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ABSTRACT

We construct dynamical many-black-hole spacetimes with well-con-
trolled asymptotic behavior as solutions of the Einstein vacuum
equation with positive cosmological constant. We accomplish this by
gluing Schwarzschild–de Sitter or Kerr–de Sitter black hole metrics
into neighborhoods of points on the future conformal boundary of
de Sitter space, under certain balance conditions on the black hole
parameters. We give a self-contained treatment of solving the
Einstein equation directly for the metric, given the scattering data
we encounter at the future conformal boundary. The main step in
the construction is the solution of a linear divergence equation for
trace-free symmetric 2-tensors; this is closely related to Friedrich’s
analysis of scattering problems for the Einstein equation on asymp-
totically simple spacetimes.
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1. Introduction

A vacuum spacetime with cosmological constant K 2 R is a 4-manifold M equipped

with a Lorentzian metric g of signature ð� þ þþÞ satisfying the Einstein vacuum equa-

tion

RicðgÞ � Kg ¼ 0: (1.1)

The Majumdar–Papapetrou [1, 2] spacetime is an explicit solution for the coupled

Einstein–Maxwell system1 in K¼ 0 describing several extremally charged black holes; a

similar construction for K > 0 was given by Kastor and Traschen [3]. We will demon-

strate how to construct vacuum spacetimes which, for late times, describe dynamical

many-black-hole spacetimes with precisely controlled asymptotic structure using a gluing

method. Our construction applies in the case K > 0, which is consistent with the

KCDM model currently favored in cosmology [4, 5].

The simplest solution of (1.1) is de Sitter space

M� ¼ ð�p=2,p=2Þs � S
3, gdS ¼ ð3=KÞ cos �2ðsÞð�ds2 þ g

S
3Þ,

where g
S
3 is the standard metric on the 3-sphere; this describes an exponentially

expanding (as s ! p=2) universe. The metric gdS is asymptotically simple [6]: the
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conformal multiple cos 2ðsÞgdS extends smoothly to a Lorentzian metric on the partial

compactification

M ¼ ð�p=2, p=2�s�S
3:

ðM�, gdSÞ is geodesically complete, so future timelike observers in M� can only tend to

@M but never reach it; one calls @M future timelike infinity, or the future conformal

boundary of de Sitter space, often also denoted Iþ. Since images of null-geodesics are

conformally invariant, the backward light cone from a point p 2 @M is a null hypersur-

face inside M� and known as the cosmological horizon associated with p. See Figure 1.

The simplest black hole solution of (1.1) is the Schwarzschild–de Sitter (SdS) solution,

recalled below. It depends on a mass parameter m 2 R and can be thought of as

describing a black hole tending to some fixed but arbitrary point p in Iþ; it is defined

in a neighborhood of p. Our main result gives a sufficient condition under which one

can glue several SdS black holes into de Sitter space:

Theorem 1.1. Let N 2 N. For i ¼ 1, :::,N, fix points pi 2 @M ¼ S
3 � R

4 and (subextre-

mal) masses 0 < mi < ð3KÞ�1=2 such that the balance condition

X

N

i¼1

mipi ¼ 0 2 R
4: (1.2)

holds. Then there exists a metric g solving the Einstein vacuum equation (1.1) in a neigh-

borhood of @M with the following properties:

(1) in a neighborhood of pi, g is isometric to a Schwarzschild–de Sitter black hole metric

with mass mi, containing future affine complete event and cosmological horizons;

(2) outside a small neighborhood of fp1, :::, pNg, cos2ðsÞg is smooth down to s ¼ p=2,

and asymptotic to the rescaled de Sitter metric cos2ðsÞgdS at the rate cos3ðsÞ:
See Figure 2. When N � 2, and all masses are sufficiently small in absolute value, we

show that the cosmological horizons of different black holes intersect in the maximal glo-

bally hyperbolic development of g; see the end of §3.3. Note that upon replacing s by – s,

we glue SdS black holes, with past affine complete horizons, into a neighborhood of past

Figure 1. The (partial) conformal compactification M of de Sitter space, a point p on its future con-
formal boundary Iþ, and a piece of the backwards light cone from p.
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conformal infinity of de Sitter space; this provides interesting settings in which to (numeric-

ally) study the interaction of black holes in de Sitter space under forward evolution.

Recall here that for subextremal mass parameters m 2 ð0, ð3KÞ�1=2Þ, the SdS metric is

Rt � ðr� , rþÞr � S
2, gm ¼ �lmðrÞdt2 þ lmðrÞ�1 dr2 þ r2g

S
2 ,

where lmðrÞ ¼ 1� 2m
r
� Kr2

3
, and 0 < r� < rþ are the unique positive real roots of lm:

After a suitable coordinate change, one can extend gm beyond the event horizon r ¼ r�
and beyond the cosmological horizon r ¼ rþ to a metric gm on a larger manifold

M�
m ¼ Rt� � ð0,1Þr � S

2:

One can identify the piece t� > 0 of M�
m with a subset of de Sitter space M� in such a

way that the SdS cosmological horizon and the backward light cone from a point p 2
@M coincide in a neighborhood of p; denote the resulting metric by gp,m: This metric is

in fact conformally smooth down to @M away from the singular point p, with r ! 1
corresponding to s ! p=2: See Figure 3. Conclusion (1) in Theorem 1.1 is then the

statement that g ¼ gpi,mi
near pi.

Figure 2. Illustration of Theorem 1.1. We glue SdS black holes into neighborhoods of the points pi;
only two black holes are shown here. The dashed lines labeled �Hþ

are the cosmological horizons of
the individual black holes, while the dashed lines labeled Hþ (not drawn Penrose-diagrammatically)
indicate their event horizons. (The two �Hþ

lines tending to p1 are really a single ð0,1Þt� � S
2, form-

ing one connected horizon, but for visualization purposes we needed to reduce dimension of the
sphere by 2.) The gray region indicates the region where the metric is not isometric to some
SdS metric.

Figure 3. The Schwarzschild–de Sitter metric glued into de Sitter space. We only show the cosmo-
logical horizon and the cosmological region r > rþ where r is timelike. On the right is the same pic-
ture, but we show an additional spatial dimension, thus showcasing the connectedness of �Hþ

:
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The precise result, Theorem 3.2, is more general: the masses mi are allowed to be any

real number, and we then glue the far end r 	 1 of M�
m into de Sitter space. (For sub-

extremal masses as in Theorem 1.1, one can then ‘fill in’ the rest of the SdS black hole.)

We also prove the necessity of the balance condition under certain asymptotic assump-

tions on g; see Theorem 3.4.

We prove a similar result for gluing Kerr–de Sitter (KdS) black holes into de Sitter

space. The KdS family of metrics [7] depends on two parameters, m (mass) and a (spe-

cific angular momentum). For the purpose of gluing KdS metrics into de Sitter space,

we also keep track of the point on Iþ to which the black hole tends, and the orientation

of its axis of rotation. We can then glue any finite number of KdS black holes into de

Sitter space under two balance conditions: the first condition is similar to (1.2) but now

involving the effective mass meff ¼ m=ð1þ Ka
2=3Þ2, and the second condition requires

the effective angular momenta meffa (taking into account the black hole locations and

axes of rotation) to sum up to 0, see Definition 4.3.

1.1. Gluing in general relativity

Most gluing constructions in general relativity operate on the level of (noncharacteristic)

initial data sets. Recall that an initial data set for the Einstein vacuum Equation (1.1) is

a 3-manifold R together with a Riemannian metric c and a symmetric 2-tensor k on R

satisfying the constraint equations

Rc þ ðtrckÞ2 � jkj2c ¼ 2K, dckþ dtrck ¼ 0; (1.3)

here Rc is the scalar curvature, and dc is the negative divergence (the adjoint of the

symmetric gradient). Given ðR, c, kÞ, there exists a unique maximal globally hyperbolic

development (M, g), with g solving (1.1), and an embedding R ,! M such that the

images of c and k are the metric and second fundamental form of R [8, 9].

Brill–Lindquist [10] explicitly constructed initial data containing any number N of

(charged) Einstein–Rosen bridges at arbitrarily chosen points in R
3 and with arbitrary mass

parameters; the resulting set of initial data has one distinguished asymptotically flat (AF)

region and N AF regions on the other side of the wormholes. Misner [11] (and Lindquist

[12] in the Einstein–Maxwell case) showed how, with a careful choice of parameters, one

can identify all but two AF regions, and for just two points even create a spacetime with

one AF end and a wormhole connecting two ‘points’. These constructions are global and

rigid, the main tool being superpositions of shifted and scaled versions of 1=jxj; this is also
the case for Majumdar–Papapetrou and Kastor–Traschen spacetimes.

The starting point for localized gluing is Corvino’s work [13] on the gluing of the

large end of Schwarzschild data (K¼ 0) to a given time-symmetric AF initial data set

on R
3; in this case, the constraint equations become k¼ 0 and Rc ¼ 0, and key to the

localized gluing is the underdetermined nature of the scalar curvature operator c 7! Rc

(more precisely, the overdetermined nature of the adjoint of its linearization). The

assumption of time-symmetry was removed by Corvino–Schoen [14] by allowing the

AF end to be equal to Kerr initial data.

Chru�sciel–Delay [15] extended the methods of Corvino–Schoen and also refined

wormhole constructions by Isenberg–Mazzeo–Pollack [16, 17]. In [15, §4], they
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constructed time-symmetric data containing any number of Schwarzschild black holes

(meaning: neighborhoods of the neck region of the Riemannian Schwarzschild metric),

placed at a collection of points in R
3 which is symmetric around 0 2 R

3: (This assump-

tion is loosely related to the balance condition (1.2).) The same authors also construct

many-Kerr initial data [18, §8.9], again under a parity condition. In both papers, the

smallness required for solving the nonlinear constraint equations comes from taking the

black hole masses to be small compared to the distance of the points. Chru�sciel–Mazzeo

[19] show that the maximally globally hyperbolic development of suitable many-

Schwarzschild initial data has past-complete I
þ, and the black hole region has several

connected components. Their arguments use Friedrich’s stability result [20] and direct

geometric arguments, a description of the global structure of the resulting spacetime

being far beyond the reach of hyperbolic PDE theory at this point.

Chru�sciel–Isenberg–Pollack [21, 22] give sharp results on gluing in compact subsets

of initial data sets, and also discuss the case K > 0 as well as matter models coupled to

the Einstein equation; see also [23]. Carlotto–Schoen [24] gave another striking exten-

sion of this method, producing asymptotically flat initial data which are nontrivial (c

Euclidean, k¼ 0) only in arbitrary (noncompact!) cones in R
3:

We also mention Cortier’s work [25] on gluing exact Kerr–de Sitter ends to solutions

with asymptotically KdS ends, generalizing from the Kottler–Schwarzschild–de Sitter

case studied in [26]. The latter results are very different from Theorem 1.1 as they con-

cern the periodic ends of the level set t¼ 0 in the maximal analytic extension of SdS

and KdS spacetimes (called Delaunay ends in the SdS case). One can construct many-

black-hole initial data sets, with a finite number of black holes, from [25, 26] by identi-

fying two isometric (in particular, sufficiently far apart) copies of the fundamental

domain of the maximally extended SdS or KdS data set glued in near spatial infinity. In

the case of exact SdS or KdS data sets, the resulting spacetime is a quotient of the max-

imal analytic extension by a suitable discrete translational symmetry; in particular, the

future conformal boundary has several connected components, each of which is an

interval times S2:

1.2. Scattering problems on asymptotically simple spacetimes; gluing in de

Sitter space

As discovered by Friedrich [27], the ‘constraint equations’ at the conformal boundary of

an asymptotically simple spacetime2 with K > 0 simplify dramatically compared to

(1.3). Indeed, fixing a Riemannian 3-manifold (S, h), the degrees of freedom are two

scalar functions as well as a symmetric 2-tensor k on S satisfying the linear equations

trhk ¼ 0, dhk ¼ 0: (1.4)

Given these data, one can construct an asymptotically simple solution (M, g) of (1.1) so

that S @ M and h is the restriction to @M of a suitable conformal multiple of g; the tensor

k is equal to certain components of the rescaled Weyl tensor of g at @M: (We remark here

that Dafermos–Holzegel–Rodnianski [28] gave a scattering construction of black holes

2A manifold M with boundary, and a metric g on M� satisfying (1.1) such that, for a boundary defining function s, the
‘unphysical metric’ s2g is a smooth Lorentzian metric on M, with @M spacelike when K > 0:
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settling down exponentially fast to a subextremal Kerr metric by solving a characteristic

Cauchy problem ‘backwards’ with cosmological constant K¼ 0; see also [29, 30].)

The linear nature of the constraints (1.4) suggest a simple way of gluing pieces of

asymptotically simple spacetimes into de Sitter space. Indeed, on Riemannian manifolds

(S, h) of dimension 3 and higher, the divergence operator on trace-free symmetric 2-

tensors is underdetermined, and one can solve the divergence equation

dhk
0 ¼ f , trhk

0 ¼ 0, (1.5)

in such a way that the support of k0 is contained in a small neighborhood of suppf :

This requires that there is no obstruction, i.e. f must be orthogonal to the cokernel—the

space of conformal Killing vector fields. Solvability then follows from a general result by

Delay [31]. Thus, naively gluing many SdS black holes into neighborhoods of points

p1, :::, pN 2 Iþ ¼ S
3 via a partition of unity, the constraints (1.4) will typically be vio-

lated for the induced data k, and with h ¼ g
S
3 ; one can, however, correct k by a 2-ten-

sor k0 supported away from the points pi assuming the obstruction vanishes for

f ¼ �dhk, which precisely leads to the balance condition (1.2); see §3.1.

We use the gluing problem as an opportunity to give a self-contained treatment of

the scattering problem—the construction of a spacetime solution of (1.1) from asymp-

totic data at Iþ—in this specific context. Rather than using Friedrich’s conformal

Einstein field equations, see [27, §2], in which one solves for quantities derived from

the metric tensor, we directly construct the metric as a Lorentzian 0-metric (uniformly

degenerate metric), following the terminology of Mazzeo–Melrose [32]; see §3.2–3.3. As

demonstrated by Vasy [33, Theorem 5.5], solutions of linear wave equations on a space-

time with asymptotically de Sitter type 0-metrics can be constructed from scattering

data in Taylor series at Iþ using regular-singular point ODE methods; the remaining

error, which vanishes to all orders at Iþ, is solved away by solving a wave equation with

such essentially trivial forcing. (Similar constructions are fairly standard in the

Riemannian context on conformally compact or asymptotically hyperbolic metrics, see

e.g. Fefferman–Graham [34, 35] and Graham–Zworski [36].)

In our gluing problem, this approach does not work directly. Indeed, calling the naively

glued metric from the previous paragraph g0, the leading order term of the resulting error

Ricðg0Þ � Kg0 is of size Oðs4Þ as a 2-tensor expressed in terms of ds=s and sections of

T�
S
3=s (and supported away from the points pi) where s ¼ cos s is a boundary defining

function of M; the degenerate nature of (the linearization of) the Einstein vacuum equation

prevents us from solving this error away using a metric correction of the same size.

Instead, we need to use a metric correction of size Oðs3Þ which does not produce any s3

error terms (i.e. lies in the kernel of the indicial operator of the linearization of (1.1)); in

order for it to solve away the s4 error, one needs to solve an equation of the form (1.5).

To continue the construction, we use the now fairly precise glued metric, called g0, as a

background metric in a generalized harmonic gauge, similarly to [37], and solve the gauge-

fixed Einstein equation (see Definition 3.12), first in Taylor series in §3.2 (similarly now to

the scalar wave equation case discussed in [33]), and then nonlinearly by solving a quasilin-

ear wave equation with rapidly decaying (at @M) forcing in §3.3. We show that the result-

ing metric solves the Einstein vacuum equation by using the usual argument based on the

second Bianchi identity and the propagation of the gauge condition. In this final step, the
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sufficiently rapid vanishing of the gauge condition, a 1-form on spacetime, at @M replaces

the vanishing of the Cauchy data of this 1-form in the standard short-time theory.

Our gluing method is very flexible. For instance, one can glue any number of KdS black

holes into the upper half space model ½0, 1Þ~s � R~x3, gdS ¼ ~s�2ð�d~s2 þ d~x2Þ, of de Sitter

space without any balance conditions if one allows for the solution to be sufficiently large

at spatial infinity; in this case, we can of course only guarantee the existence of the nonlin-

ear solution of (1.1) in a neighborhood of ~s ¼ 0 which may shrink as j~xj ! 1: More gen-

erally, one can glue any metrics suitably asymptotic to de Sitter space into de Sitter space.

See §3.5 for more on this. In particular, one may be able to glue several dynamical KdS

black holes together once their behavior is understood globally; see the work [38] by the

author with Vasy for the stability of the KdS exterior, and Schlue’s ongoing project [39, 40]

(building on his prior [41]) on the stability of the cosmological region.

We remark that, as another application of our approach, the polyhomogeneous for-

mal solutions of (1.1) constructed by Fefferman–Graham can be corrected to true

(asymptotically de Sitter like) solutions near the future conformal boundary; see Remark

3.17. This was previously shown by Rodnianski–Shlapentokh-Rothman [42].

Remark 1.2. We expect our methods to generalize in a straightforward manner to all

higher dimensions, including to odd-dimensional spacetimes to which neither

Friedrich’s analysis nor the extensions by Anderson and Chru�sciel apply [43, 44]. For

general results on the future stability of cosmological spacetimes, see Ringstr€om [45].

Remark 1.3. It would be interesting to perform similar gluing constructions for

Einstein–matter systems such as the Einstein–Maxwell equations, thus generalizing the

family of Kastor–Traschen spacetimes. See also [46].

1.3. Outline of the paper

In §2, we recall relevant aspects of 0-analysis, i.e. the analysis of 0-metrics and associ-

ated uniformly degenerate differential operators. In §3, we present the details of the glu-

ing construction for multi-SdS spacetimes; in §4, we extend this to the KdS case.

Throughout the paper, the cosmological constant will be a fixed number

K > 0:

2. Analysis of uniformly degenerate metrics

We recall natural vector bundles associated with uniformly degenerate geometries in §2.1

and describe de Sitter space from this point of view; associated differential operators are

discussed in §2.2. In §2.3, we discuss the case of the Einstein vacuum equations in detail.

2.1. Rescaled tangent and cotangent bundles; de sitter space

Let M be a smooth ðnþ 1Þ-dimensional manifold with boundary @M 6¼ ;; the space of

smooth vector fields on M is denoted VðMÞ ¼ C1ðM;TMÞ: Following Mazzeo–Melrose

[32], we define the space
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V0ðMÞ :¼ fV 2 VðMÞ : VðpÞ ¼ 0 8 p 2 @Mg
of 0-vector fields (or uniformly degenerate vector fields); this is a Lie subalgebra of V Mð Þ:
If s 2 C1 Mð Þ denotes a boundary defining function, i.e. @M ¼ s�1 0ð Þ and ds 6¼ 0 on

@M, then V0 Mð Þ ¼ sV Mð Þ: In local coordinates 0,1½ Þs � R
n
x , the space V0 Mð Þ is the

C1 Mð Þ-span of the nþ 1 vector fields

s@s, s@xi , i ¼ 1, :::, n:

Together, these provide a smooth frame of a vector bundle 0TM, called 0-tangent bun-

dle, which is nondegenerate down to s¼ 0. Thus, for z 2 M, there is a natural map
0TzM ! TzM which is an isomorphism for z 2 M�: A section V 2 C1 M;0TMð Þ restricts
to a smooth vector field on M� which extends smoothly to a vector field on M. This

identifies V0 Mð Þ ¼ C1 M;0TMð Þ:
The dual bundle of 0TM is called the 0-cotangent bundle 0T�M: In local coordinates

near @M, a local frame is given by

ds

s
,

dxi

s
, i ¼ 1, :::, n:

These are smooth and nonvanishing down to s¼ 0.

Definition 2.1. A Lorentzian 0-metric (or uniformly degenerate Lorentzian metric) g on

M of class C1 is a smooth section g 2 C1 M; S2 0T�Mð Þ which has signature n, 1ð Þ at

every point of M.

In local coordinates, a smooth Lorentzian 0-metric can be written as

g ¼ s�2 g00ds
2 þ 2

X

n

i¼1

g0ids 
s dx
i þ
X

n

i, j¼1

gijdx
i
sdx

j

 !

,

with the gl� smooth functions of s, xð Þ, and gl�ð Þl, �¼0, :::, n
having signature n, 1ð Þ: Note

that s2g 2 C1 M; S2T�Mð Þ is a smooth Lorentzian metric on M in the usual sense. In

particular, the class of metrics g for which @M is spacelike for the metric s2g is well-

defined, and independent of the choice of boundary defining function s; we shall only

be concerned with such metrics in the present paper. The Riemannian metric induced

on @M by s2g does depend on s, but its conformal class is well-defined.

The prime example for us is the de Sitter spacetime in 3þ 1 dimensions, with cosmo-

logical constant K > 0: It can be defined as the cylinder3

M ¼ �p=2,p=2½ �s � S
3, gdS ¼

3

K
� �ds2 þ g

S
3

cos 2s
, (2.1a)

whose interior is conformally diffeomorphic to a slab inside the Einstein universe

Rs � S
3, � ds2 þ g

S
3

� �

; here g
S
3 is the standard metric on S

3: The metric gdS is a solu-

tion of the Einstein vacuum equation (1.1). To see that gdS has the required form near

s ¼ p=2, let us take s ¼ cos s near s ¼ p=2; then

gdS ¼ 3=Kð Þs�2 � 1� s2ð Þ�1
ds2 þ g

S
3

� �

on 0,1½ Þs � S
3
w: (2.1b)

3Just this one time, we also include the past conformal boundary.
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Note that s2gdSj@M ¼ ð3=KÞg
S
3 is a Riemannian metric, thus @M ¼ S

3 t S
3 is spacelike

with respect to gdS:

Other forms of the de Sitter metric are useful for calculations. Regarding S
3 as the

unit sphere S
3 � R

4 ¼ R� R
3, we define the map

0, 1½ Þ � R
3
� ~s, ~xð Þ 7! s,wð Þ 2 0,1½ Þ � S

3,

s ¼ 1� ~s2�j~xj2ð Þ
2~s

� �2

þ 1

� ��1=2

, w ¼ s

~s

1þ ~s2 � j~xj2
2

, ~x

� �

2 S
3

(2.2a)

from part of the upper half space into de Sitter space (2.1b); here j � j is the Euclidean

norm. The de Sitter metric then takes the form

gdS ¼
3

K
� �d~s2 þ d~x2

~s2
on Mu :¼ 0,1½ Þ~s � R~x3: (2.2b)

See [47, §6.1] for these and related calculations (in particular, relating both (2.1b) and

(2.2b) to the one-sheeted hyperboloid in 1þ nþ 1ð Þð Þ-dimensional Minkowski space

which is isometric to global de Sitter space); they imply that the map (2.2a) composed

with s,wð Þ 7! s,wð Þ, s ¼ arccoss in the coordinates (2.1a), extends analytically to a map

0,1½ Þ~s � R~x3 ! M whose image is the complement of the backward causal cone from

the point �1, 0ð Þ 2 S
3 at s ¼ p=2; see [47, Figure 7].

Finally, introducing polar coordinates ~x ¼ ~R ~x, ~R ¼ j~xj � 0, ~x 2 S
2, and putting

t, r,xð Þ ¼ � 1

2

ffiffiffiffiffiffiffiffiffi

K=3
p

log ~R
2 � ~s2

� �

,
ffiffiffiffiffiffiffiffiffi

K=3
p

~s�1~R, ~x

� �

(2.3a)

in the cosmological region ~R > ~s, 4 we have

gdS ¼ � Kr2

3
� 1

� ��1

dr2 þ Kr2

3
� 1

� �

dt2 þ r2g
S
2 : (2.3b)

This is a smooth 0-metric on a compactification of
ffiffiffiffiffiffiffiffiffi

3=K
p

,1
� �

r
� Rt � S

2
x; indeed,

letting ss ¼ r�1, and defining

Ms :¼ 0,
ffiffiffiffiffiffiffiffiffi

K=3
p

h �

ss
� Rt � S

2
x, (2.3c)

we have

gdS ¼ s�2
s � K=3� s2s

� ��1
ds2s þ K=3� s2s

� �

dt2 þ g
S
2

� �

2 C1 Ms; S
2 0T�Ms

� �

: (2.3d)

The metric induced on ss ¼ 0 (factoring out the overall scalar factor K=3) is

hs :¼ K=3ð Þs2s gdSj@M ¼ K
2

9
dt2 þ K

3
g
S
2 : (2.4)

We remark that s, ~s, and ss are equivalent defining functions on the overlaps of the

various coordinate charts.

4This region, r >
ffiffiffiffiffiffiffiffiffi

3=K
p

, is the interior of the complement of the static region r <
ffiffiffiffiffiffiffiffiffi

3=K
p

(i.e. ~R < ~s). In the
cosmological region, r is a time function whereas t has spacelike differential; by contrast, the static region is foliated by
the spacelike level sets of t (which the Killing vector field @t is orthogonal to).
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2.2. Differential operators, function spaces

Geometric operators associated with a 0-metric g on an nþ 1ð Þ-dimensional manifold

M are examples of 0-differential operators. Concretely, using abstract index notation, we

shall in particular deal with the wave operator on bundles,

w
gu ¼ �u;j

j, w
g _g

� �

l�
¼ � _gl�;j

j,

the divergence and (trace-free) symmetric gradient

dgx ¼ �xj;
j, dg _g

� �

l
¼ � _glj;

j, d�gx
� �

l�
¼ 1

2
xl;� þ x�;lð Þ,

d�g, 0x :¼ d�gxþ 1

nþ 1
gdgx,

as well as the ‘trace reversal5 operator’ on 2-tensors,

Gg _g :¼ _g � 1

2
g trg _g
� �

:

We define the space Diffm0 Mð Þ of m-th order 0-differential operators to consist of all

locally finite linear combinations of up to m-fold products of 0-vector fields. Then
w

g 2 Diff20 Mð Þ for the scalar wave operator, w g 2 Diff20 M; S2 0T�Mð Þ for the tensor

wave operator acting on symmetric 2-tensors, d�g 2 Diff10 M;0T�M, S2 0T�Mð Þ, and so

forth. For instance, for the metric (2.2b) in 3þ 1 dimensions, we have

3K�1 w
g ¼ ~s@~sð Þ2 � 3~s@~s þ ~s2D~x , D~x :¼ �

X

n

i¼1

@2
~x i
;

for the other operators, we will give explicit expressions in §2.3.

Associated with any 0-differential operator A 2 Diffm0 Mð Þ is its indicial family (see

also [48, §2]) I A, kð Þ 2 C1 @Mð Þ, k 2 C, which is defined by

A skuð Þ ¼ skI A, kð ÞuþO skþ1ð Þ, u 2 C1 Mð Þ,
for any defining function s; this is independent of the choice of defining function.

Concretely,

A ¼
X

iþjaj�m

aia s, xð Þ s@sð Þi s@xð Þa ) I A, kð Þ ¼
X

i�m

ai0 0, xð Þki: (2.5)

Thus, I A, kð Þ is a polynomial of degree m in k, depending smoothly on x 2 @M: We

call the roots of the polynomial k 7! I A, kð Þ xð Þ the indicial roots of A; if they are inde-

pendent of x, we say that A has constant indicial roots.

If A 2 Diffk0 M;E, Fð Þ acts between sections of vector bundles E, F ! M, we define

I A, kð Þ 2 C1 @M;Hom E, Fð Þj@M
� �

similarly; the indicial roots of A are then those k

(depending on x 2 @M) for which I A, kð Þ fails to be invertible.

Lower order terms of A as in (2.5) can be defined upon fixing a collar neighborhood

0, �½ Þs � @M of @M : writing

5One has trg �Gg ¼ �trg only for nþ 1 ¼ 4:
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A 

X

m

k¼0

sk
X

iþ jaj � m
jaj ¼ k

a kð Þ
ia xð Þ s@sð Þi@a

x :

modulo terms of the form skþ1a s, xð Þ s@sð Þi@a
x , a 2 C1, 6 we define

I A sk½ �, k
� �

:¼
X

iþ jaj � m
jaj ¼ k

aia xð Þki@a
x 2 Diffk @Mð Þ: (2.6)

Thus, I A 1½ �, kð Þ ¼ I A, kð Þ: If A acts between sections of vector bundles E, F ! M, the

same works, with a kð Þ
ia 2 C1 @M;Hom E, Fð Þj@M

� �

, upon choosing an identification of E,

F in the collar neighborhood with pullbacks of Ej@M , Fj@M along the projection 0, �½ Þ �
@M ! @M:
We record some standard calculations involving the indicial family. If A 2

Diffm0 M;E, Fð Þ and k 2 C are such that ker IðA, kÞ is a C1 vector subbundle of Ej@M !
@M, then AðskuÞ ¼ Oðskþ1Þ for all u 2 C1 Mð Þ with uj@M 2 C1 @M; ker I A, kð Þð Þ: For

such u, we moreover have

A sk log sð Þu
� �

¼ sk@kI A, kð ÞuþO skþ1 log s
� �

; (2.7)

this can be seen by differentiating the relationship A skvð Þ ¼ skI A, kð Þvþ skþ1~v (with ~v 2
C1 Mð Þ depending smoothly on k) in k and plugging in v¼ u. We also record that in a

collar neighborhood of @M, we have, for such u, A skuð Þ ¼ skþ1I A s½ �, kð Þuþ O skþ2ð Þ:
The L2-based function spaces corresponding to 0-analysis are weighted 0-Sobolev spaces

smHk
0, loc Mð Þ ¼ fsmu : u 2 Hk

0, loc Mð Þg:

For k¼ 0, we define H0
0, loc Mð Þ ¼ L2loc Mð Þ to be the space of locally7 square integrable

functions on M relative for a smooth 0-density, i.e. a smooth positive section of the 0-

density bundle jKnþ1 0T�Mj; in local coordinates, such a density takes the form

a s, xð Þj ds dx
snþ1 j with 0 < a 2 C1, a typical example being the volume density jdgj of a

Lorentzian 0-metric g. For k 2 N, we define Hk
0, loc Mð Þ to consist of all u 2 L2 Mð Þ so

that Pu 2 L2 Mð Þ for all P 2 Diffk0 Mð Þ: If M is compact, the space smHk
0 Mð Þ ¼

smHk
0, loc Mð Þ carries the structure of a Hilbert space. More generally, if M is noncompact

and X � M is open with compact closure, then

sm �H
k
0 Xð Þ :¼ fuj

X
: u 2 smHk

0 Mð Þg (2.8)

is a Hilbert space.

For compact M, we can characterize the space Hm
0 Mð Þ using a covering of M by

‘uniformly degenerating cubes’ as follows: if a distribution u is supported in a coordin-

ate patch 0, 2½ Þs � R
n
x , and in fact in s � 1, jxj � 1, then8

6The reader familiar with b-analysis [53] will recognize this as the Taylor expansion of A into dilation-invariant (with
respect to s) b-differential operators on 0, �½ Þs � @M:
7On M, thus this does encode uniformity down to compact subsets of @M:
8We write A � B to mean the existence of a constant C> 1, independent of u, so that C�1B � A � CB:
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jjujj2Hm
0 Mð Þ �

X

1

k¼0

X

a 2 Z
n

jaj � 2k

jjuk, ajj2Hm �1=2, 1=2½ �nþ1ð Þ,

uk, a T,Xð Þ :¼ u 2�k 1þ Tð Þ, 2�k aþ Xð Þ
� �

, T,Xð Þ 2 R� R
n, jTj, jXj � 1

2
:

Note that uk, a sees u on a cube of size 2�k centered at a point at a distance 2�k from

the boundary, and @T , @X are of the same size as s@s, s@x: We leave the notational

changes required to drop the support condition to the reader; see also [48, Proof of

Corollary (3.23)]. An important consequence of this characterization is that algebra

properties of Sobolev spaces on R
n immediately carry over to 0-Sobolev spaces;

in particular:

Lemma 2.2. On an nþ 1ð Þ-dimensional compact manifold M with boundary, and for

k > nþ 1ð Þ=2, the space Hk
0 Mð Þ is an algebra. More generally, we have

uj 2 smjHk
0 Mð Þ, j ¼ 1, 2 ) u1u2 2 sm1þm2Hk

0 Mð Þ:

Solutions of uniformly degenerate equations often have better regularity and are con-

ormal, for instance as shown for solutions of the wave equation on de Sitter type spaces

in [33]. For a 2 R, we define the space of conormal functions relative to saL1 Mð Þ by
Aa Mð Þ :¼ fu 2 C1 M�ð Þ : P s�auð Þ 2 L1 Mð Þ 8 P 2 Diffb Mð Þg,

where s 2 C1 Mð Þ is a boundary defining function, and Diffb Mð Þ is the space of all b-

differential operators on M: locally, these are finite products of the vector fields s@s and

@xj with C1 Mð Þ coefficients. The space

AaDiffm0 Mð Þ (2.9)

of 0-differential operators with conormal coefficients consists of all locally finite linear

combinations of differential operators of the form aP, a 2 Aa Mð Þ, P 2 Diffm0 Mð Þ:

2.3. Einstein vacuum equation and its linearization

We make some general observations about the following nonlinear operator for

0-metrics:

Definition 2.3. For a Lorentzian metric g on a manifold M, define

P0 gð Þ :¼ 2 Ric gð Þ � Kg
� �

: (2.10)

For definiteness, we now work in 3þ 1 dimensions on the spacetime manifold

M ¼ 0, 1½ Þs � X, dimX ¼ 3,

where X is a 3-dimensional manifold without boundary such as R3 or S3; the boundary

@M ¼ s�1 0ð Þ will play the role of the future conformal boundary. This product struc-

ture allows us to identify differential operators (in particular: vector fields) on X with

‘spatial’ differential operators on M. In particular, we can pull back TX (along the pro-

jection M ! X) to a bundle over M, still denoted TX, which allows us to split 0TM as
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0TM ¼ Re0 � sTX, e0 ¼ s@s;

that is, we identify a 0-vector field ue0 þ sV , u 2 C1 Mð Þ, V 2 C1 M;TXð Þ � V Mð Þ,
with the pair (u, V). This induces splittings

0T�M ¼ Re0 � s�1T�X, e0 ¼ ds

s
,

S2 0T�M ¼ R e0ð Þ2 � 2e0
ss
�1T�Xð Þ � s�2S2T�X;

(2.11)

that is, we identify a section u e0ð Þ2 þ 2e0 
 s�1xþ s�2k of S2 0T�M with the triple

u,x, kð Þ, where u 2 C1 Mð Þ, x 2 C1 M;T�Xð Þ, k 2 C1 M; S2T�Xð Þ: Given a

Riemannian metric h on X, we can split S2T�X into pure trace (Rh) and trace-free parts

(kertrh), thereby refining (2.11) to

S2 0T�M ¼ R e0ð Þ2 � 2e0
ss
�1T�X

� �

� Rs�2h� s�2ker trh: (2.12)

We shall denote the components of _g 2 S2 0T�M in the four summands in (2.12) by

_gNN 2 R (normal-normal), _gNT 2 T�X (normal-tangential), _gTT1 2 R (tangential-tangen-

tial, pure trace), _gTT0 2 kertrh (tangential-tangential, trace-free).

We shall first study geometric operators associated with a product metric

g ¼ 3=Kð Þ�ds2 þ h x, dxð Þ
s2

: (2.13)

We denote the exterior derivative on X, pulled back to a spatial operator on M, by dX:

Lemma 2.4. In the splittings (2.11), we have9

d�g ¼
e0 0

1
2
sdX

1
2
1þ e0ð Þ

h sd�h

0

@

1

A, 3K�1dg ¼ e0 � 3 sdh �trh
0 e0 � 4 sdh

� �

,

and, as operators on symmetric 2-tensors,

Gg ¼
1
2

0 1
2
trh

0 1 0
1
2
h 0 Gh

0

B

@

1

C

A
, 3K�1 w

g ¼ e20 � 3e0 þ s2Dh þ
�6 4sdh �2trh

�2sdX �6 2sdh
�2h �4sd�h �2

0

@

1

A:

Finally, if Rjkl� and Ricl� denote the Riemann curvature tensor and Ricci tensor of g,

then the operator Rg uð Þjl ¼ R�
jl

qu�q þ 1
2
Ricj

�u�l þ Ricl
�uj�ð Þ is equal to

3K�1
Rg ¼

3 0 trh
0 4 0
h 0 4� htrh

0

@

1

Aþ s2
0 0 0
0 1

2
Ric hð Þ 0

0 0 Rh

0

@

1

A:

Proof. In local coordinates x1, x2, x3 on X, and setting ei ¼ s@xi , ei ¼ s�1dxi, we com-

pute re0e
l ¼ 0 for all l, reie

0 ¼ hike
k, and reie

k ¼ dki e0 � sC hð Þk
ije

j, where dki is the

9Here, h in the (3, 1) component of d�g simply multiplies the scalar k it acts on by h, producing the tangential-
tangential 2-tensor kh; similarly for other occurrences of h.
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Kronecker delta. Moreover, we have Rk
jl

� ¼ 0 except for 3K�1R0
ki
0 ¼ hik, 3K�1R0

i0
j ¼

d
j
i, 3K�1Rl

0i
0 ¼ dli, 3K�1Rl

00
j ¼ hlj, 3K�1Rl

ki
j ¼ dlid

j
k � hikh

jl þ s2R hð Þlkij, where hjl ¼
h�1 dxj, dxkð Þ denotes the coefficients of the dual metric of h; this gives Ric00 ¼
�K, Rici0 ¼ 0, and Ricij ¼ Khij þ K=3ð Þs2Ric hð Þij: The expressions in the lemma fol-

low from this by direct computation. w

The calculations in the proof imply that Ric gð Þ � Kg 2 s2C1 M; S2 0T�Mð Þ, i.e. any g

of the form (2.13) satisfies the Einstein equation modulo O s2ð Þ errors.
In [37, 49], the linearization of P0 is computed as

L0, g _g :¼ DgP0 _gð Þ ¼ w
g � 2d�gdgGg þ 2Rg � 2K: (2.14)

Using Lemma 2.4, we compute the leading and subleading order behavior of L0, g :

Corollary 2.5. For g as in (2.10), and in the bundle splitting (2.12), we have

3K�1I L0, g , k
� � ¼

3k� 6 0 �k 3k� 6ð Þ 0

0 0 0 0

6� k 0 �k 6� kð Þ 0

0 0 0 k k� 3ð Þ

0

B

B

B

B

@

1

C

C

C

C

A

,

3K�1I L0, g s½ �, k
� � ¼

0 2 1� kð Þdh 0 0

2dX 0 �2kdX �kdh

0
2

3
k� 5ð Þdh 0 0

0 4� 2kð Þd�h, 0 0 0

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

:

Proof. In the calculation of d�gdgGg , one needs to use e0s ¼ s e0 þ 1ð Þ as well as dhh ¼
�dX and d�h ¼ d�h, 0 � 1

3
hdh to obtain the stated expression for I L0, g s½ �, k

� �

: w

Typically, metrics do have s-dependence. The following two lemmas describe the (lin-

earized) Einstein operator for lower order perturbations of (2.13).

Lemma 2.6. If a > 0, ~g 2 Aa M; S2 0T�Mð Þ, then L0, gþ~g � L0, g 2 AaDiff20 M; S2 0T�Mð Þ,
see (2.9). If ~g 2 smC1 for some m 2 N, then L0, gþ~g � L0, g 2 smDiff20:

Proof. Using that the space Aa is a C1 Mð Þ-module which is closed under multiplication,

we have g þ ~gð Þ�1 � g�1 2 Aa M; S2 0TMð Þ: Hence Ggþ~g �Gg 2 Aa M;End S2 0T�Mð Þ� �

:

Similarly, indicating the metric in the notation for the Levi-Civita connection by a super-

script,

rgþ~g �rg 2 AaDiff10 M;0T�M;0T�M
0T�M
� �

:

This implies that d�gþ~g � d�g 2 AaDiff10ðM;0T�M; S2 0T�MÞ, similarly for the other opera-

tors appearing in (2.14). For the proof of the second part of the lemma, replace Aa by

smC1: w
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In particular, for m � 2, the indicial families IðL0, gþ~g ½sj�, kÞ, j¼ 0, 1, are independent

of ~g ; likewise (suitably interpreted) for ~g 2 Aa, a > 1:

Lemma 2.7. With P0 defined in (2.10), suppose g 2 C1 M; S2 0T�Mð Þ. If a > 0, ~g 2
Aa M;ð S2 0T�MÞ, then P0ðg þ ~gÞ � P0ðgÞ � L0, g~g 2 A2aðM; S20T�MÞ: Similarly, if

~g 2 smC, m 2 N, then P0 g þ ~gð Þ � P0 gð Þ � L0, g~g 2 s2mC1:

Proof. This follows similarly to the proof of Lemma 2.6. Since P0 gð Þ and L0, g~g capture

all terms of P0 g þ ~gð Þ which are at most linear in ~g , the difference P0 g þ ~gð Þ � P0 gð Þ �
L0, g~g only contains terms which are at least quadratic in ~g , hence its coefficients, as a

0-differential operator, have the stated decay. w

3. Multi-Schwarzschild–de Sitter spacetimes

In this section, we show how to glue several Schwarzschild–de Sitter metrics into global

de Sitter space; we shall work near the future conformal boundary, hence on

M ¼ 0, 1½ Þs � S
3, s ¼ cos s: (3.1)

The de Sitter metric is of the form discussed in Lemmas 2.6–2.7. Indeed, we have

gdS 2 3K�1s�2 �ds2 þ hð Þ þ s2C1, h ¼ 3K�1g
S
3 , (3.2)

We recall the Schwarzschild–de Sitter (SdS) metric with mass m 2 R:

gm ¼ � Kr2

3
� 1þ 2m

r

� ��1

dr2 þ Kr2

3
� 1þ 2m

r

� �

dt2 þ r2g
S
2 : (3.3)

We consider the metric (3.3) for r > rþ, where rþ is the largest positive real root of

Kr2=3� 1þ 2m=r if one exists; otherwise, fix an arbitrary rþ > 0: As in (2.3d), we put

ss ¼ r�1, and thus gm is a smooth 0-metric on

Mm, s :¼ 0, r�1
þ

h �

ss
� Rt � S

2
x: (3.4)

Comparison with the de Sitter metric, expressed in the same coordinates and on the

manifold Ms (see (2.3c)) by (2.3b) and (2.3d) (thus gdS ¼ gmjm¼0), shows that

gm � gdS 2 s3sC1 Ms \Mm, s; S
2 0T�Ms

� �

(3.5)

in their common domain of definition. Note that at ss ¼ 0, we have, in the upper half

space coordinates (2.3a), ~s ¼ 0 and ~R ¼ e�t
ffiffiffiffiffiffi

3=K
p

: In particular, t ! 1 corresponds to
~R ! 0; let p0 ¼ 1, 0, 0, 0ð Þ 2 S

3 � R
4 denote the point ~R ¼ 0 inside ~s ¼ 0: Moreover,

t ! �1 corresponds to ~R ! 1, which on global de Sitter space corresponds to the

antipodal point �p0 2 S
3 inside @M by inspection of (2.2a).

In summary, by relating the coordinates in (3.4) to the semi-global de Sitter manifold

(3.1), gm can be regarded as gluing an SdS black hole into de Sitter space at the point p0
at the future conformal boundary s¼ 0. Given a point p 2 S

3, choose a rotation R 2
SO 4ð Þ with Rp ¼ p0; this induces a map s,wð Þ 7! s,R wð Þð Þ on M. Pulling back gm along

this map, we obtain the metric
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gp,m, p 2 S
3, m 2 R, (3.6)

with gp,m defined in a neighborhood of Up ¼ S
3 n fp, � pg: See Figure 3.

Definition 3.1. Let N 2 N: We say that f pi,mið Þ : i ¼ 1, :::,Ng � S
3 � R is balanced if

the pi are pairwise distinct and if, regarding S
3 as the unit sphere inside R

4, the follow-

ing relation holds:

X

N

i¼1

mipi ¼ 0 2 R
4:

We can now state our main theorem:

Theorem 3.2. Let N 2 N, and suppose f p1,m1ð Þ, :::, pN ,mNð Þg � S
3 � R is balanced.

Suppose Vpi � Upi is a ball around pi with the point pi removed, and suppose Vpi \ Vpj ¼
; for i 6¼ j. Then there exist a neighborhood U of @M n fp1, :::, pNg and a Lorentzian 0-

metric g 2 C1 U; S2 0T�
UM

� �

with the following properties:

(1) g satisfies the Einstein vacuum equation Ric gð Þ � Kg ¼ 0;

(2) near Vpi , we have g ¼ gpi,mi
;

(3) g is O s3ð Þ-close to the de Sitter metric: g � gdS 2 s3C1 U; S2 0T�
UM

� �

:

See Figure 4. In the case of small subextremal masses, we can say more about the

domain of existence of g; we discuss this at the end of §3.3.

Remark 3.3. We only explicitly describe here how to glue a piece of the cosmological

region of an SdS black hole into de Sitter space. As is well-known (see e.g. [38, §3.1]), the

metric gm in (3.3) merely has a coordinate singularity at the cosmological horizon r ¼ rþ if

the mass is subextremal, meaning 0 < 9Km2 < 1: After a suitable (singular) coordinate

change, gm is analytic. There is another coordinate singularity at the event horizon, located

at the second largest root of Kr2=3� 1þ 2m=r, beyond which the metric can again be

extended analytically. Thus, one can paste these extended subextremal SdS metrics into

neighborhoods of pi and thus, via Theorem 3.2, glue subextremal SdS metrics, extended as

far as one wishes, into de Sitter space. This is depicted in Figure 2.

We show the necessity of the balance assumption under certain decay assumptions on g:

Figure 4. Illustration of Theorem 3.2, focusing on a neighborhood of p1, p2; the shaded regions indicate
where we glue in the SdS metrics gpi ,mi

, i¼ 1, 2. The blue segments indicate the sets Vpi : The red dashed
line indicates a piece of the past boundary of the domain U on which we construct the metric g. The dif-
ference to Figure 2 is that here we do not require the masses to be subextremal, hence we content our-
selves with gluing the far end of the cosmological region of several SdS black holes into de Sitter space.
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Theorem 3.4. Let p1,m1ð Þ, :::, pN ,mNð Þ 2 S
3 � R, with the pi pairwise distinct. Suppose g

satisfies the conclusions (1)–(2) of Theorem 3.2. If, for some � > 0, we have g � gdS 2
s3 log sð ÞC1 þ s3C1 þA3þ� M; S2 0T�Mð Þ, then f p1,m1ð Þ, :::, pN ,mNð Þg is balanced.

In particular, this applies for metrics g satisfying part (3) of Theorem 3.2. The uniqueness

theorem is not sharp; the inclusion of a s3 log s term merely serves as a demonstration that

the inclusion of a logarithmic term does not help in constructing a (formal) solution of

P0 gð Þ ¼ 0 when the balance condition is violated. The determination of sharp conditions

under which the balance condition of Definition 3.1 is necessary for the existence of a met-

ric g satisfying (1)–(2) is left as an open problem. We remark that the analysis of the

Einstein vacuum equation for metrics g with g � gdS 2 s2C1 or A2 (or even less decay) is

necessarily nonlinear on the level of O s4ð Þ contributions to Ric gð Þ � Kg:

Let vi 2 C1 @Mð Þ denote cutoffs, identically 1 near Vpi , and with mutually disjoint

supports; put v0 :¼ 1�PN
i¼1 vi: The starting point of the proof of Theorem 3.2 is the

naively glued metric

g0 :¼ v0gdS þ
X

N

i¼1

vigpi,mi
: (3.7)

Away from the points pi, we have g0 � gdS 2 s3C1: We shall show in §3.1 that the fail-

ure P0 g0ð Þ ¼ 2 Ric g0ð Þ � Kg0
� �

of g0 to solve the Einstein vacuum equation lies in s4C1
and is supported away from the pi, but it is always nonzero except in the trivial case

that mi ¼ 0 for all i. The goal is to find a correction ~g 2 s3C1, with support disjoint

from Vpi , such that P0 g0 þ ~gð Þ ¼ 0: To accomplish this, we proceed in several steps:

(1) We improve the error to P0 g0 þ ~g 0ð Þ 2 s5C1 by solving an underdetermined

divergence equation for ~g 0; the balance condition ensures the solvability, while the

underdetermined nature of the equation enables us to choose ~g 0 to vanish identi-

cally near the pi. See §3.1.

(2) We find g in the wave map gauge with background metric g0 :¼ g0 þ ~g 0 by solv-

ing a suitable gauge-fixed Einstein equation P(g) ¼ 0. This is done in two steps.

(a) One can construct g1 ¼ g0 þ ~g 1, ~g 1 2 s5C1, with P g1ð Þ 2 C:1 Mð Þ by inverting

the indicial family of DgdSP and using a Borel summation argument. See §3.2.

(b) In order to solve away the final error, we solve the quasilinear wave equation

P g1 þ ~g 2ð Þ ¼ 0 backwards from @M, with solution ~g 1 2 C:1 Mð Þ: See §3.3.
(3) Also in §3.3, we show that g solves the Einstein vacuum equation by means of the

usual argument involving the second Bianchi identity and a unique continuation

argument at @M:

With P0 as in Definition 2.3, we shall write from now on

L0 :¼ LgdS, 0 ¼ DgdSP0: (3.8)

3.1. Obstructed problem for the leading order correction

We will prove:
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Proposition 3.5. Under the assumptions of Theorem 3.2, and with g0 defined by (3.7),

there exists ~g 0 2 s3C1 M; S2 0T�Mð Þ, vanishing near [i Vpi , so that P0 g0 þ ~g 0ð Þ 2 s5C1:

We begin by computing the error produced by naively gluing a single SdS black hole

into a neighborhood of p0 2 @M :

Lemma 3.6. In the coordinates (3.3), let v 2 C1 Rtð Þ be identically 1 for large t, and put

g0 ¼ v tð Þgm þ 1� v tð Þð ÞgdS. With P0 ¼ 2 Ric� Kð Þ as in (2.10), we then have

P0 g0ð Þ 
 s4sErrs, 0 mod s5sC1, Errs, 0 ¼ 2
dss

ss

s

12m

K

dv

ss
:

Proof. Since gm and gdS solve the Einstein equation, P0 g0ð Þ is supported on fv 6¼ 0, 1g:
By Lemma 2.7 and in view of (3.5), we have

P0 g0ð Þ ¼ P0 gdS þ v gm � gdSð Þð Þ 
 L0 v gm � gdSð Þð Þ mod s6sC1; (3.9)

but for v 
 1, the left hand side vanishes, hence

L0 gm � gdSð Þ 2 s6sC1: (3.10)

Now, note that c :¼ gm � gdS ¼ s3s c3 þ s4s c4 þO s5s
� �

, with c3 and c4 independent of ss
when expressed in terms of the bundle splitting (2.12), with dss=ss ¼ �dr=r, ss, and

hs ¼ K
2=9

� �

dt2 þ K=3ð Þg
S
2 (see (2.4)) taking the roles of e0, s, and h; explicitly,

c3 ¼
18m

K
2

dr2

r2
þ 2m r dtð Þ2 ¼ 18m

K
2 , 0,

6m

K
2 ,

4m

3
dt2 � 2m

K
g
S
2

� �

:

In view of (3.10), or by direct calculation using Corollary 2.5, we have I L0, 3ð Þc3 ¼ 0

and I L0 ss½ �, 3
� �

c3 þ I L0, 4ð Þc4 ¼ 0; thus, (3.9) implies that, modulo s5sC1,

P0 g0ð Þ 
 s4s I L0 ss½ �, 3
� �

vc3ð Þ þ I L0, 4ð Þ vc4ð Þ
� �

¼ s4s I L0 ss½ �, 3
� �

, v
	 


c3

¼ s4s K=3ð Þ 0, �3dhs , v½ � c3ð ÞTT0, 0, 0
� �

¼ s4s 0,
12m

K
dv, 0, 0

� �

(3.11)

since dhs , v½ � ¼ �irhsv, i denoting contraction, and rhsv ¼ v0rhs t ¼ 9K�2v0 tð Þ@t: w

Thus, Errs, 0 ¼ O s4s
� �

is a tangential-normal tensor. In order to proceed, let us pre-

tend we want to glue a single SdS black hole into M. Since I L0, 4ð ÞNT ¼ 0 by Corollary

2.5, we cannot solve away Errs, 0 with a O s4s
� �

metric correction. Since Errs, 0 ¼ O s4s
� �

is

due to the O s3s
� �

difference of the metrics gm and gdS, we shall instead attempt to solve

away Errs, 0 with a O s3s
� �

correction with support not containing p0. To this end, note

first that by Corollary 2.5,

ker I L0, 3ð Þ ¼ ker trhs � R 3 e0ð Þ2 þ hs

� �

� 2e0
ss
�1
s T�X

� �

: (3.12)
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Written as a block matrix with respect to this splitting and (2.12), we furthermore have

3K�1I L0 ss½ �, 3
� � ¼

0 0 �4dhs

�3dhs 0 0

0 0 � 4
3
dhs

0 0 �2d�hs, 0

0

B

B

B

B

@

1

C

C

C

C

A

: C1 M; ker I L0, 3ð Þð Þ ! C1 M; S2 0T�M
� �

:

(3.13)

Thus, we need to find k 2 C1 @M; ker trhsð Þ which vanishes near p0 and which solves

� K=3ð Þ3dhsk ¼ Errs, 0ð ÞNT ¼ 12mK
�1dv: A necessary condition for solvability is that the

right hand side be L2 @M; jdhsjð Þ-orthogonal to the space ker d�hs, 0 2 C1 @M;T�@Mð Þ of

conformal Killing 1-forms. Identifying 1-forms with vector fields via the metric hs, this

condition reads
ð

@M

V Errs, 0ð ÞNT jdhsj ¼ 0 for all conformal Killing vector fields V on @M, hsð Þ:

(3.14)

The space of conformal Killing vector fields only depends on the conformal class of

the metric.10 Note then that hs is conformal to g
S
3 ; indeed, hs ¼ s2s s

�2g
S
3 : The con-

formal Killing vector fields of the standard n-sphere, n � 3, are well-known (see e.g.

[50, §1.4] and use the stereographic projection):

Proposition 3.7. The space confn ¼ ker d�gSn , 0 � V S
nð Þ is a direct sum

confn ¼ ison � scaln,

where ison ¼ ker d�gSn ffi sonþ1 is the space of Killing vector fields (rotations) on S
n, and

scaln ¼ fSq : q 2 R
ng, Sq : S

n
� p 7! q� hq, pip 2 TpS

n, (3.15)

where h�, �i is the standard inner product on R
nþ1:

Passing from ss to the global boundary defining function s, the error Err0 in

P0 g0ð Þ 
 s4Err0 mod s5C1 has normal-tangential component

Err0ð ÞNT ¼ s�4P0 g0ð Þ s@s, s�ð ÞjTS3 ¼ s�3s3s Errs, 0ð ÞNT ¼ s�3s3s
12m

K
dv: (3.16)

Remark 3.8. Since jdg
S
3 j ¼ s3s�3

s jdhsj, the solvability condition (3.14) is equivalent to
ð

@M

V Err0ð ÞNT jdgS3 j ¼ 0 8V 2 conf3:

This has the same form as (3.14); thus, the condition (3.14) is conformally invariant.

Now, at s¼ 0, both ss=s and v are functions of t only, thus of ~R ¼ j~xj by (2.3a), and

thus of the geodesic distance d
S
3 p0,�ð Þ from the point p0 2 S

3 by (2.2a); thus, we have

s�3s3sdv ¼ d~v for some ~v ¼ ~v d
S
3 p0,�ð Þ

� �

: With Err0ð ÞNT ¼ 12m
K

d~v, we can now compute

10Indeed, if (X, h) is a Riemannian manifold and V is a conformal Killing vector fields, so LVh ¼ fh for some f 2 C1 Xð Þ,
then LV e2uhð Þ ¼ e2u f þ 2Vuð Þh for any u 2 C1 Xð Þ:
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‘p0,m 2 conf3ð Þ�, conf3�V 7!
ð

S
3
V Err0ð ÞNT jdgS3 j: (3.17)

Namely, for V 2 ison ¼ ker d�g
S3
� ker dg

S3
, integration by parts gives ‘p0,m Vð Þ ¼ 0: On

the other hand, if q ¼ p0 2 S
3 � R

4, the vector field Sq is the radial vector field point-

ing toward p0, and

‘p0,m Sp0ð Þ ¼ C0 � 12m=K,

where C0 2 R is a universal constant. We claim that C0 6¼ 0: Indeed, passing back to

(3.14) note that Sq is a radial vector field, i.e. a C1 R~Rð Þ-multiple of @~R and thus a

C1 Rtð Þ-multiple of @t , and hence must be a constant nonzero multiple of @t , which is

the unique conformal Killing vector field of hs of this form. (In fact, @t is Killing for

hs.) But
ð

@t
12m

K
v0 tð Þdt

� �

jdhsj ¼
12m

K
� 0� 1ð Þ � K

2

9
vol S2ð Þ ¼ � 16pKm

3

is nonzero, proving that C0 6¼ 0:
Finally, if q?p0, then the integrand Sq Err0ð ÞNT in (3.17) is odd with respect to the

reflection across the axis Rp0, hence ‘p0,m Sqð Þ ¼ 0 in this case. Therefore,

‘p0,m Sqð Þ ¼ C0
12m

K
hp0, qi, q 2 R

4: (3.18)

In particular, there is a nontrivial obstruction to gluing a single nontrivial (m 6¼ 0) SdS

black hole into M. We summarize our findings in the following lemma:

Lemma 3.9. Given pi 2 S
3,mi 2 R, and cutoff functions vi, identically 1 near pi and van-

ishing near �pi, for i ¼ 1, :::,N, set ErrNT :¼PN
i¼1 Errpi,mið ÞNT 2 C1 S

3,T�S3ð Þ, where
Errpi,mið ÞNT :¼ s�4P0 vigpi,mi

þ 1� við ÞgdS
� �

s@s, sWð Þjs¼0, W 2 TS3:

Then we have
ð

S
3
V ErrNTð Þjdg

S
3 j ¼ 0 8V 2 conf3

if and only if f p1,m1ð Þ, :::, pN ,mNð Þg is balanced as in Definition 3.1.

Proof. If every vi is a radial cutoff, relative to the point pi, the claim follows from (3.18)

and the fact that
PN

i¼1hmipi, qi ¼ 0 for all q 2 R
4 if and only if

PN
i¼1 mipi ¼ 0, which is

precisely the balance condition.

It remains to prove the lemma for general cutoffs. Observe that the difference of error

terms produced by two different cutoffs vi, j, j¼ 1, 2, to a neighborhood of the same point

pi lies in the range of dh acting on smooth 1-forms supported away from pi. Indeed, simi-

larly to (3.11), the difference is equal to ð0, � ðK=3Þ3dhððvi, 1 � vi, 2Þðc3ÞTT0Þ, 0, 0Þ (in the

splitting (2.12)) where ðc3ÞTT0 is the trace-free part of the tangential-tangential component

(with respect to (3.1)) of gpi,mi
� gdS; note that vi, 1 � vi, 2 vanishes near pi. w

On any Riemannian manifold (X, h) with dimX � 2, the divergence dh acting on trace-

free symmetric 2-tensors has surjective principal symbol and thus closed range; in the present
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context then, standard elliptic theory implies that under the balance condition, the error of

Lemma 3.9 can be written as ErrNT ¼ dhk for some k 2 C1 S
3; S2T�S3

� �

, trg
S3
k ¼ 0:

Crucially, we can do much better, since the overdetermined nature of this equation allows us

to find k with strong support restrictions due to the following result due to Delay:

Theorem 3.10. (Delay [31, Theorem 1.3, Proposition 9.7, Corollary 8.4].) Let (X, h) be a

smooth Riemannian manifold, and let X � X be open. Suppose f 2 C1 X;T�Xð Þ satisfies

suppf �X and
Ð

X
V fð Þjdhj ¼ 0 for all V 2 V Xð Þ satisfying d�h, 0V

[ ¼ 0.11 Then there

exists k 2 C1 X; S2T�Xð Þ with trhk ¼ 0 and suppk � �X such that dhk ¼ f :

Proof of Proposition 3.5. Define the glued metric g0 as in (3.7). As in (the proof of)

Lemma 3.6, we define Err to be the s4 coefficient of

P0 g0ð Þ 

X

N

i¼1

L0 gdS þ vi gpi,mi
� gdSð Þ

� �

mod s5C1 M; S2 0T�M
� �

:

We can thus compute Err using Lemma 3.6; its normal-tangential component is equal

to ErrNT as defined in Lemma 3.9.

Since the cutoffs vi are identically 1 in a neighborhood of Vpi , there exists an open

set X � S
3 with �X \ Vpi ¼ ; for all i, and so that supp ErrNT �X; moreover, we may

choose X to be connected. Suppose V 2 V Xð Þ is a conformal Killing vector field. We

contend that V ¼ ~V j
X
for a conformal Killing vector field ~V 2 V S

3ð Þ: Indeed, on any

connected n-dimensional Riemannian manifold, the dimension of the space of con-

formal Killing vector fields is at most nþ 1ð Þ nþ 2ð Þ=2, and on S
n it is equal to this. We

conclude that the restriction map ker V S
3ð Þd

�
h, 0 ! kerV Xð Þd

�
h, 0, which is injective (as a conse-

quence of the explicit description in Proposition 3.7), must be an isomorphism.

By Lemma 3.9, the balance condition implies that the conditions of Theorem 3.10 are

satisfied; thus, there exists k 2 C1 S
3; S2T�S3

� �

, trg
S3
k ¼ 0, supp k � �X, with

� K=3ð Þ3dhk ¼ �ErrNT : (3.19)

In the splitting (2.12), put

~g 0 ¼ 0, 0, 0, kð Þ 2 C1 M; S2 0T�M
� �

:

In view of (3.12), we have ~g 0 2 ker I L0, 3ð Þ: Therefore, Lemma 2.7 and Corollary 2.5

imply that, modulo s5C1 M; S2 0T�Mð Þ,
P0 g0 þ ~g 0ð Þ 
 s4 0, ErrNT , 0, 0ð Þ þ I L0 s½ �, 3ð Þ~g 0

� �


 0,

finishing the proof. w

Remark 3.11. A direct calculation shows that the error ErrNT is, up to a constant rescal-

ing, equal to the divergence (with respect to the induced metric h on @M) of the lead-

ing order term of the normal-tangential-normal-tangential part of the Weyl tensor of

g0. Thus, [27, Lemma (3.1)], in particular [27, Equation (3.12)], requires the solution of

11Note that if X has several connected components, the space of such V is larger than the space of conformal Killing
vector fields on X.
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the same divergence equation (3.19). Solving Friedrich’s conformal Einstein field equa-

tions then produces a solution of the Einstein vacuum equation and proves Theorem

3.2. As motivated in the introduction, we give a different, self-contained proof below.

3.2. Gauge fixing; construction of the formal solution

Following DeTurck [49], we make the following definition:

Definition 3.12. Let g0 and g denote two Lorentzian metrics on the same manifold.

(1) We define the gauge 1-form by

! g; g0
� �

¼ g g0
� ��1

dgGgg
0:

(2) The gauge-fixed Einstein operator is

P g; g0
� �

:¼ 2 Ric gð Þ � K� d�g! g; g0
� �

� �

:

Its linearization in the first argument is denoted

Lg, g0 _gð Þ ¼ D1jgP _g ; g0
� �

:¼ d

ds
P g þ s _g ; g0
� �

js¼0:

We first discuss general properties of these operators. Following [37, §3], we have,

using the Levi-Civita connection of g,

D1jg! _g ; g0
� �

¼ d

ds
! g þ s _g ; g0
� �

js¼0 ¼ �dgGg _g þ C _gð Þ �D _gð Þ,

Cj
l� ¼

1

2
g0
� ��1
� �jk

g0lk;� þ g0�k;l � g0l�;k

� �

, Dj ¼ gl�Cj
l� ,

C _gð Þj ¼ gjkC
k
l� _g

l� , D _gð Þj ¼ Dk _gjk:

In the special case g ¼ g0, we have C 
 0 and D 
 0, and therefore by (2.14)

Lg, g ¼ w
g þ 2Rg � 2K:

If moreover g ¼ 3=Kð Þs�2 �ds2 þ h x, dxð Þ
� �

is a product metric as in (2.13), then in the

splitting (2.12)

3K�1I Lg, g , k
� � ¼ k2 � 3kþ

�6 0 0 0

0 �4 0 0

0 0 �6 0

0 0 0 0

0

B

B

B

B

@

1

C

C

C

C

A

: (3.20a)

For later use, we note that the indicial roots are, in increasing order,

1

2
3�

ffiffiffiffiffi

33
p� �

2 �2, � 1ð Þ, � 1, 4,
1

2
3þ

ffiffiffiffiffi

33
p� �

2 4, 5ð Þ: (3.20b)

For more general metrics, arguments similar to those in Lemmas 2.6–2.7 give:

Lemma 3.13. Let g00 2 C1 M; S2 0T�Mð Þ, and suppose that g0 2 C1 M; S2 0T�Mð Þ is

such that g0 � g00 2 smC1 for some m 2 N. Suppose moreover that ~g 2 sm
0C1 for some
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m0 2 N, m0 � m, and put g ¼ g0 þ ~g :12 Then Lg, g0 � Lg00 , g00 2 smDiff20 M; S2 0T�Mð Þ.
Moreover, if _g 2 sm2C1, then P g þ _g ; g0

� �

� P g; g0
� �

� Lg;g0 _g 2 s2m2C1:

Applying this with g00 a product metric as in (2.13), we conclude that I Lg, g0 , k
� �

is

equal to the right hand side of (3.20a).

Returning to the black hole gluing problem and the notation of Proposition 3.5, we

now define the ‘background metric’ g0 to be

g0 ¼ g0 þ ~g 0 2 C1 M; S2 0T�M
� �

: (3.21)

Since ! g0; g0
� �

¼ 0 and Ric g0ð Þ � Kg0 2 s5C1, we have

P g0; g0
� �

2 s5C1 M; S2 0T�M
� �

;

moreover, by construction, P g0; g0
� �

vanishes near [i Vpi :

Proposition 3.14. Under the assumptions of Proposition 3.5, and with g0 as in (3.21),

there exists a metric perturbation ~g 1 2 s5C1 M; S2 0T�Mð Þ, vanishing near [i Vpi , so that

P g0 þ ~g 1; g
0

� �

2 s1C1 ¼ \m2N smC1 (i.e. vanishing to infinite order at s¼ 0).

Proof. Suppose we have already found ~g 1 as in the statement and with P g0 þ ~g 1; g
0

� �

2
smC1 for some m � 5; note that for m¼ 5, this holds for ~g 1 ¼ 0: Moreover, under

these assumptions, P g0 þ ~g ; g0
� �

vanishes near [i Vpi : Then, for _g ¼ sm _g 0 2 smC1, we

have, using Lemma 3.13 and noting that g0 � gdS 2 s3C1,

P g0 þ ~g 1 þ _g ; g0
� �


 P g0 þ ~g 1; g
0

� �

þ Lg0þ~g 1;g
0 _g mod s2mC1


 P g0 þ ~g 1; g
0

� �

þ LgdS , gdS _g mod smþ3C1


 P g0 þ ~g 1; g
0

� �

þ smI LgdS, gdS ,mð Þ _g 0 mod smþ1C1:

But for m � 5, I LgdS , gdS ,mð Þ is invertible pointwise on @M in view of (3.20b), hence we

can find _g 0 2 C1 @M; S2 0T�
@MM

� �

, vanishing near [i Vpi such that this vanishes (mod-

ulo smþ1C1). Replacing ~g 1 by ~g 1 þ _g improves the order of vanishing of P g0 þ ~g 1; g
0

� �

at s¼ 0 by one order. A Borel summation argument produces a formal solution

~g 1 2 s5C1: w

3.3. Solving the nonlinear equation; conclusion of the construction

Using indicial operator arguments, one cannot go beyond Proposition 3.14; the remain-

ing (‘trivial’) error can however easily be solved away:

Proposition 3.15. With g1 :¼ g0 þ ~g 1 defined using Proposition 3.14, there exists

~g 2 2 s1C1 M; S2 0T�Mð Þ, vanishing near [i Vpi , so that g :¼ g1 þ ~g 2 satisfies

P g; g0
� �

¼ 0 near s ¼ 0: (3.22)

12In particular, g� g00 2 smC1:
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Proof. The key point is that forced linear wave equations on de Sitter space, or with any

product metric of the form (2.13) or indeed any metric smoothly asymptotic to it, can

be solved backwards on function spaces encoding sufficient polynomial decay in s (i.e.

sufficient exponential decay in � log s), with the solution unique in such spaces; see the

proof of [51, Lemma 1] (where N is the order of decay in jx1j, x1 :¼ �s2) for the rele-

vant energy estimate, and the beginning of [33, §3] (where our s, x are denoted x, y).

Since the error we need to solve away vanishes to all orders at s¼ 0, there is no need

to choose vector field multipliers and positive definite vector bundle inner products on

S2 0T�M carefully in such energy estimates; rather, fixing any smooth positive definite

inner product on S2 0T�M, one obtains an energy estimate using the vector field multi-

plier s�2Ns@s when N is sufficiently large. Indeed, the only contribution to the bulk

term in the estimate which comes with a factor N in front arises from differentiating

s�2N and is thus of the form �2Ns�2NE s@s, s@sð Þ, where E is the energy-momentum

tensor of the wave u one wishes to estimate; all other bulk terms can be estimated by

s�2N times a bounded (independently of N) multiple of juj2 þ js@suj2 þ js@xuj2: But

since s@s is timelike, choosing N large enough produces a coercive bulk term, and one

obtains, for example, an estimate jjujj
sN �H

1
0 Xð Þ � Cjjw g1ujjsN �H

0
0 Xð Þ for sufficiently large N,

where X ¼ s�1 0, 1
2

	 �� �

: One can also commute any fixed number of 0-derivatives

through the equation and thus (upon increasing N and C) obtain the esti-

mate jjujj
sN �H

kþ1
0 Xð Þ � Cjjw g1ujjsN �H

k
0 Xð Þ:

For the quasilinear wave equation at hand, we work with 0-Sobolev spaces with more

than 1
2
dimMð Þ þ 2 ¼ 4 derivatives; thus, fix k0 ¼ 5 > 4: Then by a simple adaptation of

the standard iteration scheme for solving quasilinear wave equations (see e.g. [52, §16]),

we obtain, for sufficiently large N0, a solution ~g 2 2 sN0 �H
k0
0 X0ð Þ (unique in this space) of

equation (3.22), where X0 ¼ s�1 0, �0½ Þð Þ for sufficiently small �0 > 0: Moreover, ~g 2 van-

ishes near each Vpi since P g1; g
0

� �

does; recall that g1 and g0 are both equal to the

Schwarzschild–de Sitter metric gpi,mi
near Vpi :

For any k � k0, one can similarly find a solution of (3.22) in the space sN �H
k
0 Xð Þ where

X is a neighborhood of s¼ 0; since solutions of quasilinear wave equations can be continued

(backwards, i.e. in the direction of increasing s) in the same regularity class as long as a fixed

low regularity norm remains finite, we can in fact take X ¼ X0: We conclude that ~g 2 2
\N, k s

N �H
k
0 X0ð Þ ¼ s1C1 X0ð Þ, the final equality following from the fact that sk �H

kþ3
0 X0ð Þ �

Ck X0ð Þ by Sobolev embedding and using that @s ¼ s�1 � s@s and @x ¼ s�1 � s@x: w

By construction, the metric g meets the requirements (2)–(3) of Theorem 3.2. We

prove that it also satisfies requirement (1); recall that g � g0 2 s5C1 by Propositions 3.5

and 3.15, and g � g0 vanishes near [Vpi :

Lemma 3.16. Suppose g, g0 are two Lorentzian metrics defined near @M n fp1, :::, pNg,
smooth down to s¼ 0 as sections of S2 0T�M, and equal, modulo sC1 M; S2 0T�Mð Þ, to a

metric of product type (2.13) near @M n fp1, :::, pNg. Suppose that near [i Vpi , we have

g ¼ g0 and Ric gð Þ � Kg ¼ 0. Suppose moreover that Ric g0
� �

� Kg0 and g � g0 lie in

s5C1 M; S2 0T�Mð Þ. If P g; g0
� �

¼ 0, then Ric gð Þ � Kg ¼ 0 and ! g; g0
� �

¼ 0 near @M:
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Proof. The conclusion holds trivially near Vpi : Now, by the second Bianchi identity, the

equation dgGgP g; g0
� �

¼ 0 implies the wave equation

2dgGgd
�
g! g; g0
� �

¼ 0 (3.23)

for the gauge 1-form ! g; g0
� �

: By assumption, we have ! g; g0
� �

2 s5C1 M;0T�Mð Þ: The
idea is to view equation (3.23) as a scattering problem (‘initial value problem for data at

infinity’) for ! g; g0
� �

: We need to show that the a priori decay of ! g; g0
� �

is a suitable

replacement for vanishing Cauchy data in the usual proof of short time existence for

the Einstein equation, in that it suffices to conclude ! g; g0
� �


 0:

We first contend that in fact ! g; g0
� �

2 s1C1 vanishes to infinite order at @M; this

uses an indicial operator argument. Thus, if g00 is a product metric on a 4-manifold M

as in (2.13), then we have, in the bundle splitting (2.12),

3K�1I 2dg00Gg00d
�
g00
, k

� �

¼ k2 � 3k� 6 0
0 k2 � 3k� 4

� �

;

its indicial roots are given by (3.20b). If g � g00 2 sC1, then 2dgGgd
�
g � 2dg00Gg00d

�
g00

2
sDiff20 by arguments similar to Lemmas 2.6 and 2.7.

Now, if we already know ! g; g0
� �

2 smC1 for some m � 5 (the case m¼ 5 being our

starting point), then, writing ! g; g0
� �

¼ sm!0 þ ~! for !0 2 C1 @M;0T�
@MM

� �

(s-inde-

pendent) and ~! 2 smþ1C1, equation (3.23) implies

I 2dgGgd
�
g ,m

� �

!0 ¼ 0:

But the indicial operator appearing here is pointwise invertible, hence !0 
 0 and there-

fore ! g; g0
� �

¼ ~! 2 smþ1C1: Since m was arbitrary, this proves our contention.

Finally, the rapid decay of ! g; g0
� �

at s¼ 0 (and its vanishing near the pi where the

metric g is singular) implies by a unique continuation argument for the wave equation

(3.23), based on an energy estimate with multiplier s�2Ns@s for sufficiently large N, that

! g; g0
� �

vanishes identically near s¼ 0. See [51, Lemma 1]; a closely related alternative

approach is given in [33, Proposition 5.3].

Since P g; g0
� �

¼ 0 and ! g; g0
� �

¼ 0, we conclude that Ric gð Þ � Kg ¼ 0 near s¼ 0. w

The proof of Theorem 3.2 is complete.

Remark 3.17. Given a Riemannian metric h0 and a transverse traceless tensor hn on an

n-manifold @M, the Fefferman–Graham construction [35, §3] produces a formal solu-

tion g0 of Ric g0
� �

� Kg0 2 s1C1 on M ¼ 0, 1½ Þs � @M of the form g0 ¼
s�2 �ds2 þ h s, x, dxð Þ
� �

, where h0 and hn are the coefficients of s0 and sn in the polyho-

mogeneous expansion of h. (Concretely, h has an expansion into sj, j 2 N0, and sj log s

for integer j � n:) Using this formal solution as a background metric for the gauge-fixed

Einstein equation, Proposition 3.15 and Lemma 3.16 produce a true solution g ¼
g0 þO s1ð Þ of Ric gð Þ � Kg ¼ 0: We stress that this does not require any smallness con-

ditions on the data h0, hn: See [42, Theorem 1.3] for a different approach.
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We end with a discussion of the domain of existence when all masses are subextremal

and small; we show that the cosmological horizons of at least two different black holes

intersect nontrivially in the maximally globally hyperbolic development of the glued

metric g of Theorem 3.2 and Remark 3.3. Let us work on the partial compactification

M ¼ 0,p=2ð �s � S
3, g ¼ 3=Kð Þ cos �2 sð Þ �ds2 þ g

S
3

� �

,

of de Sitter space; the gluing theorem is, so far, local near s ¼ p=2: Fix N � 2 distinct

points p1, :::, pN 2 S
3: If N¼ 2, we assume p2 6¼ �p1: Denoting by d the Riemannian

distance on S
3, d

S
3

� �

, we set d0 :¼ mini 6¼jd pi, pjð Þ 2 0, pð Þ; without loss of generality,

suppose the distance is minimized for p1, p2 so that

d0 ¼ d p1, p2ð Þ:

Let moreover 0 < r0 < p=2 be less than 1
2
times the smallest radius of any of the balls

Vpi in Theorem 3.2. Given subextremal masses m1, :::,mN so that

D ¼ f p1,m1ð Þ, :::, pN ,mNð Þg
is balanced, the metric g constructed in Theorem 3.2 is equal to gpi,mi

in the domain of

dependence of B pi, 2r0ð Þ: Fix 0 < � < r0=16, and define R0 � M as the union of S3 n
[N
i¼1B pi, r0ð Þ � @M and the N spacelike surfaces

N i :¼ f s, pð Þ 2 M : d p, pið Þ ¼ r0 � g p=2� sð Þ, p=2� s � r0=2þ 4�g,
where 1 < g < 2 is fixed so that r0 � g r0=2þ 4�ð Þ > 0: Note that N i penetrates the

cosmological horizon of an observer in de Sitter space tending to pi, i.e. the backwards

light cone from p=2, pi
� �

2 @M: We denote by

Sg, i :¼ f s, pð Þ 2 M : d p, pið Þ ¼ r0 � g r0=2þ �ð Þ, p=2� s ¼ r0=2þ �g � N i

a sphere which lies just inside of said cosmological horizon when g� 1 � 1: See

Figure 5.

Consider the rescaled gluing data

kD :¼ f p1, km1ð Þ, :::, pN , kmNð Þg
for k � 0: For k¼ 0, all masses vanish, hence we are gluing pieces of de Sitter space into

de Sitter space—the result of course being de Sitter space, with metric defined globally on

M. Let q 2 S
3 denote the midpoint between p1 and p2 (so d p1, qð Þ ¼ d p2, qð Þ ¼ d0=2), and

let

�z j ¼ �sj, �pj
� � 2 Sg, j, j ¼ 1, 2,

denote the point on Sg, j for which �pj is closest to q. If we had g¼ 1, then for any point

z ¼ s, qð Þ with p=2� s > d0=2þ 2�, we would have

d q, �pj
� � ¼ 1

2
d0 � r0ð Þ þ � < p=2� sð Þ � r0=2� � ¼ p=2� sð Þ � p=2��sj

� �

,

so �s1, �p1ð Þ and �s2, �p2ð Þ are both contained in the timelike future Iþ zð Þ of z. For g > 1

sufficiently close to 1, and shrinking � > 0 if necessary, this holds for the point

z :¼ p=2� d0=2� 3�, q
� �

2 M:
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For small k � 0, one can define the SdS metric gpi, kmi
, extended across the cosmo-

logical horizon and defined in 0, p=2ð �s times a 2r0-neighborhood of pi inside S
3, in

such a manner that as k ! 0, the weighted difference s�3 gdS � gpi, kmið Þ (cf. equation

(3.5)) converges smoothly to 0 as a section of S2 0T�M away from the line

Li :¼ f s, pið Þ : s 2 �p=2, p=2ð �g:13 We claim that for sufficiently small k > 0, we can do

the SdS gluing with parameters Dk in such a way that

(1) the point z is contained in the maximal globally hyperbolic development of the

glued metric gk with respect to R0 (and R0 is spacelike for gk),

(2) �z1,�z2 2 Iþ zð Þ with respect to gk,

(3) near �z j, gk is equal to gpj,mj
for j¼ 1, 2, and

(4) �z j lies inside the cosmological horizon of the SdS black hole associated with the

point pj.

To begin, let k0 > 0 be a small fixed constant. Consider then the naively glued metric

gk, 0 ¼ v0gdS þ
PN

i¼1 vigpi, kmi
analogously to (3.7); this fails to solve the Einstein vacuum

equation by the amount P0 gk, 0ð Þ ¼ ks4Err kð Þ, where Err kð Þ 2 C1 0, k0½ Þ �M; S2 0T�M
� �

depends smoothly on k � 0, and whose leading order term at @M can be computed using

Lemma 3.6 and equation (3.16); in particular, the leading order (s0) coefficient of Err is

k-independent. Here and below, we take k0 > 0 to be a small fixed constant. Thus, we can

take the solution of the divergence equation � K=3ð Þ3dg
S3
kk ¼ �kErr kð ÞNT (cf. equation

(3.19)), to be k ¼ kk1 for some fixed k1 2 C1 S
3; S2T�S3

� �

: For small k, we then work

with the background metric g0k ¼ gk, 0 þ kk:

The remainder of the formal part of the gluing construction does not depend on any

further choices; the Borel summation in the proof of Proposition 3.14 can be defined to

produce a metric correction ~gk, 1 2 ks5C1 0, k0½ Þ �M; S2 0T�M
� �

with support in a

small fixed neighborhood of @M: The resulting formal solution gk, 1 ¼ g0k þ ~gk, 1 (cf. the

Figure 5. Illustration of the argument giving long-time existence of the metric g in Theorem 3.2 for
small subextremal masses. The geometry shown here is that of de Sitter space. The region enclosed
by the blue lines is the backwards domain of dependence of the spacelike surface R0 which consists
of the three thick blue lines. By Cauchy stability, two observers starting at �z can reach the points
�z1 2 Sg, 1 and �z2 2 Sg, 2 if we glue sufficiently light black holes into p1 and p2, in which case the
black dashed lines become the cosmological horizons of the black holes.

13A systematic and more precise way of accomplishing this is to use geometric microlocal techniques [54]. For a single
SdS black hole centered at p 2 S

3, one starts with the total space 0, k0½ Þ � M and blows up 0, k0½ Þ � fpg and then
f0g � L, L ¼ 0,p=2ð � � fpg: The first blow-up resolves the singular nature—due to its r-dependence—of the SdS
metric near p, and the second blow-up resolves the event horizon, whose r-coordinate goes to 0 roughly linearly with
k. The family of SdS metrics with mass km can then be defined as a smooth section of the pullback of S2 0T�M to this
resolved space, and, crucially, in such a manner that it equals the de Sitter metric on the lift of k¼ 0.
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statement of Proposition 3.15) satisfies the gauge-fixed Einstein equation with error

P gk, 1; g
0
k

� �

2 ks1C1 0, k0½ Þ �M; S2 0T�M
� �

; the support of this error is disjoint from

the N i: But then, since gk, 1 and g0k converge smoothly to the de Sitter metric in the

backwards domain of dependence of R0, Cauchy stability for the solution ~gk, 2 2 ks1C1
of the quasilinear equation P gk, 1 þ ~gk, 2; g

0
k

� �

¼ 0 implies that gk ¼ gk, 1 þ ~gk, 2 indeed

exists (uniquely, by domain of dependence considerations) on a sufficiently large subset

of M so that the requirements (1)–(4) are indeed met.

3.4. Necessity of the balance condition

In this section, we prove Theorem 3.4. Thus, suppose that Ric gð Þ � Kg ¼ 0 for a metric

g of the form

g ¼ gdS þ
X

N

i¼1

vi gpi,mi
� gdSð Þ þ s3 log sð Þg‘ þ s3g3 þ ~g , ~g 2 A3þ� M; S2 0T�M

� �

,

where vi 2 C1 @Mð Þ is a cutoff localizing to a small neighborhood of pi; here g‘, g3 2
C1 @M; S2 0T�

@MM
� �

, and g‘, g3, ~g have supports disjoint from the pi. Then, with L0 ¼
DgdSP0 as in (3.8), Lemma 2.7 gives

f :¼ L0 s3 log sð Þg‘ þ s3g3 þ ~g
� �

þ s4Err 2 A6�d 8 d > 0, (3.24)

where the normal-tangential component ErrNT of Err 2 C1 @M; S2 0T�Mð Þ takes the

form given in Lemma 3.9.

Note that, for any g‘, g3, ~g in the above function spaces, we have f 2 s3 log sð ÞC1 þ
s3C1 þA3þ�: Using (3.24), its s3 log s coefficient is I L0, 3ð Þg‘ ¼ 0: In view of (3.12)

(with hs, ss replaced by h, s, where h is the boundary metric (3.2)), we thus have, in the

bundle splitting (2.12),

g‘ ¼ 3u, g, u, kð Þ,
where u 2 C1 @Mð Þ, g 2 C1 @M;T�@Mð Þ, and k 2 C1 @M; S2T�@Mð Þ with trhk ¼ 0 are

supported away from the pi.

Using (2.7) and Corollary 2.5, we then compute the s3 coefficient of f as

0 ¼ I L0, 3ð Þg3 þ @kI L0, kð Þjk¼3g‘ ¼ I L0, 3ð Þg3 þ K=3ð Þ �3u, 0, � 3u, 3kð Þ:
Since the pure trace part of the tangential-tangential component of I L0, 3ð Þ always van-

ishes, we must have k¼ 0. But then we can then write

g3 ¼ g30 þ g31, I L0, 3ð Þg30 ¼ 0, g31 ¼ u, 0, 0, 0ð Þ,
with g31 defined so that it solves I L0, 3ð Þg31 þ @kI L0, kð Þjk¼3g‘ ¼ 0:

Lastly then, projecting to the normal-tangential component, we have L0 ~gð ÞNT 2 A4þ�

by Corollary 2.5, hence the s4 component of f is equal to

0 ¼ ErrNT þ @kI L0 s½ �, kð Þjk¼3g‘ þ I L0 s½ �, 3ð Þg31 þ I L0 s½ �, 3ð Þg30
¼ ErrNT þ K=3ð Þ �2dXð Þuþ K=3ð Þ2dXuþ K=3ð Þ �3dh g30ð ÞTT0

� �

¼ ErrNT � Kdh g30ð ÞTT0,
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where g30ð ÞTT0 2 C1 @M; S2T�@Mð Þ is the trace-free part of the tangential-tangential

component of g30: Integrating this against a conformal Killing vector field V, an integra-

tion by parts implies that the second term does not contribute, and therefore
Ð

@MV ErrNTð Þ jdhj ¼ 0 for all V 2 conf3: An application of Lemma 3.9 concludes the

proof of Theorem 3.4.

3.5. Gluing with noncompact spatial topology

The balance condition in Definition 3.1 captures the orthogonality of the leading order

error term to conformal Killing vector fields on S
3: If, however, we allow the trace-free

2-tensor k in (3.19) to be blowing up sufficiently fast at a point p1 2 S
3 distinct from

the pi, this obstruction disappears, since elements of the relevant cokernel now need to

vanish at sufficiently high order at p1; since conformal Killing vector fields on the

sphere vanish at most quadratically at any given point, this cokernel is empty.

A more natural way to phrase this is to pass to the upper half space picture of de

Sitter space, Mu ¼ 0,1½ Þ~s � R~x3, see (2.2b); the point p1 is the point at infinity within

the conformal boundary @Mu, and we need to solve equation (3.19), with h ¼ 3=Kð Þg
R

3

now a constant multiple of the Euclidean metric, and the error term having compact

support in ~x: We can always solve this, with the solution k having support disjoint

from the Vpi , if we allow k to be nonzero in j~xj 	 1 and allow for h~xi�2þ� decay, � >

0: More precisely, using the function spaces of [18, Appendix A], we can find k 2
H1

/,w gR3ð Þ with / ¼ h~xi and w ¼ h~xi1=2�2�: (Refining the weights to be exponential at

the boundary of the domain in which one wants k to be supported enforces the correct

support of k.) Indeed, since dg
R3

: H1
/,w g

R
3ð Þ ! L2w/ g

R
3ð Þ by [18, (A.4)], the relevant

cokernel (for s¼ 1) consists of conformal Killing 1-forms x on R
3, gR3

� �

lying in

L2
w�1/�1 gR3ð Þ: But since all such x have size at least 1 near infinity, and since
Ð

j1j2w�2/�2jdgR3 j �
Ð

h~xi�3þ4�r2 dr diverges, the space of such x is trivial.

The remainder of the gluing construction as before; however, in the final step, the

domain of existence of the quasilinear equation might shrink to zero as j~xj ! 1: (Even
when not gluing any black hole into the upper half space model Mu, we point out that

past directed null-geodesics leave Mu in finite affine time; see [47, Figure 7].)

In summary:

Theorem 3.18. Let N 2 N, and let p1, :::, pN 2 R
3, m1, :::,mN 2 R. Suppose Vpi � R

3 is

a punctured neighborhood of pi, and suppose Vpi \ Vpj ¼ ; for i 6¼ j. Then there exists a

neighborhood U of @Mu n fp1, :::, pNg and a Lorentzian 0-metric g 2 C1 U; S2 0T�
UMu

� �

satisfying the properties (1)–(3) of Theorem 3.2.

Remark 3.19. More generally, we can glue any spacetime into de Sitter space whose

metric is defined in an interval (in ~s) times an annulus (in ~x) around a point p 2 @Mu,

provided the metric is asymptotic to gdS at a rate s3 in this region. This can be further

relaxed, but we will not pursue this further.
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4. Multi-Kerr–de Sitter spacetimes

The goal is to glue several Kerr–de Sitter (KdS) black holes into a neighborhood of the

future conformal boundary of global de Sitter space; we thus continue to work on the

manifold M ¼ 0, 1½ Þs � S
3 as in (3.1).

4.1. Kerr–de Sitter metrics in corotating coordinates; parameterization

We recall the KdS metric with parameters m 2 R and a 2 R in the form

gm, a ¼ �Dr

q2
dt0 �

a sin 2h0

D0
d/0

� �2

þ q2

Dr
dr20 þ

q2

Dh

dh20

þ sin 2h0
Dh

q2
a dt0 �

r20 þ a
2

D0
d/0

� �2

, (4.1)

where we define (omitting the dependence on m, a from the notation)

Dr ¼ r20 þ a
2

� �

1� Kr20
3

� �

� 2mr0, Dh ¼ 1þ K

3
a
2 cos2h0,

q2 ¼ r20 þ a
2 cos2h0, D0 ¼ 1þ K

3
a
2:

(This matches the expression in [41, Equations (5.2)–(5.4)] upon adding the subscripts

‘00, and differs from that in [38, Equation (3.12)] only by a constant rescaling of t by

D0:) Following [41, Appendix B],14 we recall the coordinate change which displays gm, a

as a perturbation of the de Sitter metric (2.3b) up to terms of size r�3 (as uniformly

degenerate symmetric 2-tensors). Thus, under the change of coordinates15

t ¼ t0, / ¼ /0 �
K

3
at0,

r2 ¼ 1

D0
r20Dh þ a

2 sin2h0
� �

, r cos h ¼ r0 cos h0:

the de Sitter metric gdS in (2.3b) takes the form

gdS ¼
K

3
r20 þ a

2 sin 2h0
� �

� 1

� �

dt20 þ
q2

r20 þ a2
� �

1� Kr20
3

� � dr20 þ
q2

D
2
h

dh20

� 2K

3
a
r20 þ a

2

D0
sin 2h0 dt0 d/0 þ

r20 þ a
2

D0
sin 2h0 d/2

0:

Therefore

gm, a ¼ gdS þ cm, a, cm, a ¼
2mr0

q2
dt0 �

a sin 2h0

D0
d/0

� �2

þ 2mr0q
2

Drjm¼0Dr
dr20: (4.2)

We then compute:

14For consistency with §3, the roles of t0, r0, ::: and t, r, ::: are reversed compared to the reference.
15The definition of r2 implies that r20 cos

2h0 � r2 , hence h is well-defined.
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Lemma 4.1. Let ss ¼ r�1, and denote by C1 the space of functions which are smooth in

t, ss, h,/ð Þ, ss ¼ r�1, down to ss ¼ 0. The symmetric 2-tensor cm, a in (4.2) then has com-

ponents, modulo s4sC1, given by

r2 cm, að Þrr 
 r�3 Dh

D0

� �3=2
18m

K
2

" #

, r�2 cm, að Þtt 
 r�3

ffiffiffiffiffiffi

Dh

D0

s

2m
D
2
h

D
2
0

2

4

3

5,

r�2 cm, að Þt/ 
 r�3

ffiffiffiffiffiffi

Dh

D0

s

� �2mð Þa sin2h0
Dh

D
2
0

2

4

3

5, r�2 cm, að Þ// 
 r�3

ffiffiffiffiffiffi

Dh

D0

s

2m
a
2 sin 4h0

D
2
0

2

4

3

5:

Furthermore, cm, að Þrt ¼ cm, að Þr/ ¼ cm, að Þth ¼ cm, að Þh/ ¼ 0, and

r�2 cm, að Þhh 2 s5sC1, cm, að Þrh 2 s3sC1:

Proof. Since 1 � D0,Dh � 1þ Ka
2=3, we record that

r

r0



ffiffiffiffiffiffi

Dh

D0

s

mod s2sC1, (4.3)

and in particular r=r0, r0=r 2 C1: Now, direct calculations give

@t0 ¼ @t �
K

3
a@/, @r0 ¼

Dhr0

D0r
@r �

a
2 sin 2h0 cos h0

D0r3 sin h

@h, @/0
¼ @/, @h0 ¼

a
2

D0r
1� Kr20

3

� �

cos h0 sin h0@r

þ r0 sin h0

r sin h
1þ a

2 cos 2h0

D0r2
1� Kr20

3

� �

 !

@h:

The main structure of the right column is captured by

@r0
@h0

� �

¼
Dhr0
D0r

s3sC1
s�1
s C1 C1

 !

@r
@h

� �

,

with the bottom right entry invertible. Therefore,

@t ¼ @t0 þ
K

3
a@/0

, @/ ¼ @/0
,

@r

@h

 !

¼
D0r
Dhr0

s3sC1

s�1
s C1 C1

 !

@r0
@h0

 !

:

Note also that q2 
 r20 mod C1, hence 2mr0=q
2 
 2m=r0 mod ssC1, and moreover

Dr 
 �Kr40=3 mod s�2
s C1; therefore,

cm, a 2
2m

r0
þ s3sC1

� �

dt0 �
a sin 2h0

D0
d/0

� �2

þ 18m

K
2r50

þ s7sC1
� �

dr20:

Thus, for instance, we have r2 cm, að Þrr 
 r2
D
2
0r

2

D
2
hr

2
0

18m
K

2r50
, which gives the stated result upon

using (4.3). The other components are calculated similarly. w
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Note that r@r ¼ �ss@ss and r�1@� ¼ ss@� for � ¼ t, h,/: Let now rþ be such that

infh2 0, pð Þ r0 rþ, hð Þ is larger than the largest positive real root of Dr (as a function of r0)

if one exists, and otherwise fix any rþ > 0: Define the manifold

Mm, a, s :¼ 0, r�1
þ

h �

ss
� Rt � S

2
h/

where ss ¼ r�1; then the lemma implies that

cm, a 2 s3sC1 Mm, a, s \Ms, S
2 0T�Ms

� �

on the common domain of definition of the KdS metric and the de Sitter metric, cf.

(2.3c). (We leave it to the reader to check that cm, a 2 s3sC1 also at the poles of S2 where

the polar coordinates break down.) In view of (2.3d), we in particular have gm, a 2 C1
on the common domain of definition.

At ss ¼ 0, the limits t ! 1 and t ! �1 correspond to ~R ! 0 and ~R ! 1,

respectively, in the upper half space coordinates (2.2a). Therefore, as in the SdS case,

gm, a is defined in a neighborhood of Up0 :¼ S
3 n fp0, � p0g where p0 ¼ 1, 0, 0, 0ð Þ 2

S
3 � R

4 is the point defined by ~R ¼ 0 inside ~s ¼ 0; it describes a KdS black hole rotat-

ing in p?0 around an axis, which we fix to be

â0 ¼ 0, 0, 0, 1ð Þ,
with specific angular momentum a.

We wish to define KdS metrics located at other points on the future conformal

boundary @M: To this end, we use a parameterization of the KdS family by triples

p,m, að Þ, p 2 S
3, m 2 R, a 2 so4, ap ¼ 0; (4.4)

here, we identify so4 both with fA 2 R
4�4 : Aþ AT ¼ 0g and the space iso3 of Killing

vector fields on S
3 where A 2 R

4�4 corresponds to the vector field d
ds
esAjs¼0 on the unit

sphere S
3 � R

4: Thus, viewing a 2 so4 as a matrix, the condition ap ¼ 0 means that

p 2 S
3 � R

4 lies in its kernel; viewing a 2 iso3, it means that the vector field a vanishes

at p.

Definition 4.2. We call a triple p,m, að Þ 2 S
3 � R� so4 admissible if ap ¼ 0:

For a, a1, a2 2 so4, viewed as 4� 4 matrices, we denote

ha1, a2i :¼
1

2

X

4

i, j¼1

a1ð Þij a2ð Þij ¼
X

i<j

a1ð Þij a2ð Þij, jaj2 :¼ ha, ai: (4.5)

(Invariantly, h�, �i is � 1
2

� �

times the Killing form on so4:) Given an admissible triple

p,m, að Þ, we define the metric

gp,m, a (4.6)

as a smooth Lorentzian 0-metric near Up ¼ @M n fp, � pg as follows. First, if a ¼ 0,

we let gp,m, 0 ¼ gp,m be equal to the SdS metric with mass m centered at p, as defined in

the paragraph leading up to (3.6). Otherwise, a 2 R
4�4 induces a nontrivial skew-adjoint

linear transformation on p? � R
4, equivalently a rotation vector field, around an axis
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â 2 p?, jâj ¼ 1, with amplitude a :¼ jaj: Choose then an element R1 2 SO 4ð Þ with

R1p ¼ p0, and then (noting that R1â 2 p?0 ) an element R2 2 SO 4ð Þ with R2p0 ¼ p0 so

that R2 R1âð Þ ¼ â0; put R ¼ R2R1: Note that the properties Rp ¼ p0 and Râ ¼ â0 deter-

mine R uniquely up to multiplication from the left by a rotation fixing p0 and â0, thus

a rotation / 7! /þ /0 for some /0 2 R—which is an isometry of gm, a: We then define

gp,m, a as the pullback of gm, a along the map M ! M, s,wð Þ 7! s,R wð Þð Þ: In particular,

this parameterizes gm, a as

gm, a ¼ gp0,m, a0 , a0 ¼
0 0 0 0
0 0 a 0
0 �a 0 0
0 0 0 0

0

B

B

@

1

C

C

A

: (4.7)

4.2. Gluing theorem

With the KdS metrics gm, p, a defined as in §4.1, we are ready to state the gluing the-

orem, which holds subject to a balance condition generalizing Definition 3.1; it involves

the effective mass of an admissible triple b ¼ p,m, að Þ, defined as

meff bð Þ :¼ m

1þ Kjaj2=3
� �2 :

Definition 4.3. Let N 2 N: We say that a collection fb1, :::, bng of admissible triples

bi ¼ pi,mi, aið Þ is balanced if the pi are pairwise distinct and if, regarding S
3 as the unit

sphere inside R
4, the following relations hold:

X

N

i¼1

meff bið Þpi ¼ 0 2 R
4, (4.8a)

X

N

i¼1

meff bið Þai ¼ 0 2 so4 � R
4�4: (4.8b)

Theorem 4.4. Let N 2 N, and suppose fb1, :::, bNg � S
3 � R� so4 is balanced,

bi ¼ pi,mi, aið Þ. Suppose Vpi � Upi is a ball around pi with the point pi removed, and

suppose Vpi \ Vpj ¼ ; for i 6¼ j. Then there exist a neighborhood U of @M n fp1, :::, pNg
and a Lorentzian 0-metric g 2 C1 U; S2 0T�

UM
� �

with the following properties:

(1) g satisfies the Einstein vacuum equation Ric gð Þ � Kg ¼ 0;

(2) near Vpi , we have g ¼ gpi,mi, ai ;

(3) g is O s3ð Þ-close to the de Sitter metric: g � gdS 2 s3C1 U; S2 0T�
UM

� �

:

In the special case that bi ¼ pi,mi, 0ð Þ for all i, this reduces to Theorem 3.2.

Remark 4.5. A remark analogous to Remark 3.3 applies also in the Kerr–de Sitter set-

ting: if the black hole parameters are subextremal, one can extend the glued Kerr–de

Sitter metrics across their cosmological and event horizons. See e.g. [38, §3.2]. For small
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masses, the domain of existence of g can be shown to include the interaction of several

black holes by following the arguments at the end of §3.3.

Remark 4.6. If one passes to the upper half space model Mu, there are no obstructions

to gluing anymore, analogously to Theorem 3.18.

The main part of the proof of Theorem 4.4 is the calculation of the obstruction for solving

the divergence equation (3.19). First, we compute the failure of the Einstein equation for a

naive gluing of a single KdS black hole. Let P0 ¼ 2 Ric� Kð Þ and L0 ¼ DgdSP0 as in (3.8).

Lemma 4.7. Let v 2 C1 Rtð Þ be identically 1 for large t, and put g0 ¼ v tð Þgm, aþ
1� v tð Þð ÞgdS. With P0 ¼ 2 Ric� Kð Þ as in (2.10), we then have P0 g0ð Þ ¼ s4sErrs, 0

mod s5sC1, where Errs, 0 ¼ 2 dss
ss

s

Errs, 0ð ÞNT
ss

þ Err0s, 0 with

Errs, 0ð ÞNT ¼ 18m

KD
2
0

Dh

ffiffiffiffiffiffi

Dh

D0

s

v0 tð Þ Dh �
1

3
D0

� �

dt � a sin 2h0 d/

� �

,

and Err0s, 0 ¼ s4s I L0, 4ð Þ~c for some ~c 2 C1 @Ms; S
2 0T�

@Ms
Ms

� �

with supp~c � supp dv:

Proof. Recall from (2.4) the metric hs ¼ K
2=9

� �

dt2 þ K=3ð Þg
S
2 induced on the boundary

@Ms by gdS and the boundary defining function r�1: In the splitting (2.11) with h, s replaced

by hs, ss, the leading order components of cm, a ¼ gm, a � gdS are then, by Lemma 4.1,

c3ð ÞNN ¼ r3 � r2 cm, að Þrr
� �

jss¼0 ¼
Dh

D0

� �3=2
18m

K
2 ,

c3ð ÞTT ¼ r3 � r2 cm, að Þtt dt2 þ 2 cm, að Þt/ dt d/þ cm, að Þ// d/2
� �� �

�

�

�

ss¼0
,

and c3ð ÞNT is a smooth 1-form on Rt � S
2 whose precise form we do not need.

Since 0 ¼ P0 gm, að Þ 
 L0 cm, að Þ mod s6sC1 as in the proof of Lemma 3.6, and since

cm, a 
 r�3c3 mod s4sC1, we conclude that I L0, 3ð Þc3 ¼ 0: In view of (3.12), this implies

the relationship c3ð ÞNN ¼ trhs c3ð ÞTT (using that 3 ¼ trhshs).
16 Therefore, the trace-free

part c3ð ÞTT0 in the refined splitting (2.12) is given by

c3ð ÞTT0 ¼ c3ð ÞTT � 1

3
c3ð ÞNNhs:

By following the calculation (3.11), the normal-tangential component of Errs, 0 is thus

Errs, 0ð ÞNT ¼ �K � 9K�2v0 tð Þ � �i@t c3ð ÞTT0
� �

,

which we can compute by means of Lemma 4.1.

Regarding the remaining components of Errs, 0, we note that they lie in the range of

the third column of the operator (3.13). But by Corollary 2.5, we have

16This can also be checked directly. Indeed, the equality of trhs c3ð ÞTT ¼
9
K
2 c3ð Þtt þ

3
K
sin �2h c3ð Þ// and c3ð ÞNN is

equivalent to D
2
h þ sin �2h K

3
a
2 sin 4h0 ¼ DhD0 and thus to Dh ¼ sin 2h0

sin 2h
; this is easily verified by plugging in sin 2h ¼

1� r2
0

r2
cos 2h0 ¼ 1� D0

Dh
cos 2h0 , which holds at ss ¼ 0:
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3K�1I L0, 4ð Þ ¼
6 0 �24 0
0 0 0 0
2 0 �8 0
0 0 0 4

0

B

B

@

1

C

C

A

,

whose range is thus spanned by 1, 0, 1
3
, 0

� �

and ker trh, and hence contains the range of

the third column of (3.13). w

Since the components of Errs, 0 other than the normal-tangential component can thus

be solved away pointwise on @Ms (modulo one order down, i.e. modulo s5sC1) with a

s4sC1 correction, the only obstruction for gluing is again the integral of Errs, 0ð ÞNT
against conformal Killing vector fields on @Ms, hsð Þ ¼ Rt � S

2, hs
� �

as in (3.14). The

volume density in these integrals is

jdhsj ¼
K

2

9
dt sin h dh d/ ¼ K

2

9

ffiffiffiffiffiffi

D0

Dh

s

D
�1
h dt0 sin h0 dh0 d/0,

since at ss ¼ 0 we have, using (4.3),

sin h dh ¼ �d cos hð Þ ¼ �d
r0

r
cos h0

� �

¼ �d

ffiffiffiffiffiffi

D0

Dh

s

cos h0

0

@

1

A

¼ sin h0

ffiffiffiffiffiffi

D0

Dh

s

� 1

2
cos h0

D
1=2
0

D
3=2
h

� 2K
3
a
2 cos h0 sin h0

0

@

1

Adh0 ¼
ffiffiffiffiffiffi

D0

Dh

s

D
�1
h sin h0 dh0:

By Lemma 4.7, we therefore have, for V 2 V @Msð Þ,

‘m, a Vð Þ :¼
ð

@Ms

V Errs, 0ð ÞNT jdhsj

¼ 2Kmeff

ð1

0

ð2p

0

ðp

0

v0 t0ð ÞV Dh �
1

3
D0

� �

dt � a sin 2h0 d/

� �

sin h0 dh0 d/0 dt0,

(4.9)

where meff :¼ m=D2
0 is the effective mass of the triple p0,m, að Þ: Particular conformal

Killing vector fields V on @Ms, hsð Þ include @t and @/, and we compute

‘m, a @tð Þ ¼ � 16pKmeff

3
, ‘m, a @/ð Þ ¼ 16pKmeffa

3
:

If V is a rotation around an axis orthogonal to that corresponding to @/, then the inte-

grand in (4.9) vanishes pointwise, hence ‘m, a Vð Þ ¼ 0 in this case. Passing to the bound-

ary S
3 of global de Sitter space, with the KdS black hole sitting at the point

p0 ¼ 1, 0, 0, 0ð Þ 2 S
3, we have @t ¼ SCp0 in the notation (3.15) for some constant C> 0

(only depending on K), while the rotations on the S
2-factor of @Ms which we consid-

ered above span the set so4ð Þp0 of rotations on S
3 keeping p0 fixed.

Consider rotations V 2 so4 which are orthogonal to so4ð Þp0 with respect to the inner

product h�, �i defined in (4.5); the 3-dimensional space of such V is spanned by rotation
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vector fields Rj, j¼ 2, 3, 4, which are, say, 90 degree rotations in the planes determined

by p0 ¼ 1, 0, 0, 0ð Þ and ê2 ¼ 0, 1, 0, 0ð Þ, ê3 ¼ 0, 0, 1, 0ð Þ, ê4 ¼ 0, 0, 0, 1ð Þ, respectively,

and which keep the orthogonal complement of spanfp0, êjg in R
4 fixed. But then the

integrand in (4.9), for each j¼ 2, 3, 4, is odd either with respect to the reflection

h0 7! p� h0 or with respect to the rotation /0 7! /0 þ p, hence ‘m, a Rjð Þ ¼ 0: A similar

symmetry argument shows that ‘m, a Sê j
� � ¼ 0 for j¼ 2, 3, 4.

Note now that @/, written as a rotation matrix (rotating in the plane spanned by ê1
and ê2, while leaving the span of p0 and ê3 fixed), is given by

@/ ¼
0 0 0 0
0 0 1 0
0 �1 0 0
0 0 0 0

0

B

B

@

1

C

C

A

:

By comparison with (4.7), we can thus summarize our calculations by

‘m, a Sqð Þ ¼ C0meffhp0, qi, q 2 R
4,

‘m, a að Þ ¼ C1meffha0, ai, a 2 so4,

where C0, C1 are nonzero real constants. We then have the following analogue of

Lemma 3.9:

Lemma 4.8. Given admissible triples b1, :::, bN as in Theorem 4.4, bi ¼ pi,mi, aið Þ, with
the pi pairwise distinct, suppose vi 2 C1 @Mð Þ are cutoff functions, which are identically 1

near pi. Set ErrNT :¼PN
i¼1 Errbið ÞNT 2 C1 S

3;T�
S
3

� �

, where

Errbið ÞNT Wð Þ :¼ s�4P0 vigpi,mi, ai þ 1� við ÞgdS
� �

s@s, sWð Þjs¼0, W 2 TS3:

Then we have
ð

S
3
V ErrNTð Þjdg

S
3 j ¼ 0 8 V 2 conf3

if and only if fb1, :::, bNg is balanced as in Definition 4.3.

The remainder of the gluing construction is very similar to the SdS gluing:

Proof of Theorem 4.4. The only minor difference compared to the proof of Theorem 3.2

is the analogue of Proposition 3.5. Under the balance condition we can solve away the

normal-tangential component of the error term using Delay’s result. However, the s4

leading order part of the error in general now has other nonvanishing components as

well; but as demonstrated in Lemma 4.7, these error terms lie in the range of I L0, 4ð Þ
and can thus be solved away pointwise on @M using a s4C1 @M; S2 0T�Mð Þ metric cor-

rection, with support of this correction contained in [i supp dvi:
The rest of the proof is the same: one constructs a formal solution in a generalized

harmonic gauge as in Proposition 3.14, solves away the remaining ‘trivial’ error as in

Proposition 3.15, and thus obtains a solution of the Einstein vacuum equation by

appealing to Lemma 3.16. w
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