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In this paper, we explore the scope of vibrations as quantum ratchets that serve

as non-thermal routes to achieving population transport in systems where excitation
transport between molecules is otherwise energetically unfavorable. In addition to their
role as channels of transport, we investigate the effect of resonance of the vibrations,

that are described by Huang Rhys mixing, with excitonic energy gaps, that leads to



strongly mixed vibronic excitons. Finally, we explore the interplay of resonance and
Huang Rhys mixing with electronic coupling between the molecules, in the presence of a
dissipative bath, in optimizing transport in such systems. We find that while resonance
is desirable, a moderate electronic coupling has a stronger positive effect in contrast
to a large electronic coupling which results in delocalised excitations across molecules
and hampers unidirectional transport. We also report a special resonance regime that

is able to circumvent the transport problems arising from large electronic couplings.

To exploit coherences to aid the architecture of synthetic light-harvesting machinery is
an area of rapidly proliferating interest. Coherences in molecular systems occur due to large
electronic couplings between molecules; resulting in delocalised excitations/excitons, that
offer a route to manipulating molecular systems away from bath-induced dissipation and
Boltzmann statistics. Theoretical calculations by Ishizaki and Fleming suggest that quan-
tum coherence could be beneficial in overcoming local energy traps, thus mediating efficient
EET (electronic energy transport) in the Fenna-Matthews-Olson photosynthetic complex.?
A key benefit, thus, can be realized in the potential to control molecular dynamics and direct
energy/charge transport by harvesting coherences. Conjugated molecular aggregates, for in-
stance, are promising candidates for such control, due to the extended m-stacking prevalent
in such systems due to the highly ordered microscopic assemblies. A major disadvantage,
however, is posed by the fragility of molecular coherences, since they are extremely suscepti-
ble to destruction by their surroundings/bath. As a consequence, disorder and imperfections
in the molecular assemblies will diminish the exciton length and limit coherence. A plethora
of theoretical studies report that vibrationally enhanced transfer achieves an optimal transfer
efficiency in such scenarios.*? Also, vibrations, if they are resonant with an excitonic energy
gap and are strongly coupled to the electronic transition, have the capacity to provide a
means to circumvent this difficulty. This is because the excitation can switch back and forth
between the exciton and the vibration that is less susceptible to decoherence, resulting in

longer-lived coherences.* For instance, calculations by Plenio and coworkers suggest that



non-equilibrium processes due to spectrally sharp vibrational modes can effectively compete
with dissipative pathways induced by the thermal bath.® In another work reported by Cao
and coworkers, it is proposed that underdamped vibrations resonant with energy gaps in
the system can drive excitation transport, in addition to retention of coherences for longer
timescales.” The work by Bennett et al. suggests that incoherent vibronic transport results
in more efficient excitation transfer, compared to coherent transport, if the energetic disorder
is greater then the coupling between the donor and the vibrationally excited states on the
acceptor.'® A recent work from our group suggests that underdamped vibrations, resonant
with excitonic energy gaps in the LHCII complex, can drive population transport across
large energy gaps that are thermally inaccessible.!! Therefore, vibrations and coherences are
important tools that can be exploited for the design of efficient energy-harvesting and charge
transport devices. Key advances that utilize such design principles are actively studied by
Therien and coworkers, where they report the synthesis of "supermolecules", that are com-
posed of highly conjugated and strongly coupled PZn,, porphyrin arrays.'?2! The studies
suggest that these molecules enjoy resonances between vibrations and excitons, as well as
strong vibronic coupling between vibrations and excitonic transitions. This is expected to
lead to vibronic mixing, that could pave the way to robust coherences. The studies also report
transition dipole moments for the Sy — S; transition that increase progressively as the num-
ber of PZn,, units increase. A key manifestation of this is large electronic couplings across
the porphyrin assemblies, that again ensures large exciton coherence lengths. In this work,
we explore the interplay between resonance and electronic coupling and Huang Rhys mixing,
in an effort to formulate design principles that would ensure efficient energy-harvesting in
synthetic devices. We specifically investigate the role of vibrations as non-thermal routes to
ratcheting populations between molecules.

In this work, our focus is on the scope of quantum ratcheted photophysics in model sys-
tems where energy transport is otherwise energetically unfavorable. This is demonstrated

in figure 1(a), where the objective is to achieve a fast and efficient transport of excitation



from the electronically excited donor molecule D} to an acceptor molecule A. A favorable
electronic coupling between Dj and A would potentially lead to coherent transport, but
the spatial separation between them is large, resulting in small electrostatic couplings. The
other possibility is incoherent Forster transport, that again is unfavorable due a large spatial
separation. Also, the energetic constraint Ep, < E4 necessitates an uphill transport from
Dy to A. This pathway is thermally inaccessible if the energy gap AE4 p, > kg1, where
T is the temperature of the thermal bath. To circumvent the transport problems, we use
a second intermediate donor molecule D,, that acts as a bridge between D; and A, given
that we have an efficient, non-thermal route to transporting excitation from D7 to Dj. Here,
D3 is the electronically excited S; state on D,. The excitation, then, undergoes a downhill
transport from D} to A. We propose to accomplish this by exploiting a vibrational mode
that ratchets population from D7 to Dj through the mechanism discussed below. Denoting
the electronic excitons formed from a two-level electronic Hamiltonian defined by the S
states of D and Dj as m and n, the transport between m and n can be effectively medi-
ated by a vibrational mode that is resonant/quasi-resonant with the excitonic energy gap
Aé€,,n. In the simplest model, the presence of the vibrational mode is incorporated through
its Huang-Rhys mixing. We consider A to be an energy sink, thus the energy transport
from Dj to A is unidirectional and irreversible. Therefore, for a minimal description of the
system Hamiltonian that adequately describes quantum ratcheting, we will consider only
the electronic/vibronic states of D} and DJ, while the excitation transfer from D} to A
is easily evaluated by a simple kinetic equation. We investigate the interplay between the
Huang-Rhys mixing, the resonance/quasi-resonance of the vibrational mode with the exci-
tonic energy gap and coherence, arising from the electronic coupling between Dj and D3, in
dictating the transport between these molecules, in the presence of a dissipative bath. It is
important to note here that the relaxation of the vibrationally excited state on D7, due to
its interaction with the bath, serves as a competing pathway to transport from Dj to Dj.

In our calculations, we incorporate the effects of such relaxation.



To model the ratcheting dynamics, we define a system Hamiltonian that explicitly includes
the vibrational mode, along with the electronically excited states of D; and D,. For ef-
ficient yet adequate calculations, we define our local basis as follows: {| Dlvgl70,v%270>,|
D1U§)171/U%270>,| D2ng170veDQ7O,>}, where the first term in the ket indicates the species that
is electronically excited. v}, contains the vibrational information on the donor species D
(D € {Dy, Dy}), given by the vibrational quantum number [ in the k electronic state, where
k € {g, e}, implying the ground and excited electronic states, respectively. The prime symbol
""" on the vibrational state [ on e indicates that this vibrational wavefunction is structurally
different from its counterpart on g due to a different charge distribution on e. It is worth em-
phasizing that it is always possible to add more vibrational information to the Hamiltonian,
by incorporating a larger vibrational basis. In our studies, however, the focus is the ratch-
eting dynamics stemming from the excitation of the vibrational mode on D7 that places Dy
at a higher energy compared to D; and the subsequent excitation transfer due to resonance.
Therefore, including up to the first vibrationally excited state on Dj, while considering the
vibrational ground state on D3, is adequate to infer more about the ratcheting photophysics.

The vibronic Hamiltonian of the system, with respect to the local basis described above,

can be written as follows:
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Here, Ep, and Ep, are the energies of the ground vibrational states in the electronically
excited e states for Dy and Dy, respectively. The vibrational mode has a frequency €2, J
is the electronic coupling between D; and D,, and Sf:} , measures the overlap between the
nuclear wavefunctions describing the vibrational states v (residing on the ground electronic
state) and v" (residing on the electronically excited state) respectively, on D (D € {Dy, Dy})

and is expressed in terms of the Huang-Rhys factors. While H,,, describes the electronic
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Figure 1: A schematic depicting ratcheted energy transport. Direct transfer of excitation
from Dj to A is unfavorable, both energetically and owing to a large spatial separation
between them. To address this, we use an intermediate molecule Dy, that is placed between
Dy and A. A vibration is used as a quantum ratchet to achieve non-thermal transport of
population from D7j to D3, followed by a unidirectional decay to A, that acts as an energy
sink. The relaxation of the vibrational mode on D7, due to its interaction with the bath,
serves as a competing pathway.




and vibrational excitations, we use the following total Hamiltonian H that incorporates the
phonons, also referred to as the bath/environment, that are modeled as harmonic oscillators

in H,,, and the system-bath interaction described by Hgys_ph-

H = Hsys + Hsys—ph + th> (2)
where
2
Dijk 1 2 2
Hyp, = : <2mjk + §mjkqj'kwjk)v (3)

s

and Hys—ph = Zj Qj | j){J |, where

Qj = Xrm;iVkqjk- (4)

Here, mjg, q;r, pjr and w;, describe the mass, position, momentum and angular frequency,
respectively, of the k' bath oscillator pertaining to the j** system state. The system-bath
interaction, in Eq. 4, is diagonal with respect to the local basis and is considered to be
adequately described by a linear dependence of the position coordinate g;;. v;;, describes the
coupling strength of the k' oscillator with the 7 site.

For simulating dynamics, we will employ a reduced density matrix description of the system
and use a near-analytic approximate approach.??2* This approach uses a unitary mapping
that transforms to a stationary adiabatic basis, formed by diagonalizing Hyys + Hgys—pn, and
frozen at the equilibrium geometry. The technical definition for stationary adiabatic states,
therefore, differs from that of excitons, that are eigenstates formed by diagonalizing only
the system Hamiltonian and do not reflect any contribution from the bath. It is important
to note here that though they differ in their definitions, the energies of the excitons formed
by diagonalizing the system Hamiltonian are the same as those of the stationary adiabatic
states.!!

The chief benefit of the unitary mapping arises from a decoupling between decoherence,



described by fluctuations in the energies of the dynamically evolving adiabatic states due
to shifting of the bath position coordinates, and phonon-mediated population relaxation,
described by a derivative operator that drives a change in electronic state, in conjunction
with bath momenta. This is followed by a nonperturbative treatment of decoherence, that
captures the effects of the dynamically fluctuating energies of the stationary adiabatic states
(see eqns. 6 and 7), while the population relaxation is described perturbatively. The method
has been described in rigorous detail in previous work, therefore we will only discuss the final
expression for the reduced density operator we use to describe the system.

While | a){« | describes the initial density operator at ¢ = 0, where « denotes a local state,
we intend to determine the extent of overlap of the excitation at time ¢ with the local basis
coherence | v)(f |. In the expression below, m, n, m’ and n’ denote the stationary adiabatic
states, €, denoting the energy of the stationary adiabatic state n. The bath is described by

the spectral density function S(w), defined below, at temperature 7.

()= ) (B I m){n ] a){a | n)(m' | 5)pmms s (t)+
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Here, € = €2 — €%, G (t) = Re[pnn(t)] + i Im[dn(t)], where ¢, (t) describes the

effects of decoherence, with the real and imaginary components given as:
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and
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Here, S(w) is the spectral density of the environment, defined as:

Sw) =% AV S i) (8)

2w;, ik /-
While e%nn® is evaluated nonperturbatively and describes the effects of decoherence, the
term P nn (t) addresses the effects of relaxation arising from a perturbative treatment of
the nonadiabatic derivative operator, in conjunction with bath momenta and is evaluated
using a Markovian master equation, that is solved using matrix algebra. The relaxation rates,

arising from the perturbative treatment of relaxation, for a pair of stationary adiabatic states

m and m’ are given as:

S(u}mm/> . .
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J
and
Lo = ewmm,/kBTme’- (10)

In the above expression, Wy, > 0, where wy,,, = 621 — e?n,.

We will now apply the above formalism to investigate quantum ratcheted energy transport
in various model systems. In our discussion forward, we will loosely refer to stationary
adiabatic states as adiabatic states, for convenience. However, it is important to keep in
mind the subtle distinction between excitons and adiabatic states.

Table 1 enumerates the system parameters for the various models we consider. In figures 2

and 4, we demonstrate the energy level diagrams for each of these models, where l;, I and I3



label the local states. [; and Iy are localized on D; and label the states | Dlv;ho, U%Q’()) and
| DIU%M'U%Q,O% respectively. [3 is localized on Dy and labels the state | DQUgD17OUeD2’O/>. ai,
as and ag label the stationary adiabatic states. We list the eigenvector contributions for the
adiabatic states with respect to the local states, for all the six models, in the supplementary
information. The quantity we wish to investigate here is the population transport to I3,
while [5 is considered the initial seat of excitation. This is achieved by directly exciting [,
from the ground electronic state, by using a UV-vis radiation field of suitable frequency. A
second way of placing the initial population at [y is by first exciting /; using a UV-vis pulse,
followed by an IR pulse that creates the vibrational excitation, leading to the population
being transported from [; to l;. Therefore, for ratcheted photophysics, we consider the
temporal evolution of population, considering [l to be the initial state.

For model 1, the vibronic system Hamiltonian and the energy level diagram are depicted in

Table 1: System parameters for the various models we consider. AEp, p, denotes the differ-
ence between the bare electronic excitation energies on Dy and D1, respectively. J denotes
the electronic coupling between D; and D, and €2 is the excitation frequency of the vibra-
tional mode. o denotes the Huang Rhys factor for the vibrational mode.

Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6
AEp, p, (em™) 800 800 400 800 400 400
J (em™) 200 200 400 200 400 400
Q (em™) 895 800 895 700 646 646
o 0.01 0.01 0.01 0.01 0.01 0.1

Figure 2(a). If we consider the electronic-only Hamiltonian formed by the basis states | Dy)
and | D),
Ep, J

Helectronic = )

J  Ep,

(11)

the energy gap between the electronic excitons is given as A€gearonic = 895 em ™!, which
is used as the frequency of the vibrational mode. In other words, the vibrational mode is
resonant with the energy gap between the electronic excitons. We incorporate vibrational

relaxation in our calculations, since the relaxation of the vibrational mode on Iy, due to its
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interaction with the bath, acts as a competing pathway to I — I3 transport. The electronic
and vibrational environments are both modeled by the Drude spectral density, where the

and Ay = 10 em™'. A, thus,

reorganization energies are given as: Age. = 100 em™
corresponds to a vibrational reorganization time given as 7,; ~ 3.3 ps. The bath is considered
to reside at a temperature 7' = 300 K and the phonon relaxation frequency for both electronic
and vibrational excitations is w. = 30 cm™!. We use these bath parameters for all the models.
To evaluate excitation transport to the energy sink A, we choose I'j, ;4 = 1.8 x 10'? 571
where I';,_, 4 is the rate of decay of excitation from the local state [3 to A.

A closer look at the energy level diagram for model 1 tells us that the lowest energy adiabatic
state a; is mostly localized on the local state [, with a small contribution from I3, and the
highest energy adiabatic state ag is localized on the local state I, with a small contribution
from l3. In contrast, the adiabatic state as is more mixed, with it being localized mostly on
I3, but with modest contributions from both [; and [ (see Table S1). Since the quantity of
interest is the temporal evolution of population at I3, it is easy to see that the adiabatic states
as and az will play prominent roles in dictating the dynamics, since they are mostly localized
on l3 and [, respectively. Therefore, the faster the a3 — as pathway is, the faster the Iy — I3
pathway will be, since ag — ay is downhill transport which has a greater relaxation rate than
uphill transport. The uphill transport, nevertheless, has a sizable rate because the energy
gap between a3 and ay is thermally accessible at 7" = 300 K. The relaxation rates between
pairs of adiabatic states, computed using Eqns. 9 and 10, are listed in Table 2 for the various
models. Apart from the energetics, the overlap between the local and the adiabatic states, as
seen in Eqns. 9 and 10, will also dictate the rate of energy transport. A larger overlap for a
pair of adiabatic states with a given local state will contribute to an increased rate between
the adiabatic states. Therefore, a more mixed adiabatic state that enjoys strong overlap with
multiple local states is expected to boost transport. Strong electronic coupling between local

states will also lead to more mixed states. Finally, the Huang Rhys factor also determines

mixing to an extent, since a larger Huang Rhys factor implies a more nonlocal vibration that
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contributes to mixing through the off-diagonal overlap terms in Eq. 1. However, we should

also note that a larger off-diagonal term will also lead to greater splittings between adiabatic
states that will have an adverse effect on rates. Also, a greater mixing implies that the
local states are strongly mixed to form the adiabatic states. Therefore, when we probe the
population evolution at the local states, unidirectional transport between the local states is
reduced since the adiabatic states are delocalized across the local states, thus enabling back-
transport between the local states. Therefore, for maximum yield, the system will need to
achieve the limit of optimum mixing, since this will determine both the energy splittings, and
the overlap of adiabatic states with local states. Figure 3(a) depicts the local populations

evolving with time for model 1, and we find that the population at [3 increases quite rapidly

)

)

and overshoots the population at I, before 100 fs.
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Figure 2: Energy level diagrams for models 1, 2, 3 and 4. [, and Iy are localized on D; and
label the states | Dlvgho,ngw) and | Dlvghl,v%Q,O}, respectively. [3 is localized on Dy and
). a1, as and agz label the stationary adiabatic states, and the

Dy, 0

labels the state | Dyvy, (v5 ).
color coding of the adiabatic states indicates the presence of the respective local states.
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We now compare the previous model with model 2, where ls and I3 are degenerate, and

! which is quasi-resonant with the

the vibrational mode has a vibrational frequency 800 cm™
excitonic energy gap A€geatronic = 895 em ™. The immediate effects can be observed in the
energy level diagram for model 2 in figure 2(b). We see that the mixing in the adiabatic
states az and ay is reversed compared with model 1. a3 is now the more mixed adiabatic
state and is localized mostly on I3 with small contributions from both /; and I, (see Table
S2). as is localized on Iy, with a small contribution from 3. a; is exactly the same for both
models. While the energy gap between a3 and as is almost the same as in model 1, the rates
are somewhat different (see Table 2) due to the fact that the higher energy as state is now
the more mixed state compared to the mostly local lower energy a,. A second important
consequence is the pathway [, — I3, that we are interested in for the ratcheted photophysics,
is now facilitated through the uphill transport pathway as — a3, and hence has a lower
transport rate compared to the downhill route. However, for a bath temperature of 300 K,
it is a thermally accessible pathway. A comparison of the populations at [3 in Figure 3 for

models 1 and 2 reinforces the energetic constraints of model 2, and depicts a lower thermal

population at [3 for model 2.

Table 2: Relaxation rates between the stationary adiabatic states, computed using Eqns. 9
and 10. For example, I',,_,,, measures the downhill relaxation rate from the adiabatic state
az to the adiabatic state a;. All the values in the table are to be multiplied by a factor of
1012571,

x10%s~! | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6
Losssay 0.02 0.22 0.01 0.25 0.47 0.37
Losssas 23.87 26.40 0.39 0.97 46.91 8.07
| O 0.23 0.03 1.04 0 0.58 0.78
Loyas 17.71 19.77 0.11 0.47 33.93 3.09
| O, 0 0 0.01 0 0.01 0.02
| I, 0 0 0 0 0.01 0

In model 3, we reduce the electronic energy gap between the local sites D; and D,

(AE = 400 cm™') and increase the electronic coupling J in Eq. 11, such that we have the
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! as in models 1 and

same energy gap between the electronic excitons Aégectronic = 895 cm™
2. This is used as the frequency of the vibrational mode in the vibronic Hamiltonian for
model 3 in figure 2(c), and therefore, the vibrational mode is resonant with the energy gap
between the electronic excitons. A direct consequence of increasing the value of J is larger
off-diagonal couplings in the vibronic Hamiltonian. The coupling between the local states
l; and l3 is much larger compared to that between [, and [3. Consequently, the adiabatic
states a; and ay have sizable overlap with the local states [; and [3, with as; having a small
contribution from ly. ag is predominantly localized on l5, with a very small contribution from
I3 due to a small, nonzero coupling between Il and I3 (see Table S3). Despite the creation
of more mixed states arising from a larger electronic coupling, the mixing here does not
boost the transport between [y and I3, because: (a) the mixing occurs mostly between /; and
I3, leading to formation of a; and as, and possibly a somewhat boosted transport between
as and a; due to the sizable overlap between the local and adiabatic states that affect the
rates (Eqns. 9 and 10); as that is localized on [y is mostly unaffected by this mixing, and
(b) compared to models 1 and 2, the energy gap between az and ay is larger, since we re-
duce the energy gap between [; and [3 in this model at the cost of an increased value of J
and a resonant vibrational mode, resulting in lower transport rates. This study shows that
while a moderate amount of mixing might promote boosted transport as in model 1, a large
value of an electronic coupling, while considering a resonant vibrational mode for a given
AFEp, p,, could actually result in slower rates between [, and I3, as in model 3. Also, as
discussed earlier, a large off-diagonal coupling implies reduced unidirectional transport to I3.
A comparison of the rates for models 1, 2 and 3 in Table 2 shows that rates for model 3 are

significantly lower than those for models 1 and 2.

In models 1 and 3, we have considered vibrational modes resonant with the energy gap
between electronic excitons. In model 2, the vibrational mode is quasi-resonant, however

lo and [3 are degenerate, resulting in closely spaced adiabatic states and therefore, sizable
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transport from Iy to I3. In model 4, we consider a non-resonant vibrational mode with a
vibrational frequency of 700 em ™! while A€ eetronic = 895 em ™!, We find that the adiabatic
states a1, as and ag are predominantly localized on [y, Iy and I3, respectively and a; and
as have very small contributions from I3 and [;, respectively (see Table S4). As a result of
the negligible mixing, the term in the relaxation rates for a pair of adiabatic states in the
rate equations, that arises from the overlap between the local states and the given pair of
adiabatic states, is negligible and results in very small transport rates (see relaxation rates
for model 4 in Table 2). Therefore, resonance/quasi-resonance is desirable since this enables

the formation of mixed adiabatic states that leads to boosted transport.

a. Model 1 b. Model 2
1.00 1.00
0.75 0.75
£ 050 Z 0.50
0.25 0.25
0.00 0.00
0 200 400 600 800 1000 0 200 400 600 800 1000
t (femtoseconds) t (femtoseconds)
C. Model 3 d. Model 4
1.00 — 1.00 —
—_— 1 —_— 1
0.75 — 0.75 — &
—a —_—A
= =
3 0.50 3 0.50
0.25 0.25
0.00 é. . . . . . 0.00 : : : . . ‘
0 200 400 600 800 1000 0 200 400 600 800 1000
t (femtoseconds) t (femtoseconds)

Figure 3: Population evolution at the local states [y, [, and I3 for models 1, 2, 3 and 4. The
rate of decay of excitation from I3 to A is Ty, ;4 = 1.8 x 10'? 57! where A acts as an energy
sink. The blue curve depicts the growth of population at A.

Models 5 and 6 differ from each other with respect to the Huang Rhys factor (0.01 for

15



model 5 and 0.1 for model 6, implying a more nonlocal vibrational mode). While a larger
Huang-Rhys factor implies the involvement of multiple vibrational states in the dynamics, a
larger vibrational basis is a subject of future study. For these models, we explore a special
case where the vibrational mode frequency of 646 cm™! is resonant with the energy gap be-
tween the higher adiabatic state and the lower local state in the electronic-only Hamiltonian
in Eq. 11. A significant consequence of this can be seen in the energy level diagrams for
models 5 and 6 in Figure 4, where the adiabatic states are more strongly mixed when com-
pared with the previous models. While the lowest adiabatic state a;, for both the models,
is given by a superposition of /; and [3, with a stronger contribution from the lower energy
local state [y, the higher energy adiabatic states a; and az are strongly mixed adiabatic
states, featuring sizable contributions from all the local states Iy, ls and I3 (see Tables S5
and S6). While the off-diagonal couplings between {; and I3 for these two models are not too
different, the off-diagonal coupling between [l and I3 in model 6 is nearly three times that of
the coupling in model 5, resulting in a larger splitting (= 200 cm ') between the adiabatic
states as and ay in model 6, compared to an energy splitting of 68 cm ™! between as and as,
in model 5. The larger off-diagonal coupling between [ and I3 in model 6 is a consequence
of the larger Huang Rhys factor for model 6. From the energy level diagram, it is easy to
see that the transport from [, to I3 will mostly be mediated via the adiabatic states as and
as. Therefore, the larger energy splitting between as and as gives smaller relaxation rates
for model 6, as seen from the rates in Table 2 for models 5 and 6. From the population
evolution plots in figure 4, we can see that the population at [; grows faster for models 5
and 6, compared to the previous models. This can be attributed to the fact that the local
state [; has presence in the adiabatic states a3 and as that feature a strong contribution from
the initial seat of excitation at [y, that contributes to the Iy — [; transport. The I, — 4
transport is faster in model 6 compared to model 5 since the energy gap between a, and aq,
where a; features a strong contribution from [y, is lesser in model 6, compared to model 5.

The local state populations for model 6 exhibit oscillations at short times (up to ~ 200 fs)
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that gradually decohere due to interaction with the bath. The oscillations have a frequency

of 200 em ™1, arising from the energy gap between the adiabatic states asz and a,. The local

state population at I3 is seen to evolve similarly for models 5 and 6 at longer times, unlike

the populations at [y and [; that evolve differently for the two models.
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Figure 4: Energy level diagrams and population evolution at the local states [y, ls, I3 and
acceptor A, for models 5 and 6. The oscillations in the local populations in model 6 have a
, arising from the energy gap between the stationary adiabatic states

1

frequency of 200 ecm™

a3 and as.
Figure 5(a) compares the temporal evolution of the acceptor population for all the six
In our calculations, we

) is localized on Ds.
-1

e
Dy 0

models. To reiterate, [y, that labels | Dlvzl l,ng2 o), 1s the initial seat of excitation localized
investigate the transport from [y to l3, followed by a unidirectional decay to A, that serves

on Dj, while I3 that labels | Dzv%hov

as an energy sink. The rate of decay for the process is given as I'j, ;4 = 1.8 x 10'% s
Transforming to the stationary adiabatic basis, the rate of decay from a stationary adiabatic

state to A can be expressed in terms of the respective eigenvector components with respect
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to 3. Model 1 is seen to result in the fastest transport at subpicosecond timescales but
at longer times, models 5 and 6 take over. Given the vibrational reorganization time of
Tvib = 3.3 ps, the excitation transport in model 1 outcompetes the vibrational relaxation the
best, compared to the other models. It is surprising to note that the acceptor populations
for models 5 and 6 grow almost together, despite markedly different relaxation rates for the
two models. On the other hand, the eigenvector components that describe the overlap of
the adiabatic states with the local states for both these models are almost identical. This
is possibly the reason for similar acceptor populations for these two models, since the decay
of population from an adiabatic state to the acceptor is described by only the eigenvector
components with respect to [3. It is to be noted that the rate I';,_,4 is a key parameter
that dictates the unidirectional transport. We have compared the acceptor populations for
the above 6 models at T, .4 = 9 x 1012 s7! and I';, ,4 = 0.45 x 102 s71 in figures S1-
S2. A larger value of I'j,_,4 is seen to result in a faster growth at A for all models. For
[, 54 = 9 x 1012 s71, the transfer of population to A is extremely rapid for models 1, 2, 5
and 6, compared to I';, .4 = 0.45 x 1012 s71. Figure 5(b) depicts the acceptor population
at 4 ps for all the models, plotted with respect to the electronic coupling J and Af2, that
denotes the shift of the vibrational frequency €2 from the electronic-only stationary adiabatic
energy gap between the Sy states of D; and Dy in Eq. 11. The Huang Rhys parameter o is
not included as a coordinate since the acceptor populations are seen to grow almost together
for models that differ with respect to o. It is noted that resonance/quasi-resonance, along
with moderate J is desirable for enhanced transport to A. However, models 5 and 6, despite
having AQ = 249 em ™1, lead to fastest transport to A at longer times. The reason for this
is that they explore a special resonance regime where the vibrational frequency is resonant
with the energy gap between the higher adiabatic state and the lower local state in the
electronic-only Hamiltonian in Eq. 11, that leads to optimally mixed adiabatic states and a
boosted transport.

In the discussion above, we demonstrate that the system needs to achieve an optimum

18



balance between electronic coupling, Huang Rhys mixing and resonance of the vibrational
mode, to optimize Iy — [3 transport. Among all the models that we discuss, model 1 is
best suited for a fast transport to I3 at subpicosecond timescales. While it enjoys a resonant
vibrational mode, the electronic coupling between D, and D is about half of the electronic
coupling considered in model 3. An optimum electronic coupling is desirable for formation
of mixed adiabatic states that can boost rates, since the rates feature an overlap between
the local and adiabatic states. However, a very large electronic coupling in the presence of
a resonant mode could have an adverse effect on transport as it diminishes unidirectional
transport since the adiabatic states are now delocalized across the local states. On the other
hand, if the vibrational mode is resonant/quasi-resonant with the energy gap between the
higher adiabatic state and the lower local state in the electronic-only Hamiltonian, as seen
in models 5 and 6, it explores a special regime where we have strongly mixed adiabatic
states due to this specific form of resonance. Such models lead to enhanced transport. If
the vibration is described by a large Huang Rhys factor, as in model 6, coherent oscillations
could be observed at shorter timescales that eventually decohere. A faster [, — 3 transport
leads to a quicker growth of the acceptor population. Therefore, models 1, 2, 5 and 6 are
best suited for an efficient transport to A. It is important to note that though different
values of Huang Rhys parameters, for given values of J and A(Q, result in markedly different
local state evolutions, they result in similar growth at A, as seen for models 5 and 6. While
the calculations discussed in this work focus on energy transport, we can expect similar

principles to apply to ratcheted electron transport. This is a subject of future research.
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