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gluing Schwarzschild-de Sitter or Kerr-de Sitter black hole metrics
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1. Introduction

A vacuum spacetime with cosmological constant A € R is a 4-manifold M equipped
with a Lorentzian metric g of signature (— + ++) satisfying the Einstein vacuum equa-
tion

Ric(g) — Ag = 0. (1.1)

The Majumdar-Papapetrou [1, 2] spacetime is an explicit solution for the coupled
Einstein-Maxwell system' in A =0 describing several extremally charged black holes; a
similar construction for A > 0 was given by Kastor and Traschen [3]. We will demon-
strate how to construct vacuum spacetimes which, for late times, describe dynamical
many-black-hole spacetimes with precisely controlled asymptotic structure using a gluing
method. Our construction applies in the case A > 0, which is consistent with the
ACDM model currently favored in cosmology [4, 5].
The simplest solution of (1.1) is de Sitter space

M° = (—-n/2,m/2) x S, gas = (3/A) cos %(s)(—ds* +gs)»

where g¢ is the standard metric on the 3-sphere; this describes an exponentially
expanding (as s — 7/2) universe. The metric ggs is asymptotically simple [6]: the

CONTACT Peter Hintz @ phintz@mit.edu @ Department of Mathematics, Massachusetts Institute of Technology,
Cambridge, MA 02139-4307, USA.

"This means that the right hand side of (1.1) is no longer 0, but related to the energy-momentum tensor of an
electromagnetic field satisfying Maxwell’s equation.
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Figure 1. The (partial) conformal compactification M of de Sitter space, a point p on its future con-
formal boundary /", and a piece of the backwards light cone from p.

conformal multiple cos?(s)ggs extends smoothly to a Lorentzian metric on the partial
compactification

M = (—n/2,1/2] xS’.

(M°, gas) is geodesically complete, so future timelike observers in M° can only tend to
OM but never reach it; one calls OM future timelike infinity, or the future conformal
boundary of de Sitter space, often also denoted I'. Since images of null-geodesics are
conformally invariant, the backward light cone from a point p € OM is a null hypersur-
face inside M° and known as the cosmological horizon associated with p. See Figure 1.

The simplest black hole solution of (1.1) is the Schwarzschild-de Sitter (SdS) solution,
recalled below. It depends on a mass parameter m € R and can be thought of as
describing a black hole tending to some fixed but arbitrary point p in I'; it is defined
in a neighborhood of p. Our main result gives a sufficient condition under which one
can glue several SdS black holes into de Sitter space:

Theorem 1.1. Let N € N. For i = 1,...,N, fix points p; € OM = S* C R* and (subextre-
mal) masses 0 <m; < (3A)~"/? such that the balance condition

N
Zmipi =0¢eR%. (1.2)
i=1

holds. Then there exists a metric g solving the Einstein vacuum equation (1.1) in a neigh-
borhood of OM with the following properties:

(1) in a neighborhood of p;, g is isometric to a Schwarzschild-de Sitter black hole metric
with mass w;, containing future affine complete event and cosmological horizons;

(2)  outside a small neighborhood of {pi,....pn}, cos*(s)g is smooth down to s = 1/2,
and asymptotic to the rescaled de Sitter metric cos®(s)gas at the rate cos®(s).

See Figure 2. When N > 2, and all masses are sufficiently small in absolute value, we
show that the cosmological horizons of different black holes intersect in the maximal glo-
bally hyperbolic development of g see the end of §3.3. Note that upon replacing s by - s,
we glue SdS black holes, with past affine complete horizons, into a neighborhood of past
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Figure 2. lllustration of Theorem 1.1. We glue SdS black holes |nto neighborhoods of the points p;
only two black holes are shown here. The dashed lines labeled H are the cosmological horizons of
the individual black holes, while the dashed lines labeled H™* (not drawn Penrose-diagrammatically)
indicate their event horizons. (The two " lines tending to p, are really a single (0,00),. x S§?, form-
ing one connected horizon, but for visualization purposes we needed to reduce dimension of the
sphere by 2.) The gray region indicates the region where the metric is not isometric to some
SdS metric.
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Figure 3. The Schwarzschild—de Sitter metric glued into de Sitter space. We only show the cosmo-
logical horizon and the cosmological region r > r, where r is timelike. On the right is the same pic-
ture, but we show an additional spatial dimension, thus showcasing the connectedness of HE

conformal infinity of de Sitter space; this provides interesting settings in which to (numeric-
ally) study the interaction of black holes in de Sitter space under forward evolution.

Recall here that for subextremal mass parameters m € (0, (3/\)_1/ %), the SdS metric is

Ry x (r,ry), X S%  gn = — i (r)dE + (1) dr? + Pgee,

where pu,(r) =1 -2 — ATVZ, and 0 < r_ < ry are the unique positive real roots of p,.
After a suitable coordinate change, one can extend g, beyond the event horizon r = r_

and beyond the cosmological horizon r = r; to a metric g, on a larger manifold

M, =R, x (0,00), x S*.

*

One can identify the piece £, > 0 of M; with a subset of de Sitter space M° in such a
way that the SdS cosmological horizon and the backward light cone from a point p €
OM coincide in a neighborhood of p; denote the resulting metric by g, . This metric is
in fact conformally smooth down to OM away from the singular point p, with r — oo
corresponding to s — m/2. See Figure 3. Conclusion (1) in Theorem 1.1 is then the
statement that ¢ = g, n, near p;.
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The precise result, Theorem 3.2, is more general: the masses m; are allowed to be any
real number, and we then glue the far end r > 1 of M, into de Sitter space. (For sub-
extremal masses as in Theorem 1.1, one can then ‘fill in’ the rest of the SdS black hole.)
We also prove the necessity of the balance condition under certain asymptotic assump-
tions on g; see Theorem 3.4.

We prove a similar result for gluing Kerr-de Sitter (KdS) black holes into de Sitter
space. The KdS family of metrics [7] depends on two parameters, m (mass) and a (spe-
cific angular momentum). For the purpose of gluing KdS metrics into de Sitter space,
we also keep track of the point on I'" to which the black hole tends, and the orientation
of its axis of rotation. We can then glue any finite number of KdS black holes into de
Sitter space under two balance conditions: the first condition is similar to (1.2) but now
involving the effective mass m. = m/(1 + Aa®/3)%, and the second condition requires
the effective angular momenta mega (taking into account the black hole locations and
axes of rotation) to sum up to 0, see Definition 4.3.

1.1. Gluing in general relativity

Most gluing constructions in general relativity operate on the level of (noncharacteristic)
initial data sets. Recall that an initial data set for the Einstein vacuum Equation (1.1) is
a 3-manifold X together with a Riemannian metric y and a symmetric 2-tensor k on =
satisfying the constraint equations

R, + (tr,k)? — [k[> = 2A, &,k + dtr)k = 0; (1.3)

here R, is the scalar curvature, and 0, is the negative divergence (the adjoint of the
symmetric gradient). Given (Z,9,k), there exists a unique maximal globally hyperbolic
development (M, g), with g solving (1.1), and an embedding X — M such that the
images of y and k are the metric and second fundamental form of X [8, 9].

Brill-Lindquist [10] explicitly constructed initial data containing any number N of
(charged) Einstein-Rosen bridges at arbitrarily chosen points in R* and with arbitrary mass
parameters; the resulting set of initial data has one distinguished asymptotically flat (AF)
region and N AF regions on the other side of the wormholes. Misner [11] (and Lindquist
[12] in the Einstein—-Maxwell case) showed how, with a careful choice of parameters, one
can identify all but two AF regions, and for just two points even create a spacetime with
one AF end and a wormhole connecting two ‘points’. These constructions are global and
rigid, the main tool being superpositions of shifted and scaled versions of 1/|x|; this is also
the case for Majumdar-Papapetrou and Kastor-Traschen spacetimes.

The starting point for localized gluing is Corvino’s work [13] on the gluing of the
large end of Schwarzschild data (A=0) to a given time-symmetric AF initial data set
on R%; in this case, the constraint equations become k=0 and R, = 0, and key to the
localized gluing is the underdetermined nature of the scalar curvature operator y — R,
(more precisely, the overdetermined nature of the adjoint of its linearization). The
assumption of time-symmetry was removed by Corvino-Schoen [14] by allowing the
AF end to be equal to Kerr initial data.

Chrusciel-Delay [15] extended the methods of Corvino-Schoen and also refined
wormhole constructions by Isenberg-Mazzeo-Pollack [16, 17]. In [15, $4], they
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constructed time-symmetric data containing any number of Schwarzschild black holes
(meaning: neighborhoods of the neck region of the Riemannian Schwarzschild metric),
placed at a collection of points in R? which is symmetric around 0 € R*. (This assump-
tion is loosely related to the balance condition (1.2).) The same authors also construct
many-Kerr initial data [18, §8.9], again under a parity condition. In both papers, the
smallness required for solving the nonlinear constraint equations comes from taking the
black hole masses to be small compared to the distance of the points. Chrusciel-Mazzeo
[19] show that the maximally globally hyperbolic development of suitable many-
Schwarzschild initial data has past-complete .# ", and the black hole region has several
connected components. Their arguments use Friedrich’s stability result [20] and direct
geometric arguments, a description of the global structure of the resulting spacetime
being far beyond the reach of hyperbolic PDE theory at this point.

Chrusciel-Isenberg-Pollack [21, 22] give sharp results on gluing in compact subsets
of initial data sets, and also discuss the case A > 0 as well as matter models coupled to
the Einstein equation; see also [23]. Carlotto-Schoen [24] gave another striking exten-
sion of this method, producing asymptotically flat initial data which are nontrivial (y
Euclidean, k= 0) only in arbitrary (noncompact!) cones in R’.

We also mention Cortier’s work [25] on gluing exact Kerr—de Sitter ends to solutions
with asymptotically KdS ends, generalizing from the Kottler-Schwarzschild-de Sitter
case studied in [26]. The latter results are very different from Theorem 1.1 as they con-
cern the periodic ends of the level set t=0 in the maximal analytic extension of SdS
and KdS spacetimes (called Delaunay ends in the SdS case). One can construct many-
black-hole initial data sets, with a finite number of black holes, from [25, 26] by identi-
fying two isometric (in particular, sufficiently far apart) copies of the fundamental
domain of the maximally extended SdS or KdS data set glued in near spatial infinity. In
the case of exact SAS or KdS data sets, the resulting spacetime is a quotient of the max-
imal analytic extension by a suitable discrete translational symmetry; in particular, the
future conformal boundary has several connected components, each of which is an
interval times S*.

1.2. Scattering problems on asymptotically simple spacetimes; gluing in de
Sitter space

As discovered by Friedrich [27], the ‘constraint equations’ at the conformal boundary of
an asymptotically simple spacetime® with A > 0 simplify dramatically compared to
(1.3). Indeed, fixing a Riemannian 3-manifold (S, &), the degrees of freedom are two
scalar functions as well as a symmetric 2-tensor k on § satisfying the linear equations

trpk =10, O,k=0. (1.4)

Given these data, one can construct an asymptotically simple solution (M, g) of (1.1) so
that S O M and h is the restriction to OM of a suitable conformal multiple of g; the tensor
k is equal to certain components of the rescaled Weyl tensor of g at M. (We remark here
that Dafermos-Holzegel-Rodnianski [28] gave a scattering construction of black holes

2A manifold M with boundary, and a metric g on M° satisfying (1.1) such that, for a boundary defining function , the
‘unphysical metric’ 72g is a smooth Lorentzian metric on M, with OM spacelike when A > 0.
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settling down exponentially fast to a subextremal Kerr metric by solving a characteristic
Cauchy problem ‘backwards” with cosmological constant A = 0; see also [29, 30].)

The linear nature of the constraints (1.4) suggest a simple way of gluing pieces of
asymptotically simple spacetimes into de Sitter space. Indeed, on Riemannian manifolds
(S, h) of dimension 3 and higher, the divergence operator on trace-free symmetric 2-
tensors is underdetermined, and one can solve the divergence equation

Sk =f, oK =0, (1.5)

in such a way that the support of k' is contained in a small neighborhood of suppf.
This requires that there is no obstruction, i.e. f must be orthogonal to the cokernel—the
space of conformal Killing vector fields. Solvability then follows from a general result by
Delay [31]. Thus, naively gluing many SdS black holes into neighborhoods of points
p1,-pn €T =S® via a partition of unity, the constraints (1.4) will typically be vio-
lated for the induced data k, and with & = gg; one can, however, correct k by a 2-ten-
sor k' supported away from the points p; assuming the obstruction vanishes for
f = —0nk, which precisely leads to the balance condition (1.2); see §3.1.

We use the gluing problem as an opportunity to give a self-contained treatment of
the scattering problem—the construction of a spacetime solution of (1.1) from asymp-
totic data at I'—in this specific context. Rather than using Friedrich’s conformal
Einstein field equations, see [27, §2], in which one solves for quantities derived from
the metric tensor, we directly construct the metric as a Lorentzian 0-metric (uniformly
degenerate metric), following the terminology of Mazzeo—Melrose [32]; see §3.2-3.3. As
demonstrated by Vasy [33, Theorem 5.5], solutions of linear wave equations on a space-
time with asymptotically de Sitter type 0-metrics can be constructed from scattering
data in Taylor series at I'" using regular-singular point ODE methods; the remaining
error, which vanishes to all orders at I, is solved away by solving a wave equation with
such essentially trivial forcing. (Similar constructions are fairly standard in the
Riemannian context on conformally compact or asymptotically hyperbolic metrics, see
e.g. Fefferman-Graham [34, 35] and Graham-Zworski [36].)

In our gluing problem, this approach does not work directly. Indeed, calling the naively
glued metric from the previous paragraph gy, the leading order term of the resulting error
Ric(go) — Ago is of size O(t*) as a 2-tensor expressed in terms of dr/t and sections of
T*S?/t (and supported away from the points p;) where T = coss is a boundary defining
function of M; the degenerate nature of (the linearization of) the Einstein vacuum equation
prevents us from solving this error away using a metric correction of the same size.
Instead, we need to use a metric correction of size O(7*) which does not produce any 7
error terms (ie. lies in the kernel of the indicial operator of the linearization of (1.1)); in
order for it to solve away the t* error, one needs to solve an equation of the form (1.5).

To continue the construction, we use the now fairly precise glued metric, called go, as a
background metric in a generalized harmonic gauge, similarly to [37], and solve the gauge-
fixed Einstein equation (see Definition 3.12), first in Taylor series in §3.2 (similarly now to
the scalar wave equation case discussed in [33]), and then nonlinearly by solving a quasilin-
ear wave equation with rapidly decaying (at OM) forcing in §3.3. We show that the result-
ing metric solves the Einstein vacuum equation by using the usual argument based on the
second Bianchi identity and the propagation of the gauge condition. In this final step, the
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sufficiently rapid vanishing of the gauge condition, a 1-form on spacetime, at OM replaces
the vanishing of the Cauchy data of this 1-form in the standard short-time theory.

Our gluing method is very flexible. For instance, one can glue any number of KdS black
holes into the upper half space model [0,1). x R¥?, gas = 7 *(—d7* + dx?), of de Sitter
space without any balance conditions if one allows for the solution to be sufficiently large
at spatial infinity; in this case, we can of course only guarantee the existence of the nonlin-
ear solution of (1.1) in a neighborhood of 7 = 0 which may shrink as |x| — co. More gen-
erally, one can glue any metrics suitably asymptotic to de Sitter space into de Sitter space.
See §3.5 for more on this. In particular, one may be able to glue several dynamical KdS
black holes together once their behavior is understood globally; see the work [38] by the
author with Vasy for the stability of the KdS exterior, and Schlue’s ongoing project [39, 40]
(building on his prior [41]) on the stability of the cosmological region.

We remark that, as another application of our approach, the polyhomogeneous for-
mal solutions of (1.1) constructed by Fefferman-Graham can be corrected to true
(asymptotically de Sitter like) solutions near the future conformal boundary; see Remark
3.17. This was previously shown by Rodnianski-Shlapentokh-Rothman [42].

Remark 1.2. We expect our methods to generalize in a straightforward manner to all
higher dimensions, including to odd-dimensional spacetimes to which neither
Friedrich’s analysis nor the extensions by Anderson and Chrusciel apply [43, 44]. For
general results on the future stability of cosmological spacetimes, see Ringstrom [45].

Remark 1.3. It would be interesting to perform similar gluing constructions for
Einstein—-matter systems such as the Einstein-Maxwell equations, thus generalizing the
family of Kastor-Traschen spacetimes. See also [46].

1.3. Outline of the paper

In §2, we recall relevant aspects of 0-analysis, i.e. the analysis of 0-metrics and associ-
ated uniformly degenerate differential operators. In §3, we present the details of the glu-
ing construction for multi-SdS spacetimes; in §4, we extend this to the KdS case.
Throughout the paper, the cosmological constant will be a fixed number

A>0.

2. Analysis of uniformly degenerate metrics

We recall natural vector bundles associated with uniformly degenerate geometries in §2.1
and describe de Sitter space from this point of view; associated differential operators are
discussed in §2.2. In §2.3, we discuss the case of the Einstein vacuum equations in detail.

2.1. Rescaled tangent and cotangent bundles; de sitter space

Let M be a smooth (n + 1)-dimensional manifold with boundary OM # (; the space of
smooth vector fields on M is denoted V(M) = C>*(M; TM). Following Mazzeo-Melrose
[32], we define the space
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of 0-vector fields (or uniformly degenerate vector fields); this is a Lie subalgebra of V(M).
If t € C*(M) denotes a boundary defining function, i.e. M = t71(0) and dr # 0 on
OM, then Vo(M) = tV(M). In local coordinates [0,00), x R, the space Vo(M) is the
C>*(M)-span of the n+ 1 vector fields

10 104, i=1,.., 1.

Together, these provide a smooth frame of a vector bundle OTM, called 0-tangent bun-
dle, which is nondegenerate down to t=0. Thus, for z € M, there is a natural map
OT,M — T,M which is an isomorphism for z € M°. A section V € C*(M;°TM) restricts
to a smooth vector field on M° which extends smoothly to a vector field on M. This
identifies Vo(M) = C>*°(M;°TM).

The dual bundle of °TM is called the 0-cotangent bundle °T*M. In local coordinates
near OM, a local frame is given by

dr  dx

R ,i=1,...,n.
T T

These are smooth and nonvanishing down to t=0.
Definition 2.1. A Lorentzian 0-metric (or uniformly degenerate Lorentzian metric) ¢ on
M of class C* is a smooth section g € C*(M;$* °T*M) which has signature (n,1) at
every point of M.

In local coordinates, a smooth Lorentzian 0-metric can be written as

ij=1

g= 772 <g00d12 + 2 ngdr ®s dx’ + Z gijdxi®sdxj>,
i=1

with the g, smooth functions of (7,x), and (8w),  having signature (n,1). Note

L, v=0, ...,
that t>g € C*°(M;S*T*M) is a smooth Lorentzian metric on M in the usual sense. In
particular, the class of metrics g for which OM is spacelike for the metric t%g is well-
defined, and independent of the choice of boundary defining function 7; we shall only
be concerned with such metrics in the present paper. The Riemannian metric induced
on OM by t*g does depend on 1, but its conformal class is well-defined.

The prime example for us is the de Sitter spacetime in 3 4 1 dimensions, with cosmo-
logical constant A > 0. It can be defined as the cylinder’
3 —ds? + s

M= [—7'5/2,77:/2]5 X SS, gds = KW’ (213)

whose interior is conformally diffeomorphic to a slab inside the Einstein universe
(Ry x S?, —ds® + gs); here gg is the standard metric on S’. The metric ggs is a solu-
tion of the Einstein vacuum equation (1.1). To see that ggs has the required form near
s =m/2, let us take T = coss near s = n/2; then

gas = (3/A)12 <—(1 —2) e +gga> on [0,00), X §3¢. (2.1b)

3Just this one time, we also include the past conformal boundary.
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Note that 12g4s|,, = (3/A)gg is a Riemannian metric, thus OM = S’ US® is spacelike
with respect to ggs.

Other forms of the de Sitter metric are useful for calculations. Regarding S’ as the
unit sphere S* € R* = R x R?, we define the map

[0,1) x R*D (%,%) — (1,4) € [0,00) x S?,
2 -2 22z (2.2a)
L ((1(12%x )) +1) ) !p:%(l-i—‘cz |X| ,5c> cs?

from part of the upper half space into de Sitter space (2.1b); here |- | is the Euclidean
norm. The de Sitter metric then takes the form
3 —dz? +dx’

gas =~ ————— on M, :=[000); x RX’. (2.2b)
A T

See [47, §6.1] for these and related calculations (in particular, relating both (2.1b) and
(2.2b) to the one-sheeted hyperboloid in (1 + (n+ 1))-dimensional Minkowski space
which is isometric to global de Sitter space); they imply that the map (2.2a) composed
with (7,4) — (s,¥), s = arccost in the coordinates (2.1a), extends analytically to a map
[0,00); x Rx> — M whose image is the complement of the backward causal cone from
the point (—1,0) € S® at s = m/2; see [47, Figure 7].

Finally, introducing polar coordinates ¥ = R, R = |X| > 0, @& € S% and putting
1 ~ -
(t,r,0) = (—E«/A/S:log (R* —#2), \/A/37 'R, a)) (2.3a)

in the cosmological region R > %,* we have

AP - AR
Qas = — (Tr — 1) dr? + (Tr - 1>dt2 + rzgsz. (2.3b)
This is a smooth 0-metric on a compactification of (\/ 3/A, oo) x R; x Si; indeed,

letting t; = r~!, and defining

M, := [o, \/A—/3> x R, x S2, (2.3¢)

Ts

we have

Gas = TS—Z(*(A/3 — ) + (A/3 —2)de + gSz> €C®(M; 8 °T"M,).  (2:3d)

N
The metric induced on 7, = 0 (factoring out the overall scalar factor A/3) is

A? A
hs = (A/3)T3gaslom = jdtz T8 (24)

We remark that 7, 7, and 7, are equivalent defining functions on the overlaps of the
various coordinate charts.

“This region, r > \/3/A, is the interior of the complement of the static region r < /3/A (i.e. R < 7). In the
cosmological region, r is a time function whereas t has spacelike differential; by contrast, the static region is foliated by
the spacelike level sets of t (which the Killing vector field 0; is orthogonal to).
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2.2. Differential operators, function spaces

Geometric operators associated with a 0-metric ¢ on an (n + 1)-dimensional manifold
M are examples of 0-differential operators. Concretely, using abstract index notation, we
shall in particular deal with the wave operator on bundles,

_ K . . K
Dgu = Uk > (Dgg),w/ - _g,ul/;l( >

the divergence and (trace-free) symmetric gradient
) ) N 1
g = =", (0g8), = —&pu’> (6gw) w2 (@pe - )
* * 1
5g,0co = 5gco + H—Hgégw,

as well as the ‘trace reversal® operator’ on 2-tensors,

. .1 )

Gy =& — 58 (trgd)-

We define the space Diff'(M) of m-th order 0-differential operators to consist of all
locally finite linear combinations of up to m-fold products of 0-vector fields. Then

O, € Diffy(M) for the scalar wave operator, [, € Diff(M;S? °T*M) for the tensor
wave operator acting on symmetric 2-tensors, J, € Diffy(M;°T*M,$* °T*M), and so

forth. For instance, for the metric (2.2b) in 3 + 1 dimensions, we have
n

A0, = (10:)" = 310 + A, Avi=— ) 0%
i=1

for the other operators, we will give explicit expressions in §2.3.
Associated with any O-differential operator A € Diffy'(M) is its indicial family (see
also [48, §2]) I(A, 1) € C*(OM), /i € C, which is defined by

Alt*u) = 1A, Du+ O, uec®(M),

for any defining function t; this is independent of the choice of defining function.
Concretely,

A= Z a,-o{(r,x)(‘c&)i(rax)OC = I(A,)L):Za,-o(o,x)}f. (2.5)

i+|a]<m i<m

Thus, I(A, ) is a polynomial of degree m in 4, depending smoothly on x € OM. We
call the roots of the polynomial 4 — I (A, i)(x) the indicial roots of A; if they are inde-
pendent of x, we say that A has constant indicial roots.

If Ac Diff’g(M; E,F) acts between sections of vector bundles E,F — M, we define
I(A, 1) € C™ (8M; Hom(E, F)|6M) similarly; the indicial roots of A are then those 1
(depending on x € OM) for which I(A, 2) fails to be invertible.

Lower order terms of A as in (2.5) can be defined upon fixing a collar neighborhood
[0,€), x OM of OM : writing

*One has trg 0 Gy = —trg only for n 41 = 4.
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Azzm:rk Z agf)(x)(‘caf)iaz.

k=0 i+ |uf <m

modulo terms of the form TkHa(‘c,x)(‘c@T)ia;‘, a € C™,° we define

1l 2) == > au(x)202 € Diff“(oM). (2.6)
i+ lal <m
lo| =k

Thus, I(A[1],4) = I(A, ). If A acts between sections of vector bundles E,F — M, the

same works, with agf) € C*(0M;Hom(E, F)|,,), upon choosing an identification of E,
F in the collar neighborhood with pullbacks of E|,,,,F|,,, along the projection [0,€) x
OM — OM.

We record some standard calculations involving the indicial family. If A€
Diff]'(M; E,F) and 4 € C are such that kerI(A, 4) is a C* vector subbundle of E|,,, —
OM, then A(t*u) = O(v*!) for all u € C*(M) with ul,,, € C*(OM;kerI(A,1)). For
such u, we moreover have

A(r)'( log r)u) =T I(A, Nu+ (’)(r}~+1 log ‘c); (2.7)

this can be seen by differentiating the relationship A(t%v) = t*I(A, A)v + t*7'% (with ¥ €
C>®(M) depending smoothly on ) in /4 and plugging in v=u. We also record that in a
collar neighborhood of M, we have, for such u, A(t*u) = " *1I(A[1], A)u+ O(c*+2).
The L*-based function spaces corresponding to 0-analysis are weighted 0-Sobolev spaces
HE (M) = {t"u:uec Hé‘,loc(M)}.

0,loc

(M) =12

loc

For k=0, we define HJ (M) to be the space of locally” square integrable

,loc
functions on M relative for a smooth 0-density, i.e. a smooth positive section of the 0-

density bundle |A™™ °T*M|; in local coordinates, such a density takes the form
dr dx

a(t,x)| S| with 0 < a € C™, a typical example being the volume density |dg| of a
Lorentzian 0-metric g. For k € N, we define Hg’loc(M) to consist of all u € L*(M) so
that Pu € L*(M) for all P € Diffs(M). If M is compact, the space t"HK(M) =

M Hk

0,loc
and Q C M is open with compact closure, then

(M) carries the structure of a Hilbert space. More generally, if M is noncompact

rmHé(Q) = {u|g : u € T"HE(M)} (2.8)

is a Hilbert space.

For compact M, we can characterize the space HJ'(M) using a covering of M by
‘uniformly degenerating cubes’ as follows: if a distribution u is supported in a coordin-
ate patch [0,2), x R”, and in fact in 7 < 1, |x| < 1, then®

The reader familiar with b-analysis [53] will recognize this as the Taylor expansion of A into dilation-invariant (with
respect to 1) b-differential operators on [0,¢), x OM.

’0On M, thus this does encode uniformity down to compact subsets of OM.

8We write A ~ B to mean the existence of a constant C> 1, independent of u, so that C'B<A<CB.
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2 - 2
||u||H('J”(M) ~ Z Z ||uk,zx||Hm([71/2’1/2]n+1);

k=0 ocZ"

1
weo(T,X) = u(27*1+ T),27% e+ X)), (T.X) eRxR", |T,|X| < 5

Note that uy , sees u on a cube of size 27k centered at a point at a distance 27% from
the boundary, and Or,0x are of the same size as t0;, 10,. We leave the notational
changes required to drop the support condition to the reader; see also [48, Proof of
Corollary (3.23)]. An important consequence of this characterization is that algebra
properties of Sobolev spaces on R" immediately carry over to 0-Sobolev spaces;
in particular:

Lemma 2.2. On an (n + 1)-dimensional compact manifold M with boundary, and for
k> (n+1)/2, the space HX(M) is an algebra. More generally, we have

uj € THEM), j=1,2 = wu, € ™ T™HN(M).

Solutions of uniformly degenerate equations often have better regularity and are con-
ormal, for instance as shown for solutions of the wave equation on de Sitter type spaces
in [33]. For « € R, we define the space of conormal functions relative to T™*L>°(M) by

A*(M) == {u € C>*(M°) : P(t*u) € L*(M) V¥ P € Diffy(M)},
where © € C*(M) is a boundary defining function, and Diffy,(M) is the space of all b-

differential operators on M: locally, these are finite products of the vector fields t0; and
O with C>°(M) coefficients. The space

A*Diffy' (M) (2.9)

of 0-differential operators with conormal coefficients consists of all locally finite linear
combinations of differential operators of the form aP, a € A*(M), P € Diffy'(M).

2.3. Einstein vacuum equation and its linearization

We make some general observations about the following nonlinear operator for
0-metrics:

Definition 2.3. For a Lorentzian metric ¢ on a manifold M, define
Py(g) == 2(Ric(g) — Ag). (2.10)
For definiteness, we now work in 3+ 1 dimensions on the spacetime manifold

M=[01),xX, dimX=3,

where X is a 3-dimensional manifold without boundary such as R*® or S’; the boundary
OM = 171(0) will play the role of the future conformal boundary. This product struc-
ture allows us to identify differential operators (in particular: vector fields) on X with
‘spatial” differential operators on M. In particular, we can pull back TX (along the pro-
jection M — X) to a bundle over M, still denoted TX, which allows us to split °TM as
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OTM = Rey & 1TX, ey = 10;;

that is, we identify a O-vector field uey + 1V, u € C*(M), V € C*(M;TX) C V(M),
with the pair (u, V). This induces splittings

d
IT*M =R’ P t7I1T*X, € = —T,

. T (2.11)
2 0*M =R(e%)” @ (282@,0 1 T*X) @ 1728 T*X;

that is, we identify a section u(eo)2 +2 @1t 'w + 1%k of §? °T*M with the triple
(u,0,k),  where ueC®M), we€C®M;T*X), ke C®(M;S*T*X). Given a
Riemannian metric h on X, we can split S?T*X into pure trace (Rh) and trace-free parts
(kertry), thereby refining (2.11) to

$ T M = R(°)’ & (262,71 T X) & Re~2h & v 2ker try,. (2.12)

We shall denote the components of ¢ € $* °T*M in the four summands in (2.12) by
gxy € R (normal-normal), g, € T*X (normal-tangential), g,,, € R (tangential-tangen-
tial, pure trace), g, € kertr;, (tangential-tangential, trace-free).

We shall first study geometric operators associated with a product metric

—dt? + h(x, dx)

= (2.13)

g= (/M)
We denote the exterior derivative on X, pulled back to a spatial operator on M, by dx.

Lemma 2.4. In the splittings (2.11), we have’

€0 0
h 0},

B |—

e—3 10, —try
0 ep—4 10, )

and, as operators on symmetric 2-tensors,

% 0 %trh —6 470, 2ty
Go=|0 1 0 |, 30 'Og=¢ —3e+ %A+ [ —2tdx -6 215,
h 0 Gy —2h  —415, -2

Finally, if Ry, and Ricy, denote the Riemann curvature tensor and Ricci tensor of g

then the operator Rq(u) R\ uy, + % (Ric,"uy, + Ric,"uy,) is equal to

K[ =

3.0 @t 0 0 0
3N "%, =0 4 0 +721 0 iRic(h) o0
h 0 4-— htry, 0 0 Ry,

2

Proof. In local coordinates x!,x* x*> on X, and setting ¢; = 19y, € =1 'dx', we com-

pute V,e* =0 for all u, V,e’ = hye®, and Veiek = 55‘60 - rF(h)Zef, where 55‘ is the

°Here, h in the (3, 1) component of 6; simply multiplies the scalar 4 it acts on by h, producing the tangential-
tangential 2-tensor Ah; similarly for other occurrences of h.
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Kronecker delta. Moreover, we have R*,,” = 0 except for 3A"'R%;® = hy, 3A™'R%/ =
Sy 3AT'R,® = 5, 3AT'Rlg = WY, 3AT'RLJ = 08], — hyhi' + *R(h)'4/, where Wil =
h=1(dx/,dx*) denotes the coefficients of the dual metric of h; this gives Ricyy =
—A, Ricj =0, and Ric; = Ah;; + (/\/3)12Ric(h)ij. The expressions in the lemma fol-
low from this by direct computation. 0O

The calculations in the proof imply that Ric(g) — Ag € ©°C*(M;S* °T*M), i.e. any g

of the form (2.13) satisfies the Einstein equation modulo O(12) errors.
In [37, 49], the linearization of P, is computed as

Log§ = DgPo(§) = Oy — 26,0,G, + 2%, — 2A. (2.14)
Using Lemma 2.4, we compute the leading and subleading order behavior of Ly, :

Corollary 2.5. For g as in (2.10), and in the bundle splitting (2.12), we have

3.-6 0 —A(3.—6) 0
-1 0 0 0 0
3A I(LO,g) )V) = 6 — /1 0 _/1(6 — )v) 0 )
0 0 0 A4 —3)
0 2(1— )0y, 0 0
2dX 0 —Zidx _;Léh
-1 ]
3ATI(Log[t), ) = 0 g(i —5)dn 0 0
3
0 (4-24)9,, 0 0

Proof. In the calculation of §,0,G,, one needs to use egr = 7(eg + 1) as well as dyh =
—dx and Jj, = 9}, , — 3hdy to obtain the stated expression for I(Lo,g[t], 1). 0

Typically, metrics do have 7-dependence. The following two lemmas describe the (lin-
earized) Einstein operator for lower order perturbations of (2.13).

Lemma 2.6. If o > 0, § € A*(M;S* °T*M), then Lo g5 — Lo,y € A*Diff2(M; S °T*M),
see (2.9). If g € T"C™ for some m € N, then Lo g5 — Lo g € T"Diff;.

Proof. Using that the space A* is a C*°(M)-module which is closed under multiplication,
we have (g +g) ' —g~! € A*(M;$* °TM). Hence Gz — G, € A (M; End($* °T*M)).
Similarly, indicating the metric in the notation for the Levi-Civita connection by a super-
script,

Ve — V8 € A'Diff} (M T*M"T* M&T* M).

This implies that d,,; — J, € A™Diffy(M;°T*M; S °T*M), similarly for the other opera-
tors appearing in (2.14). For the proof of the second part of the lemma, replace A” by

M. O
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In particular, for m > 2, the indicial families I(Lo g¢[¥/], 1), j=0, 1, are independent
of g; likewise (suitably interpreted) for g € A*, o > 1.

Lemma 2.7. With P, defined in (2.10), suppose g € C*(M;S*> °T*M). If o >0, g €
A*(M; $? °T*M), then Po(g+g) — Po(g) — Log& € A™(M;S* 0 °T*M). Similarly, if
g €1"C, meN, then Py(g +g) — Po(g) — Log& € T"C™.

Proof. This follows similarly to the proof of Lemma 2.6. Since Po(g) and Lo,g capture
all terms of Py(g + g) which are at most linear in g, the difference Po(g +g) — Po(g) —

Lo,¢g only contains terms which are at least quadratic in g, hence its coefficients, as a
0-differential operator, have the stated decay. O

3. Multi-Schwarzschild-de Sitter spacetimes

In this section, we show how to glue several Schwarzschild-de Sitter metrics into global
de Sitter space; we shall work near the future conformal boundary, hence on

M=[01), xS’ 1= coss. (3.1)
The de Sitter metric is of the form discussed in Lemmas 2.6-2.7. Indeed, we have
gas €3N H(—d?P + h) +7C°, h=3A"gg, (3.2)
We recall the Schwarzschild-de Sitter (SdS) metric with mass m € R:
AR om) AP 2
gm:_<Tr—1+—m> dT2+ (Tr_l"‘Tm)dtz"’_rzgSz' (3.3)
r

We consider the metric (3.3) for r > r,, where r; is the largest positive real root of
Ar?/3 — 1+ 2m/r if one exists; otherwise, fix an arbitrary r; > 0. As in (2.3d), we put

7, = !, and thus g, is a smooth 0-metric on

My s = [0, rf)T x R; x Si. (3.4)

Comparison with the de Sitter metric, expressed in the same coordinates and on the
manifold M; (see (2.3¢)) by (2.3b) and (2.3d) (thus gdas = gm|n_o)> shows that

gm — gas € T.C° (M, N My, 53 S* °T* M) (3.5)
in their common domain of definition. Note that at 7, = 0, we have, in the upper half

space coordinates (2.3a), T =0 and R = e VA 1n particular, t — oo corresponds to
R — 0; let py = (1,0,0,0) € S* € R* denote the point R = 0 inside 7 = 0. Moreover,
t — —oo corresponds to R — oo, which on global de Sitter space corresponds to the
antipodal point —py € S’ inside OM by inspection of (2.2a).

In summary, by relating the coordinates in (3.4) to the semi-global de Sitter manifold
(3.1), gm can be regarded as gluing an SdS black hole into de Sitter space at the point py
at the future conformal boundary t=0. Given a point p € S®, choose a rotation R €
SO(4) with Rp = py; this induces a map (t,1) — (7, R(1/)) on M. Pulling back g, along
this map, we obtain the metric
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Figure 4. lllustration of Theorem 3.2, focusing on a neighborhood of p,, p, the shaded regions indicate
where we glue in the SdS metrics g, m,, i=1, 2. The blue segments indicate the sets V. The red dashed
line indicates a piece of the past boundary of the domain U on which we construct the metric g. The dif-
ference to Figure 2 is that here we do not require the masses to be subextremal, hence we content our-
selves with gluing the far end of the cosmological region of several SdS black holes into de Sitter space.

gm PES, mER, (3.6)
with g,  defined in a neighborhood of U, = S’ \ {p, — p}. See Figure 3.

Definition 3.1. Let N € N. We say that {(p;,m;):i=1,..,N} C S* x R is balanced if
the p; are pairwise distinct and if, regarding S* as the unit sphere inside R*, the follow-
ing relation holds:

N
Zmipi =0¢c R*.

i=1
We can now state our main theorem:

Theorem 3.2. Let N € N, and suppose {(p1,m1),..., (px>mn)} C S* xR is balanced.
Suppose Vp,, C Uy, is a ball around p; with the point p; removed, and suppose V,, NV, =
() for i # j. Then there exist a neighborhood U of OM \ {p1,....pn} and a Lorentzian 0-
metric g € C™(U; $* °T}M) with the following properties:

(1) g satisfies the Einstein vacuum equation Ric(g) — Ag = 0;
(2) near V,, we have g = gy, m;
(3) gis O(t*)-close to the de Sitter metric: g — ggs € TC(U; S °TyM).

See Figure 4. In the case of small subextremal masses, we can say more about the
domain of existence of g; we discuss this at the end of §3.3.

Remark 3.3. We only explicitly describe here how to glue a piece of the cosmological
region of an SdS black hole into de Sitter space. As is well-known (see e.g. [38, §3.1]), the
metric gy in (3.3) merely has a coordinate singularity at the cosmological horizon r = r_ if
the mass is subextremal, meaning 0 < 9Am? < 1. After a suitable (singular) coordinate
change, g, is analytic. There is another coordinate singularity at the event horizon, located
at the second largest root of Ar*/3 — 1+ 2m/r, beyond which the metric can again be
extended analytically. Thus, one can paste these extended subextremal SdS metrics into
neighborhoods of p; and thus, via Theorem 3.2, glue subextremal SdS metrics, extended as
far as one wishes, into de Sitter space. This is depicted in Figure 2.

We show the necessity of the balance assumption under certain decay assumptions on g
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Theorem 3.4. Let (p1,my), ..., (PN, M) € S? x R, with the p; pairwise distinct. Suppose g
satisfies the conclusions (1)-(2) of Theorem 3.2. If, for some € >0, we have g — g4s €
(log1)C™ + °C™ + A (M; §? °T*M), then {(p1,m1), ... (px>mn)} is balanced.

In particular, this applies for metrics g satisfying part (3) of Theorem 3.2. The uniqueness
theorem is not sharp; the inclusion of a 7> log t term merely serves as a demonstration that
the inclusion of a logarithmic term does not help in constructing a (formal) solution of
Py(g) = 0 when the balance condition is violated. The determination of sharp conditions
under which the balance condition of Definition 3.1 is necessary for the existence of a met-
ric g satisfying (1)-(2) is left as an open problem. We remark that the analysis of the
Einstein vacuum equation for metrics g with g — ggs € ©>C™ or A” (or even less decay) is
necessarily nonlinear on the level of O(t*) contributions to Ric(g) — Ag.

Let y; € C*(OM) denote cutoffs, identically 1 near V,, and with mutually disjoint

supports; put y, :=1— Zf\; 1;- The starting point of the proof of Theorem 3.2 is the
naively glued metric

N
80 *= Yo&ds + Z Xi&pi ;- (3.7)
i=1
Away from the points p;, we have gy — gas € T°C™. We shall show in §3.1 that the fail-
ure Py(go) = 2(Ric(go) — Ago) of g to solve the Einstein vacuum equation lies in C®
and is supported away from the p;, but it is always nonzero except in the trivial case
that m; = 0 for all i. The goal is to find a correction g € ©°C™, with support disjoint
from V,,, such that Py(gy + g) = 0. To accomplish this, we proceed in several steps:

(1)  We improve the error to Py(go +g,) € 7°C™ by solving an underdetermined
divergence equation for g; the balance condition ensures the solvability, while the
underdetermined nature of the equation enables us to choose g, to vanish identi-
cally near the p;. See §3.1.

(2) We find g in the wave map gauge with background metric g° := gy + g, by solv-
ing a suitable gauge-fixed Einstein equation P(g) = 0. This is done in two steps.
(a) One can construct g1 = g° + g, &, € ©°C*, with P(g;) € C.°(M) by inverting

the indicial family of D, P and using a Borel summation argument. See §3.2.
(b) In order to solve away the final error, we solve the quasilinear wave equation
P(g1 + g,) = 0 backwards from M, with solution g, € C.*(M). See §3.3.

(3) Also in §3.3, we show that g solves the Einstein vacuum equation by means of the
usual argument involving the second Bianchi identity and a unique continuation
argument at OM.

With Py as in Definition 2.3, we shall write from now on

LO = Lgds,o = ngspo. (38)

3.1. Obstructed problem for the leading order correction

We will prove:
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Proposition 3.5. Under the assumptions of Theorem 3.2, and with g, defined by (3.7),
there exists g, € ©°C*°(M; $* °T*M), vanishing near U; Vy,, so that Py(go + ;) € T°C™.

We begin by computing the error produced by naively gluing a single SdS black hole
into a neighborhood of py € OM :

Lemma 3.6. In the coordinates (3.3), let y € C*(R,) be identically 1 for large t, and put
g0 = x(t)gm + (1 — x(t))gas. With Py = 2(Ric — A) as in (2.10), we then have

dt;  12mdy
— 4 5 s
Py(go) = 1, Errso mod 7;C*, Err,o = ZT—S®STT—S.
Proof. Since gn and gas solve the Einstein equation, Py(go) is supported on {y # 0,1}.
By Lemma 2.7 and in view of (3.5), we have

Py(g0) = Po(gas + %(gm — as)) = Lo(%(gm — gas)) mod 73C*; (3.9)
but for y = 1, the left hand side vanishes, hence
Lo(gm — &as) € T0C*. (3.10)

Now, note that 7 := gn — gas = T2 + Toys + O(rf), with y; and 7y, independent of
when expressed in terms of the bundle splitting (2.12), with dt/t, = —dr/r, 1, and
he = (A*/9)de® + (A/3)ge (see (2.4)) taking the roles of €°, 7, and h; explicitly,

18m dr? 18 6m 4 2
y3:A—T—rZ+2m(r dt)Z: (A—T,O n —mdtz——mggz).

p) P) 3 A
In view of (3.10), or by direct calculation using Corollary 2.5, we have I(Ly,3)y; =0
and I (LO [t5]>3) 73 + (Lo, 4)74 = 0; thus, (3.9) implies that, modulo 2C%,

Po(gn) =t (I(Lo[rs).3) (3) + (Lo 4) (171) )
= 13 [I(Lo[t), 3)> 1] 73
= T (A/3) (0 (3015 7)(73) 11 0.0) 1D
= <o, ndeX’ 0, 0)
since [0y, %] = —1yn,» 1 denoting contraction, and V*y = 5Vt = 9A 2y (1)0,. O

Thus, Err, o = O(rf) is a tangential-normal tensor. In order to proceed, let us pre-

tend we want to glue a single SdS black hole into M. Since I(Lo,4)y; = 0 by Corollary
2.5, we cannot solve away Err, with a (’)(Tf) metric correction. Since Err, g = (’)(rf) is
due to the (’)(rf ) difference of the metrics g, and ggs, we shall instead attempt to solve
away Err, o with a (9(153) correction with support not containing po. To this end, note
first that by Corollary 2.5,

ker I(Ly,3) = ker tr;_ & R(S(e°)2 + hs) @ (2@, T°X). (3.12)
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Written as a block matrix with respect to this splitting and (2.12), we furthermore have

0 0 —45/15
., 30, 0 0 . o
3AT'I(Lo[rd),3) = ) : C®°(M;kerI(Lo, 3)) — C*(M; §* °T*M).
0 0 —%5,
0 0 -25,

(3.13)

Thus, we need to find k € C*°(OM;kertr;,) which vanishes near p, and which solves
—(A/3)304,k = (Erro)yy = 12mA~"dy. A necessary condition for solvability is that the
right hand side be L*(9M; |dhy|)-orthogonal to the space kerd;, , € C**(M; T*OM) of
conformal Killing 1-forms. Identifying 1-forms with vector fields via the metric h,, this
condition reads

J V(Errg o)y |dhs| =0 for all conformal Killing vector fields V on (OM, hj).
oM

(3.14)

The space of conformal Killing vector fields only depends on the conformal class of
the metric.'” Note then that h, is conformal to gg; indeed, hs = t>t%gs:. The con-
formal Killing vector fields of the standard n-sphere, n > 3, are well-known (see e.g.
[50, §1.4] and use the stereographic projection):

Proposition 3.7. The space conf, = ker 5;@)0 c V(S") is a direct sum
conf, = iso, P scal,,
where is0,, = ker 5;” > 50,4, is the space of Killing vector fields (rotations) on S", and
scal, = {S;: q€R"}, §,:S"Dp—q—(qgp)p € T,S", (3.15)
where (-,-) is the standard inner product on R"*.

Passing from 7, to the global boundary defining function 7, the error Err, in
Py(g0) = t*Errg mod 7°C* has normal-tangential component

_ _ 3 5 12m
(Erro)yp =7 4P0(g0)(181,r')|TSs =1 3Tf(Errs,0)NT =17 = —dy. (3.16)

s

Remark 3.8. Since |dgg:| = vt *|dhs], the solvability condition (3.14) is equivalent to

J V(Erry)yrldgss| =0 VYV € conf,.
oM

This has the same form as (3.14); thus, the condition (3.14) is conformally invariant.
Now, at T=0, both 7,/7 and ¥ are functions of t only, thus of R = || by (2.3a), and

thus of the geodesic distance dg:(po, —) from the point py € S by (2.2a); thus, we have

t%t}dy = dj for some 7 = 7(dg (po, —)). With (Erro)y, = 58 d}, we can now compute

"Indeed, if (X, h) is a Riemannian manifold and V is a conformal Killing vector fields, so Lyh = fh for some f € C*(X),
then Ly(e2°h) = e2¢(f 4+ 2Vo)h for any ¢ € C(X).
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lpom € (confy)",  conf; DV — J V(Erro) ypldgss |- (3.17)
SS

Namely, for V € iso, = kerd, , C ker dg,, integration by parts gives £y, m(V) = 0. On

the other hand, if g = p, € S* C R*, the vector field S, is the radial vector field point-
ing toward po, and

Cpm(Spy) = Co - 12m/A,

where Cy € R is a universal constant. We claim that Cy # 0. Indeed, passing back to
(3.14) note that S, is a radial vector field, i.e. a C*°(Ry)-multiple of 03 and thus a
C>(R;)-multiple of J;, and hence must be a constant nonzero multiple of 9;, which is
the unique conformal Killing vector field of h; of this form. (In fact, §, is Killing for
h,.) But

N
is nonzero, proving that Cy # 0.

Finally, if g1po, then the integrand S,(Errq)y, in (3.17) is odd with respect to the
reflection across the axis Rpy, hence ¢, (S;) = 0 in this case. Therefore,

12m
Copm(Sq) = COT@O,@, q € R (3.18)

2
J8t<12m ’(t)dt) |dhg| = lsz (0-1) ~%vol(82) =— 167;Am

In particular, there is a nontrivial obstruction to gluing a single nontrivial (m # 0) SdS
black hole into M. We summarize our findings in the following lemma:

Lemma 3.9. Given p; € S’,m; € R, and cutoff functions y;, identically 1 near p; and van-
ishing near —p;, for i = 1,...,N, set Erryy = Zfil (Ertp, m;)yp € C>(S’, T*S), where

(Brtp,m)yp =T *Po(igpum + (1 — 1:)8as) (100, TW)| gy W € TS’

Then we have
J V(Errny)|dgss| =0 VV € confy
S3
if and only if {(p1,m1), ..., (pn> M)} is balanced as in Definition 3.1.

Proof. If every y; is a radial cutoff, relative to the point p;, the claim follows from (3.18)
and the fact that S°N  (m;p;,q) = 0 for all g € R* if and only if >_N , m;p; = 0, which is
precisely the balance condition.

It remains to prove the lemma for general cutoffs. Observe that the difference of error
terms produced by two different cutoffs y; it j=1, 2, to a neighborhood of the same point
p; lies in the range of J acting on smooth 1-forms supported away from p;. Indeed, simi-
larly to (3.11), the difference is equal to (0, — (A/3)30,((%i1 — %i.2)(V3)7710)> 0,0) (in the
splitting (2.12)) where (73) 7y, is the trace-free part of the tangential-tangential component
(with respect to (3.1)) of g, m, — gas; note that y; ; — ; , vanishes near p;. O

On any Riemannian manifold (X, /) with dimX > 2, the divergence J;, acting on trace-
free symmetric 2-tensors has surjective principal symbol and thus closed range; in the present
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context then, standard elliptic theory implies that under the balance condition, the error of
Lemma 3.9 can be written as Erryy = dpk for some k e C°(S%; S*T*S%), trg,k = 0.

Crucially, we can do much better, since the overdetermined nature of this equation allows us
to find k with strong support restrictions due to the following result due to Delay:

Theorem 3.10. (Delay [31, Theorem 1.3, Proposition 9.7, Corollary 8.4].) Let (X, h) be a
smooth Riemannian manifold, and let Q C X be open. Suppose f € C*°(X; T*X) satisfies
suppf €Q and [, V(f)|dh| =0 for all V € V(Q) satisfying &} ,V’ = 0."" Then there
exists k € C°(X; S*T*X) with tryk = 0 and suppk C Q such that S,k = f.

Proof of Proposition 3.5. Define the glued metric gy as in (3.7). As in (the proof of)
Lemma 3.6, we define Err to be the t* coefficient of

N
Po(g) = ZLO (8as + 7i(&pim; — &as)) mod C(M;S* °T"M).
=1

pam
We can thus compute Err using Lemma 3.6; its normal-tangential component is equal
to Erryr as defined in Lemma 3.9.

Since the cutoffs y; are identically 1 in a neighborhood of V), there exists an open
set Q C'S® with Q ﬁV_p,. = () for all i, and so that supp Erry; € Q; moreover, we may
choose Q to be connected. Suppose V € V(Q) is a conformal Killing vector field. We
contend that V = V|, for a conformal Killing vector field V € V(S®). Indeed, on any
connected n-dimensional Riemannian manifold, the dimension of the space of con-
formal Killing vector fields is at most (17 + 1)(n +2)/2, and on S" it is equal to this. We
conclude that the restriction map ker )0, , — kery,q)d;, ;, which is injective (as a conse-

quence of the explicit description in Proposition 3.7), must be an isomorphism.
By Lemma 3.9, the balance condition implies that the conditions of Theorem 3.10 are

satisfied; thus, there exists k € € (S%; $2T+S?), trg k=0, suppk C Q, with
—(A/3)30,k = —Erryr. (3.19)
In the splitting (2.12), put
g, =(0,0,0,k) € C*(M;$* °T*M).
In view of (3.12), we have g, € kerI(Ly,3). Therefore, Lemma 2.7 and Corollary 2.5
imply that, modulo t°C>(M; $* °T*M),
Py(go + &o) = ©*((0, Errny, 0,0) + I(Lo[1], 3)g,) = O,

finishing the proof. O

Remark 3.11. A direct calculation shows that the error Erryy is, up to a constant rescal-
ing, equal to the divergence (with respect to the induced metric & on OM) of the lead-
ing order term of the normal-tangential-normal-tangential part of the Weyl tensor of
go- Thus, [27, Lemma (3.1)], in particular [27, Equation (3.12)], requires the solution of

"Note that if Q has several connected components, the space of such V is larger than the space of conformal Killing
vector fields on X.
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the same divergence equation (3.19). Solving Friedrich’s conformal Einstein field equa-
tions then produces a solution of the Einstein vacuum equation and proves Theorem
3.2. As motivated in the introduction, we give a different, self-contained proof below.

3.2. Gauge fixing; construction of the formal solution
Following DeTurck [49], we make the following definition:
Definition 3.12. Let g’ and g denote two Lorentzian metrics on the same manifold.
(1) We define the gauge 1-form by
-1
Y(g:8") =8(8") 09:Geg”
(2)  The gauge-fixed Einstein operator is
P(g;go) = 2<Ric(g) —A - 5;Y(g;g0)).

Its linearization in the first argument is denoted

. . d .
Leg(g) = DilgP(§;8°) 1= 3. P(e +¢:8") lmo-

We first discuss general properties of these operators. Following [37, §3], we have,
using the Levi-Civita connection of g,

. d . o .
Dil, Y(§:8") = 3. Y (g +54:8") oo = —0:Ged +4(0) ~ 2(8),

K 1 -1\ K v K
C,uu = 5 ((go) ) (ggi;y +g2/l;u - g,gy;))’ D" = gﬂ Cuu’

€(@), = guClg"s 7@), =D&y
In the special case g = g°, we have ¥ = 0 and & = 0, and therefore by (2.14)
Lo = Og +2%, —2A.

If moreover g = (3/A)t%(—d7? + h(x,dx)) is a product metric as in (2.13), then in the
splitting (2.12)

-6 0 0 0
3N (Lggn2) = 22— 30+ 4 00 (3.20a)
LA =22 — 20a

&8 -6 0

0 0 0 0

For later use, we note that the indicial roots are, in increasing order,
1 1

3 (3-v33) e (-2 —1), -1, 4 3 (3+/33) € (4,5). (3.20b)

For more general metrics, arguments similar to those in Lemmas 2.6-2.7 give:

Lemma 3.13. Let gy € C°(M;S* °T*M), and suppose that g° € C°(M;S* °T*M) is
such that g° — goo € T"C™ for some m € N. Suppose moreover that § € T C* for some
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m €N, m' >m, and put g=g"+g."> Then Lg o — Ly, q, € t"Diffy(M;S* °T*M).
Moreover, if § € T™C>, then P(g+ §;8°) — P(g;8") — Lygg € T2™C™.
Applying this with go a product metric as in (2.13), we conclude that I(Lg o, 1) is

equal to the right hand side of (3.20a).
Returning to the black hole gluing problem and the notation of Proposition 3.5, we
now define the ‘background metric’ ¢° to be

¢ =g+, €C*(M; S °T"M). (321)
Since Y(g%¢°) = 0 and Ric(go) — Ago € T°C™, we have

P(g%g°) € ©°Cc*(M; 8* °T*M);
moreover, by construction, P(g%; ¢°) vanishes near U; V.
Proposition 3.14. Under the assumptions of Proposition 3.5, and with ¢’ as in (3.21),

there exists a metric perturbation g, € ©°C*(M;S* °T*M), vanishing near U; V,,, so that
P(g° +g,;8°) € 1°C™ = Npen T"C™ (i.e. vanishing to infinite order at t=0).

Proof. Suppose we have already found g, as in the statement and with P(g° + g,;4°) €
"C>™ for some m > 5; note that for m =5, this holds for g, = 0. Moreover, under
these assumptions, P(g° + g;¢°) vanishes near U; V,,. Then, for § = t"g, € t"C™, we
have, using Lemma 3.13 and noting that g° — g45 € T°C™,
P(¢’+g, +4:8°) =P(¢’ +8,:8°) + Lppg ¢ mod *"C*
= p(gO +§1;g0) + Lgds»gdsg mOd TerSCOO

=P(g" +2,:8°) + " I(Lgy,gis» m)g, mod 7" 1C.

But for m > 5, I(Lg, g, m) is invertible pointwise on OM in view of (3.20b), hence we
can find g, € C*(0M;$* °T},M), vanishing near U; V,, such that this vanishes (mod-
ulo T1C*). Replacing g, by g, + ¢ improves the order of vanishing of P(g° + g,;¢°)
at =0 by one order. A Borel summation argument produces a formal solution
g, € v°C~. 0O

3.3. Solving the nonlinear equation; conclusion of the construction

Using indicial operator arguments, one cannot go beyond Proposition 3.14; the remain-
ing (‘trivial’) error can however easily be solved away:

Proposition 3.15. With g :=g"+g, defined using Proposition 3.14, there exists
g, € 1°C*(M; §* °T*M), vanishing near U; V,,, so that g := g1 + g, satisfies

P(g;¢°) =0 near t = 0. (3.22)

In particular, g — goo € T"C*°.
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Proof. The key point is that forced linear wave equations on de Sitter space, or with any
product metric of the form (2.13) or indeed any metric smoothly asymptotic to it, can
be solved backwards on function spaces encoding sufficient polynomial decay in 7 (i.e.
sufficient exponential decay in —logt), with the solution unique in such spaces; see the
proof of [51, Lemma 1] (where N is the order of decay in |x;|, x; := —1?) for the rele-
vant energy estimate, and the beginning of [33, §3] (where our 7, x are denoted x, y).
Since the error we need to solve away vanishes to all orders at T =0, there is no need
to choose vector field multipliers and positive definite vector bundle inner products on
§* OT*M carefully in such energy estimates; rather, fixing any smooth positive definite
inner product on $* °T*M, one obtains an energy estimate using the vector field multi-
plier t72N79, when N is sufficiently large. Indeed, the only contribution to the bulk
term in the estimate which comes with a factor N in front arises from differentiating
72N and is thus of the form —2Nt *NE(z0,,10.), where E is the energy-momentum
tensor of the wave u one wishes to estimate; all other bulk terms can be estimated by
2N times a bounded (independently of N) multiple of |u|* + |td;ul* + |td,ul*. But
since t0; is timelike, choosing N large enough produces a coercive bulk term, and one
obtains, for example, an estimate ||u||TN ) < C||0 g1“||TNH ) for sufficiently large N.

where Q = r‘l( [0, %)) One can also commute any fixed number of 0-derivatives
through the equation and thus (upon increasing N and C) obtain the esti-
mate ||u||rNH"“ < Dg1“||wa

For the quasﬂmear wave equat10n at hand, we work with 0-Sobolev spaces with more
than 1 (dlm M) + 2 = 4 derivatives; thus, fix ko = 5 > 4. Then by a simple adaptation of

the standard iteration scheme for solving quasilinear wave equations (see e.g. [52, §16]),
we obtain, for sufficiently large Ny, a solution g, € ™ H g"(QO) (unique in this space) of
equation (3.22), where Qy = t7([0, ¢)) for sufficiently small €y > 0. Moreover, g, van-
ishes near each V), since P(gi;g°) does; recall that g; and g’ are both equal to the

Schwarzschild-de Sitter metric g, n, near V.

For any k > ko, one can similarly find a solution of (3.22) in the space T™VH ]g(Q) where
Q is a neighborhood of 7= 0; since solutions of quasilinear wave equations can be continued
(backwards, i.e. in the direction of increasing 7) in the same regularity class as long as a fixed
low regularity norm remains finite, we can in fact take Q = Q,. We conclude that g, €
N,k TV H(Qp) = 1°C™(Q), the final equality following from the fact that T*HS " (Qp) C
C*(Q) by Sobolev embedding and using that 9, = ! - 79; and 9, = 7" - 10,. O

By construction, the metric ¢ meets the requirements (2)-(3) of Theorem 3.2. We
prove that it also satisfies requirement (1); recall that g — ¢g° € ©°C* by Propositions 3.5
and 3.15, and g — g° vanishes near UV,.

Lemma 3.16. Suppose g,g° are two Lorenizian metrics defined near OM \ {p1,....pn},
smooth down to t =0 as sections of > °T*M, and equal, modulo tC*(M;S* °T*M), to a
metric of product type (2.13) near OM \ {p1,....pn}. Suppose that near U; V,,, we have
g =¢" and Ric(g) — Ag = 0. Suppose moreover that Ric(g") — Ag® and g—g° lie in
°C°(M; $* °T*M). If P(g;g°) = 0, then Ric(g) — Ag = 0 and Y(g;g°) = 0 near OM.
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Proof. The conclusion holds trivially near V,,. Now, by the second Bianchi identity, the
equation §,G,P(g;¢°) = 0 implies the wave equation

25gGg5;Y(g; &) =0 (3.23)

for the gauge 1-form Y(g;g°). By assumption, we have Y(g;¢°) € ©°C*(M;°T*M). The
idea is to view equation (3.23) as a scattering problem (‘initial value problem for data at
infinity’) for Y (g;g°). We need to show that the a priori decay of Y(g;g°) is a suitable
replacement for vanishing Cauchy data in the usual proof of short time existence for
the Einstein equation, in that it suffices to conclude Y(g;g°) = 0.

We first contend that in fact Y(g; go) € 1°C™ vanishes to infinite order at OM; this
uses an indicial operator argument. Thus, if gy is a product metric on a 4-manifold M
as in (2.13), then we have, in the bundle splitting (2.12),

_ 2 —3)—6 0
1 * _ .
3A 1(25g°° GO A) B ( 0 2 —3— 4)’

its indicial roots are given by (3.20b). If g — goo € TC, then 26,G,5, — 24, Gy, 0y, €
tDiff; by arguments similar to Lemmas 2.6 and 2.7.

Now, if we already know Y(g;g°) € t"C™ for some m > 5 (the case m=>5 being our
starting point), then, writing Y (g;g°) = " Yo + Y for Yo € C*(M;°T};M) (1-inde-

pendent) and Y e e, equation (3.23) implies
1(25gGg5;,m) Yo =0.

But the indicial operator appearing here is pointwise invertible, hence Yy = 0 and there-
fore Y(g;¢°) = Y € v"+!C*. Since m was arbitrary, this proves our contention.

Finally, the rapid decay of Y(g;g°) at t=0 (and its vanishing near the p; where the
metric g is singular) implies by a unique continuation argument for the wave equation
(3.23), based on an energy estimate with multiplier 7 2N<0, for sufficiently large N, that
Y(g;¢°) vanishes identically near t=0. See [51, Lemma 1]; a closely related alternative
approach is given in [33, Proposition 5.3].

Since P(g;¢°) = 0 and Y(g;go) = 0, we conclude that Ric(g) — Ag =0 near t=0. O

The proof of Theorem 3.2 is complete.

Remark 3.17. Given a Riemannian metric h, and a transverse traceless tensor h, on an
n-manifold OM, the Fefferman-Graham construction [35, §3] produces a formal solu-
tion ¢ of Ric(¢®) —Ag®€1C® on M=1[01), xIOM of the form ¢ =
172(—d7® + h(t,x,dx)), where hy and h,, are the coefficients of t° and 7" in the polyho-
mogeneous expansion of 4. (Concretely, # has an expansion into 7, j € Ny, and v/ logt
for integer j > n.) Using this formal solution as a background metric for the gauge-fixed
Einstein equation, Proposition 3.15 and Lemma 3.16 produce a true solution g =
g’ + O(t®) of Ric(g) — Ag = 0. We stress that this does not require any smallness con-
ditions on the data hg, h,,. See [42, Theorem 1.3] for a different approach.
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We end with a discussion of the domain of existence when all masses are subextremal
and small; we show that the cosmological horizons of at least two different black holes
intersect nontrivially in the maximally globally hyperbolic development of the glued
metric g of Theorem 3.2 and Remark 3.3. Let us work on the partial compactification

M= (01/2], xS’ g=(3/A)cos *(s)(—ds* + gs)>
of de Sitter space; the gluing theorem is, so far, local near s = 7/2. Fix N > 2 distinct
points py,....py € S’. If N=2, we assume p, # —p;. Denoting by d the Riemannian
distance on (S°,dg), we set dy := mind(p;, pj) € (0,7); without loss of generality,
suppose the distance is minimized for p;, p, so that
do = d(p1,p2)-

Let moreover 0 < ry < 1/2 be less than 1 times the smallest radius of any of the balls
V}, in Theorem 3.2. Given subextremal masses my,...,my so that
9 = {(pl,ml), oy (pN,mN)}
is balanced, the metric g constructed in Theorem 3.2 is equal to g, u, in the domain of
dependence of B(p;,2rp). Fix 0 < € < r9/16, and define ¥y C M as the union of S\
UX | B(pi»ro) C OM and the N spacelike surfaces
Ni={(sp) e M :d(p,pi) =ro —n(n/2 —s), n/2 —s <12+ 4e},

where 1 <7 <2 is fixed so that ry —n(ry/2 + 4€¢) > 0. Note that N; penetrates the
cosmological horizon of an observer in de Sitter space tending to p;, i.e. the backwards
light cone from (n/2,p;) € OM. We denote by

Spi={(sp) EM:d(p,pi)) =10 —n(re/2+€), n/2—s=r1y/2+¢€} C N

a sphere which lies just inside of said cosmological horizon when # —1 < 1. See
Figure 5.
Consider the rescaled gluing data

29 = {(p1, Amy), .os (P, Amy ) }

for 2 > 0. For A=0, all masses vanish, hence we are gluing pieces of de Sitter space into
de Sitter space—the result of course being de Sitter space, with metric defined globally on

M. Let g € S® denote the midpoint between p; and p, (so d(p1,q) = d(p2,q) = do/2), and
let

Z’j = (Ej,ﬁj) c S'i’]" ] =1,2,
denote the point on Sy, ; for which p; is closest to g. If we had =1, then for any point
z = (s,q) with 7/2 —s > dy/2 + 2¢, we would have

A(@B) =5 (o~ 1) + €< (1/2=5) = ro/2— e = (m/2 = 5) = (x/2 =),

so (s1,p,) and (52,p,) are both contained in the timelike future I (z) of z. For n > 1
sufficiently close to 1, and shrinking € > 0 if necessary, this holds for the point

z:=(n/2—dy/2 — 36,q) € M.
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D1 Yo D2

Figure 5. lllustration of the argument giving long-time existence of the metric g in Theorem 3.2 for
small subextremal masses. The geometry shown here is that of de Sitter space. The region enclosed
by the blue lines is the backwards domain of dependence of the spacelike surface X, which consists
of the three thick blue lines. By Cauchy stability, two observers starting at z can reach the points
Z1 € 8,1 and Z; € S, if we glue sufficiently light black holes into p; and p,, in which case the
black dashed lines become the cosmological horizons of the black holes.

For small 4> 0, one can define the SdS metric g, ;m,, extended across the cosmo-
logical horizon and defined in (0,7/2], times a 2ry-neighborhood of p; inside S°, in
such a manner that as 1 — 0, the weighted difference 77° (8ds — &pi,sm;) (cf. equation
(3.5)) converges smoothly to 0 as a section of $* °T*M away from the line
Li == {(s,pi) : s € (—=n/2,m/2]}."> We claim that for sufficiently small 2 > 0, we can do
the SdS gluing with parameters &, in such a way that

(1) the point z is contained in the maximal globally hyperbolic development of the
glued metric g; with respect to X, (and X is spacelike for g;),

(2)  z1,z2 € I'(2) with respect to g,

(3) near z;, g is equal to g, «, for j=1, 2, and

(4)  zj lies inside the cosmological horizon of the SdS black hole associated with the
point p;.

To begin, let 4o > 0 be a small fixed constant. Consider then the naively glued metric
2.0 = Xo&ds + Zfil %i&p:, m; analogously to (3.7); this fails to solve the Einstein vacuum
equation by the amount Py(g;,0) = At*Err(2), where Err(2) € C([0, 4g) x M;S* °T*M)
depends smoothly on 4 > 0, and whose leading order term at OM can be computed using
Lemma 3.6 and equation (3.16); in particular, the leading order (¢°) coefficient of Err is
A-independent. Here and below, we take 4y > 0 to be a small fixed constant. Thus, we can
take the solution of the divergence equation —(A/3)3dg k; = —JErr(2)nr (cf. equation
(3.19)), to be k = Ak, for some fixed k; € C*™ (83;SZT*S3). For small A, we then work
with the background metric g9 = g; 0 + k;.

The remainder of the formal part of the gluing construction does not depend on any
further choices; the Borel summation in the proof of Proposition 3.14 can be defined to
produce a metric correction g, € Ar°C*([0,40) x M;S* °T*M) with support in a
small fixed neighborhood of M. The resulting formal solution g; 1 =g} + g, ; (cf. the

137 systematic and more precise way of accomplishing this is to use geometric microlocal techniques [54]. For a single
SdS black hole centered at p € S®, one starts with the total space [0, 1) x M and blows up [0,/o) x {p} and then
{0} x L, L =(0,m/2] x {p}. The first blow-up resolves the singular nature—due to its r-dependence—of the SdS
metric near p, and the second blow-up resolves the event horizon, whose r-coordinate goes to 0 roughly linearly with
J. The family of SdS metrics with mass /m can then be defined as a smooth section of the pullback of S* °T*M to this
resolved space, and, crucially, in such a manner that it equals the de Sitter metric on the lift of A=0.
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statement of Proposition 3.15) satisfies the gauge-fixed Einstein equation with error
P(g1:87) € 2t=C>([0, ) x M;S? °T*M); the support of this error is disjoint from
the A/;. But then, since g;; and gg converge smoothly to the de Sitter metric in the
backwards domain of dependence of %y, Cauchy stability for the solution g, , € AT>C™
of the quasilinear equation P(g;,,l +g “;gg) =0 implies that g, =g;1 +g,, indeed
exists (uniquely, by domain of dependence considerations) on a sufficiently large subset
of M so that the requirements (1)-(4) are indeed met.

3.4. Necessity of the balance condition

In this section, we prove Theorem 3.4. Thus, suppose that Ric(g) — Ag = 0 for a metric
g of the form

N
g=8is+ > Li(8um —8is) T T (logt)gr + T8 +3, g € A(M; S °T"M),
i=1

where 7, € C*°(OM) is a cutoff localizing to a small neighborhood of p; here g/, g3 €
C*(0M; $* °T},M), and gi,gs,g have supports disjoint from the p;. Then, with Ly =
Dy, Py as in (3.8), Lemma 2.7 gives

fi=Lo(7*(logt)g + T°gs + §) + t*Err € A0V 8 >0, (3.24)

where the normal-tangential component Erryr of Err € C*(OM;S? °T*M) takes the
form given in Lemma 3.9.

Note that, for any gy, g;,g in the above function spaces, we have f € 7°(log7)C™ +
3C® + A’*C. Using (3.24), its 1°logt coefficient is I(Ly,3)g, = 0. In view of (3.12)
(with hs, 7, replaced by h, 7, where h is the boundary metric (3.2)), we thus have, in the
bundle splitting (2.12),

g = (Bu,n,u,k),

where u € C*(OM), n € C*(OM; T*OM), and k € C™(OM;S*T*OM) with tr,k = 0 are
supported away from the p;.
Using (2.7) and Corollary 2.5, we then compute the 7° coefficient of f as

0 =1(Lo,3)gs + 0:I(Lo, A)|,_38¢ = I(Lo,3)gs + (A/3)(—3u,0, — 3u, 3k).

Since the pure trace part of the tangential-tangential component of I(Lo,3) always van-
ishes, we must have k =0. But then we can then write

& =g0+&, I(L,3)g0 =0, g1 = (0,0,0),
with g3; defined so that it solves I(Lo,3)gs1 + 9;I(Lo, 4)|,_38¢ = 0.
Lastly then, projecting to the normal-tangential component, we have Ly(g)\, € At
by Corollary 2.5, hence the t* component of f is equal to
0 = Brrnr + 931(Lo[t], 4)],-58¢ + I(Lo[t], 3)gs1 + I(Lo[1], 3)830
= Errnr + (A/3)(—2dx)u + (A/3)2dxu + (A/3) (—35h(g30)
= Ertnr — Adn(830)

TTO )
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where (g30) ., € C*(OM;S*T*0M) is the trace-free part of the tangential-tangential
component of gzp. Integrating this against a conformal Killing vector field V, an integra-
tion by parts implies that the second term does not contribute, and therefore
JopV(Erryr) |dh| =0 for all V € conf;. An application of Lemma 3.9 concludes the
proof of Theorem 3.4.

3.5. Gluing with noncompact spatial topology

The balance condition in Definition 3.1 captures the orthogonality of the leading order
error term to conformal Killing vector fields on S°. If, however, we allow the trace-free
2-tensor k in (3.19) to be blowing up sufficiently fast at a point p,, € S’ distinct from
the p;, this obstruction disappears, since elements of the relevant cokernel now need to
vanish at sufficiently high order at p.,; since conformal Killing vector fields on the
sphere vanish at most quadratically at any given point, this cokernel is empty.

A more natural way to phrase this is to pass to the upper half space picture of de
Sitter space, M, = [0,00). x R%>, see (2.2b); the point p., is the point at infinity within
the conformal boundary OM,, and we need to solve equation (3.19), with h = (3/A)ggs
now a constant multiple of the Euclidean metric, and the error term having compact
support in X. We can always solve this, with the solution k having support disjoint
from the V,,, if we allow k to be nonzero in |%| > 1 and allow for (x)>** decay, ¢ >
0. More precisely, using the function spaces of [18, Appendix A], we can find k €
H(li>,l//(gR3> with ¢ = (x) and ¥ = (%)1/ 272 (Refining the weights to be exponential at
the boundary of the domain in which one wants k to be supported enforces the correct
support of k.) Indeed, since J, :H;&)l//(gRs) —>Li s(8r?) by [18, (A4)], the relevant
cokernel (for s=1) consists of conformal Killing 1-forms @ on (R? gg:) lying in
sz,l 5 (8R)- But since all such w have size at least 1 near infinity, and since
[P 2 2|dgg: | ~ [ (%) 7*? dr diverges, the space of such  is trivial.

The remainder of the gluing construction as before; however, in the final step, the
domain of existence of the quasilinear equation might shrink to zero as |x| — co. (Even
when not gluing any black hole into the upper half space model M,, we point out that

past directed null-geodesics leave M, in finite affine time; see [47, Figure 7].)
In summary:

Theorem 3.18. Let N € N, and let py,....py € R? my,..,my €R. Suppose V,,, C R3 is
a punctured neighborhood of p;, and suppose V, NV, =) for i # j. Then there exists a
neighborhood U of OM, \ {p1,....pn} and a Lorentzian O-metric g € C*(U;S* °T;M,)
satisfying the properties (1)-(3) of Theorem 3.2.

Remark 3.19. More generally, we can glue any spacetime into de Sitter space whose
metric is defined in an interval (in 7) times an annulus (in x) around a point p € 0M,,
provided the metric is asymptotic to ggs at a rate 7> in this region. This can be further
relaxed, but we will not pursue this further.
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4, Multi-Kerr-de Sitter spacetimes

The goal is to glue several Kerr-de Sitter (KdS) black holes into a neighborhood of the
future conformal boundary of global de Sitter space; we thus continue to work on the
manifold M = [0,1), x S* as in (3.1).

4.1. Kerr-de Sitter metrics in corotating coordinates; parameterization

We recall the KdS metric with parameters m € R and a € R in the form

A, 2 Py
gna = —?(dto -5 i dcbo) W2 A 40

A 2
+ sinzeop—g <a dty — "5 +a d(f)()) , (4.1)

where we define (omitting the dependence on m,a from the notation)

2

A A
Ar = (rg + a2) (1 - %) — 2mr03 A() =1 + gaz COSZH(),
A
p2 = ré —+ a2 COS260, Ao =1+ gaz-

(This matches the expression in [41, Equations (5.2)-(5.4)] upon adding the subscripts
‘0', and differs from that in [38, Equation (3.12)] only by a constant rescaling of ¢ by
A,.) Following [41, Appendix B],"* we recall the coordinate change which displays g
as a perturbation of the de Sitter metric (2.3b) up to terms of size r > (as uniformly
degenerate symmetric 2-tensors). Thus, under the change of coordinates'®

A
t:to, (f):(bo—gato,

1
rr = ( Ay + a%sin 00) rcos 0 = ry cos 0.

Ay
the de Sitter metric gqs in (2.3b) takes the form

_ A, 2.4in 20 1)ag Pz dr? Pzdgz
gas = g(r0+a sin 0)7 ty + - rO+P o
(3 +a)(1-%) " A
A 24 al 2 a2
—?arﬁoa sin20, dty dg, + 10 +0a sin20, dgb2.
Therefore
2mr, asin?0 o
Gma =gis + Cmar  Cma = — <d to — 7°d¢0> +7°pd 2 (4.2)
,0 A0 r‘m ()A

We then compute:

YFor consistency with §3, the roles of ty, ro, ... and t,r, ... are reversed compared to the reference.
">The definition of r* implies that r2 cos 20y < r?, hence 0 is well-defined.
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Lemma 4.1. Let 1, = r', and denote by C*™ the space of functions which are smooth in
(t, 15, 0,¢), s =r""1, down to 1, = 0. The symmetric 2-tensor cy, o in (4.2) then has com-
ponents, modulo T:C*, given by

80\ 1
rz(cm,a) =7 (—6> 8—?
rr i AO A

_ Y V.YV
’ r Z(Cm’a)tt =r A—ozmA_g ’

B _ Ay . Ay B _ Ay a2 Sil‘l490
r Z(Cm’a)np =73 A (—2m)asm290E , T Z(Cm,a)¢¢ =73 UA—OZmT )
0 0

Furthermore, (Cma),, = (cm,a)rd) = (Cma),y = (cm,a)% =0, and

r_2(cm,a)% € .C™, (cma),y € 2C™.
Proof. Since 1 < Ay, Ag < 1+ Aa®/3, we record that
— = /== mod 7C>, (4.3)

and in particular r/ry,ro/r € C*. Now, direct calculations give

- A ~ Ayro a?sin 20, cos 0
Oy =0 = §a8¢’ Ory = Aot 0 = A3 sin 0
a’ Ar? ,
0p, O, = Oy, Op, = Ao <1 — TO) cos by sin 00,

1o sin 0y a? cos 20, < Ar(2)>
1+——\1—-—— .
+ rsin 0 ( + Aor? 3 %

The main structure of the right column is captured by

<6,0)_ AALO? TC* (6,)
9, )  \lc* ™ %)

with the bottom right entry invertible. Therefore,

0. =0,+ a0y, 0y=0, [ e B¢ (0
= —a 5 = 5 = .
t to 3 o ¢ $o 80 o 100 o> 800

Note also that p> =7} mod C*, hence 2mry/p? = 2m/r, mod 7,C*, and moreover

A, = —Ary/3 mod 1,%C™; therefore,

2 in20 > /18
Y L (dto—asm °d¢0> + (SR 47 ).
o A1

A :

. A2 . .
Thus, for instance, we have r*(c = 2 20C 18m - which gives the stated result upon
ma) AjrE Ary
0 0

using (4.3). The other components are calculated similarly. O
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Note that r0, = —7,0;, and r 10, = 1,0, for e =1t,0,¢. Let now r, be such that
infye (o, x) 70(r4, 0) is larger than the largest positive real root of A, (as a function of 7o)
if one exists, and otherwise fix any r. > 0. Define the manifold

M as = [O, r;l)r x R, x wa

where 7, = r~!; then the lemma implies that
Cma € T.C° (Mm,as N M;, S °T* M)

on the common domain of definition of the KdS metric and the de Sitter metric, cf.
(2.3¢). (We leave it to the reader to check that ¢, , € rfCOO also at the poles of S? where
the polar coordinates break down.) In view of (2.3d), we in particular have gy, . € C*
on the common domain of definition.

At 7, =0, the limits t — oo and t — —oo correspond to R — 0 and R — oo,
respectively, in the upper half space coordinates (2.2a). Therefore, as in the SdS case,
gm,a is defined in a neighborhood of U, := S\ {po, — po} where py = (1,0,0,0) €
S* € R* is the point defined by R = 0 inside 7 = 0; it describes a KdS black hole rotat-
ing in py around an axis, which we fix to be

ﬁ0 = (0) 0) 0) 1))

with specific angular momentum a.
We wish to define KdS metrics located at other points on the future conformal
boundary OM. To this end, we use a parameterization of the KdS family by triples

(p>m, a), pES, mER, acsoy ap=0; (4.4)
here, we identify so, both with {A € R***: A + AT =0} and the space iso; of Killing

vector fields on S* where A € R*** corresponds to the vector field deA|_, on the unit
sphere S’ C R*. Thus, viewing a € s04 as a matrix, the condition ap = 0 means that
pE S® ¢ R* lies in its kernel; viewing a € is03, it means that the vector field a vanishes
at p.
Definition 4.2. We call a triple (p,m,a) € S® x R x s04 admissible if ap = 0.

For a,ay,a, € s04, viewed as 4 X 4 matrices, we denote

<a1, a2> =

Do (@m)y(m); =D (m)y(m); ol = (o). (4.5)
iy j=1

i<j

| =

(Invariantly, (-,-) is (—3) times the Killing form on so04.) Given an admissible triple

(p,m, a), we define the metric

8p.m,a (4.6)

as a smooth Lorentzian 0-metric near U, = OM \ {p, — p} as follows. First, if a =0,
we let g, m0 = g,m be equal to the SAS metric with mass m centered at p, as defined in
the paragraph leading up to (3.6). Otherwise, a € R*** induces a nontrivial skew-adjoint
linear transformation on p~ C R*, equivalently a rotation vector field, around an axis
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acp', |a] =1, with amplitude a := |a|. Choose then an element R; € SO(4) with
Rip = po, and then (noting that R;a € py) an element R, € SO(4) with R,py = py so
that Ry(Rja) = a; put R = RyR;. Note that the properties Rp = pp and Ra = a, deter-
mine R uniquely up to multiplication from the left by a rotation fixing p, and a,, thus
a rotation ¢ — ¢ + ¢’ for some ¢' € R—which is an isometry of gy .. We then define
8.m,a as the pullback of gy, , along the map M — M, (t,¥) — (7,R(¥)). In particular,
this parameterizes gy , as

0O 0 0 O
0 0 a o0

Sma=&omay G0 = | o o (4.7)
0O 0 0 O

4.2. Gluing theorem

With the KdS metrics gm,p o defined as in §4.1, we are ready to state the gluing the-
orem, which holds subject to a balance condition generalizing Definition 3.1; it involves
the effective mass of an admissible triple b = (p>m, a), defined as

m

eff(b) i= —— .
ma) = A

Definition 4.3. Let N € N. We say that a collection {by,...,b,} of admissible triples
b; = (pi»m;, a;) is balanced if the p; are pairwise distinct and if, regarding S’ as the unit

sphere inside R*, the following relations hold:

N
> e (bi)pi =0 € R, (4.82)
i=1
N
> meg(bi)a; = 0 € 50, C RY, (4.8b)
i=1

Theorem 4.4. Let N €N, and suppose {by,...,by} CS’ xR x so, is balanced,
bi = (pi»my, a;). Suppose V, C Uy, is a ball around p; with the point p; removed, and
suppose Vy, NV, =0 for i #j. Then there exist a neighborhood U of OM \ {py,....pn}
and a Lorentzian 0-metric g € C™ (U; §? OTy M) with the following properties:

(1) g satisfies the Einstein vacuum equation Ric(g) — Ag = 0;

(2) near V,, we have g = gy, m, o
(3) gis O(1*)-close to the de Sitter metric: g — gas € 7C*(U; $ OT’{]M).

In the special case that b; = (p;, m;,0) for all i, this reduces to Theorem 3.2.

Remark 4.5. A remark analogous to Remark 3.3 applies also in the Kerr-de Sitter set-
ting: if the black hole parameters are subextremal, one can extend the glued Kerr-de
Sitter metrics across their cosmological and event horizons. See e.g. [38, §3.2]. For small
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masses, the domain of existence of g can be shown to include the interaction of several
black holes by following the arguments at the end of §3.3.

Remark 4.6. If one passes to the upper half space model M,, there are no obstructions
to gluing anymore, analogously to Theorem 3.18.

The main part of the proof of Theorem 4.4 is the calculation of the obstruction for solving
the divergence equation (3.19). First, we compute the failure of the Einstein equation for a
naive gluing of a single KdS black hole. Let Py = 2(Ric— A) and Ly = Dy, Py as in (3.8).

ds

Lemma 4.7. Let y € C*(R,) be identically 1 for large t, and put go = y(t)gma+
(1 — x(t))gas. With Py =2(Ric—A) as in (2.10), we then have Py(g0) = T;Erre o

Err, .
mod t3C™, where Err, o = 29 ®, (Ertao)yy ST’O)NT + Errl , with
s s >

18m A 1 )
(Erry o)y = A—A(%A(M /A—i}(’(t) ((Ag - §A0> dt — asin 20, d¢>,

and Err, , = t}1(Lo, 4)C for some ¢ € C™ (8MS; §? OTgMSMS) with supp ¢ C supp dy.
Proof. Recall from (2.4) the metric h, = (A?/9)dt* 4 (A/3)gs> induced on the boundary

OM; by gq4s and the boundary defining function r~'. In the splitting (2.11) with h, t replaced
by hs, 7, the leading order components of ¢ o = gm,a — gas are then, by Lemma 4.1,

Ag 32 18m
3 2
(V3w = (r T (Cm,a)ﬂ> =0 = <A_o> A

(3)pp =1 <r2<(cm,a)tt dE +2(cma),,, dt A+ (Cma) 5 d¢2))

b
7,=0

and (73),, is a smooth 1-form on R, x S* whose precise form we do not need.

Since 0 = Py(gm,a) = Lo(Cm,a) mod rfC“ as in the proof of Lemma 3.6, and since
Cma =1 >3 mod TC™, we conclude that I(Lg,3)y; = 0. In view of (3.12), this implies
the relationship (73)n = T (V3) pp (using that 3 = tl'hjzs).16 Therefore, the trace-free
part (73) ., in the refined splitting (2.12) is given by

1
(73) o = (V3)pr — 3 (V3) s

By following the calculation (3.11), the normal-tangential component of Err,, is thus
(Errg o)y = —A - 9N/ (1) - (_lat(y3)TT0)’

which we can compute by means of Lemma 4.1.
Regarding the remaining components of Err,,, we note that they lie in the range of
the third column of the operator (3.13). But by Corollary 2.5, we have

"®This can also be checked directly. Indeed, the equality of th, (73) 7 = 22 (V3), + 2 5in 720 (13)gp AN (73)yy i

equivalent to Aj + sin 20 £a?sin*f, = ApAg and thus to Ay = 5;’::{31; this is easily verified by plugging in sin20 =
Ay

Ay

2
1— 2 cos20 = 1 — 42 cos 20, which holds at 7, = 0.
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3AT'I(Lo,4) =

SN O
oS O O O

0

0
-8 0]

4

whose range is thus spanned by (1, 0, %, 0) and ker try, and hence contains the range of
the third column of (3.13). O

Since the components of Err; o other than the normal-tangential component can thus
be solved away pointwise on OM, (modulo one order down, i.e. modulo t2C*) with a
1C> correction, the only obstruction for gluing is again the integral of (Err o)y,
against conformal Killing vector fields on (OMj, hy) = (Rt X Sz,hs) as in (3.14). The

volume density in these integrals is

2 2
A
\dh| :%dt sin0 do d¢ :% A—ZA;I dty sin 0y dfy deby,

since at 7, = 0 we have, using (4.3),

[A
sinf df = —d(cos0) = —d <@cos 00> =—d =0 cos 0o
r Ag
Ay 1 AP A . Ao, .
= | sin6, A_Q_ECOSGOW'ZEa cosbysinf, |db, = A_GAH sin 8, df,.

By Lemma 4.7, we therefore have, for V € V(0M;),

lna(V) :—J V(Erts,0)yp |dhs|

o0 (2T T
= 2Ameffj J J X/(to)v<<A9 —%Ao) dt—asin200 d¢> sin 60 deo d¢0 dt(),

o Jo Jo
(4.9)

where meg 1= m/Af) is the effective mass of the triple (pg,m,a). Particular conformal
Killing vector fields V on (OM,, h;) include 0; and 0y, and we compute

16TAmg 16mAmega
%, gm)a(ad)) :fe'

If V is a rotation around an axis orthogonal to that corresponding to Jy, then the inte-

gm,a(at) = -

grand in (4.9) vanishes pointwise, hence /; o(V) = 0 in this case. Passing to the bound-
ary S’ of global de Sitter space, with the KdS black hole sitting at the point
po=(1,0,0,0) € S*, we have 9; = Scp, in the notation (3.15) for some constant C> 0
(only depending on A), while the rotations on the S%-factor of OM, which we consid-
ered above span the set (s04) 20 of rotations on S’ keeping p, fixed.

Consider rotations V' € s0, which are orthogonal to (s04) 2 with respect to the inner

product (-,-) defined in (4.5); the 3-dimensional space of such V is spanned by rotation
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vector fields R;, j=2, 3, 4, which are, say, 90 degree rotations in the planes determined
by po=(1,0,0,0) and é, =(0,1,0,0), e; = (0,0,1,0), &5 = (0,0,0,1), respectively,
and which keep the orthogonal complement of span{p,,¢;} in R* fixed. But then the
integrand in (4.9), for each j=2, 3, 4, is odd either with respect to the reflection
Op — m — 0y or with respect to the rotation ¢, +— ¢, + 7, hence £y o(R;) = 0. A similar
symmetry argument shows that n,a(S;) = 0 for j=2, 3, 4.

Note now that Jy, written as a rotation matrix (rotating in the plane spanned by e,
and é,, while leaving the span of p, and é; fixed), is given by

0 0 0 0
0 0 1 0
%=10 -1 0 o
0 0 0 0

By comparison with (4.7), we can thus summarize our calculations by
Em,a(sq) = COmeff<p0> q>’ qc R4)
lm,a(@) = Crmeg(ao, @), @ € 504,

where C,, C; are nonzero real constants. We then have the following analogue of
Lemma 3.9:

Lemma 4.8. Given admissible triples by, ...,by as in Theorem 4.4, b; = (P> ;) with
the p; pairwise distinct, suppose y; € C*(OM) are cutoff functions, which are identically 1
near p;. Set Erryy = Zil (Erry,)yp € C™ (S 1*S?), where

(Erry,) v (W) =t Py (Ligpma + (1 = 1)gas) (100 TW)| . W € TS’.

Then we have
J V(Erryr)|dgss| =0V V € conf,
S}

if and only if {b,...,by} is balanced as in Definition 4.3.
The remainder of the gluing construction is very similar to the SdS gluing:

Proof of Theorem 4.4. The only minor difference compared to the proof of Theorem 3.2
is the analogue of Proposition 3.5. Under the balance condition we can solve away the
normal-tangential component of the error term using Delay’s result. However, the t*
leading order part of the error in general now has other nonvanishing components as
well; but as demonstrated in Lemma 4.7, these error terms lie in the range of I(Lo,4)
and can thus be solved away pointwise on OM using a t*C>(0M;$* °T*M) metric cor-
rection, with support of this correction contained in U; supp dy;.

The rest of the proof is the same: one constructs a formal solution in a generalized
harmonic gauge as in Proposition 3.14, solves away the remaining ‘trivial’ error as in
Proposition 3.15, and thus obtains a solution of the Einstein vacuum equation by
appealing to Lemma 3.16. O
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