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In this paper, we explore the scope of vibrations as quantum ratchets that serve

as non-thermal routes to achieving population transport in systems where excitation

transport between molecules is otherwise energetically unfavorable. In addition to their

role as channels of transport, we investigate the effect of resonance of the vibrations,

that are described by Huang Rhys mixing, with excitonic energy gaps, that leads to
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strongly mixed vibronic excitons. Finally, we explore the interplay of resonance and

Huang Rhys mixing with electronic coupling between the molecules, in the presence of a

dissipative bath, in optimizing transport in such systems. We find that while resonance

is desirable, a moderate electronic coupling has a stronger positive effect in contrast

to a large electronic coupling which results in delocalised excitations across molecules

and hampers unidirectional transport. We also report a special resonance regime that

is able to circumvent the transport problems arising from large electronic couplings.

To exploit coherences to aid the architecture of synthetic light-harvesting machinery is

an area of rapidly proliferating interest. Coherences in molecular systems occur due to large

electronic couplings between molecules, resulting in delocalised excitations/excitons, that

offer a route to manipulating molecular systems away from bath-induced dissipation and

Boltzmann statistics. Theoretical calculations by Ishizaki and Fleming suggest that quan-

tum coherence could be beneficial in overcoming local energy traps, thus mediating efficient

EET (electronic energy transport) in the Fenna-Matthews-Olson photosynthetic complex. 1

A key benefit, thus, can be realized in the potential to control molecular dynamics and direct

energy/charge transport by harvesting coherences. Conjugated molecular aggregates, for in-

stance, are promising candidates for such control, due to the extended π-stacking prevalent

in such systems due to the highly ordered microscopic assemblies. A major disadvantage,

however, is posed by the fragility of molecular coherences, since they are extremely suscepti-

ble to destruction by their surroundings/bath. As a consequence, disorder and imperfections

in the molecular assemblies will diminish the exciton length and limit coherence. A plethora

of theoretical studies report that vibrationally enhanced transfer achieves an optimal transfer

efficiency in such scenarios.2,3 Also, vibrations, if they are resonant with an excitonic energy

gap and are strongly coupled to the electronic transition, have the capacity to provide a

means to circumvent this difficulty. This is because the excitation can switch back and forth

between the exciton and the vibration that is less susceptible to decoherence, resulting in

longer-lived coherences.4–7 For instance, calculations by Plenio and coworkers suggest that
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non-equilibrium processes due to spectrally sharp vibrational modes can effectively compete

with dissipative pathways induced by the thermal bath. 8 In another work reported by Cao

and coworkers, it is proposed that underdamped vibrations resonant with energy gaps in

the system can drive excitation transport, in addition to retention of coherences for longer

timescales.9 The work by Bennett et al. suggests that incoherent vibronic transport results

in more efficient excitation transfer, compared to coherent transport, if the energetic disorder

is greater then the coupling between the donor and the vibrationally excited states on the

acceptor.10 A recent work from our group suggests that underdamped vibrations, resonant

with excitonic energy gaps in the LHCII complex, can drive population transport across

large energy gaps that are thermally inaccessible. 11 Therefore, vibrations and coherences are

important tools that can be exploited for the design of efficient energy-harvesting and charge

transport devices. Key advances that utilize such design principles are actively studied by

Therien and coworkers, where they report the synthesis of "supermolecules", that are com-

posed of highly conjugated and strongly coupled PZnn porphyrin arrays.12–21 The studies

suggest that these molecules enjoy resonances between vibrations and excitons, as well as

strong vibronic coupling between vibrations and excitonic transitions. This is expected to

lead to vibronic mixing, that could pave the way to robust coherences. The studies also report

transition dipole moments for the S0 → S1 transition that increase progressively as the num-

ber of PZnn units increase. A key manifestation of this is large electronic couplings across

the porphyrin assemblies, that again ensures large exciton coherence lengths. In this work,

we explore the interplay between resonance and electronic coupling and Huang Rhys mixing,

in an effort to formulate design principles that would ensure efficient energy-harvesting in

synthetic devices. We specifically investigate the role of vibrations as non-thermal routes to

ratcheting populations between molecules.

In this work, our focus is on the scope of quantum ratcheted photophysics in model sys-

tems where energy transport is otherwise energetically unfavorable. This is demonstrated

in figure 1(a), where the objective is to achieve a fast and efficient transport of excitation
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from the electronically excited donor molecule D∗1 to an acceptor molecule A. A favorable

electronic coupling between D∗1 and A would potentially lead to coherent transport, but

the spatial separation between them is large, resulting in small electrostatic couplings. The

other possibility is incoherent Forster transport, that again is unfavorable due a large spatial

separation. Also, the energetic constraint ED1 < EA necessitates an uphill transport from

D∗1 to A. This pathway is thermally inaccessible if the energy gap ∆EA,D1 > kBT , where

T is the temperature of the thermal bath. To circumvent the transport problems, we use

a second intermediate donor molecule D2, that acts as a bridge between D1 and A, given

that we have an efficient, non-thermal route to transporting excitation from D∗1 to D∗2. Here,

D∗2 is the electronically excited S1 state on D2. The excitation, then, undergoes a downhill

transport from D∗2 to A. We propose to accomplish this by exploiting a vibrational mode

that ratchets population from D∗1 to D∗2 through the mechanism discussed below. Denoting

the electronic excitons formed from a two-level electronic Hamiltonian defined by the S1

states of D∗1 and D∗2 as m and n, the transport between m and n can be effectively medi-

ated by a vibrational mode that is resonant/quasi-resonant with the excitonic energy gap

∆εmn. In the simplest model, the presence of the vibrational mode is incorporated through

its Huang-Rhys mixing. We consider A to be an energy sink, thus the energy transport

from D∗2 to A is unidirectional and irreversible. Therefore, for a minimal description of the

system Hamiltonian that adequately describes quantum ratcheting, we will consider only

the electronic/vibronic states of D∗1 and D∗2, while the excitation transfer from D∗2 to A

is easily evaluated by a simple kinetic equation. We investigate the interplay between the

Huang-Rhys mixing, the resonance/quasi-resonance of the vibrational mode with the exci-

tonic energy gap and coherence, arising from the electronic coupling between D∗1 and D∗2, in

dictating the transport between these molecules, in the presence of a dissipative bath. It is

important to note here that the relaxation of the vibrationally excited state on D∗1, due to

its interaction with the bath, serves as a competing pathway to transport from D∗1 to D∗2.

In our calculations, we incorporate the effects of such relaxation.
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To model the ratcheting dynamics, we define a system Hamiltonian that explicitly includes

the vibrational mode, along with the electronically excited states of D1 and D2. For ef-

ficient yet adequate calculations, we define our local basis as follows: {| D1v
e
D1,0

′v
g
D2,0
〉, |

D1v
e
D1,1

′v
g
D2,0
〉, | D2v

g
D1,0

ve
D2,0

′ 〉}, where the first term in the ket indicates the species that

is electronically excited. vkD,l contains the vibrational information on the donor species D

(D ∈ {D1, D2}), given by the vibrational quantum number l in the k electronic state, where

k ∈ {g, e}, implying the ground and excited electronic states, respectively. The prime symbol

"′" on the vibrational state l on e indicates that this vibrational wavefunction is structurally

different from its counterpart on g due to a different charge distribution on e. It is worth em-

phasizing that it is always possible to add more vibrational information to the Hamiltonian,

by incorporating a larger vibrational basis. In our studies, however, the focus is the ratch-

eting dynamics stemming from the excitation of the vibrational mode on D∗1 that places D1

at a higher energy compared to D∗2 and the subsequent excitation transfer due to resonance.

Therefore, including up to the first vibrationally excited state on D∗1, while considering the

vibrational ground state on D∗2, is adequate to infer more about the ratcheting photophysics.

The vibronic Hamiltonian of the system, with respect to the local basis described above,

can be written as follows:

Hsys =


ED1 0 JSD1

00′
SD2

00′

0 ED1 + Ω JSD1

01′
SD2

00′

JSD1

00′
SD2

00′
JSD1

01′
SD2

00
′ ED2

 . (1)

Here, ED1 and ED2 are the energies of the ground vibrational states in the electronically

excited e states for D1 and D2, respectively. The vibrational mode has a frequency Ω, J

is the electronic coupling between D1 and D2, and SD
vv′

measures the overlap between the

nuclear wavefunctions describing the vibrational states v (residing on the ground electronic

state) and v′ (residing on the electronically excited state) respectively, on D (D ∈ {D1, D2})

and is expressed in terms of the Huang-Rhys factors. While Hsys describes the electronic
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Figure 1: A schematic depicting ratcheted energy transport. Direct transfer of excitation
from D∗1 to A is unfavorable, both energetically and owing to a large spatial separation
between them. To address this, we use an intermediate molecule D2, that is placed between
D1 and A. A vibration is used as a quantum ratchet to achieve non-thermal transport of
population from D∗1 to D∗2, followed by a unidirectional decay to A, that acts as an energy
sink. The relaxation of the vibrational mode on D∗1, due to its interaction with the bath,
serves as a competing pathway.
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and vibrational excitations, we use the following total Hamiltonian H that incorporates the

phonons, also referred to as the bath/environment, that are modeled as harmonic oscillators

in Hph, and the system-bath interaction described by Hsys−ph.

H = Hsys +Hsys−ph +Hph, (2)

where

Hph =
∑
j,k

(
p2jk

2mjk

+
1

2
mjkq

2
jkω

2
jk), (3)

and Hsys−ph =
∑

j Qj | j〉〈j |, where

Qj = Σkmjkνjkqjk. (4)

Here, mjk, qjk, pjk and ωjk describe the mass, position, momentum and angular frequency,

respectively, of the kth bath oscillator pertaining to the jth system state. The system-bath

interaction, in Eq. 4, is diagonal with respect to the local basis and is considered to be

adequately described by a linear dependence of the position coordinate qjk. νjk describes the

coupling strength of the kth oscillator with the jth site.

For simulating dynamics, we will employ a reduced density matrix description of the system

and use a near-analytic approximate approach. 22–24 This approach uses a unitary mapping

that transforms to a stationary adiabatic basis, formed by diagonalizing Hsys +Hsys−ph, and

frozen at the equilibrium geometry. The technical definition for stationary adiabatic states,

therefore, differs from that of excitons, that are eigenstates formed by diagonalizing only

the system Hamiltonian and do not reflect any contribution from the bath. It is important

to note here that though they differ in their definitions, the energies of the excitons formed

by diagonalizing the system Hamiltonian are the same as those of the stationary adiabatic

states.11

The chief benefit of the unitary mapping arises from a decoupling between decoherence,
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described by fluctuations in the energies of the dynamically evolving adiabatic states due

to shifting of the bath position coordinates, and phonon-mediated population relaxation,

described by a derivative operator that drives a change in electronic state, in conjunction

with bath momenta. This is followed by a nonperturbative treatment of decoherence, that

captures the effects of the dynamically fluctuating energies of the stationary adiabatic states

(see eqns. 6 and 7), while the population relaxation is described perturbatively. The method

has been described in rigorous detail in previous work, therefore we will only discuss the final

expression for the reduced density operator we use to describe the system.

While | α〉〈α | describes the initial density operator at t = 0, where α denotes a local state,

we intend to determine the extent of overlap of the excitation at time t with the local basis

coherence | γ〉〈β |. In the expression below, m, n, m′ and n′ denote the stationary adiabatic

states, εn denoting the energy of the stationary adiabatic state n. The bath is described by

the spectral density function S(ω), defined below, at temperature T .

ρβγ(t) ≈
∑
m,n,m′

〈β | m〉〈n | α〉〈α | n〉〈m′ | γ〉pmm′,nn(t)+

∑
m,n,n′,m′

〈β | m〉〈n | α〉〈α | n′〉〈m′ | γ〉pmm′,nn′(t)

× e−iεnn′ te−φn,n′ (t).

(5)

Here, εnn′ = ε0n − ε0n′ , φn,n′(t) = Re[φn,n′(t)] + i Im[φn,n′(t)], where φn,n′(t) describes the

effects of decoherence, with the real and imaginary components given as:

Re[φn,n′(t)] =

∫ ∞
0

dωS(ω)
1− cos(ωt)

ω2
coth

(
ω

2kBT

)
×
∑
j

(
∂εn
∂Qj

− ∂εn′

∂Qj

)2

Qj=0

,
(6)
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and

Im[φn,n′(t)] =

∫ ∞
0

dωS(ω)
sin(ωt)− ωt

ω2

×
∑
j

[(
∂εn
∂Qj

)2

Qj=0

−
(
∂εn′

∂Qj

)2

Qj=0

]
.

(7)

Here, S(ω) is the spectral density of the environment, defined as:

S(ω) =
∑
k

mjkν
2
jk

2ωjk
δ(ω − ωjk). (8)

While e−φn,n′ (t) is evaluated nonperturbatively and describes the effects of decoherence, the

term pmm′,nn′(t) addresses the effects of relaxation arising from a perturbative treatment of

the nonadiabatic derivative operator, in conjunction with bath momenta and is evaluated

using a Markovian master equation, that is solved using matrix algebra. The relaxation rates,

arising from the perturbative treatment of relaxation, for a pair of stationary adiabatic states

m and m′ are given as:

Γmm′ = 2π
S(ωmm′)

eωmm′/kBT − 1

∑
j

(〈m′ | j〉〈j | m〉)2, (9)

and

Γm′m = eωmm′/kBTΓmm′ . (10)

In the above expression, ωmm′ > 0, where ωmm′ = ε0m − ε0m′ .

We will now apply the above formalism to investigate quantum ratcheted energy transport

in various model systems. In our discussion forward, we will loosely refer to stationary

adiabatic states as adiabatic states, for convenience. However, it is important to keep in

mind the subtle distinction between excitons and adiabatic states.

Table 1 enumerates the system parameters for the various models we consider. In figures 2

and 4, we demonstrate the energy level diagrams for each of these models, where l1, l2 and l3
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label the local states. l1 and l2 are localized on D1 and label the states | D1v
e
D1,0

′v
g
D2,0
〉 and

| D1v
e
D1,1

′v
g
D2,0
〉, respectively. l3 is localized on D2 and labels the state | D2v

g
D1,0

ve
D2,0

′ 〉. a1,

a2 and a3 label the stationary adiabatic states. We list the eigenvector contributions for the

adiabatic states with respect to the local states, for all the six models, in the supplementary

information. The quantity we wish to investigate here is the population transport to l3,

while l2 is considered the initial seat of excitation. This is achieved by directly exciting l2

from the ground electronic state, by using a UV-vis radiation field of suitable frequency. A

second way of placing the initial population at l2 is by first exciting l1 using a UV-vis pulse,

followed by an IR pulse that creates the vibrational excitation, leading to the population

being transported from l1 to l2. Therefore, for ratcheted photophysics, we consider the

temporal evolution of population, considering l2 to be the initial state.

For model 1, the vibronic system Hamiltonian and the energy level diagram are depicted in

Table 1: System parameters for the various models we consider. ∆ED2,D1 denotes the differ-
ence between the bare electronic excitation energies on D2 and D1, respectively. J denotes
the electronic coupling between D1 and D2, and Ω is the excitation frequency of the vibra-
tional mode. σ denotes the Huang Rhys factor for the vibrational mode.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
∆ED2,D1 (cm−1) 800 800 400 800 400 400

J (cm−1) 200 200 400 200 400 400
Ω (cm−1) 895 800 895 700 646 646

σ 0.01 0.01 0.01 0.01 0.01 0.1

Figure 2(a). If we consider the electronic-only Hamiltonian formed by the basis states | D1〉

and | D2〉,

Helectronic =

ED1 J

J ED2

 , (11)

the energy gap between the electronic excitons is given as ∆εelectronic = 895 cm−1, which

is used as the frequency of the vibrational mode. In other words, the vibrational mode is

resonant with the energy gap between the electronic excitons. We incorporate vibrational

relaxation in our calculations, since the relaxation of the vibrational mode on l2, due to its
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interaction with the bath, acts as a competing pathway to l2 → l3 transport. The electronic

and vibrational environments are both modeled by the Drude spectral density, where the

reorganization energies are given as: λelec = 100 cm−1 and λvib = 10 cm−1. λvib, thus,

corresponds to a vibrational reorganization time given as τvib ≈ 3.3 ps. The bath is considered

to reside at a temperature T = 300K and the phonon relaxation frequency for both electronic

and vibrational excitations is ωc = 30 cm−1. We use these bath parameters for all the models.

To evaluate excitation transport to the energy sink A, we choose Γl3→A = 1.8 × 1012 s−1,

where Γl3→A is the rate of decay of excitation from the local state l3 to A.

A closer look at the energy level diagram for model 1 tells us that the lowest energy adiabatic

state a1 is mostly localized on the local state l1, with a small contribution from l3, and the

highest energy adiabatic state a3 is localized on the local state l2 with a small contribution

from l3. In contrast, the adiabatic state a2 is more mixed, with it being localized mostly on

l3, but with modest contributions from both l1 and l2 (see Table S1). Since the quantity of

interest is the temporal evolution of population at l3, it is easy to see that the adiabatic states

a2 and a3 will play prominent roles in dictating the dynamics, since they are mostly localized

on l3 and l2, respectively. Therefore, the faster the a3 → a2 pathway is, the faster the l2 → l3

pathway will be, since a3 → a2 is downhill transport which has a greater relaxation rate than

uphill transport. The uphill transport, nevertheless, has a sizable rate because the energy

gap between a3 and a2 is thermally accessible at T = 300 K. The relaxation rates between

pairs of adiabatic states, computed using Eqns. 9 and 10, are listed in Table 2 for the various

models. Apart from the energetics, the overlap between the local and the adiabatic states, as

seen in Eqns. 9 and 10, will also dictate the rate of energy transport. A larger overlap for a

pair of adiabatic states with a given local state will contribute to an increased rate between

the adiabatic states. Therefore, a more mixed adiabatic state that enjoys strong overlap with

multiple local states is expected to boost transport. Strong electronic coupling between local

states will also lead to more mixed states. Finally, the Huang Rhys factor also determines

mixing to an extent, since a larger Huang Rhys factor implies a more nonlocal vibration that
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contributes to mixing through the off-diagonal overlap terms in Eq. 1. However, we should

also note that a larger off-diagonal term will also lead to greater splittings between adiabatic

states that will have an adverse effect on rates. Also, a greater mixing implies that the

local states are strongly mixed to form the adiabatic states. Therefore, when we probe the

population evolution at the local states, unidirectional transport between the local states is

reduced since the adiabatic states are delocalized across the local states, thus enabling back-

transport between the local states. Therefore, for maximum yield, the system will need to

achieve the limit of optimum mixing, since this will determine both the energy splittings, and

the overlap of adiabatic states with local states. Figure 3(a) depicts the local populations

evolving with time for model 1, and we find that the population at l3 increases quite rapidly

and overshoots the population at l2 before 100 fs.
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Figure 2: Energy level diagrams for models 1, 2, 3 and 4. l1 and l2 are localized on D1 and
label the states | D1v

e
D1,0

′v
g
D2,0
〉 and | D1v

e
D1,1

′v
g
D2,0
〉, respectively. l3 is localized on D2 and

labels the state | D2v
g
D1,0

ve
D2,0

′ 〉. a1, a2 and a3 label the stationary adiabatic states, and the
color coding of the adiabatic states indicates the presence of the respective local states.
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We now compare the previous model with model 2, where l2 and l3 are degenerate, and

the vibrational mode has a vibrational frequency 800 cm−1 which is quasi-resonant with the

excitonic energy gap ∆εelectronic = 895 cm−1. The immediate effects can be observed in the

energy level diagram for model 2 in figure 2(b). We see that the mixing in the adiabatic

states a3 and a2 is reversed compared with model 1. a3 is now the more mixed adiabatic

state and is localized mostly on l3 with small contributions from both l1 and l2 (see Table

S2). a2 is localized on l2, with a small contribution from l3. a1 is exactly the same for both

models. While the energy gap between a3 and a2 is almost the same as in model 1, the rates

are somewhat different (see Table 2) due to the fact that the higher energy a3 state is now

the more mixed state compared to the mostly local lower energy a2. A second important

consequence is the pathway l2 → l3, that we are interested in for the ratcheted photophysics,

is now facilitated through the uphill transport pathway a2 → a3, and hence has a lower

transport rate compared to the downhill route. However, for a bath temperature of 300 K,

it is a thermally accessible pathway. A comparison of the populations at l3 in Figure 3 for

models 1 and 2 reinforces the energetic constraints of model 2, and depicts a lower thermal

population at l3 for model 2.

Table 2: Relaxation rates between the stationary adiabatic states, computed using Eqns. 9
and 10. For example, Γa3→a1 measures the downhill relaxation rate from the adiabatic state
a3 to the adiabatic state a1. All the values in the table are to be multiplied by a factor of
1012s−1.

×1012s−1 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Γa3→a1 0.02 0.22 0.01 0.25 0.47 0.37
Γa3→a2 23.87 26.40 0.39 0.97 46.91 8.07
Γa2→a1 0.23 0.03 1.04 0 0.58 0.78
Γa2→a3 17.71 19.77 0.11 0.47 33.93 3.09
Γa1→a2 0 0 0.01 0 0.01 0.02
Γa1→a3 0 0 0 0 0.01 0

In model 3, we reduce the electronic energy gap between the local sites D1 and D2

(∆E = 400 cm−1) and increase the electronic coupling J in Eq. 11, such that we have the
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same energy gap between the electronic excitons ∆εelectronic = 895 cm−1, as in models 1 and

2. This is used as the frequency of the vibrational mode in the vibronic Hamiltonian for

model 3 in figure 2(c), and therefore, the vibrational mode is resonant with the energy gap

between the electronic excitons. A direct consequence of increasing the value of J is larger

off-diagonal couplings in the vibronic Hamiltonian. The coupling between the local states

l1 and l3 is much larger compared to that between l2 and l3. Consequently, the adiabatic

states a1 and a2 have sizable overlap with the local states l1 and l3, with a2 having a small

contribution from l2. a3 is predominantly localized on l2, with a very small contribution from

l3 due to a small, nonzero coupling between l2 and l3 (see Table S3). Despite the creation

of more mixed states arising from a larger electronic coupling, the mixing here does not

boost the transport between l2 and l3, because: (a) the mixing occurs mostly between l1 and

l3, leading to formation of a1 and a2, and possibly a somewhat boosted transport between

a2 and a1 due to the sizable overlap between the local and adiabatic states that affect the

rates (Eqns. 9 and 10); a3 that is localized on l2 is mostly unaffected by this mixing, and

(b) compared to models 1 and 2, the energy gap between a3 and a2 is larger, since we re-

duce the energy gap between l1 and l3 in this model at the cost of an increased value of J

and a resonant vibrational mode, resulting in lower transport rates. This study shows that

while a moderate amount of mixing might promote boosted transport as in model 1, a large

value of an electronic coupling, while considering a resonant vibrational mode for a given

∆ED2,D1 , could actually result in slower rates between l2 and l3, as in model 3. Also, as

discussed earlier, a large off-diagonal coupling implies reduced unidirectional transport to l3.

A comparison of the rates for models 1, 2 and 3 in Table 2 shows that rates for model 3 are

significantly lower than those for models 1 and 2.

In models 1 and 3, we have considered vibrational modes resonant with the energy gap

between electronic excitons. In model 2, the vibrational mode is quasi-resonant, however

l2 and l3 are degenerate, resulting in closely spaced adiabatic states and therefore, sizable
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transport from l2 to l3. In model 4, we consider a non-resonant vibrational mode with a

vibrational frequency of 700 cm−1 while ∆εelectronic = 895 cm−1. We find that the adiabatic

states a1, a2 and a3 are predominantly localized on l1, l2 and l3, respectively and a1 and

a2 have very small contributions from l3 and l1, respectively (see Table S4). As a result of

the negligible mixing, the term in the relaxation rates for a pair of adiabatic states in the

rate equations, that arises from the overlap between the local states and the given pair of

adiabatic states, is negligible and results in very small transport rates (see relaxation rates

for model 4 in Table 2). Therefore, resonance/quasi-resonance is desirable since this enables

the formation of mixed adiabatic states that leads to boosted transport.

Model 1 Model 2

Model 3 Model 4

a. b.

c. d.

Figure 3: Population evolution at the local states l1, l2 and l3 for models 1, 2, 3 and 4. The
rate of decay of excitation from l3 to A is Γl3→A = 1.8× 1012 s−1, where A acts as an energy
sink. The blue curve depicts the growth of population at A.

Models 5 and 6 differ from each other with respect to the Huang Rhys factor (0.01 for
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model 5 and 0.1 for model 6, implying a more nonlocal vibrational mode). While a larger

Huang-Rhys factor implies the involvement of multiple vibrational states in the dynamics, a

larger vibrational basis is a subject of future study. For these models, we explore a special

case where the vibrational mode frequency of 646 cm−1 is resonant with the energy gap be-

tween the higher adiabatic state and the lower local state in the electronic-only Hamiltonian

in Eq. 11. A significant consequence of this can be seen in the energy level diagrams for

models 5 and 6 in Figure 4, where the adiabatic states are more strongly mixed when com-

pared with the previous models. While the lowest adiabatic state a1, for both the models,

is given by a superposition of l1 and l3, with a stronger contribution from the lower energy

local state l1, the higher energy adiabatic states a2 and a3 are strongly mixed adiabatic

states, featuring sizable contributions from all the local states l1, l2 and l3 (see Tables S5

and S6). While the off-diagonal couplings between l1 and l3 for these two models are not too

different, the off-diagonal coupling between l2 and l3 in model 6 is nearly three times that of

the coupling in model 5, resulting in a larger splitting (= 200 cm−1) between the adiabatic

states a3 and a2 in model 6, compared to an energy splitting of 68 cm−1 between a3 and a2,

in model 5. The larger off-diagonal coupling between l2 and l3 in model 6 is a consequence

of the larger Huang Rhys factor for model 6. From the energy level diagram, it is easy to

see that the transport from l2 to l3 will mostly be mediated via the adiabatic states a3 and

a2. Therefore, the larger energy splitting between a3 and a2 gives smaller relaxation rates

for model 6, as seen from the rates in Table 2 for models 5 and 6. From the population

evolution plots in figure 4, we can see that the population at l1 grows faster for models 5

and 6, compared to the previous models. This can be attributed to the fact that the local

state l1 has presence in the adiabatic states a3 and a2 that feature a strong contribution from

the initial seat of excitation at l2, that contributes to the l2 → l1 transport. The l2 → l1

transport is faster in model 6 compared to model 5 since the energy gap between a2 and a1,

where a1 features a strong contribution from l1, is lesser in model 6, compared to model 5.

The local state populations for model 6 exhibit oscillations at short times (up to ≈ 200 fs)
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that gradually decohere due to interaction with the bath. The oscillations have a frequency

of 200 cm−1, arising from the energy gap between the adiabatic states a3 and a2. The local

state population at l3 is seen to evolve similarly for models 5 and 6 at longer times, unlike

the populations at l2 and l1 that evolve differently for the two models.

12732 𝑐𝑚'(

12532 𝑐𝑚'(
12646 𝑐𝑚'(

11783 𝑐𝑚'(

12400 𝑐𝑚'(

12000 𝑐𝑚'(

D2
D1

l1

l2

l3

a3

a2

a1

Model 612679 𝑐𝑚'(

12611 𝑐𝑚'(
12646 𝑐𝑚'(

11756 𝑐𝑚'(

12400 𝑐𝑚'(

12000 𝑐𝑚'(

D2
D1

l1

l2

l3

a3

a2

a1

Model 5
a. b.

𝐻232 =
12000 0 396.02
0 12646 39.60

396.02 39.60 12400
𝐻232 =

12000 0 361.94
0 12646 114.45

361.94 114.45 12400

Figure 4: Energy level diagrams and population evolution at the local states l1, l2, l3 and
acceptor A, for models 5 and 6. The oscillations in the local populations in model 6 have a
frequency of 200 cm−1, arising from the energy gap between the stationary adiabatic states
a3 and a2.

Figure 5(a) compares the temporal evolution of the acceptor population for all the six

models. To reiterate, l2, that labels | D1v
e
D1,1

′v
g
D2,0
〉, is the initial seat of excitation localized

on D1, while l3 that labels | D2v
g
D1,0

ve
D2,0

′ 〉 is localized on D2. In our calculations, we

investigate the transport from l2 to l3, followed by a unidirectional decay to A, that serves

as an energy sink. The rate of decay for the process is given as Γl3→A = 1.8 × 1012 s−1.

Transforming to the stationary adiabatic basis, the rate of decay from a stationary adiabatic

state to A can be expressed in terms of the respective eigenvector components with respect
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to l3. Model 1 is seen to result in the fastest transport at subpicosecond timescales but

at longer times, models 5 and 6 take over. Given the vibrational reorganization time of

τvib = 3.3 ps, the excitation transport in model 1 outcompetes the vibrational relaxation the

best, compared to the other models. It is surprising to note that the acceptor populations

for models 5 and 6 grow almost together, despite markedly different relaxation rates for the

two models. On the other hand, the eigenvector components that describe the overlap of

the adiabatic states with the local states for both these models are almost identical. This

is possibly the reason for similar acceptor populations for these two models, since the decay

of population from an adiabatic state to the acceptor is described by only the eigenvector

components with respect to l3. It is to be noted that the rate Γl3→A is a key parameter

that dictates the unidirectional transport. We have compared the acceptor populations for

the above 6 models at Γl3→A = 9 × 1012 s−1 and Γl3→A = 0.45 × 1012 s−1, in figures S1-

S2. A larger value of Γl3→A is seen to result in a faster growth at A for all models. For

Γl3→A = 9 × 1012 s−1, the transfer of population to A is extremely rapid for models 1, 2, 5

and 6, compared to Γl3→A = 0.45 × 1012 s−1. Figure 5(b) depicts the acceptor population

at 4 ps for all the models, plotted with respect to the electronic coupling J and ∆Ω, that

denotes the shift of the vibrational frequency Ω from the electronic-only stationary adiabatic

energy gap between the S1 states of D1 and D2 in Eq. 11. The Huang Rhys parameter σ is

not included as a coordinate since the acceptor populations are seen to grow almost together

for models that differ with respect to σ. It is noted that resonance/quasi-resonance, along

with moderate J is desirable for enhanced transport to A. However, models 5 and 6, despite

having ∆Ω = 249 cm−1, lead to fastest transport to A at longer times. The reason for this

is that they explore a special resonance regime where the vibrational frequency is resonant

with the energy gap between the higher adiabatic state and the lower local state in the

electronic-only Hamiltonian in Eq. 11, that leads to optimally mixed adiabatic states and a

boosted transport.

In the discussion above, we demonstrate that the system needs to achieve an optimum
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balance between electronic coupling, Huang Rhys mixing and resonance of the vibrational

mode, to optimize l2 → l3 transport. Among all the models that we discuss, model 1 is

best suited for a fast transport to l3 at subpicosecond timescales. While it enjoys a resonant

vibrational mode, the electronic coupling between D1 and D2 is about half of the electronic

coupling considered in model 3. An optimum electronic coupling is desirable for formation

of mixed adiabatic states that can boost rates, since the rates feature an overlap between

the local and adiabatic states. However, a very large electronic coupling in the presence of

a resonant mode could have an adverse effect on transport as it diminishes unidirectional

transport since the adiabatic states are now delocalized across the local states. On the other

hand, if the vibrational mode is resonant/quasi-resonant with the energy gap between the

higher adiabatic state and the lower local state in the electronic-only Hamiltonian, as seen

in models 5 and 6, it explores a special regime where we have strongly mixed adiabatic

states due to this specific form of resonance. Such models lead to enhanced transport. If

the vibration is described by a large Huang Rhys factor, as in model 6, coherent oscillations

could be observed at shorter timescales that eventually decohere. A faster l2 → l3 transport

leads to a quicker growth of the acceptor population. Therefore, models 1, 2, 5 and 6 are

best suited for an efficient transport to A. It is important to note that though different

values of Huang Rhys parameters, for given values of J and ∆Ω, result in markedly different

local state evolutions, they result in similar growth at A, as seen for models 5 and 6. While

the calculations discussed in this work focus on energy transport, we can expect similar

principles to apply to ratcheted electron transport. This is a subject of future research.
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