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Abstract A multibody dynamics-based solution to the fluid dynamics problem is compared
herein to two established Lagrangian-based techniques used by the computational fluid
dynamics (CFD) community. The multibody dynamics-based solution has two salient at-
tributes: it enforces the incompressibility condition through bilateral kinematic constraints,
and it treats the coupling with the solid phase via unilateral kinematic constraints. The
multibody dynamics-based solution, called herein the Kinematically Constrained Smoothed
Particle Hydrodynamics (KCSPH) method, is a Lagrangian approach to solving the CFD
problem. It relies on the Smoothed Particle Hydrodynamics (SPH) method to discretize the
spatial differential operators in the Navier–Stokes equations, and on the Newton–Euler equa-
tions of multibody dynamics to convect the SPH particles forward in time. We show that the
multibody dynamics-based approach is efficient and accurate by comparing its performance
with the two most commonly used SPH algorithms in the CFD community: the weakly com-
pressible SPH (WCSPH), and the implicit SPH (ISPH) methods. The comparison is carried
out in conjunction with four tests: an incompressibility benchmark test, dam break, floating
cylinder, and sloshing tank. We conclude that KCSPH is a robust alternative to conventional
CFD approaches for fluid–solid interaction (FSI) problems with complex/moving bound-
aries. The solvers and models used herein are publicly available in an open-source software
called Chrono; the implementations use GPU (for WCSPH and ISPH), and multicore CPU
(for KCSPH) parallel computing.
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1 Introduction

In this contribution we assess a recently developed CFD method [44], which draws on multi-
body dynamics solution techniques, against two classical approaches used in the Lagrangian
CFD field: the weakly compressible SPH (WCSPH) method, and the implicit SPH (ISPH)
method. Smoothed Particle Hydrodynamics [22, 41] is a meshless CFD approach to spa-
tially discretize the mass and momentum balance equations [45]. SPH is attractive since: (i)
it conveniently handles free-surface problems because unlike Eulerian methods, it eschews
the interface tracking task that would require the solution of an extra transport equation,
e.g., volume of fluid and/or level set [14, 32]; (ii) it interfaces well with the numerical so-
lution of the solid mechanics and multibody dynamics problems, which almost always are
also approached in a Lagrangian framework [6, 54, 59, 78]; (iii) owing to its Lagrangian
nature, SPH avoids difficulties encountered in Eulerian CFD methods, such as treatment of
the nonlinear advection term or mass conservation; (iv) it can handle highly transient FSI
problems, where impulsive and nonsteady state dynamics come into play, potentially in a
coupled-dynamics framework that involves the motion of solids; and (v) it shows promise
for multiphase flows at high density ratios [37, 50, 69, 75]. On the downside, SPH: (a) loses
second-order accuracy [58] unless a consistency-enforcing step is taken in its numerical so-
lution [21, 29, 61, 73]; (b) poses challenges with, and requires careful treatment of boundary
conditions [2, 27, 38].

KCSPH is inspired by work reported in [44], where the incompressibility is enforced
via holonomic kinematic constraint equations asserting that the density assumes a reference
value ρ0 at the location of each SPH marker. This leads to large index three differential-
algebraic problems that have as many kinematic constraints as particles in the SPH solution,
i.e., from tens of thousands to millions of holonomic constraints. In addition to the presence
of these bilateral (equality) kinematic constraints induced by the incompressibility attribute
of the flow, the presence of solid boundary conditions and the solid–fluid coupling calls for
the use of unilateral (inequality) kinematic constraints that are equivalently posed as comple-
mentarity conditions [66]. Owing to the presence of both equality and inequality constraints,
KCSPH relies on the solution a quadratic optimization problem typically encountered in
multibody dynamics with friction and contact [51]. Of the three SPH methods discussed
herein, WCSPH is the only one using a state equation to relate the pressure to density, see,
for instance, [3]. The time integration is typically explicit and carried out via Runge–Kutta
or predictor–corrector methods, see, for instance, [40]. The combined use of an explicit time
integration scheme and a stiff incompressibility-enforcing state equation limits the size of
the time step. In fact, the more one insists on incompressibility, the shorter the time step
and thus the longer the simulation time. This drawback prompted the development of ISPH
formulations, see, for instance, [16]. In ISPH, the pressure may be regarded as a mechan-
ical property (Lagrange multiplier) thus shedding its thermodynamical nature (equation of
state) manifest in the WCSPH approaches. Moreover, as far as the derivation of the pres-
sure equation is concerned, many ISPH methods are at their core projection methods [13],
i.e., the pressure is obtained from a Poisson equation at every time step, see, for instance,
[64]. Solving a Poisson equation calls for the solution of a linear system, which poses both a
computational bottleneck and a parallel implementation challenge for ISPH. However, what
one gains with ISPH, when compared to WCSPH methods, is larger integration time steps
and a more effective mechanism to enforce incompressibility.

The manuscript is organized as follows. Section 2 describes the governing equations for
fluid and multibody dynamics systems, the latter anchoring the KCSPH numerical solution.
Section 3 outlines the three SPH-based, CFD numerical methods used in this study. To that
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end, it starts with a brief overview of the SPH method in which we express the SPH space
discretization via field-independent discretization matrices. This allows for separating the
space discretization from the implementation of the time integration scheme. An overview
of the KCSPH method and its derivation from the Newton–Euler equations is provided in
Sect. 3.1. The classical WCSPH method is described in Sect. 3.2. Section 3.3 focuses on the
ISPH method. Section 3.4 concentrates on handling boundary conditions. Section 4 reports
numerical results in relation to four test problems: an incompressibility benchmark test,
dam break, floating cylinder, and fluid sloshing. In Sect. 5 we discuss perceived strengths
and weaknesses of KCSPH relative to WCSPH and ISPH, and conclude with directions of
future work.

2 Governing equations

2.1 Multibody dynamics: the equations of motion

We follow the notation used in [25] to define the configuration of the system of bodies by
a set of generalized coordinates for the position and orientation of a rigid body in the 3D
Euclidean space as rj ∈ R

3 and εj ∈R
4, i.e., the absolute position of the center of mass, and

the Euler parameters associated with orientation of body j . The Euler parameters satisfy
the normalization constraint εT

j · εj = 1. Combining the set of generalized coordinates of
different bodies for a system of nb bodies, one can write the set of generalized coordinates
describing the system at position level as q = [

rT
1 , εT

1 , . . . , rT
nb

, εT
nb

]T ∈ R
7nb , and at veloc-

ity level as q̇ = [
ṙT

1 , ε̇T
1 , . . . , ṙT

nb
, ε̇T

nb

]T ∈ R
7nb . Instead of using the time derivative of the

Euler parameters, one may choose to use angular velocities to describe the state of the sys-
tem at the velocity level by v = [

ṙT
1 , ω̄T

1 , . . . , ṙT
nb

, ω̄T
nb

]T ∈ R
6nb , which reduces the problem

size. The transformation from the derivatives of Euler parameters, ε̇B , to angular velocities
represented in the body-fixed frame, ω̄B , for each body is governed by

ε̇B = 1

2
GT (εB)ω̄B, (1)

where matrix G ∈ R
3×4 depends linearly on the Euler parameters εB . Therefore, a block

diagonal matrix L(q) ≡ diag
[
I3×3,

1
2GT (ε1), . . . , I3×3,

1
2 GT (εnb

)
] ∈ R

7nb×6nb is used to ex-
press via q̇ = L(q)v, the relationship between q̇ and v, where I3×3 is the identity matrix
[25].

The Newton–Euler equations of motion that describe the motion of a system of bodies
interacting through friction, contact, and bilateral constraints, assume the following form of
a differential variational inequality (DVI) problem, see, for instance, [51, 70]:

q̇ = L(q)v, (2a)

Mv̇ = f (t,q,v) + ∇qg(q, t)� +
∑

i∈A(q,δ)

(
γ̂i,n Di,n + γ̂i,x Di,x + γ̂i,y Di,y

)
, (2b)

0 = g(q, t), (2c)

i ∈ A(q(t), δ) : 0 ≤ γ̂i,n ⊥ �i(q) ≥ 0, (2d)
(
γ̂i,x , γ̂i,y

)= argmin
√

(γ̂i,x )2+(γ̂i,y )2≤μ
f
i

γ̂i,n

vT
(
γ̂i,x Di,x + γ̂i,y Di,y

)
, (2e)
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Fig. 1 Schematic of contact
between two bodies

where f(t,q,v) is the array of external forces; M is the constant system mass matrix;
g(q, t) = 0 defines the holonomic constraints between the generalized coordinates q; �

represents the set of Lagrange multipliers associated with these holonomic constraints;
∇qg(q, t)� describes the reaction forces associated with the bilateral constraints in the force
balance equation; and, A(q, δ) is the set of active and potential unilateral constraints based
on the bodies that are mutually less than a gap δ apart. For contact i, the tangent space
generator Di ≡ [Di,n, Di,x, Di,y] ∈R

6nb×3 is defined as [51]

DT
i =

[
0 . . . − AT

i AT
i AA

˜̄si,A 0 . . . 0 AT
i −AT

i AB
˜̄si,B . . . 0

]
,

where Ai = [ni ,xi ,yi] ∈ R
3×3 is the orientation matrix associated with contact i, AA =

A (εA) and AB = A (εB) are the rotation matrices, and εA and εB ∈ R
4 are the Euler param-

eters associated with orientation of body A and B , respectively; the vectors s̄i,A and s̄i,B ∈R
3

represent the contact point positions in body-relative coordinates as shown in Fig. 1. Above,
the operator “tilde” applied to a three dimensional vector a produces a matrix ã ∈R

3×3 such
that a × b = ã b for all b ∈R

3.
Equation (2d) expresses a complementarity condition between �, the gap (distance) be-

tween bodies A and B , and γ̂i,n, the Lagrange multiplier for the normal (contact) force
associated with the contact i. The complementarity condition states that of γ̂i,n and �, at
least one is zero and the other one is nonnegative. Indeed, when the gap function is zero
(contact is present), the normal contact force is nonnegative; and, conversely, when the nor-
mal contact force is zero the gap function is nonnegative. The forces associated with contact
i can be expressed as f i,N = γ̂i,nni , and f i,T = γ̂i,xxi + γ̂i,yyi , which are the contact and
friction forces, respectively; and, γ̂i,x and γ̂i,y are the components of the friction force in the
tangent plane. The friction forces are determined based on the Coulomb dry-friction model
[66]

√
(γ̂i,x)2 + (γ̂i,y)2 ≤ μ

f

i γ̂i,n, (3a)

‖vi,T ‖
(√

(γ̂i,x)2 + (γ̂i,y)2 − μ
f

i γ̂i,n

)
= 0, (3b)

f i,T · vi,T = −‖f i,T ‖ ‖vi,T ‖ , (3c)
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where vi,T denotes the relative tangential velocity between bodies A and B at the contact
point. More specifically, Eq. (3a) states that the friction force is less than the normal force
scaled by the friction coefficient. Equation (3b) states a complementarity condition. Lastly,
Eq. (3c), which involves the dot/inner product of two vectors, states that the friction force is
in the opposite direction of vi,T . Note that the constraint minimization problem in Eq. (2e),
whose first order Karush–Kuhn–Tucker optimality conditions are Eqs. (3a)–(3c), represents
one way of stating that friction is governed by the Coulomb model, see, for instance, [51].
The DVI problem stated in Eqs. (2a)–(2e) can be solved with a variety of techniques, see
[1, 4, 5, 10, 26, 35, 36, 43, 65, 67].

2.2 Fluid dynamics: the equations of motion

The mass and momentum balance, i.e., the continuity and Navier–Stokes equations are for-
mulated for the fluid phase as [23]

dρ

dt
= −ρ∇ · u, (4)

du
dt

= 1

ρ
∇ · σ + fb = − 1

ρ
∇p + 1

ρ
∇ · τ + fb , (5)

where

σ =
⎡

⎣
σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

⎤

⎦= −pI + τ = −
⎡

⎣
p 0 0
0 p 0
0 0 p

⎤

⎦+
⎡

⎣
σxx + p τxy τxz

τyx σyy + p τyz

τzx τzy σzz + p

⎤

⎦

is the Cauchy stress tensor; and p and τ provide the volumetric and deviatoric decomposi-
tion of the stress tensor. The pressure p, a mechanical property of the system, is tied to the
trace of the stress tensor, p = − 1

3 (σxx +σyy +σzz). Upon adopting a Newtonian constitutive
model to express τ = μ(∇u+∇uT ) and accounting for the incompressible flow assumption
(∇ · u = 0), Eq. (5) leads to the following form of the Navier–Stokes equations:

du
dt

= − 1

ρ
∇p + ν∇2u + fb , (6)

where ν = μ/ρ and ρ are the fluid kinematic viscosity and density, respectively; fb is the
volumetric force density; and u is the flow velocity.

3 Numerical solution methods

KCSPH, WCSPH, and ISPH are succinctly presented below at a level of detail sufficient to
recreate the algorithms used to generate the numerical results reported in Sect. 4. For a more
thorough discussion, particularly of a theoretical (as opposed to algorithmic) nature, the
interested reader is referred to other sources. Specifically, approaches similar to KCSPH are
discussed in [11, 19, 44]. For the class of methods that WCSPH belongs to, i.e., solutions
that resort to an equation of state for enforcing incompressibility, see, for instance, [3, 7,
12, 15, 46, 48, 54, 68]. For the class of methods ISPH belongs to, the reader is referred to
[16, 28, 33, 59, 73, 77].
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We employ SPH for the spatial discretization of Eqs. (4) and (6) to approximate a func-
tion f at location ri as [47]

f (ri ) ≈ 〈f 〉i =
∑

j∈S(i)

mj

ρj

f (rj )Wij , (7)

where 〈f 〉i indicates the SPH approximation of f at the location of SPH particle, or marker,
i; S(i) represents the collection of SPH particles found in the support domain associated
with particle i; ρj is the density ρ(rj ) at location rj of particle j ; mj = ρjVj and Vj =
(
∑

k∈S(j) Wjk)
−1 are the mass and volume associated with marker j , respectively; Wij ≡

W(|ri − rj |, h), where |r| is the length of r. The kernel function W can assume various
expressions, e.g., a cubic spline kernel for 3D problems:

W(|r|, h) = 5

14πh3
×

⎧
⎪⎪⎨

⎪⎪⎩

(2 − q)3 − 4(1 − q)3, 0 ≤ q < 1,

(2 − q)3, 1 ≤ q < 2,

0, q ≥ 2,

(8)

where, if the kernel function is located at the origin, q ≡ |r|/h. The radius of the support
domain, κh, is proportional to the characteristic length h through the parameter κ , the latter
commonly set to 2 for the cubic spline kernel.

The standard SPH gradient and Laplacian approximations assume the following expres-
sions, respectively [47]:

∇f (ri ) ≈ 〈∇f 〉i =
∑

j∈S(i)

Vj (fj − fi)∇iWij , (9)

∇2f (ri ) ≈ 〈∇2f 〉i = 2
∑

j∈S(i)

Vj (eij · ∇iWij )
fi − fj

|rij | , (10)

where eij = rij

|rij | and ∇i denotes differentiation in space with respect to the coordinates of

SPH particle i, i.e.,

∇iWij = rij

|rij |
∂W

∂q

∂q

∂|rij |
∣∣
∣∣
i,j

= −15rij

14πh5q
×

⎧
⎪⎪⎨

⎪⎪⎩

(2 − q)2 − 4(1 − q)2, 0 ≤ q < 1,

(2 − q)2, 1 ≤ q < 2,

0, q ≥ 2.

(11)

Elaborating on the concept of convergence and accuracy, if a numerical discretization
matches the first m terms of the Taylor expansion of the solution, then the numerical ap-
proximation is said to be (m + 1)th-order accurate and Cm consistent. The standard SPH
discretizations have C1 consistency (exact approximation of linear functions) in the interior
of the domain provided a regular particle distribution is maintained. If the particle regularity
is lost over time, the standard discretization is no longer C1 consistent and corrections are
necessary to maintain the consistency order. However, once the kernel function is altered to
retain consistency, the SPH discretization will forfeit its symmetry attributes, thus losing its
conservation trait. Whereas conservative schemes are essential for discretization of the pres-
sure gradient term and pressure driven flows, consistent schemes play a more important role
in viscous flows. One side effect of using a consistent discretization is that it requires smaller
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kernel support [34, 72]. Reducing this support size reduces the number of SPH neighbors
for a given particle, which is critical in implicit solvers since linear system fill-in is dictated
by the number of SPH particle neighbors. This is the rationale for using a consistent formu-
lation for the implicit SPH method discussed herein, see Sect. 3.3, whenever handling an
interior flow scenario.

The “consistent” flavor of the discretization already defined for the conservative case in
Eqs. (9) and (10) assumes the expression [21, 61]:

∇f (ri ) ≈ 〈∇f 〉i =
∑

j∈S(i)

Vj (fj − fi) Gi ∇iWij , (12)

∇2f (ri ) ≈ 〈∇2f 〉i = 2
∑

j∈S(i)

[
Li : (eij ⊗ ∇iWij )

]
(

fi − fj

|rij | − eij · ∇fi

)

Vj , (13)

where “⊗” represents the dyadic product of the two vectors; “:” represents the double dot-
product of two matrices; Gi and Li , defined differently from G(εB) and L(q) in Eqs. (1) and
(2a)–(2e), are second-order and symmetric correction tensors for SPH marker i. The (m,n)

element of the inverse of Gi is expressed as [21, 39, 61]:

(G−1
i )mn = −

∑

j

rm
ij ∇i,nWijVj . (14)

The 3 × 3 matrix Li is symmetric and has six unknowns obtained as the solution of a linear
system [21]. The required six independent equations may be obtained by expanding the
following equation for the upper/lower triangular elements of a 3 × 3 matrix, e.g., m =
1, n = 1,2,3, m = 2, n = 2,3, and m = 3, n = 3,

−δmn =
∑

j

(Akmn
i ek

ij + rm
ij en

ij )(L
op

i eo
ij∇i,pWijVj ) , (15)

where δmn is the Kronecker symbol, and the elements of the third-order tensor Ai are ob-
tained as

Akmn
i =

∑

j

rm
ij rn

ijG
kq

i ∇i,qWijVj . (16)

A detailed account of obtaining the elements Li is provided in [29].
The outcome of the SPH discretization steps described above can be conveniently repre-

sented in matrix form. To that end, at the beginning of a time step one computes and stores
the discretization matrices AG and AL, which are defined differently from the ones used
in Sect. 2.1; AG and AL arise from either the standard discretization Eqs. (9)–(10), or the
consistent discretization of Eqs. (12)–(13). For instance, working with Eq. (10), 〈∇2f 〉i can
be expressed as follows:

〈∇2f 〉i = AL
i f,

f = [
f1, f2, . . . , fP

]T
,

AL
i =

[
. . . , 2

∑
j∈S(i) Vj (eij · ∇iWij )

1
|rij |

︸ ︷︷ ︸
ith element

, . . . , −2Vj (eij · ∇iWij )
1

|rij |
︸ ︷︷ ︸

j th element s.t. j∈S(i)

, . . .

]
,
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where the subscript P denotes the number of SPH particles in the domain. Similarly, the
gradient of a scalar field 〈∇f 〉i and divergence of a vector field 〈∇ · u〉i may be computed
from Eq. (9) as follows:

〈∇f 〉i =
⎡

⎢
⎣

AGx
i

AGy

i

AGz
i

⎤

⎥
⎦ f, (17)

〈∇ · u〉i = AGx
i ux + AGy

i uy + AGz
i uz, (18)

f = [
f1, f2, . . . , fP

]T
, (19)

ux = [
(ux)1, (ux)2, . . . , (ux)P

]T
, (20)

uy = [
(uy)1, (uy)2, . . . , (uy)P

]T
, (21)

uz = [
(uz)1, (uz)2, . . . , (uz)P

]T
, (22)

where

AGx
i = [

. . . , −∑
j∈S(i) Vj∇i,1Wij , . . . , Vj∇i,1Wij , . . .

]
, (23)

AGy

i = [
. . . , −∑

j∈S(i) Vj∇i,2Wij , . . . , Vj∇i,2Wij , . . .
]
, (24)

AGz
i = [

. . . , −∑
j∈S(i) Vj∇i,3Wij , . . . , Vj∇i,3Wij , . . .

]
, (25)

AG
i = [

. . . , −∑
j∈S(i) Vj∇iWij

︸ ︷︷ ︸
ith element

, . . . , Vj∇iWij
︸ ︷︷ ︸

j th element s.t. j∈S(i)

, . . .
]
. (26)

The same approach can be used to obtain the discretization matrices for the consistent dis-
cretization of Eqs. (12)–(13). The system level matrices AG and AL are obtained as:

〈∇f 〉x =

⎡

⎢
⎢⎢
⎢
⎣

〈∇f 〉x1
〈∇f 〉x2

...

〈∇f 〉xP

⎤

⎥
⎥⎥
⎥
⎦

= AGxf, 〈∇f 〉y =

⎡

⎢
⎢⎢
⎢
⎣

〈∇f 〉y1
〈∇f 〉y2

...

〈∇f 〉yP

⎤

⎥
⎥⎥
⎥
⎦

= AGyf, 〈∇f 〉z =

⎡

⎢
⎢⎢
⎢
⎣

〈∇f 〉z1
〈∇f 〉z2

...

〈∇f 〉zP

⎤

⎥
⎥⎥
⎥
⎦

= AGzf,

(27)

〈∇ · u〉 = [〈∇ · u〉1, 〈∇ · u〉2, . . . , 〈∇ · u〉P
]T = AGxux + AGyuy + AGzuz, (28)

AGx =

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

AGx
1

AGx
2

...

AGx
P

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

, AGy =

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

AGy

1

AGy

2

...

AGy

P

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

, AGz =

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

AGz
1

AGz
2

...

AGz
P

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

, (29)

〈∇2f 〉 = ALf, (30)
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〈∇2f 〉 = [〈∇2f 〉1, 〈∇2f 〉2, . . . , 〈∇2f 〉P
]T

, (31)

AL =

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

AL
1

AL
2

...

AL
P

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

. (32)

This allows for the space discretization of the Navier–Stokes equations in the x, y, and z

directions, per Eq. (6),
⎧
⎪⎪⎨

⎪⎪⎩

dux

dt
≈ − 1

ρ
AGxp + νALux + f b

x ,

duy

dt
≈ − 1

ρ
AGyp + νALuy + f b

y ,

duz

dt
≈ − 1

ρ
AGzp + νALuz + f b

z ,

(33)

where

p = [
p1, p2, . . . , pP

]T
, (34)

is the vector of pressures, and ux , uy , and uz were defined in Eq. (22).

3.1 The KCSPH algorithm

The KCSPH draws on a thermodynamically consistent SPH discretization [20] that leads to
an index-3 set of differential algebraic equations (see Sect. 2.1) describing the motion of the
fluid markers. The SPH particles can be regarded as 3 degree-of-freedom point-masses con-
strained in their motion. Collectively, these kinematic constraints capture the incompress-
ibility of the fluid and couple the relative motion of the SPH markers. Notably, the effect of
these constraints comes into the momentum equations as well. Indeed, the Lagrange multi-
plier forcing term that arises from the compressibility constraint acts as the pressure gradient
term in the momentum balance equations [11, 19, 20, 44].

The cornerstones of WCSPH and ISPH were, respectively, the use of a stiff state equation
for recovering the pressure, and the use of a Poisson equation to produce a pressure field that
enforces incompressibility. In KCSPH, the defining aspect is the use of holonomic kinematic
constraints to enforce incompressibility; at the location of SPH marker i, the density should
assume a reference value ρ0:

C
f

i = ρi − ρ0

ρ0
= 0 . (35)

If the time-derivative of the constraints in Eq. (35) is satisfied at the velocity level, i.e.,
Ċ

f

i = dρ/dt = 0, the following will emerge after applying Eq. (7), i.e., invoking the SPH
machinery:

Ċ
f

i = d

dt
(
ρi

ρ0
− 1) ≈

∑

j

mj

ρ0

dWij

dt
=
∑

j

mj

ρ0

dWij

dr ij

dr ij

dt

=
∑

j

mj

ρ0
∇iWij (ui − uj )

= −
∑

j

mj

ρ0
∇iWij (uj − ui ) . (36)
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Above, if ρj ≈ ρ0, the last term mimics −〈∇ · u〉i , see Eq. (9). Elements in row i of the
constraint Jacobian matrix ∇qg(q, t) ≡ G (see Eq. (2b)) are associated with the constraint
gi = Ċ

f

i = 0. These entries in G may be obtained via Eq. (36) as follows:

Ċ
f

i =
∑

j

mj

ρ0
∇iWij ui −

∑

j

mj

ρ0
∇iWij uj ⇒

Gii = 1

ρ0

∑

k �=i

mk∇Wik and Gij = −mj

ρ0
∇iWij . (37)

Each density constraint on a marker contributes to a single row in the full Jacobian matrix
which has 3P columns. This matrix is sparse and its rows have three values at the columns
corresponding to the current marker i and three values for each marker j within the support
domain of i. More specifically, for row i,

Gi = [
. . . ,

1
ρ0

∑
j∈S(i) mk∇iW

T
ik

︸ ︷︷ ︸
ith element

, . . . , −mj

ρ0
∇iW

T
ij

︸ ︷︷ ︸
j th element s.t. j∈S(i)

, . . .
]

1×3P
. (38)

It is informative to compare Eqs. (38) and (26) to underline similarities between the con-
straint Jacobian row Gi and the discretized gradient operator AG

i . Qualitatively, the density
constraint Jacobian matrix is similar to the discretized gradient operator – satisfying Gu = 0
is the analog of ∇ · u = AGxux + AGyuy + AGzuz = 0 (see Eq. (18)). This connection be-
tween G and AG comes further into play when one considers how the pressure factors into
the Newton–Euler equations of motion. Imposing the kinematic constraint Ċf = Gq̇ = 0
leads to the presence of a Lagrange multiplier. The multipliers in Eq. (2b) play a role similar
to that of the pressures. This becomes clearer when the force term associated with the La-
grange multipliers in Eq. (2b), i.e.,

(∇qg(q, t)
)T

� is written as GT �, where the connection
between the G matrix and the discretized gradient matrix AG is considered. It follows that
KCSPH replaces the pressure gradient term − 1

ρ
AGp in the space-discretized Navier–Stokes

(Eq. (33)) with GT �. Considering the resemblance of AG and the −G matrices, we con-
clude that the Lagrange multipliers scaled (element-wise) by the particles’ volume (�/V )
provide the mechanical pressure p in the Navier–Stokes equations.

Note also that the derivation of the constraint Jacobian in the KCSPH formulation
(Eq. (36)) leads to the conservative discretization discussed in Eq. (9), which as discussed
before lacks consistency. Up to this point, the KCSPH discussion focused exclusively on
obtaining the SPH equations of motion in the form of Sect. 2.1’s differential-algebraic equa-
tions. In other words, the spatial discretization step has been accomplished. How to dis-
cretize and solve in time these differential algebraic equations goes beyond the scope of this
manuscript and the interested reader is referred to [44].

3.2 The WCSPH algorithm

The cornerstone of WCSPH is its use of a state equation to obtain the pressure from density:
at particle/marker i,

pi = (k|u|max)
2
( ρi

ρ0
− 1

)+ p0 , (39)

where k|u|max is a sound speed proxy; |u|max is the magnitude of the maximum velocity in
the domain; k = 10 is an empirical scaling factor; and ρ0 and p0 are reference values. The
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density update may be obtained from the time integration of the continuity equation Eq. (4)
using the space discretization of the velocity divergence from Eq. (28)

ρn+1 − ρn

t
= − < ρn · (AGxux + AGyuy + AGzuz) > , (40)

where ρn ≡ [
ρ0, ρ1, . . . , ρP

]T
is the system level vector of markers’ density at the

current time step, and c =< a · b > indicates the element-wise product of vector a and b.
Shepard filtering [15] may be periodically applied when dealing with free surface problems
for density reinitialization. The time integration used is of predictor–corrector type:

(predictor stage)

{
ūn+1/2 = un + t

2 an,

r̄n+1/2 = rn + t
2 un,

(corrector stage)

{
un+1/2 = un + t

2 ān+1/2,

rn+1/2 = rn + t
2 un+1/2.

Finally,

(update stage)

{
un+1 = 2un+1/2 − un,

rn+1 = 2rn+1/2 − rn.

Above, an is the system-level vector of accelerations at time step n; its components in the x,
y, z directions are obtained from the space discretization of the Navier–Stokes as:

⎧
⎪⎪⎨

⎪⎪⎩

(ax)n = − 1
ρ
(AGx)npn + ν(AL)nun

x + f b
x ,

(ay)n = − 1
ρ
(AGy)npn + ν(AL)nun

y + f b
y ,

(az)n = − 1
ρ
(AGz)npn + ν(AL)nun

z + f b
z .

Likewise, ān+1/2 in the corrector stage is obtained using x̄n+1/2, ūn+1/2, and the associ-
ated discrete representation of the gradient and Laplacian operators, i.e., (ĀG)n+1/2 and
(ĀL)n+1/2. As far as the time step t is concerned, its size is constrained on numerical
stability grounds by the following condition [40]:

t ≤ min

{
0.25

h

k|u|max
, 0.125

h2

ν
, 0.25

√
h

|fb|
}

. (41)

Above, the first term corresponds to the CFL condition and is the place where the “numerical
stiffness” of the state equation in Eq. (39) comes into play. Specifically, the higher the k

value, the lower the amount of allowed compressibility, and, at the same time, the smaller
the time step. The second restriction in Eq. (41) appears due to the explicit treatment of
the viscous term and restricts the time step by a factor that is inversely proportional to the
viscosity – the higher the viscosity, the lower the time step. More importantly, the second
restriction is also proportional to h2, which significantly and adversely impacts the time
step when a finer particle distribution is employed. The last restriction is due to the explicit
treatment of the external (body) forces. Ultimately, these relatively stringent bounds on the
time step t prompted the search for alternative SPH-based approaches, e.g., ISPH and
KCSPH.
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3.3 The ISPH algorithm

ISPH alleviates the time step constraints hindering WCSPH at the price of solving a linear
system of equations at each time step. It draws on the Helmholtz–Hodge decomposition and
Chorin’s projection method [13] to integrate the continuity and the Navier–Stokes equation
as:

(prediction)

⎧
⎨

⎩

(u∗ − un)

t
= ν

2 (∇2u∗ + ∇2un) + fb, x ∈ �,

u∗ = 0, x ∈ ∂�,
(42)

(correction)

⎧
⎨

⎩

(un+1 − u∗)
t

= − 1

ρ
∇pn+1, x ∈ �,

∇ · un+1 = 0.

. (43)

Equation (42) is the predictor step used to find the intermediate velocity u∗. Taking diver-
gence of Eq. (43), the Poisson equation for pressure may be obtained as follows:

∇ · un+1 − ∇ · u∗

t
= − 1

ρ
∇2pn+1. (44)

The incompressible flow equation, ∇ · un+1 = 0, can be used to simplify Eq. (44) to

⎧
⎨

⎩

1

ρ
∇2pn+1 = ∇ · u∗

t
,

∇pn+1 · n|∂� = 0.

(45)

Once the above Poisson problem is solved for pressure, Eq. (43) may be used to find un+1

as

un+1 = −t
1

ρ
∇pn+1 + u∗ .

The algorithm described above is known as the velocity-based projection version. How-
ever, when working with free-surface flows, it is beneficial to use a density-based projection
method [8, 64] to account for the density variation experienced by the SPH particles in the
proximity of the free surface. The continuity equation is then used to replace the velocity
divergence term ∇·u∗

t
in Eq. (45). The semidiscrete continuity equation corresponding to the

prediction state is

ρ∗ − ρn

t
= −ρn∇ · u∗. (46)

Using the right-hand side of Eq. (46), one may write Eq. (45) as

⎧
⎨

⎩

1

ρ
∇2pn+1 = − 1

ρn

ρ∗ − ρn

t2
,

∇pn+1 · n|∂� = 0,

(47)

which takes into consideration the density variation as a source term in the Poisson equation.
Following an approach similar to that introduced in [8], we use a stabilization of the source



On the use of multibody dynamics techniques. . .

term in the Poisson equation to linearly combine the right-hand sides of Eqs. (45) and (47):

(pressure equation)

⎧
⎨

⎩

1

ρ
∇2pn+1 = α

1

ρn

ρn − ρ∗

t2
+ (1 − α)

∇ · u∗

t
,

∇pn+1 · n|∂� = 0.

(48)

This stabilization technique turned out to be critical in simulations where the difference
between the actual ρ and reference density ρ0 is large. Typical α values are small, similar to
the order of magnitude of the kernel characteristic length.

The above time-discretized equations may be combined with the space-discretization of
Eqs. (27) and (30). The space-time discretized ISPH equations are as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
1

t
I − ν

2 AL
)

u∗
x =

(
1

t
I + ν

2 AL
)

un
x + f b

x , particles ∈ �,
(

1
t

I − ν
2 AL

)
u∗

y =
(

1
t

I + ν
2 AL

)
un

y + f b
y , particles ∈ �,

(
1

t
I − ν

2 AL
)

u∗
z =

(
1

t
I + ν

2 AL
)

un
z + f b

z , particles ∈ �,

u∗ = 0 on ∂�,

(49)

⎧
⎪⎨

⎪⎩

1

ρ
ALpn+1 = α

1

ρn

ρn − ρ∗

t2
+ (1 − α)

AGxu∗
x + AGyu∗

y + AGzu∗
z

t
,

∇pn+1 · n|∂� = 0,

(50)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(un+1
x − u∗

x)

t
= − 1

ρ
AGxpn+1,

(un+1
y − u∗

y)

t
= − 1

ρ
AGypn+1,

(un+1
z − u∗

z )

t
= − 1

ρ
AGzpn+1.

(51)

Several key observations pertaining the ISPH method implemented are summarized as
follows:

– The Crank–Nicolson discretization of the viscous term in Eq. (42) leads to a nondiagonal
coefficient matrix ( 1

t
I − ν

2 AL) in Eq. (49). Had one chosen to treat the viscous term in
Eq. (42) explicitly, i.e., ν∇2un instead of ν

2 (∇2u∗ + ∇2un), the coefficient matrix of the
linear system in Eq. (49) would have become 1

t
I, i.e., a diagonal matrix. Yet, this choice

that makes the linear solving trivial, would constrain the time step t owing to the explicit
treatment of the viscous term, which imposes the time-step restriction of t < 0.125 h2

ν
,

see Eq. (41).
– The x, y, and z directions in Eq. (49) use the same coefficient matrix, which simplifies

the implementation.
– A modification that proved particularly useful at small t pertains a scaling of the pres-

sure by a factor t2 in the Poisson equation, and by 1/t2 in the correction step Eq. (51).
In other words, we compute pt2 when solving the Poisson equation, and subsequently
scale the pressure in the correction step Eq. (51) by a factor of 1/t2.
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3.4 Handling of boundary conditions

Herein, imposing boundary conditions (BCs) falls back on the use of so-called boundary
conditions enforcing (BCE) markers. These are fictitious markers, rigidly attached to the
boundary in a buffer zone that runs several layers of BCE markers deep. These markers are
used to enforce the no-slip and no-penetration conditions, i.e., to satisfy the u∗ = 0 condition
on the boundary. This condition is implemented differently in WCSPH, ISPH and KCSPH.

In one widely used approach [2], the expected kinematic attributes of the markers, calcu-
lated from the motion of the solid phase at the location occupied by the markers, are different
from their assigned values. The latter are calculated such that the no-slip and no-penetration
boundary conditions are implicitly enforced at the fluid–solid interface. The no-slip con-
dition states that the velocity of the BCE markers should oppose the velocity of the fluid
particles such that the average relative fluid–solid velocity at the interface is zero, i.e., the
average velocity at the interface is the expected interface velocity. Herein, the induced ve-
locity ũa at the position of marker a is computed from the velocity of the fluid markers
as

ũa =
∑

b∈F
ubWab

∑

b∈F
Wab

, (52)

where F denotes a set of fluid markers that are within the compact support of the BCE
marker a. The no-slip condition holds if (ũa + ua)/2 = up

a ; in other words, the assigned
velocity of marker a is [2]:

ua = 2up
a − ũa , (53)

where up
a is the expected wall velocity at the position of the marker a, and ũa is an extrapo-

lation of the smoothed velocity field of the fluid phase to the BCE markers.
The pressure of a BCE marker may be calculated via a force balance condition at the

wall interface, which leads to [2]

pa =
∑

b∈F
pbWab + (

g − ap
a

) · ∑
b∈F

ρbrabWab

∑

b∈F
Wab

, (54)

where g is the gravitational acceleration and ap
a is the acceleration of the boundary/solid at

the location of BCE marker a.
Note that the boundary condition treatment discussed above is based on a force balance

argument and is conservative but not consistent. One may rely on interpolation methods dis-
cussed in [30] to retain consistency close to the boundaries. This approach is fairly straight-
forward to implement in WCSPH – one can modify the velocity and pressure of the BCE
markers according to Eqs. (53) and (54), respectively. In regard to the ISPH method, (i) the
no-slip boundary condition is implemented in the linear system of Eq. (49); and, (ii) pres-
sure boundary conditions should be incorporated into the linear system in Eq. (51). In regard
to (i), the modified row of the linear system associated with the boundary marker a for the
velocity equation Eq. (49) is

Av
aux = 2(up

x )a

∑

b∈F

Wab, Av
auy = 2(up

y )a

∑

b∈F

Wab, Av
auz = 2(up

z )a

∑

b∈F

Wab, (55)
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Av
a =

[
. . . ,

∑

b∈F
Wab

︸ ︷︷ ︸
ath element

, . . . , Wab
︸︷︷︸

bth element s.t. b∈F and ∈S(a)

, . . .

]
. (56)

In regard to (ii), the interplay between Eqs. (50) and (54) leads to

Ap
a p = (

g − ap
a

) ·
∑

b∈F

ρbrabWab, (57)

Ap
a =

[
. . . ,

∑

b∈F
Wab

︸ ︷︷ ︸
ath element

, . . . , −Wab
︸ ︷︷ ︸

bth element s.t. b∈F and ∈S(a)

, . . .

]
. (58)

Note that instead of Eq. (54), one can enforce at the boundary the condition that the pres-
sure satisfy ∇pn+1 · n|∂� = 0, which mimics the traditional Eulerian handling of pressure
boundary conditions. Insofar as the discretized pressure equation is then concerned, the row
in the linear system in Eq. (50) that corresponds to boundary particle a will read

Ap
a p = 0,

Ap
a =

[
. . . ,

∑

b∈F
AG

ab · na

︸ ︷︷ ︸
ath element

, . . . , AG
ab · na

︸ ︷︷ ︸
bth element s.t. b∈F and ∈S(a)

, . . .

]
.

Above, AG
ab ∈ R3 is the bth element of discretized gradient matrix AG

a (see Eq. (26)), na is
the surface normal vector at the position of particle a, and p was defined in Eq. (34).

The fluid–structure forces on the boundary markers may be obtained from the pressure
and viscous forces acting on a boundary marker a according to the momentum balance
equations as follows:

Fa = ma

dua

dt
= ma(ν∇2un+1

a − 1

ρ
∇pn+1

a ). (59)

In the discrete sense, similar expressions as the ones discussed in Eq. (33) may be applied
to the right-hand side terms to obtain the contributions of the fluid domain on the structure.

Finally, KCSPH handles boundary conditions via multibody dynamics techniques [44].
The no-penetration condition between SPH markers and boundaries is enforced just as in
multibody dynamics, i.e., via unilateral constraints (see Eqs. (2d)–(2e)). This strategy allows
for (i) strict (per SPH particle) enforcement of the no-penetration, and (ii) more flexibility
in terms of the geometry of the boundary. On the downside, in the current implementation
this strategy can only be used to enforce the no-penetration condition but not the no-slip,
which is unlike WCSPH and ISPH. In its current implementation, this limits the KCSPH ap-
proach to problems where the boundary layer effects are negligible compared to the pressure
gradient and the inertia terms.

3.5 Particle shifting

The advection of SPH particles can lead to scenarios characterized by high particle disorder
and/or regions with high particle depletion/plenitude. Maintaining the accuracy and stability
of the SPH method under these circumstances requires mitigating measures, one being par-
ticle shifting. The latter calls for retiring a particle only to introduce it back in a consistent
fashion, slightly away from the previous location and the streamlines in order to improve the
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uniformity of the SPH particle distribution. Particle shifting in conjunction with an ISPH-
type implementation was used in [77] and subsequently reported to be effective in [72]. It
has also been used in conjunction with a WCSPH-class implementation in [63]. The shifting
vector is computed for particle i as:

δri = βr2
0 umaxt

∑

j∈S(i)

rij

|rij |3 ,

where r0 = 1
Ni

∑

j

|rij |, umax is the maximum velocity in the domain, t is the integration

time step, and β is an adjustable dimensionless parameter determining the magnitude of
the shifting vector. At the end of each time step the position of particle i is shifted by
xnew

i = xi + δri . Accordingly, the field variable ρi , pi , and ui are updated as:

pnew
i = pi + ∇pi · δri , ρnew

i = ρi + ∇ρi · δri , and unew
i = ui + ∇ui · δri .

4 Numerical experiments

The objective of this contribution is to compare KCSPH, a multibody dynamics-based so-
lution, against two established CFD methods, WCSPH and ISPH. To that end, two sets of
numerical experiments were carried out in this study: a first set was concerned with ensuring
that our WCSPH and ISPH implementations were sound. This set of experiments is of lesser
relevance; as such, it was moved into the Appendix. Therein, WCSPH and ISPH are vali-
dated in the context of a Poiseuille flow in Appendix A.1; and for a flow around a cylinder in
Appendix A.2. This section reports on the second set of numerical experiments, in which we
compare KCPSH against WCSPH and ISPH in conjunction with four tests chosen to probe
complementary aspects of the CFD solution. A “fluid-at-rest” test was chosen to gauge ef-
fectiveness in enforcing incompressibility; the dam break probed the effectiveness of each
solution for a free-surface problem that displays high transients; the floating cylinder prob-
lem was selected to assess the ability of WCSPH, ISPH, and KCSPH to handle fluid–solid
interaction phenomena; and small amplitude sloshing was chosen since it had an analytical
solution.

We use the standard SPH discretizations without particle shifting for the compressibility
test, the dam break, and the sloshing experiments. This is mainly due to the limitation of
the standard particle shifting method for free-surface problems. We use particle shifting in
ISPH and WCSPH for the Poiseuille flow and the flow around cylinder experiments in order
to maintain regular particle distribution. Finally, consistent discretizations are used in ISPH
for the Poiseuille flow and the flow around cylinder experiments to reduce the number of
neighbors and the computational costs of the pressure solver. All simulations were run in
3D using an open source code called Chrono [56] that is publicly available on GitHub [57].

4.1 The “fluid-at-rest” compressibility test

In this experiment we monitor the time evolution of the density for a fluid stored in a rectan-
gular container of dimensions 1.1 m × 1.1 m × 1.2 m (length/width/height). This “fluid-in-
a-bucket” test probes the free surface handling by the Lagrangian approach that underpins
WCSPH, ISPH and KCSPH, as well as the ability to enforce incompressibility. The model
consists of 11 000 fluid SPH particles.
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Fig. 2 Time variation of the average compressibility offset for the KCSPH method (Color figure online)

Fig. 3 Time variation of the average compressibility offset for the WCSPH method (Color figure online)

Finally, Fig. 2 reports KCSPH results. Setting aside the initial transients, KCSPH en-
forces incompressibility better than ISPH. This goes back to Eq. (35), which imposes in-
compressibility in KCSPH assertively. WCSPH is lacking this mechanism. Instead, an indi-
rect, “penalty” approach controls compressibility by a stiff equation of state that penalizes
density drift. One could draw a parallel between WCSPH and a widely used approach to
handling contact forces in granular dynamics, in which one uses a stiff penalty force to en-
force no-penetration conditions (a proxy for volume preservation, or incompressibility) at
the mutual contact point between two elements [17]. Just like in the case of WCSPH, the
penalty approach in contact mechanics requires small integration time steps for numerical
stability. For granular dynamics, a comparison of an assertive (kinematically constrained)
approach vs. a penalty approach is reported in [55].

Figure 3 reports WCSPH results for the same test. In line with expectations, compared
to ISPH, a smaller time step is required by WCSPH to remain below the 1% compression
threshold. This is explained by the numerical stiffness introduced by the equation of state
in Eq. (39), which translates into a small integration time step size owing to the conditions
in Eq. (41). The higher the value of the maximum velocity or k parameter, the higher the
stiffness, and thus the smaller the time step at which the simulation can proceed stably. As a
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Fig. 4 Time variation of the average compressibility offset for the ISPH method (Color figure online)

rule of thumb, an WCSPH step-size 10 times smaller than the ISPH time step was noted to
lead to comparable levels of errors in the two solvers. This is offset by the observation that
one WCSPH time step is markedly more inexpensive than an ISPH one owing to the latter
solver requiring the solution of a Poisson problem.

Finally, Fig. 4 reports the history of the average compression for ISPH, which reaches
1% compression at relatively large step size (t = 0.01 s). The 1% compression threshold
was selected to be in line with results reported elsewhere, e.g., [9].

4.2 Dam break

Lagrangian methods such as SPH use the dam break benchmark test to assess the per-
formance of fluid solvers in conjunction with a high transients, free-surface problem
[14, 32, 42, 59, 76]. The fluid domain is a rectangular prism of size 2.0 m × 0.5 m ×
1.0 m consisting of 64000 SPH particles that are placed on a regular lattice at t = 0 s.
The reference density and viscosity are ρ0 = 1000 kg/m3 and μ = 0.001 Pa s. The gravity
g = −9.8 m/s2 is applied in the z direction. The KCSPH, WCSPH, and ISPH results are
compared from two perspectives: (i) the fluid front position over time, and (ii) the roll up
and the second splash – two characteristics highlighted in previous studies [2, 14]. Figure 5
shows the fluid front position as a function of time. While the KCSPH solution slightly over-
estimate the front speed (no dissipation term is implemented in KCSPH), nearly identical
front propagation is predicted by WCSPH and ISPH. With regard to the roll-up and second
splash characteristics, all three methods predict well these two hallmark features of the dam
break experiment, see Fig. 6. In terms of pressure profiles, it is practically less challenging
to obtain smooth distributions via ISPH method, mainly due to numerical and physical dis-
sipation aspects involved in the solution. In the KCSPH method, the pressure field is defined
by the Lagrange multiplier of the constant density constraints, and similarly to WCSPH
method, it is in general noisy owing to the index 3 DAE solution approach employed by
KCSPH. See Sect. A.2 for a more detailed discussion on comparison of pressure profiles.

4.3 Fluid–solid interaction: a floating cylinder problem

This experiment was used to compare the methods in conjunction with a 3D scenario that
displayed ample fluid–solid boundary movement. It may be regarded as a simplified prob-
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Fig. 5 Comparison of
water-front propagation between
KCSPH (top), WCSPH (middle),
and ISPH (bottom) (Color figure
online)

Fig. 6 Comparison of the roll-up
(t = 1.75 s, left) and the second
splash (t = 2.05 s, right)
characteristics between KCSPH
(top), WCSPH (middle), and
ISPH (bottom) (Color figure
online)

lem that, in more complex forms, is conspicuous in several fluid–structure interaction ap-
plications in coastal and offshore structures, e.g., renewable energy devices and caissons.
A cylindrical object of radius r = 0.12 m and length L = 0.2 m is released from the height
h = 0.25 m above the surface of a tank of water at t = 0 s. The dimension of the fluid domain
is 1.0 m × 1.0 m × 0.2 m (width×height×depth). The gravity g = −9.8 m/s2 is applied
in the y direction. The reference density and viscosity of the water are ρ = 1000 kg/m3

and μ = 0.001 Pa s. The density of the cylinder is ρs = 0.7ρ, which turns it into a floating
structure.

The cylinder oscillates until its initial potential energy damps out. The steady-state so-
lution of this problem is given by Newton’s second law and basic hydrostatics. Indeed, the
upward buoyant force exerted on the body should balance the weight of the object, i.e.,
ρsgV = 62.0. Figure 7 illustrates the vertical position of the cylinder and the vertical com-
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Fig. 7 Upward buoyant force imparted over time by the fluid to the floating cylinder (left) and the position
of the cylinder over time (right) (Color figure online)

ponent of the fluid–structure interaction forces and shows that all methods close in on the
stead-state solution approximately 6 s into the simulation.

The variation of the vertical position of the cylinder is fairly smooth for all three meth-
ods and the discrepancy between the steady-state results is less than the SPH kernel length
employed for the three methods. Note, however, that the forces predicted by WCSPH and
KCSPH are noisier than ISPH. Many aspects of the underlying numerical methods of each
approach contribute to such transient discrepancy. From the discretization standpoint, the
number of particles within the kernel support, as well as the kernel function itself are the
main contributing factors. From the integration standpoint, the numerical dissipation of the
time integrator as well as the treatment of the pressure equation play important roles. For
instance, the diffusion nature of the Poisson equation solved in ISPH has a smooth effect
to the pressure field, while the state equation used in WCSPH is stiff and contributes to the
noise in the pressure field. As seen in Fig. 7(right) though, after a transient phase, all solvers
are settling on the same steady state configuration.

4.4 Sloshing

Sloshing probes the ability of a CFD solver to handle a free-surface problem that experiences
lower frequency transients (when compared to the dam break). In this experiment a fluid
container undergoes a forced vibration motion according to x = X0 sin(2πf t), where t is
time, and f and X0 are the frequency and the amplitude of the vibration, respectively. The
analytical solution of this problem under the inviscid flow assumption was discussed in [18]
and involves a set of natural frequencies ωn defined as

ω2
n = (2n − 1)π

( g

w

)
tanh

[
(2n − 1)π

(
h

w

)]
,

where n is the mode number, g is the value of the gravitational acceleration, w is the tank
width, i.e., the tank dimension in the direction of oscillation, and h is the height of the fluid
at rest. The analytical amplitude Fx0 of the net force exerted by the fluid on a sloshing tank
in a forced vibration can then be expressed as

Fx0

�2X0ml

= 1 + 8
w

h

N∑

n=1

tanh [(2n − 1)πh/w]

(2n − 1)3 π3

�2

ω2
n − �2

.

Above, � = 2πf is the frequency of the oscillation and ml is the mass of the liquid. The
exerted force on the container in the horizontal direction is expressed as Fx = Fx0 sin(2πf t).
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Fig. 8 Sloshing experiment: Comparison of fluid–structure interaction force along the axis of periodic mo-
tion (Color figure online)

We compare the KCSPH, WCSPH, and ISPH approximations with the analytical solution
for the following problem: the dimension of the domain (w × b × h) is 1.2 m × 0.4 m ×
1.7 m and the fluid density is ρ0 = 1000 kg/m3. The gravity g = −9.8 m/s2 is applied in
the z direction. The numerical model is comprised of 98k SPH markers, which are placed
on a uniform Cartesian lattice at t = 0 s. The frequency and amplitude of the vibration are
set to be f = 0.75 s−1 and X0 = 0.1 m. Figure 8 reports the sloshing force exerted on the
container over time.

Ignoring the initial transient period, all methods predict the dynamic interaction forces
with reasonable accuracy. We attribute the initial discrepancy between the numerical and
the analytical solutions to the fact that the simulation tank starts its motion from rest; hence
the initial condition of the simulation is different from the analytical solution, the latter
only reported in the steady-state regime. However, the initial transient motion is damped in
approximately 1 s. As shown in Fig. 8, the steady-state solution of ISPH closely matches the
analytical solution; the steady-state solution of the WCSPH slightly overpredicts whereas
the KCSPH solution underpredicts the analytical result.

5 Discussion, conclusions, and future work

This effort set out to gauge the performance of a multibody dynamics-based approach to
fluid dynamics, by comparing it with two classical Lagrangian CFD approaches: (i) WC-
SPH, which uses an equation of state for pressure along with explicit time stepping; and (ii)
ISPH, which falls back on a Poisson problem to enforce incompressibility with Chorin-style
time stepping. KCSPH enforces incompressibility via kinematic constraints that assert the
constant value of the density; a half-implicit symplectic Euler integrator is used for time
stepping.

KCSPH vs. WCSPH, and ISPH: implementation aspects. The three methods discussed were
implemented in an open source simulation engine called Chrono [56, 71]. WCSPH and ISPH
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Table 1 Dam break, qualitative
information: solver execution
times for the first, high transients,
second of the simulation

method t (s) simulation time (s) average time per step (s)

WCSPH 1.0 × 10−4 1646 0.17

WCSPH 2.5 × 10−4 682 0.17

ISPH 1.0 × 10−3 1692 1.69

ISPH 5.0 × 10−3 369 1.84

KCSPH 1.0 × 10−3 1523 1.52

KCSPH 5.0 × 10−3 531 2.65

leveraged GPU computing through CUDA [52]; KCSPH used multicore parallel computing
via OpenMP [53]. The amount of effort required to implement these solvers in software was
quite different. Implementing the WCSPH solver was easier than ISPH, which was easier
than KCSPH. ISPH requires the solution of a sparse linear system on the GPU; such a solver
is not readily available and herein the implementation resorted to Krylov subspace iterative
methods such as BICGSTAB and GMRES [62]. A memory-efficient solver requires sparse
storage of the underlying systems (see Eqs. (56) and (58)). Assembling and solving these
sparse linear systems made the ISPH implementation nontrivial. KCSPH was more chal-
lenging to implement since it required at each integration step the solution of a constrained
quadratic optimization problem, see [44]. This optimization problem was posed in hundreds
of thousands of variables – as many as SPH particles used in the formulation and its solution
was found using a Nesterov-type method [43].

KCSPH vs. WCSPH, ISPH: solution robustness. Due to the coupling they establish between
the field variables, KCSPH provides equally robust solution as ISPH. Owing to the integra-
tion scheme used in KCPSH and ISPH, the velocity and pressure/density are coupled more
tightly than in WCSPH, where pressure depends only on the density. Specifically in KC-
SPH, the pressures, which are a proxy of the Lagrange multipliers for the density kinematic
constraints, are coupled with the velocity in a fully implicit sense.

KCSPH vs. WCSPH and ISPH: quality of numerical solution. A simple answer to the ques-
tion “which method provides better quality results?” is difficult to produce as multiple fac-
tors come into play in determining the quality of the solution, e.g., the particle resolution,
the consistency vs. conservancy dichotomy, the decision to use or not particle shifting, the
size of the time step, the nature of the problem solved, etc. In general, ISPH turned out to be
easier to set up and get good results with. It is robust (non-finicky) and for a given simulation
time budget it provides better quality results. One stumbling block is that ISPH requires a
sparse linear solver. WCSPH, particularly for the inconsistent version, usually yields more
noisy results – this also came through in the flow-around-the-cylinder test. KCSPH shows
great potential (short simulation times, see discussion below), but it is a new method and it
its current implementation needs further work to address modeling (handling of viscosity,
no slip boundary conditions), and numerical solution (scalability) aspects.

KCSPH vs. WCSPH, ISPH: solution time. While an efficiency comparison between KCSPH,
WCSPH, and ISPH falls outside the scope of this contribution owing to the sheer scope of
such an undertaking, we considered insightful to provide timing results to understand, in-
sofar as order of magnitude is concerned, how long an SPH simulation would take. The
problem considered was the dam break simulation of Sect. 4.2. There was no attempt to op-
timize the WCSPH, ISPH, and KCSPH implementations. Implemented in Chrono, WCSPH
and ISPH rely on GPU computing; KCSPH draws on OpenMP. Table 1 shows qualitative in-
formation regarding the first second of simulation of the dam break problem. All 3D solvers
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used 215 000 SPH markers. WCSPH takes smaller step sizes due to the explicit time step-
ping. However, its effort per time step is both step-size independent and cheaper than for
ISPH or KCSPH. For the latter two, given the iterative nature of the solution process, higher
computational costs are incurred for larger step sizes. Note that even for the same integration
time step, the amount of time required to converge at different points in the ISPH/KCSPH
simulation might be different owing to the difference in the number of iterations that the
underlying linear system/optimization solvers require to converge. Note that at small time
steps, for a highly accurate solution, KCSPH is the faster method.

KCSPH vs. WCSPH and ISPH: where applicable. WCSPH is the method of choice for
many single-phase and free-surface CFD problems such as the dam break and Poiseuille
flow. ISPH is a better choice when more complex physics, e.g., vortex shedding, boundary
layer separation, etc., are present. This is the case for problems like flow around cylinder
and flow over backward facing step at higher Reynolds numbers (Re ≈ 102–103). ISPH is
also the solver of choice for FSI problems with relatively simple boundary geometries. On
the other hand, KCSPH leverages multibody dynamics approaches, which opens the door to
monolithic frameworks for more involved FSI problems, e.g., fording scenarios with com-
plex vehicle models (wheeled, tracked) [44]. Indeed, imposing ISPH or WCSPH boundary
conditions on a complex mesh, e.g., a vehicle, requires a uniformly generated point cloud,
whereas KCSPH does not have this restriction and is more flexible in terms of boundary
condition enforcement.

KCSPH, WCSPH, ISPH: connections to other physics. The inspiration for the KCSPH
method used in this study is a granular dynamics solution approach. Indeed, WCSPH has
a granular dynamics twin in the discrete element method (DEM) [17]: in DEM, there is a
penalty force associated with violating the no-penetration condition; in WCSPH there is a
penalty force (pressure) tied to the violation of the incompressibility condition. However,
there is a second class of granular dynamics methods that belongs to the family of com-
plementarity formulations, or differential variational inequality approaches, in which the
no-penetration condition is enforced by kinematic constraints, see, for instance, [66]. KC-
SPH is in fluid dynamics the twin of the complementarity approach in frictional contact
multibody dynamics. Continuing this granular dynamics–fluid dynamics parallel, the ana-
log of the contact force in granular dynamics is the pressure in fluid dynamics. Another
salient point in this analogy is that the pressure in ISPH is the analog of the Lagrange mul-
tiplier that enforces the ρ(t) = ρ0 in KCSPH, made clear in this contribution by casting
the SPH spatial discretization in a matrix–vector form. This is unsurprising given that in an
incompressible, Newtonian fluid model the pressure is devoid of a thermodynamic meaning
and instead becomes a mechanical attribute of the flow. For Newtonian fluids though, the
analogy ends here – while for a Newtonian fluid the shear force only depends on velocity,
in granular dynamics the friction force is tied to the contact (normal) force through a yield
condition that caps the former at a value equal to the normal force scaled by μ, the friction
coefficient, ff ≤ μfn.

KCSPH: what comes next. There are several directions in which KCSPH needs to be im-
proved. First, KCSPH should be endowed with support for computing viscous forces. In its
current implementation, it only handles inviscid flows. Second, our KCSPH implementation
needs a mechanism to enforce no-slip boundary conditions. No-slip could be implemented
through the friction between the SPH particles and the boundary; or, by kinematically con-
straining the motion of particles via bilateral constraints. Third, ongoing work is focused
on improving the particle shifting, a development that will benefit KCSPH but is applicable
to a broader class of SPH approaches when handling free surface flows. Preliminary results
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in this direction are reported elsewhere [31]. Likewise, it remains to carry out a more sys-
tematic analysis of the capabilities of the new method for FSI applications by using a more
thorough set of benchmark results as described, for instance, in [74]. Lastly, KCSPH is only
implemented to leverage parallel computing using multi-core hardware via OpenMP. For a
fair comparison, it should be implemented on the GPU, just like WCSPH and ISPH.
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Appendix: Verification and validation of ISPH and WCSPH

A.1 Poiseuille flow

Due to the absence of the pressure gradient term, this test is often used to validate the ac-
curacy of the viscosity model in the Navier–Stokes equations. The problem is set up as
follows: A rectangular domain of fluid with dimensions 1 m × 0.2 m × 0.08 m (in the
direction of flow, width of the channel, depth of the channel) consisting of 24 000 SPH
particles is subjected to a body force fb = 0.01 m/s2 in the positive x direction. Boundary
conditions enforce periodic boundary at the left and right, as well as at the front and back,
patch pairs of the domain. The top and bottom boundary conditions are no-slip velocity, see
Eq. (53). The fluid is accelerated by the body-force and reaches to a steady-state parabolic
velocity profile. The analytical solution of this problem is given by [49]

ux(y, t) = ρ|fb|
2μ

y(y − L)

+
∞∑

n=0

4ρ|fb|L2

μπ3(2n + 1)3
sin

(
πy

L
(2n + 1)

)
exp

(
− (2n + 1)2π2μ

ρL2
t

)
, (60)

where ρ0 = 1000 kg/m3, μ = 1.0 Pa s and L = 0.2 m. The WCSPH and ISPH results show
a close match with the velocity profiles obtained from the analytical solution as shown in
Fig. 9. The time required for reaching steady-state solution is assessed according to the
change in the maximum velocity. The relative difference between the maximum velocity at
t = 50 s and t = 100 s is 0.0001%, making the solution at t = 50 s a good approximation
of the steady-state solution for most practical purposes. The average error of the velocity in
the flow direction at t = 50 s is 0.1% and 0.7% for ISPH and WCSPH, respectively. The nu-
merical error associated with the spatial and temporal discretization decrease by increasing
the resolution and decreasing the time step, respectively. The standard discretizations (see
Eqs. (9)–(10)) are used in the WCSPH formulation along with larger kernel support radius
to maintain the spatial accuracy, while the consistent discretization (see Eqs. (12)–(13)) is
applied in the ISPH formulation. A more in-depth discussion on the accuracy of the dis-
cretization method was presented in [30].

A.2 Flow around cylinder

In the Poiseuille flow example, the flow field was the outcome of an interplay between in-
ertia, viscous, and body forces. The “flow around cylinder” test is used to verify the ISPH
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Fig. 9 Velocity profile of
transient Poiseuille flow obtained
from numerical simulation of
WCSPH, ISPH, and series
solution at different times

Fig. 10 Comparison of the steady-state velocity profiles predicted with WCSPH (left) and ISPH (right)
(Color figure online)

and WCSPH implementations in a scenario in which pressure gradient effects in the Navier–
Stokes equations are not negligible. In this test, the cylinder of radius 0.05 m is positioned
at the center of a rectangular domain of height 0.4 m and length 1.0 m. No-slip bound-
ary conditions are applied to the top and bottom walls while periodic (cyclic) conditions
are maintained at the left (inlet) and right (outlet) patches. A constant body force fb=1.0
m/s2 is applied in order to balance the viscous force. The density and viscosity are set to
ρ0=10.0 kg/m3 and μ=0.1 Pa s. The simulation time-steps are 10−3 s and 2 × 10−4 s for
the ISPH and WCSPH methods, respectively; the models use 36000 SPH fluid markers. Fig-
ure 10 illustrates the steady-state velocity predicted by WCSPH and ISPH; the profiles are
nearly identical to each other and also to an FEM-generated solution whose plot is not shown
here but reported in [60]. In contrast, the WCSPH and ISPH pressure fields are markedly less
similar. As shown in Fig. 11, which reports the pressure fields on fixed grids, the results are
qualitatively but not quantitatively similar. The quality of the ISPH pressure solution was su-
perior (based on a comparison with a FEM approach [60]), an aspect that can come into play,
for instance, in acoustics applications. We also note that there is no unique ISPH solution
for pressure when solving the Poisson equation under pure Neumann boundary conditions
– in fact, the pressure solution is unique up to a constant. In other words, in the absence
of Dirichlet boundary conditions, pressure is a relative quantity in the Navier–Stokes equa-
tions. Whereas the reference (minimum) pressure for WCSPH is often set to zero, in ISPH,
we choose the pressure solution with the average value of zero. Consequently, the difference
between the legend of the plots in Fig. 11 has no real significance as long as the difference
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Fig. 11 Comparison of the steady-state pressure profiles predicted with WCSPH (left) and ISPH (right)
(Color figure online)

Fig. 12 Variation of the drag
coefficient over time (Color
figure online)

between the solutions is a constant offset that only indicates a reference pressure. Note that
the choice of the reference pressure does not affect the gradient of the pressure, which is the
quantity that comes into play in the Navier–Stokes equation.

Herein, the expression used for the drag coefficient is Cd = Fd

0.5ρ A U2 , where Fd is the drag
force magnitude along the x axis, ρ = ρ0 and U = 1 m/s are the reference density and veloc-
ity, and A is the frontal area of the cylinder. Comparing drag coefficient results is insightful
since this exercise provides a macro-scale perspective that, while looking past micro-scale
fluctuations, captures emergent behavior of practical relevance. In Fig. 12, where a Finite
Element Method (FEM) analysis provides the “ground truth”, ISPH and WCSPH show dif-
ferent drag coefficients at the onset of the simulation yet the steady state solutions are in
good agreement – the relative error of the time-averaged drag coefficient over the last 2 s of
the simulations is 6.4%. We posit that two reasons contributing to these discrepancies are:
(i) the different time-integration schemes used in the formulations (see Sects. 3.3 and 3.2),
each with its own amount of numerical damping [24]; and (ii) the vastly different treatment
of the pressure by the two formulations.
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