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We consider an inverse boundary value problem for a semilinear wave equation on

a time-dependent Lorentzian manifold with time-like boundary. The time-dependent

coefficients of the nonlinear terms can be recovered in the interior from the knowledge

of the Neumann-to-Dirichlet map. Either distorted plane waves or Gaussian beams can

be used to derive uniqueness.

1 Introduction

Let (M, g) be a (1 + 3)-dimensional Lorentzian manifold with boundary ∂M, where the

metric g is of signature (−, +, +, +). We assume that M = R × N where N is a manifold

with boundary ∂N, and write the metric g as

g = −β(t, x′)dt2 + κ(t, x′), (1)

where x = (t, x′) = (x0, x1, x2, x3) are local coordinates on M; here, β : R × N → (0, ∞)

is a smooth function and κ(t, ·) is a Riemannian metric on N depending smoothly on
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2 P. Hintz

t ∈ R. The boundary ∂M = R × ∂N of M is then timelike. Let ν denote the unit outer

normal vector field to ∂M. Assume that ∂M is null-convex, which means that II(V, V) =
g(∇Vν, V) ≥ 0 for all null vectors V ∈ T(∂M); see [18] for a discussion of this condition.

We consider the semilinear wave equation on M

�gu(x) + H(x, u(x)) = 0, onM,

∂νu(x) = f (x), on∂M, (2)

u(t, x′) = 0, t < 0,

where �g = | det g|−1/2∂j(
√

| det g|gjk∂k) is the wave operator (d’Alembertian) on (M, g).

We assume that H(x, z) is smooth in z near 0 with Taylor expansion

H(x, z) ∼
∞∑

k=2

hk(x)zk, hk ∈ C∞(M).

As Neumann data, we take f which are small in Cm+1 for fixed large m. The Neumann-

to-Dirichlet (ND) map 3 is defined as

3f = u|∂M ,

where u is the solution of (2). We will investigate the inverse problem of determining

hj(x), j = 2, 3, . . . , from 3.

We remark that for the linear equation �gu + Vu = 0, the problem of recovering

V from the ND map is still open in general. Stefanov and Yang [36] proved that the

light ray transform of V can be recovered from boundary measurements; however, the

invertibility of the light ray transform is still unknown on general Lorentzian manifolds.

We refer to [14, 30, 40] for an overview and recent results on the light ray transform.

In [26], the nonlinearity was exploited to solve inverse problems for a nonlinear

equation where the corresponding inverse problem is still open for linear equations. The

starting point of the approach is the higher order linearization, which we shall briefly

introduce here. We take boundary Neumann data of the form f =
∑N

i=1 ǫifi, where ǫi,

i = 1, . . . , N are small parameters. Since 3 is a nonlinear map, 3(
∑N

i=1 ǫifi) contains

more information than {3(fi)}i=1,...,N : indeed, useful information can be extracted from

∂N

∂ǫ1 · · · ∂ǫN

∣∣∣
ǫ1=···=ǫN=0

3

( N∑

i=1

ǫifi

)
.
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An Inverse Boundary Value Problem 3

This higher order linearization technique has been extensively used in the literature

[1, 5, 6, 9, 10, 16, 20, 22–24, 26–29, 31, 32, 37, 38, 41]

The recovery of nonlinear terms from source-to-solution map was considered

in [32], where the authors use the nonlinear interactions of distorted plane waves.

The approach originated from [26], and has been successfully used to study inverse

problems for nonlinear hyperbolic equations [6, 9, 10, 24, 31, 32, 38, 41]. For some similar

problems, Gaussian beams are used instead of distorted plane waves [15, 25, 39]. The

two approaches are actually closely related; both enable a pointwise recovery of the

coefficients in the interior.

In this article, we will study the above inverse boundary value problem using

both distorted plane waves and Gaussian beams. The two approaches will be discussed

and compared in the last section.

To state our main result, recall that a smooth curve µ : (a, b) → M is causal if

g(µ̇(s), µ̇(s)) ≤ 0 and µ̇(s) 6= 0 for all s ∈ (a, b). Given p, q ∈ M, we write p ≤ q if p = q or

p can be joined to q by a future directed causal curve. We say p < q if p ≤ q and p 6= q.

We denote the causal future of p ∈ M by J+(p) = {q ∈ M : p ≤ q} and the causal past

of q ∈ M by J−(q) = {p ∈ M : p ≤ q}. We shall restrict the ND map to (0, T) × ∂N, and

correspondingly work in

U =
⋃

p,q∈(0,T)×∂N

J+(p) ∩ J−(q).

Theorem 1.1. Consider the semilinear wave equations

�gu(x) + H(j)(x, u(x)) = 0, j = 1, 2.

Assume H(j)(x, z) are smooth in z near 0 and have a Taylor expansion1

H(j)(x, z) ∼
∞∑

k=2

h
(j)
k (x)zk, h

(j)
k ∈ C∞(U).

Assume that null geodesics in U do not have cut points. If the Neumann-to-Dirichlet

maps 3(j) acting on C6([0, T] × ∂N) are equal, 3(1) = 3(2), then

h
(1)

k (x) = h
(2)

k (x), x ∈ U, k ≥ 2.

1 The notation means that h
(j)
k

(x) = 1
k!

∂k

∂zk H(j)(x, 0).
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4 P. Hintz

The strategy of the proof is to send in distorted plane waves (or Gaussian beams)

from outside the manifold M (within a small extension M̃) and analyze contributions to

the ND map from nonlinear interactions in the interior of M as well as from subsequent

reflections at the boundary ∂M of M.

The rest of this paper is organized as follows. In Section 2, we establish the

well-posedness of the initial boundary value problem (2) for small boundary data. In

Section 3, we use the nonlinear interaction of distorted plane waves to prove the main

theorem. In Section 4, we give another proof of the main theorem using Gaussian beam

solutions, assuming h2 is already known. Finally, the two approaches will be compared

and discussed in Section 5.

2 Well-posedness for small boundary data

We establish well-posedness of the initial boundary value problem (2) in this section

with small boundary value f .

Fix m ≥ 5. We assume f ∈ Cm+1([0, T] × ∂N) and ‖f ‖Cm+1([0,T]×∂N) ≤ ǫ0 for a small

number ǫ0 > 0. Assume also that f satisfies the compatibility condition
∂ℓf

∂tℓ
= 0 at

{t = 0} for any ℓ = 0, 1, . . . , m − 1. We can find a function h ∈ Cm+1([0, T] × N) such that

∂νh|[0,T]×∂N = f and

‖h‖Cm+1([0,T]×N) ≤ C‖f ‖Cm+1([0,T]×∂N).

Let ũ = u − h, where u solves the initial boundary value problem (2). Then ũ satisfies

the equation

�gũ = F(x, ũ, h) := −�gh − H(x, ũ + h),

supplemented with the boundary condition ∂νũ = 0 on (0, T) × ∂N and initial conditions

ũ = ∂ũ
∂t = 0 at {0} × N. The above equation can be written in the form

�gũ = F(x, ũ, h), in(0, T) × ∂N,

∂νũ = 0, on(0, T) × ∂N, (3)

ũ =
∂ũ

∂t
= 0, ont = 0.
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An Inverse Boundary Value Problem 5

This equation is of the form [8,equation (5.12)]. For R > 0, define Z(R, T) as the set of all

functions w satisfying

w ∈
m⋂

k=0

Wk,∞([0, T]; Hm−k(N)), ‖w‖2
Z := sup

t∈[0,T]

m∑

k=0

‖∂k
t w(t)‖2

Hm−k ≤ R2.

We can write F(x, ũ, h) = F (x, h) + G(x, ũ, h)ũ where F = −�gh − H(x, h) and

G(x, ũ, h) = −
∫ 1

0
∂zH(x, h + τ ũ)dτ .

We can write F (x, h) = F (t, y, h) using the notation x = (t, y). Since H(x, z) is smooth in

z, we have

sup
t∈[0,T]

m−1∑

k=0

‖∂k
t F (t, ·, h)‖Hm−k−1 ≤ C sup

t∈[0,T]

m−1∑

k=0

‖∂k
t F (t, ·, h)‖Cm−k−1 ≤ C′ǫ0.

Moreover, ∂zH(x, z) vanishes linearly in z, hence we have

G(x, ũ, h) ∈
m⋂

k=0

Wk,∞([0, T]; Hm−k(N)), ‖G(x, ũ, h)‖Z ≤ C(‖h‖Z + ‖ũ‖Z) ≤ C′(ǫ0 + ‖ũ‖Z)

for ũ ∈ Z(ρ0, T) with ρ0 small enough.

Given w̃ ∈ Z(ρ0, T), consider first the linear initial boundary value problem

�gũ − G(x, w̃, h)w̃ = F (x, h), t ∈ (0, T),

∂νũ = 0, t ∈ (0, T), (4)

ũ(0) =
∂ũ

∂t
(0) = 0.

By [8,Theorem 3.1], there exists a unique solution ũ ∈
⋂m

k=0 C
k([0, T]; Hm−k(N)) to (4), and

it satisfies the estimate

‖ũ‖Z ≤ C(ǫ0 + ǫ0‖w̃‖Z + ‖w̃‖2
Z)eKT ,

where C, K are positive constants depending on the coefficients of the equation. Denote

T to be the map which maps w̃ ∈ Z(ρ0, T) to the solution ũ of (4). Notice that we can
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6 P. Hintz

take ρ0 small enough and ǫ0 = e−KT

2C ρ0 such that

C(ǫ0 + ǫ0ρ0 + ρ2
0)eKT < ρ0.

Then T maps Z(ρ0, T) to itself.

Now assume ũj, j = 1, 2, solve the equation

�gũj − G(x, w̃j, h)w̃j = F (x, h), t ∈ (0, T)

ũj(0) =
∂ũj

∂t
(0) = 0.

We have ũj = T w̃j, j = 1, 2 and

�g(ũ1 − ũ2) = −
(∫ 1

0
∂zH(x, h + w̃2 + τ(w̃1 − w̃2))dτ

)
(w̃1 − w̃2).

Then

‖T w̃1 − T w̃2‖Z = ‖ũ1 − ũ2‖Z ≤ C(ǫ0 + ρ0)eKT‖w̃1 − w̃2‖Z.

Choosing ρ0 small enough such that C(ǫ0 + ρ0)eKT < 1, the map T is a contraction.

Consequently, the equation (3) has a unique solution ũ in Z(ρ0, T). Using [8,Theorem 3.1]

again, we have

ũ ∈
m⋂

k=0

Ck([0, T]; Hm−k(N)).

In summary, we have shown:

Theorem 2.1. Let T > 0 be fixed. Assume that f ∈ Cm+1([0, T)×∂N), m ≥ 5, and
∂ℓf

∂tℓ
= 0

at {t = 0} for any ℓ = 0, 1 · · · , m − 1 at t = 0. Then there exists ǫ0 > 0 such that for

‖f ‖Cm ≤ ǫ0, there exists a unique solution

u ∈
m⋂

k=0

Ck([0, T]; Hm−k(N))
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An Inverse Boundary Value Problem 7

of equation (2). It satisfies the estimate

sup
t∈[0,T]

‖∂m−k
t u(t)‖Hm−k(N) ≤ C‖f ‖Cm+1([0,T]×∂N),

where C > 0 is independent of f .

If f = ǫf1 where ǫ > 0 is small, then for any N = 1, 2, . . . , we can write (cf.

[7,Appendix III] and the discussion in [26,Section 3.1])

u =
N∑

j=1

ǫjwj + RN , (5)

where wj ∈
⋂m

k=0 C
k([0, T]; Hm−k(N)) for j = 1, · · · , N, RN ∈

⋂m
k=0 C

k([0, T]; Hm−k(N)) and

sup
t∈[0,T]

‖∂m−k
t RN(t)‖Hm−k(N) ≤ CNǫN+1,

where CN > 0 is a constant depending on N. Indeed, this follows by plugging (5) as an

ansatz into equation (2), solving inductively for the coefficients wj (which only involves

the solution of linear wave equations), and solving a nonlinear equation for RN with

forcing term of size ǫN+1. Hence one can denote

wN =
∂N

∂ǫN
u|ǫ=0. (6)

The proof presented later will heavily depend on the above asymptotic expansion.

3 Recovery using distorted plane waves

In this section we will show how to recover hk, k = 2, 3, . . . by using the nonlinear

interaction of distorted plane waves. First we extend the metric g on M smoothly to

a metric g̃ on a larger manifold M̃ = Rt × Ñ such that

1. N is contained in the interior of Ñ, and thus M is contained in the interior of

M̃;

2. Ñ is closed, i.e., compact without boundary,

3. g̃ is a warped product metric, g̃ = −β̃(t, x′)dt2 + κ̃(t, x′), with β̃ = β and κ̃ = κ

on M in the notation of (1).
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8 P. Hintz

We can for example take Ñ to be the double of N, and define β̃ to be an arbitrary but

smooth and positive extension of β to M̃, and similarly κ̃ to be an arbitrary but smooth

positive section of S2T∗Ñ over Rt × Ñ extending κ. The advantage of this construction is

that M̃ is globally hyperbolic, which will occasionally be useful.

3.1 Notations and preliminaries

For p ∈ M̃, denote the set of light-like vectors at p by

LpM̃ = {ζ ∈ TpM̃ \ {0} : g(ζ , ζ ) = 0}.

The set of light-like covectors at p is denoted by L∗
pM̃. The sets of future and past

light-like vectors (covectors) are denoted by L+
p M̃ and L−

p M̃ (L∗,+
p M̃ and L∗,+

p M̃). Define

the future directed light-cone emanating from p by

L+(p) = {γp,ζ (t) ∈ M̃ : ζ ∈ L+
p M̃, t ≥ 0} ⊂ M̃.

Distorted plane waves have singularities conormal to a submanifold of M̃ and

can be viewed as Lagrangian distributions. We review them briefly, closely following

the notation used in [32]. Recall that T∗M̃ is a symplectic manifold with canonical 2-

form, given in local coordinates by ω =
∑4

j=1 dξj ∧ dxj. A submanifold 3 ⊂ T∗M̃ is called

Lagrangian if n := dim 3 = 4 and ω vanishes on 3. For K a smooth submanifold of M̃,

its conormal bundle

N∗K = {(x, ζ ) ∈ T∗M̃ : x ∈ K, 〈ζ , θ〉 = 0, θ ∈ TxK}

is a Lagrangian submanifold of T∗M̃. Let 3 be a smooth conic Lagrangian submanifold

of T∗M̃ \ 0. We denote by Iµ(3) the space of Lagrangian distributions of order µ

associated with 3. If 3 = N∗K for some submanifold K ⊂ M̃, then Iµ(K) := Iµ(N∗K)

denotes the space of conormal distributions to K. For u ∈ Iµ(3), one can define the

principal symbol σ (p)(u) = σ
(p)

3 (u) of u with

σ (p)(u) ∈ Sµ+ n
4 (3, �1/2 ⊗ L)/Sµ+ n

4 −1(3, �1/2 ⊗ L),

where �1/2 is the half-density on M̃ and L is the Maslov–Keller line bundle of 3. We

refer to [12,Chapter 4] for the precise definition and more discussions.
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An Inverse Boundary Value Problem 9

For waves described by nonlinear wave equations, the distorted plane waves,

characterized by Lagrangian distributions, can have nonlinear interactions and gen-

erate new propagating singularities. Such new singularities can be characterized by

paired Lagrangian distributions, which will be reviewed below. The detailed analysis

of the singularities and principal symbols of the waves generated by nonlinear interac-

tions is the key to the study of various inverse problems for nonlinear wave equations

[6, 9, 10, 24, 26, 31, 32, 38, 41]. Let 30, 31 ⊂ T∗M̃ \ 0 be two Lagrangian submanifolds

intersecting cleanly, i.e.,

Tp30 ∩ Tp31 = Tp(30 ∩ 31) ∀ p ∈ 30 ∩ 31.

We denote the space of paired Lagrangian distributions associated with (30, 31) by

Ip,l(30, 31). We mention here that if u ∈ Ip,l(30, 31), then microlocally away from 30 ∩
31, we have u ∈ Ip+l(30 \ 31) and u ∈ Ip(31 \ 30) with well defined principal symbols

σ
(p)

30
(u) and σ

(p)

31
(u). For more details, we refer to [17, 33].

Fix a Riemannian metric g+ on M̃. Given x0 ∈ M̃ \ M, ζ0 ∈ L+
x0

M̃, and s0 > 0, put

Wx0,ζ0,s0
= {η ∈ L+

x0
M̃ : ‖η − ζ0‖g+ < s0, ‖η‖g+ = ‖ζ0‖g+},

K(x0, ζ0, s0) = {γx0,η(s) ∈ M̃ : η ∈ Wx0,ζ0,s0
, s ∈ (0, ∞)},

3(x0, ζ0, s0) = {(γx0,η(s), rγ̇x0,η(s)
♭) ∈ T∗M̃; η ∈ Wx0,ζ0,s0

, s ∈ (0, ∞), r > 0}.

Notice that K(x0, ζ0, s0) is a subset of codimension 1 of the light cone L+(x0), and

N∗K(x0, ζ0, s0) = 3(x0, ζ0, s0).

By [26,Lemma 3.1], one can construct distributions u0 ∈ Iµ(M̃ \ {x0}, 3(x0, ζ0, s0))

which on M satisfy �gu0 ∈ C∞(M), and whose principal symbol is nonzero on

(γx0,ζ0
(s), γ̇x0,ζ0

(s)♭). Thus, u0 is a nontrivial distorted plane wave propagating on the

surface K(x0, ζ0, s0).

We consider four distorted plane waves

uj ∈ Iµ(M̃, 3(xj, ξj, s0)), j = 1, 2, 3, 4,
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10 P. Hintz

which are approximate solutions of the linearized wave equation in M, that is, �guj ∈
C∞(M). Let

Kj = K(xj, ξj, s0), 3j = 3(xj, ξj, s0) = N∗Kj. (7)

As in [32], we make the following assumptions.

Assumption 3.1. Assume that

1. Ki, Kj, i 6= j, intersect at a codimension 2 submanifold Kij ⊂ M̃;

2. Ki, Kj, Kk, i, j, k distinct, intersect at a codimension 3 submanifold Kijk ⊂ M̃;

3. K1, K2, K3, K4 intersect at a point q0 ∈ M.

Assume further that for any two disjoint subsets I, J ⊂ {1, 2, 3, 4}, the intersection of

∩i∈IKi and ∩j∈JKj is transversal if not empty.

We use the notations

3ij = N∗Kij, 3ijk = N∗Kijk, 3q0
= T∗

q0
M \ 0;

which are all Lagrangian submanifolds in T∗M̃. For any Ŵ ⊂ T∗M̃, we denote by Ŵg the

flow-out of Ŵ ∩ L∗,+M̃ under the null-geodesic flow of g lifted to T∗M̃. To define this

precisely, denote by HG ∈ C∞(T∗M̃; TT∗M̃) the Hamilton vector field of the dual metric

function G : T∗M̃ ∋ ζ 7→ g−1(ζ , ζ ); in particular L∗M̃ = G−1(0). We then put

Ŵg := {exp(sHG)ζ : 0 ≤ s < s+(ζ ), ζ ∈ Ŵ ∩ L∗,+M̃}, (8)

where s 7→ exp(sHG)ζ is the integral curve of HG with initial condition ζ , and s+(ζ ) ∈
(0, ∞)∪{+∞} is the supremum of the maximal interval of existence of this integral curve.

We assume xj ∈ (0, T)× Ñ; we can take s0 small enough so that uj is smooth near

t = 0. Denote fi = ∂νui|∂M ; then the solutions vi of the linear equations

�gvi(x) = 0, onM,

∂νvi(x) = fi(x), on∂M,

vi(t, x′) = 0, t < 0,
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An Inverse Boundary Value Problem 11

are equal to ui modulo C∞(M). We will use nonlinear interactions of three or four

distorted plane waves for our study. For N = 3 or 4, consider then

f =
N∑

i=1

ǫifi, (9)

and denote v =
∑N

i=1 ǫivi. We write w = Qg(F) if w solves the linear wave equation

�gw(x) = F, onM,

∂νw(x) = 0, on∂M,

w = 0, t < 0. (10)

The solution u to (2) is then given by the asymptotic expansion [32,(2.9)]

u = v − Qg(h2v2) + 2Qg(h2vQg(h2v2) − 4Qg(h2vQg(h2vQg(h2v2)))

− Qg(h2Qg(h2v2)Qg(h2v2)) + 2Qg(h2vQg(h3v3)) − Qg(h3v3) + 3Qg(h3v2Qg(h2v2))

− Qg(h4v4) + higher order terms inǫ1, . . . , ǫN . (11)

We will use the singularities from the terms in (11) to recover the coefficients of (2).

Notice that those terms involve nonlinear interactions of distorted plane waves vj, j =
1, . . . , N, and thus new singularities can be created. Recovery of a Lorentzian metric from

the source-to-solution map using those newly generated singularities was first carried

out in [26]. For recovery of the coefficients of nonlinear terms, we refer to [10, 32].

3.2 Nonlinear interactions of three waves and recovery of (h2)2 and h3

First, we will first use three distorted plane waves, i.e., taking N = 3 in (9) and using

Neumann data

f =
3∑

i=1

ǫifi

with ǫi > 0, i = 1, 2, 3, small parameters. We will construct suitable sources fi, i = 1, 2, 3,

and denote by vi the corresponding distorted plane wave.
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12 P. Hintz

For any p ∈ M and ξ ∈ L∗,+
p M define γ (s) = γp,ξ (s) to be the geodesic such that

γ (0) = p and γ̇ (0) = ξ ♯. Define

s+(p, ξ) = inf{s > 0 : γ (s) ∈ ∂M}, s−(p, ξ) = sup{s < 0 : γ (s) ∈ ∂M}.

Fix a point q0 ∈ U. There exist ξ (0), ξ (1) ∈ L∗,+
q0

M such that

x− = γq0,ξ (1)(s−(q0, ξ (1))) ∈ (0, T) × ∂N, x0 = γq0,ξ (0)(s+(q0, ξ (0))) ∈ (0, T) × ∂N. (12)

Indeed, by definition of U, there exists a point (t0, y0) ∈ (0, T) × ∂N and a future causal

curve lying inside M which joins (t, y) and q0. Since the t-coordinate of q0 is less than

T, the set of t ∈ [t0, T) for which there exists a future causal curve inside the larger

manifold M̃ joining (t, y0) and q0 has a least upper bound t̄ < T. Standard compactness

arguments on the globally hyperbolic manifold M̃ imply that there exists a future

causal curve γ from (t̄, y0) to q0, which by short-cut arguments must be a positive

reparameterization of a null-geodesic without cut points [34,§10]. Upon normalizing

γ so that γ (0) = (t̄, y0) and γ (1) = q0, the backwards null-geodesic µ : [0, s0] → M̃

with initial data (q0, −γ̇ (1)) coincides with γ until it reaches µ(s0) = (t̄, y0). Note that

t ◦ µ : [0, s0] → (0, T) is monotonically decreasing; thus, for the smallest s ∈ (0, s0] so that

x− = µ(s) ∈ (0, T) × ∂N, we necessarily have (t ◦ µ)(s) ∈ [(t ◦ µ)(s0), (t ◦ µ)(0)] ⊂ (0, T).

This shows that x− ∈ (0, T) × ∂N is of the form (12) with ξ (1) = −µ̇(s)♭, and in particular

proves the existence of ξ (1). The argument for ξ (0) is analogous.

Put γ (j) = γq0,ξ (j) , j = 0, 1 and denote x1 = γ (1)(s−(q0, ξ (1)) − ǫ) for ǫ > 0 small;

thus, x1 ∈ M̃ \ M lies just barely outside of M.

Choose local coordinates so that g coincides with the Minkowski metric at

q0. Using further linear changes of coordinates which leave the Minkowski metric

unchanged (that is, rotations in the spatial variables, Lorentz boosts), and upon scaling

ξ (0), ξ (1) by a positive scalar, one can assume without loss of generality (cf. [6,Lemma 1])

that

ξ (0) = (−1, −
√

1 − r2
0, r0, 0), ξ (1) = (−1, 1, 0, 0),

for some r0 ∈ [−1, 1]. Take a small parameter ς > 0 and introduce two perturbations

of ξ (1)

ξ (2) = (−1,

√
1 − ς2, ς , 0), ξ (3) = (−1,

√
1 − ς2, −ς , 0).
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An Inverse Boundary Value Problem 13

Notice ξ (2), ξ (3) ∈ L∗,+
p M. One can then write ξ (0) as a linear combination of ξ (1), ξ (2), ξ (3),

ξ (0) = α1ξ (1) + α2ξ (2) + α3ξ (3),

with

α1 =
−
√

1 − ς2 −
√

1 − r2
0

1 −
√

1 − ς2
, α2 =

1 +
√

1 − r2
0

2(1 −
√

1 − ς2)
+

r0

2ς
, α3 =

1 +
√

1 − r2
0

2(1 −
√

1 − ς2)
−

r0

2ς
.

Denote b(r0) = 1 +
√

1 − r2
0. By direct calculation, and using the asymptotics

√
1 − ς2 =

1 − 1
2ς2 + O(ς4), we obtain

|α1ξ (1) + α2ξ (2)|2g = 2b(r0)2ς−2 + O(ς−1),

|α1ξ (1) + α3ξ (3)|2g = 2b(r0)2ς−2 + O(ς−1),

|α2ξ (2) + α3ξ (3)|2g = −4b(r0)2ς−2 + O(ς−1).

Therefore,

|α1ξ (1) + α2ξ (2)|−2
g + |α1ξ (1) + α3ξ (3)|−2

g + |α2ξ (2) + α3ξ (3)|−2
g =

3

4b(r0)2
ς2 + O(ς3). (13)

By taking ς small enough, the quantity

∑

σ∈6(3)

∣∣∣ασ(2)ξ
(σ (2)) + ασ(3)ξ

(σ (3))
∣∣∣−2

g(q0)
(14)

is nonvanishing; here, 6(3) denotes the permutation group of {1, 2, 3}.
For j = 2, 3, let γ (j) = γq0,ξ (j) , and denote

xj = γ (j)(s−(q0, ξ (j)) − ǫ), j = 2, 3,

for ǫ > 0 small. Here, if we took ǫ = 0, then we could choose ς small enough so that

xj ∈ (0, T)×∂N; fixing ς in this manner, we can then take ǫ > 0 small enough so that xj ∈
M̃ \ M and t > 0 at xj still. Here we used the fact that null-geodesics are nontangential,

hence transversal, to ∂M due to the null-convexity of ∂M. Now for j = 1, 2, 3 denote

ξj = γ̇q0,ξ (j)(s
−(q0, ξ (j)) − ǫ)♭ ∈ L∗,+

xj
M.
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14 P. Hintz

Use these (xj, ξj), j = 1, 2, 3, in (7) and denote associated distorted plane waves by

uj ∈ Iµ(3j), j = 1, 2, 3.

We note that ξ (0) ∈ N∗
pK123.

Let u denote the solution of (2) with f =
∑3

i=1 ǫifi, and put

U (3) = ∂ǫ1
∂ǫ2

∂ǫ3
u|ǫ1=ǫ2=ǫ3=0,

which can be defined analogous to (6). We can then decompose

U (3) = U
(3)
0 + U

(3)
1 , U

(3)
0 := −6Qg(h3v1v2v3), U

(3)
1 := 2

∑

σ∈6(3)

Qg(h2vσ(1)Q(h2vσ(2)vσ(3))).

(15)

Recall that Qg is the solution operator associated with the equation (10). On globally

hyperbolic manifolds (no boundary!), the wave operator �g has a causal (retarded)

inverse (cf. [3,Theorem 3.3.1]). Denote by Q̃g = �
−1
g the causal inverse of �g on M̃. Then

U (3),inc := U
(3),inc
0 + U

(3),inc
1 = −6Q̃g(h3v1v2v3) + 2

∑

σ∈6(3)

Q̃g(h2vσ(1)Q̃(h2vσ(2)vσ(3))) (16)

is the incident wave before reflection on the boundary. We have (cf. [32,Proposition 3.7]

and the subsequent discussion):

Proposition 3.2. Let 3
g
123 be the flow-out of 3123 ∩ L∗,+M̃, as defined in general in (8).

Then

U (3),inc ∈ I3µ+ 1
2 ,− 1

2 (3123, 3
g
123)

away from ∪3
i=13i. For any q ∈ K123 and ζ ∈ NqK123, there exists a unique decomposition

ζ =
∑3

j=1 ζj with ζj ∈ N∗
qKj (cf. [32]). Assume that (y, η) lies along the forward null-

bicharacteristic of �g starting at (q, ζ ). The principal symbol of U (3),inc can be written

as

σ (p)(U (3),inc)(y, η) = σ (p)(U
(3),inc
0 )(y, η) = −6(2π)−2σ (p)(Q̃g)(y, η, q, ζ )h3(q)

3∏

j=1

σ (p)(vj)(q, ζj).

(17)
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An Inverse Boundary Value Problem 15

Note here that K123 is a 1-dimensional spacelike submanifold since its conormal

bundle at p ∈ K123 is timelike, being the 1-codimensional vector space N∗
pK123 =

N∗
pK1 + N∗

pK2 + N∗
pK3 ⊂ T∗

pM which by assumption contains 3 linearly independent null

covectors. This implies that the intersection of 3123 and the flowout 3
g
123 along its null

directions is clean. (Note here also that a future null-geodesic starting at K123 does not

intersect K123 again.) For our purposes, ζ = αξ (0) and ζj = αjξ
(j) for some α, αj ∈ R. We

are particularly interested in this expression for q = q0 and y = x0. Notice that q0 ∈ K123

and q0 and x0 is joined by the null-geodesic γ (0).

Now, the solution U (3) of the initial-boundary value problem can be written as

the sum of the incident wave U (3),inc and wave U (3),ref arising from reflection at ∂M

U (3) = U (3),inc + U (3),ref.

The reflected wave vanishes prior to the intersection of supp U (3),inc with the boundary

∂M, and in a small neighborhood of y, satisfies �gU
(3),ref = 0 with Neumann data

∂νU
(3),ref = −∂νU

(3),inc. Near y and in view of the null-convexity assumption on ∂M,

the incident wave U (3),inc is a conormal distribution relative to the conormal bundle

of a submanifold transversal to ∂M; therefore, so is U (3),ref. Moreover, the principal

symbols of the restrictions of U (3),inc and U (3),ref to ∂M agree due to the Neumann

boundary condition. (Indeed, following [36], we can write U (3),• in a neighborhood of

y in the form U (3),• = (2π)−3
∫

eiφ•(x,θ)a•(x, θ) dθ for • = inc, ref and suitable symbols

a•, where the phase functions φ• solve the eikonal equation |dφ•|2g = 0 with boundary

conditions φ•(x, θ) = x · θ , x ∈ ∂M, and ∂νφ
ref = −∂νφ

inc. The Neumann boundary

condition ∂νU
(3)|∂M = 0 implies (∂νφ

inc)ainc + (∂νφ
ref)aref = 0, thus ainc = aref at ∂M,

as claimed.)

Denote R(U (3),inc) to be the trace of U (3),inc on ∂M; the trace operator R an FIO of

order 1
4 ([12,Chapter 5.1]) with canonical relation

ŴR = {(y|, η|, y, η) ∈ (T∗(∂M) × T∗M) \ 0; y| = y, η| = η|Ty(∂M)}.

For any (y|, η|) ∈ T∗(∂M), there exists at most one outward pointing η ∈ L∗
yM such that

η| = η|Ty(∂M). For such (y|, η|, y, η), the principal symbol σ (p)(R)(y|, η|, y, η) is nonzero (cf.

[12,Chapter 5.1]). Using the multiplicativity of principal symbols, we then have

1

2
σ (p)

(
∂ǫ1

∂ǫ2
∂ǫ3

3
(
ǫ1f1 + ǫ2f2 + ǫ3f3

)
|ǫ1=ǫ2=ǫ3=0

)
(y|, η|) = σ (p)(R)(y|, η|, y, η)σ (p)(U

(3),inc
0 )(y, η).

(18)
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16 P. Hintz

We refer to [12,Chapter 4] for a discussion on the compositions of FIOs.

We now show how to use this to recover h3 from the principal symbol of U
(3),inc
0 :

for j = 1, 2, let u(j) solve the equation (2) with H = H(j) and ∂νu(j) = f =
∑3

i=1 ǫifi.

Decompose U (3),j = ∂ǫ1
∂ǫ2

∂ǫ3
u(j)|ǫ1=ǫ2=ǫ3=0 as

U (3),j = U
(3),j
0 + U

(3),j
1 ,

as in (15); moreover, decompose

U (3),inc,j = U
(3),inc,j
0 + U

(3),inc,j
1 ,

as in (16). By assumption, we have

∂ǫ1
∂ǫ2

∂ǫ3
3(1)(f )|ǫ1=ǫ2=ǫ3=0 = ∂ǫ1

∂ǫ2
∂ǫ3

3(2)(f )|ǫ1=ǫ2=ǫ3=0; (13)

the expression (18) shows that this implies

σ (p)(U
(3),inc,1
0 )(y, η) = σ (p)(U

(3),inc,2
0 )(y, η). (20)

By the explicit formula for σ (p)(U
(3),inc,j
0 )(y, η) given by (17), and taking y = x0, we get

h
(1)
3 (q0) = h

(2)
3 (q0).

Since q0 was an arbitrary point in U, we conclude that h
(1)
3 = h

(1)
3 in U.

Now we analyze

U
(3)
1 := 2

∑

σ∈6(3)

Qg(h2vσ(1)Qg(h2vσ(2)vσ(3))).

Since h3 has already been recovered, we can subtract its contribution to U (3); we

can thus determine U
(3)
1 |∂M . More precisely, the fact ∂ǫ1

∂ǫ2
∂ǫ3

3(1)(f )|ǫ1=ǫ2=ǫ3=0 =
∂ǫ1

∂ǫ2
∂ǫ3

3(2)(f )|ǫ1=ǫ2=ǫ3=0 implies

(U
(3),1
0 + U

(3),1
1 )|∂M = (U

(3),2
0 + U

(3),2
1 )|∂M .

Recall that U
(3),j
0 := −6Qg(h

(j)
3 v1v2v3) and h

(1)
3 = h

(2)
3 in U; therefore, U

(3),1
0 = U

(3),2
0 on ∂M,

hence U
(3),1
1 = U

(3),2
1 on ∂M.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
b
0
8
8
/6

2
7
3
3
7
8
 b

y
 g

u
e
s
t o

n
 1

5
 M

a
y
 2

0
2
1



An Inverse Boundary Value Problem 17

Similarly to before, we write U
(3)
1 = U

(3),inc
1 + U

(3),ref
1 , where

U
(3),inc
1 = 2

∑

σ∈6(3)

Q̃g(h2vσ(1)Q̃g(h2vσ(2)vσ(3)))

is the incident wave and U
(3),ref
1 is the reflected wave. By [32,Lemma 3.3, 3.4], we have

Q̃g(h2vivj) ∈ Iµ−1,µ(3ij, 3i) + Iµ−1,µ(3ij, 3j).

Then using [32,Lemma 3.6 and Proposition 2.1], one can obtain (cf. [32,Proposition 3.7]

and the discussion after it):

Proposition 3.3. For any q ∈ K123 and ζ ∈ N∗
qK123, assume (y, η) is joined from (q, ζ ) by

a null-bicharacteristic. If h2 is nonvanishing on K123, then

U
(3),inc
1 ∈ I3µ− 3

2 ,− 1
2 (3123, 3

g
123),

away from ∪3
i=13i, with principal symbol

σ (p)(U
(3),inc
1 )(y, η) = 2(2π)−2σ (p)(Q̃g)(y, η, q, ζ )h2(q)2




∑

σ∈6(3)

∣∣ζσ(2) + ζσ(3)

∣∣−2
g(q)




×
3∏

j=1

σ (p)(vj)(q, ζj).

Now we can conclude that σ (p)(U
(3),inc,1
1 )(y, η) = σ (p)(U

(3),inc,2
1 )(y, η) since U

(3),1
1 =

U
(3),2
1 on ∂M; we use this for y = x0 and q = q0. As shown in equations 1314, the sum
∑

σ∈6(3)

∣∣ζσ(2) + ζσ(3)

∣∣−2
g(q0)

appearing here is nonvanishing; therefore,

(h
(1)
2 (q0))2 = (h

(2)
2 (q0))2.

3.3 Nonlinear interactions of four waves and recovery of h2 and h4

In this section, we use nonlinear interaction of four distorted plane waves. Thus, we

take N = 4 in (9) and consider Neumann data

f =
4∑

i=1

ǫifi.
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18 P. Hintz

Take x1, x2, x3, x4 ∈ M̃ \ M in a neighborhood of x−, where x− is as in (12) for some point

q0 ∈ U; suppose γxj,ξj
joins xj to q0. Take ui ∈ Iµ(3(xi, ξi, s0)) and let fi = ∂νui|∂M for i =

1, 2, 3, 4. One can ensure that 3i = N∗Ki = 3(xi, ξi, s0), i = 1, 2, 3, 4 satisfy Assumption 3.1

in Section 3.1.

In this section, we will use the notations

2(1) = ∪4
i=13i; 2(2) = ∪4

i,j=13ij; 2(3) = ∪4
i,j,k=13ijk;

K(1) = ∪4
i=1Ki; K(2) = ∪4

i,j=1Kij; K(3) = ∪4
i,j,k=1Kijk,

4 = 2(1) ∪ 2(3),g ∪ 3q0
.

Write

V(4) =∂ǫ1
∂ǫ2

∂ǫ3
∂ǫ4

u|ǫ1=ǫ2=ǫ3=ǫ4=0

= − 4
∑

σ∈6

Qg(h2vσ(1)Qg(h2vσ(2)Qg(h2vσ(3)vσ(4))))

−
∑

σ∈6

Qg(h2Qg(h2vσ(1)vσ(2))Qg(h2vσ(3)vσ(4)))

+ 2
∑

σ∈6

Qg(h2vσ(1)Qg(h3vσ(2)vσ(3)vσ(4))) + 3
∑

σ∈6

Qg(h3vσ(1)vσ(2)Qg(h2vσ(3)vσ(4)))

− 24Qg(h4v1v2v3v4).

Assume V(4) = V(4),inc + V(4),ref, where V(4),inc is the incident wave, and V(4),ref is the

reflected wave. Part of the results in [32,Proposition 3.11, 3.12] can be summarized in

the following proposition.

Proposition 3.4. If h4(q0) 6= 0, we have

V(4),inc ∈ I4µ+ 3
2 (3

g
q0

\ 4)

away from ∪3
i=13i, with principal symbol

σ (p)(V(4),inc)(y, η) = −24(2π)−3σ (p)(Q̃g)(y, η, q0, ζ )h4(q0)

4∏

j=1

σ (p)(vj)(q0, ζj), (21)

for (y, η) ∈ 3
g
q0

\ 4. Here (y, η) is joined with (q0, ζ ) by a null-bicharacteristic of �g, and

ζ ∈ L∗,+
q0

M has the unique decomposition ζ =
∑4

i=4 ζi with ζi ∈ N∗
q0

Ki.
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An Inverse Boundary Value Problem 19

Assume h
(1)
3 , h

(2)
4 6= 0 at q0. Denote K(3) = π(2(3),g) ⊂ M. By taking s0 → 0, the set

K(1)∪K(3) tends to a set of Hausdorff dimension 2 (cf. [26,Section 4]). Thus we can choose

s0 small enough such that there exists ζ ∈ 3q0
\ (2(1) ∪ 2(3)) such that y ∈ (0, T) × ∂N.

But then

∂ǫ1
∂ǫ2

∂ǫ3
∂ǫ4

3(1)(f )|ǫ1=ǫ2=ǫ3=ǫ4=0 = ∂ǫ1
∂ǫ2

∂ǫ3
∂ǫ4

3(2)(f )|ǫ1=ǫ2=ǫ3=ǫ4=0

implies

σ (p)(V(4),inc,1)(y, η) = σ (p)(V(4),inc,2)(y, η).

By the explicit expression for σ (p)(V(4),inc,j)(y, η) given in (21), we obtain

h
(1)
4 (q0) = h

(2)
4 (q0).

With h4 thus recovered in U, we can determine

V
(4)
1 = V(4) + 24Qg(h4v1v2v3v4).

at the boundary (0, T)×∂N. Here we use the fact that, by the finite speed of propagation,

Qg(h4v1v2v3v4)|(0,T)×∂N depends only on the value of h4v1v2v3v4 in J−((0, T) × ∂N) and

vj vanishes on M \ J+((0, T) × ∂N). Similar as the previous section, we can write V
(4)
1 =

V
(4),inc
1 +V

(4),ref
1 , which is the sum of the incident wave and reflected wave. The microlocal

property of V
(4),inc
1 is analyzed carefully in the proofs of [32,Proposition 3.11, 3.12]. We

summarize the results that we need in the following proposition.

Proposition 3.5. Assume (y, η) ∈ 3
g
q0

\ 4 is joined from (q0, ζ ) ∈ 3q0
by a null-

bicharacteristic.

1. If h3(q0) 6= 0, we have V
(4),inc
1 ∈ I4µ− 1

2 (3
g
q0

\ 4) with principal symbol

σ (p)(V
(4),inc
1 )(y, η) = (2π)−3h2(q0)h3(q0)G2(ζ )σ (p)(Qg)(y, η, q0, ζ )

4∏

j=1

σ (p)(vj)(q0, ζj),

where

G2(ζ ) =
∑

σ∈6(4)

(
3

|ζσ(1) + ζσ(2)|2g(q0)

+
2

|ζσ(2) + ζσ(3) + ζσ(4)|2g(q0)

)
.
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20 P. Hintz

2. If h3 = 0 in a neighborhood of q0, we have V
(4),inc
1 ∈ I4µ− 5

2 (3
g
q0

\ 4) with

principal symbol

σ (p)(V
(4),inc
1 )(y, η) = (2π)−3h2(q0)3G3(ζ )σ (p)(Qg)(y, η, q0, ζ )

4∏

j=1

σ (p)(vj)(q0, ζj),

where

G3(ζ ) =
∑

σ∈6(4)

(
4

|ζσ(2) + ζσ(3) + ζσ(4)|2g(q0)

+
1

|ζσ(1) + ζσ(2)|2g(q0)

)
1

|ζσ(3) + ζσ(4)|2g(q0)

.

Now 3(1) = 3(2) implies

σ (p)(V
(4),inc,1
1 )(y, η) = σ (p)(V

(4),inc,2
1 )(y, η).

Using Proposition 3.5, and the (generic) nonvanishing of G2 and G3 ([32,Proposition

3.12]), we now have

h
(1)
2 (q0)h

(1)
3 (q0) = h

(2)
2 (q0)h

(2)
3 (q0)

if h
(j)
3 (q0) 6= 0 or

h
(1)
2 (q0)3 = h

(2)
2 (q0)3. (22)

if h
(j)
3 vanishes near q0. For either case, we can obtain

h
(1)
2 (q0) = h

(2)
2 (q0),

invoking the facts h
(1)
2 (q0)2 = h

(2)
2 (q0)2 and h

(1)
3 (q0) = h

(2)
3 (q0). If h

(j)
3 vanishes at q0 but

not nearby, then we are in case (22) at a sequence of points tending to q0, hence obtaining

the equality h
(1)
3 (q0) = h

(2)
3 (q0) = 0 by continuity.

3.4 Recovery of hk, k ≥ 5

Finally, we recover hk for k = 5, 6, . . . , using the interaction of three waves. The

coefficients h2, h3, h4 have already been determined above. Inductively, assume that all
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An Inverse Boundary Value Problem 21

hk, k ≤ N − 1 (N ≥ 5), have already be recovered; we proceed to recover hN . Denote

U (N) = ∂N−2
ǫ1

∂ǫ2
∂ǫ3

u|ǫ1=ǫ2=ǫ3=0,

where u is the solution to (2) with f =
∑3

i=1 ǫifi. We observe that

U (N) = −N! Qg(hNvN−2
1 v2v3) + RN(v1, v2, v3; h2, . . . , hN−1),

where RN(v1, v2, v3; h2, . . . , hN−1) depends on v1, v2, v3 and h2, . . . , hN−1 only. We note

here that the singularities in RN are very complicated. The Sobolev regularity of RN

was analyzed in [32,Section 5] on boundaryless Lorentzian manifolds. We avoid the

complication by using the following inductive procedure.

Now, h2, . . . , hN−1 have already been recovered in U; moreoever, v1, v2, v3 (which

vanish on M \ J+((0, T) × ∂N)) are known; hence, RN is known on (0, T) × ∂N by finite

speed of propagation. Thus we can recover

U
(N)
0 = −N! Qg(hNvN−2

1 v2v3)

on the boundary (0, T) × ∂N from 3. Assume U
(N)
0 = U

(N),inc
0 + U

(N),ref
0 , where

U
(N),inc
0 = −N! Q̃g(hNvN−2

1 v2v3).

By [32,Lemma 5.1], we have vN−2
1 ∈ Iµ+(N−3)(µ+ 3

2 )(31), with

σ (p)(vN−2
1 ) = (2π)−

N−3
2 σ (p)(v1) ∗ σ (p)(v1) ∗ · · · ∗ σ (p)(v1)︸ ︷︷ ︸

N−2 factors, N−3 convolutions

=: (2π)−
N−3

2 A
(N−2)
1 .

By the proof of [32,Proposition 5.6], A
(N−2)
1 is nonvanishing at (q0, ζ1). By [32,Lemma 3.3],

v2v3 ∈ Iµ,µ+1(323, 32) + Iµ,µ+1(323, 33), and then by [32,Lemma 3.6]

vN−2
1 v2v3 ∈ I3µ+(N−3)(µ+ 3

2 )(3123) away from ∪3
i=13i.

By [32,Proposition 2.1], we have

Proposition 3.6. If hN is nonvanishing on K123, we have

U
(N),inc
0 ∈ I3µ+(N−3)(µ+ 3

2 )+ 1
2 ,− 1

2 (3123, 3
g
123),

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

rn
/rn

a
b
0
8
8
/6

2
7
3
3
7
8
 b

y
 g

u
e
s
t o

n
 1

5
 M

a
y
 2

0
2
1



22 P. Hintz

away from ∪3
i=13i, with principal symbol

σ (p)(U
(N),inc
0 )(y, η)

= −N! (2π)−2− N−3
2 σ (p)(Q̃g)(y, η, q0, ζ )hN(q0)A

(N−2)
1 (q0, ζ1)

3∏

j=2

σ (p)(vj)(q0, ζj). (23)

As around (13) and (20) (and using the same notation), the equality

∂N−2
ǫ1

∂ǫ2
∂ǫ3

3(1)(f )|ǫ1=ǫ2=ǫ3=0 = ∂N−2
ǫ1

∂ǫ2
∂ǫ3

3(2)(f )|ǫ1=ǫ2=ǫ3=0

thus implies

σ (p)(U
(N),inc,1
0 )(y, η) = σ (p)(U

(N),inc,2
0 )(y, η).

By the explicit formula for σ (p)(U
(N),inc,j
0 )(y, η) given by (23), we get

h
(1)
N (q0) = h

(2)
N (q0).

This completes the proof of Theorem 1.1.

4 Recovery using Gaussian beams

In this section, we give an alternative approach to recover H, assuming h2 is a priori

known, using Gaussian beam solutions to the linear wave equation. Such approach

for nonlinear wave equations have been undertaken in [15, 25, 35]. We note here that

Gaussian beams have also been used for various inverse problems [2, 4, 11, 13, 15, 16,

21].

We still use higher order linearization of the Neumann-to-Dirichlet map 3,

but will obtain an integral identity and use it to recover the parameters. Gaussian

beams will be used in the integral identity. A similar technique was applied to a

nonlinear elastic wave equation in [39]. Higher order linearizations of the Dirichlet-

to-Neumann map and the resulting integral identities for semilinear and quasilinear

elliptic equations have been used in [1, 5, 16, 20, 22, 23, 28, 29, 37].
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An Inverse Boundary Value Problem 23

Let vj, j = 1, 2, . . ., solve

�gvj = 0 in(0, T) × N,

∂νvj = fj on(0, T) × ∂N, (24)

vj = ∂tvj = 0 on{t = 0}.

Let v0 be the solution to the backward wave equation

�v0 = 0 in(0, T) × N,

∂νv0 = f0 on(0, T) × ∂N, (25)

v0 = ∂tv0 = 0 on{t = T}.

First let us recover h3. Take f = ǫ1f1 + ǫ2f2 + ǫ3f3, and let u solve (2). Denote

U (123) = ∂3

∂ǫ1∂ǫ2∂ǫ3
u|ǫ1=ǫ2=ǫ3=0, U (ij) = ∂2

∂ǫi∂ǫj
u|ǫi=ǫj=0. Notice ∂

∂ǫi
u|ǫi=0 = vi and U (ij) solves

�U (ij) + h2(x)vivj = 0 in(0, T) × N

∂νU
(ij) = 0 on(0, T) × ∂N,

U (ij) = ∂tU
(ij) = 0 on{t = 0}.

Applying ∂3

∂ǫ1∂ǫ2∂ǫ3
to (2) evaluated at at ǫ1 = ǫ2 = ǫ3 = 0, we get

�U (123) + h2(x)
∑

σ∈6(3)

U (σ (1)σ (2))vσ(3) + 6h3(x)v1v2v3 = 0.

Integration by parts gives

∫

∂M

∂3

∂ǫ1∂ǫ2∂ǫ3

∣∣∣
ǫ1=ǫ2=ǫ3=0

3(ǫ1f1 + ǫ2f2 + ǫ3f3)f0 dVg

=
∫

M

h3v1v2v3v0 dVg +
∫

M

h2(x)
∑

σ∈6(3)

U (σ (1)σ (2))vσ(3)v0 dVg. (26)

we note here that by finite speed of propagation for solutions of the wave equation, the

functions vi, vj and thus also U (ij) vanish in M \ J+((0, T) × ∂N), i, j = 1, 2, 3, and likewise

v0 vanishes in M \ J−((0, T) × ∂N); therefore, our knowledge of h2 in U is sufficient to
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24 P. Hintz

compute the second summand in (26). Therefore, we can recover

∫

M

h3v1v2v3v0 dVg. (27)

We will use special solutions v1, v2, v3, v0 in the above identity and thereby recover the

coefficient h3. Concretely, we shall use Gaussian beam solutions for the wave equation

�gv = 0 on M̃ of the form

v(x) = eiρϕ(x)
aρ(x) + Rρ(x),

with a large parameter ρ. The phase function ϕ is complex-valued. The principal term

eiρϕ(x)
a(x) is concentrated near a null geodesic γ in the manifold R × N. The remainder

term Rρ will vanish rapidly as ρ → +∞.

Fermi coordinates on M̃. Assume γ passes through a point p ∈ M and joins two

points γ (τ−) and γ (τ+) on the boundary R×∂N. We will use the Fermi coordinates 8 on M̃

in a neighborhood of γ ([τ−, τ+]), denoted by (z0 := τ , z1, z2, z3), such that 8(γ (τ)) = (τ , 0)

(cf. [15,Lemma 1]).

Construction of Gaussian beams. We will construct asymptotic solutions of the

form uρ = aρeiρϕ on M̃ with

ϕ =
N∑

k=0

ϕk(τ , z′), aρ(τ , z′) = χ

(
|z′|
δ

) N∑

k=0

ρ−kak(τ , z′), ak(τ , z′) =
N∑

j=0

ak,j(τ , z′)

in a neighborhood of γ ,

V =
{
(τ , z′) ∈ M̃ : τ ∈

[
τ− − ǫ√

2
, τ+ + ǫ√

2

]
, |z′| < δ

}
. (28)

Here for each j, ϕj and ak,j are a complex valued homogeneous polynomials of degree j

with respect to the variables zi, i = 1, 2, 3, and δ > 0 is a small parameter. The smooth

function χ : R → [0, +∞) satisfies χ(t) = 1 for |t| ≤ 1
4 and χ(t) = 0 for |t| ≥ 1

2 .

We have

�g(aρeiρϕ) = eiρϕ(ρ2(Sϕ)aρ − iρT aρ + �gaρ),

Sϕ = 〈dϕ, dϕ〉g,

T a = 2〈dϕ, da〉g − (�gϕ)a. (29)
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An Inverse Boundary Value Problem 25

We need to construct ϕ and aρ such that

∂2

∂z2
(Sϕ)(τ , 0) = 0,

∂2

∂z2
(T a0)(τ , 0) = 0,

∂2

∂z2
(−iT ak + �gak−1)(τ , 0) = 0 (30)

for 2 = (0, 21, 22, 23) with |2| ≤ N. For more details we refer to [15]. Following [13], we

take

ϕ0 = 0, ϕ1 = z1, ϕ2(τ , z) =
∑

1≤i,j≤3

Hij(τ )zizj.

Here H is a symmetric matrix with ℑH(τ ) > 0; the matrix H satisfies a Riccati ODE,

d

dτ
H + HCH + D = 0, τ ∈

(
τ− − ǫ

2 , τ+ + ǫ
2

)
, H(0) = H0, withℑH0 > 0, (31)

where C, D are matrices with C11 = 0, Cii = 2, i = 2, 3, Cij = 0, i 6= j and Dij = 1
4 (∂2

ijg
11).

Lemma 4.1 ([13,Lemma 3.2]). The Ricatti equation (31) has a unique solution. Moreover

the solution H is symmetric and ℑ(H(τ )) > 0 for all τ ∈ (τ− − δ
2 , τ+ + δ

2 ). For solving the

above Ricatti equation, one has H(τ ) = Z(τ )Y(τ )−1, where Y(τ ) and Z(τ ) solve the ODEs

d

dτ
Y(τ ) = CZ(τ ), Y(0) = Y0,

d

dτ
Z(τ ) = −D(τ )Y(τ ), Z(0) = Y1 = H0Y0.

In addition, Y(τ ) is nondegenerate.

Lemma 4.2 ([13,Lemma 3.3]). The following identity holds:

det(ℑ(H(τ ))| det(Y(τ ))|2 = c0

with c0 independent of τ .

We see that the matrix Y(τ ) satisfies

d2

dτ2
Y + CDY = 0, Y(0) = Y0,

d

dτ
Y(0) = CY1. (32)
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26 P. Hintz

As in [15], we have the following estimate by the construction of uρ (cf. (30))

‖�guρ‖Hk(M) ≤ Cρ−K , K =
N + 1 − k

2
− 1. (33)

Consider a point p ∈ U, let xj, j = 0, 1, 2, 3 be the points on (0, T) × N chosen in

Section 3.2, and γ (j) the null-geodesics passing through xj and q0. The null-geodesic γ (j)

could not be self-intersecting by the global hyperbolicity of M. Also ξ (j) ∈ L∗,+
q0

M is the

cotangent vector to γ (j) at q0. By the discussions in Section 3.2, there exits constant κj,

j = 0, 1, 2, 3 such that

κ0ξ (0) + κ1ξ (1) + κ2ξ (2) + κ3ξ (3) = 0. (34)

We construct Gaussian beams u
(j)
ρ , j = 0, 1, 2, 3 as above of the form

u
(j)
ρ = eiκjρϕ(j)

a
(j)
κjρ ,

which is compactly supported in the neighborhood V of the null-geodeisc γ (j) (cf. (28)).

The parameter δ can be taken small enough such that u
(j)
ρ = 0 near {t = 0} for j = 1, 2, 3

and u
(0)
ρ = 0 near {t = T}.

For j = 1, 2, 3, we can construct a solution vj for the initial boundary value

problem (24) of the form vj = u
(j)
ρ + R

(j)
ρ , where the remainder term R

(1)
ρ is a solution

of

�gR
(j)
ρ = −�gu(1)

ρ on∂N × (0, T),

∂νR
(j)
ρ = 0 on∂N × (0, T),

R
(j)
ρ = ∂tR

(j)
ρ = 0 on{t = 0}.

We note here that vj = u
(j)
ρ +R

(j)
ρ is the solution to (24) with boundary value fj = ∂νu

(j)
ρ |∂M .

Invoking (33), the solution R
(j)
ρ satisfies the estimate (cf. [8,Theorem 3.1], [35,Proposition

2.2])

‖R
(j)
ρ ‖Hk+1(M) ≤ Cρ−K .

Using Sobolev embedding, we can choose N large enough such that

‖R
(j)
ρ ‖C(M) ≤ Cρ− n+1

2 −2. (35)
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An Inverse Boundary Value Problem 27

Similarly, we can construct a solution to (25) of the form v0 = u
(0)
ρ +R

(0)
ρ . We only

need to take the remainder term R
(0)
ρ to be the solution to the initial value problem

�gR(0)
ρ = −�gu(0)

ρ

∂νR(0)
ρ = 0 on∂N × (0, T),

R(0)
ρ = ∂tR

(0)
ρ = 0 on{t = 0}.

Now v0 is the solution to (25) with g = ∂νu
(0)
ρ |∂M .

Then by the estimate (35), the Neumann-to-Dirichlet map determines

I =ρ
n+1

2

∫

M

h3v1v2v3v0 dVg

=ρ
n+1

2

∫

M

h3eiρ(κ0ϕ(0)+κ1ϕ(1)+κ2ϕ(2)+κ3ϕ(3))
a
(0)
κ0ρa

(1)
κ1ρa

(2)
κ3ρa

(3)
κ3ρ dVg + O(ρ−1). (36)

Lemma 4.3 ([15,Lemma 5]). The function

S := κ0ϕ(0) + κ1ϕ(1) + κ2ϕ(2) + κ3ϕ(3)

is well-defined in a neighborhood of q0 and

1. S(q0) = 0;

2. ∇S(q0) = 0;

3. ℑS(q) ≥ cd(q, q0)2 for q in a neighborhood of q0, where c > 0 is a constant.

The four null-geodesics γ (j), j = 0, 1, 2, 3 intersect only at the point q0, invoking

the condition that cut points do not exist. Therefore the product a
(0)
κ0ρa

(1)
κ1ρa

(2)
κ3ρa

(3)
κ3ρ is

supported in a neighborhood of q0. By the above lemma, and applying stationary phase

(cf., for example, [19,Theorem 7.7.5]) to (36), we have

cI = h3(q0)a
(0)
0 (q0)a

(1)
0 (q0)a

(2)
0 (q0)a

(3)
0 (q0) + O(ρ−1),

for some explicit constant c 6= 0. Hence the Neumann-to-Dirichlet map 3 determines

h3(q0).

Next we recover the higher order coefficients hk, k = 4, 5, . . .. Recursively,

assume we have already recovered h3, . . . , hN−1, N ≥ 4, in U. To recover hN , take

f =
∑N

k=1 ǫkfk and apply ∂N

∂ǫ1···∂ǫN
to (2) evaluated at at ǫ1 = · · · = ǫN = 0, we get the
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28 P. Hintz

equation for U (12···N) = ∂N

∂ǫ1···∂ǫN
u

�U (12···N) + RN(v1, . . . , vN ; h1, . . . , hN−1) + N! hN

N∏

k=1

vk = 0 inN × (0, T),

∂νU
(12···N) = 0 on∂N × (0, T).

By the recursive assumption, RN(v1, . . . , vN , h1, . . . , hN−1) is already known. By integra-

tion by parts, we have

∫

∂M

∂N

∂ǫ1 · · · ∂ǫN

∣∣∣
ǫ1=···=ǫN=0

3

(
N∑

k=1

ǫkfk

)
g dSg

=
∫

M

N! hNv1 · · · vNv0 dVg +
∫

M

RN(v1, . . . , vN ; h1, . . . , hN−1)v0 dVg.

Thus, we can recover

∫

M

hNv0v1 · · · vN dVg. (37)

Take

u(0)
ρ = eiκ0ρϕ(0)

a
(0)
κ0ρ ,

u
(j)
ρ = eiκjρϕ(j)

a
(j)
κjρ , j = 1, 2,

u
(j)
ρ = ei

κ3
N−2 ρϕ(3)

a
(3)

κ3
N−2 ρ

, j = 3, . . . , N.

Take fj = ∂νv(j)|∂M , j = 1, . . . , N, g = ∂νv
(0)
ρ |∂M this time. Then we can recover

ρ
n+1

2

∫

M

hNeiρS0
a
(0)
κ0ρa

(1)
κ1ρa

(2)
κ2ρ(a

(3)
κ3

N−2 ρ
)N−2 dVg + O(ρ−1).

Again applying stationary phase, we can recover hN(q0).

5 Discussion

We can see that h2 is more difficult to recover than hk, k = 3, 4, . . .. Indeed, we need to

exploit the interaction of four waves (associated with four future light-like vectors) in

Section 3; three light-like vectors are not sufficient. (And certainly not two: as pointed
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An Inverse Boundary Value Problem 29

out in [32], the interaction of two conormal waves does not produce new propagating

singularities.)

The use of Gaussian beams avoids some involved microlocal analysis and

simplifies the proof substantially. In our problem, we are however unable to recover

h2 using Gaussian beams. Despite their difference, the two approaches recover hk for

k ≥ 3 in a very similar way. They both choose solutions v1, . . . , vk such that v1v2 · · · vk is

supported in a neighborhood of a single point q0 ∈ U at which one wishes to determine

hk(q0).

Distorted plane waves and Gaussian beams can be constructed even when

conjugate points exist. In this paper, we assume that conjugate points do not exist for

the sake of simplicity of exposition. Since we prove that local recovery is possible, a

layer stripping strategy as used in [26] can be applied if there are conjugate points.

We note that the article [15] determines a zeroth order potential using nonlinear

interactions and does allow for the presence of conjugate points.
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