: as pointed
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out in [32], the interaction of two conormal waves does not produce new propagating
singularities.)

The use of Gaussian beams avoids some involved microlocal analysis and
simplifies the proof substantially. In our problem, we are however unable to recover
h, using Gaussian beams. Despite their difference, the two approaches recover h; for
k > 3 in a very similar way. They both choose solutions v, ..., v, such that v;v,---v; is
supported in a neighborhood of a single point g, € U at which one wishes to determine
hi(qo)-

Distorted plane waves and Gaussian beams can be constructed even when
conjugate points exist. In this paper, we assume that conjugate points do not exist for
the sake of simplicity of exposition. Since we prove that local recovery is possible, a
layer stripping strategy as used in [26] can be applied if there are conjugate points.
We note that the article [15] determines a zeroth order potential using nonlinear

interactions and does allow for the presence of conjugate points.
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