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A B S T R A C T   

Steel corrosion induced cracking in reinforced concrete structures is often caused by volumetric straining at the 
steel-concrete interface. This volumetric strain is mainly controlled by the rate of generation of corrosion 
product, which depends on the diffusion of Cl− and dissolved O2 as well as the chemical reaction at the steel- 
concrete interface. While many numerical modeling techniques have been proposed to tackle this complex 
phenomenon, most have been limited to using staggered solution schemes, where the diffusion, chemical re-
action, mechanical strain, and crack fields are solved for separately. Unfortunately, such approaches introduce 
numerical errors that can lead to unrealistic predictions. Therefore, a coupled solution, is needed to remove the 
formulation induced errors and understand this complex phenomenon. 

To provide a unifying solution framework for corrosion induced cracking in reinforced concrete, a phase field 
formulation is presented and implemented with FEM algorithms. The governing equations are derived from the 
system’s free energy and Fick’s law of diffusion. The proposed formulation was first validated in 1D by 
comparing the modeling results with the semi-analytical solution approximated via Laurent series to avoid 
singularities in the complex domain. 2D plane strain solutions to the embedded rebar undergoing corrosion 
induced cracking with pre-cracks are also presented and compared with the approximated solutions from linear 
elastic fracture mechanics theory (LEFM). The modeling of crack propagation enabled by the proposed formu-
lation is also presented along with parametric studies to reveal the roles of the fracture toughness and perme-
ability of the concrete on the corrosion induced cracking. A case study was also conducted on H-pile steel with 
concrete jackets to demonstrate the feasibility of modeling corrosion induced fracture in reinforced concrete 
structures with complex steel-concrete interfaces.   

1. Introduction 

Corrosion is one of the most common reasons of serviceability 
deterioration of reinforced concrete structures [1–3]. For concrete 
structures exposed to aggressive environments, sea water or frozen soil 
for example, Cl− tends to disrupt the original passive environment and 
cause the generation of rust products resulting in a larger volume 
compared to the original reinforcement volume, as illustrated in Fig. 1. 
This volume expansion leads to an outward radial pressure on the sur-
rounding concrete. As a result, the inevitable micro-cracks introduced 
during concrete curing processes, as shown in Fig. 1a, will be under 
tension due to tensile hoop stress. This will lead to the damage and 
fracture of the concrete cover, as shown in Fig. 1c. Furthermore, these 
propagating cracks will create channels and accelerate the diffusive 

flow, which in turn increases the concentration of oxygen at the steel- 
concrete interface, and eventually accelerates the cracking of the sur-
rounding concrete cover. A comprehensive numerical model for 
analyzing this diffusion-corrosion-fracture process will provide an 
effective tool to investigate the failure process of concrete covers with 
respect to crack initiation and propagation and provide further knowl-
edge about the essential properties that influence the endurance and 
serviceability of reinforced concrete structures. Moreover, there have 
been few investigations of these effects within a framework that links the 
stress evolution and the crack propagation with the interfacial chemical 
reaction and the diffusivity change due to fracture evolution. 

Previous models used to evaluate corrosion introduced fracture have 
mainly focused on fracture propagation. The volume expansion due to 
corrosion at the steel-concrete interface is introduced by applying an 
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artificial displacement boundary condition (i.e., Dirichlet boundary 
condition) [4]. This simplified volume expansion is approximated with 
semi-empirical models [5,6] or simplified physical or chemical pro-
cesses. Pantazopoulou et al. [7] analyzed the crack induced stress soft-
ening in the cover concrete by driving forward the boundary condition 
based on rust production at a constant rate. El Maaddawy et al. [3] 
proposed a model for predicting the time duration from crack initiation 
to propagation. In their models, uniform internal radial pressure is 
assumed to be caused by the steel mass loss due to the corrosion process. 
Crack initiation within the concrete ring is considered to start when the 
hoop stress reaches the tensile strength of the concrete. Li et al. [8] 
derived an analytical model by assuming smeared cracks and obtained 
the critical crack propagation time. Most of these studies assumed a 
constant rate of corrosion and neglected the diffusion or the chemical 

reaction fields, which is essential to the corrosion process. 
Recently, electrochemical corrosion models have been proposed 

[9,10]. With the presence of H2O, O2 and Cl−, the Fe on the steel- 
concrete interface will be converted to its energetically stable form in 
nature, iron oxides and iron hydroxides. The accumulated rust could be 
a mixture of Fe2O3, Fe3O4, Fe(OH)2, and Fe(OH)3 among many other 
possible products, depending on the environment, reinforcement and 
concrete type. As shown in Fig. 2, at the active sites of the reinforcement, 
where the steel-concrete interface is exposed to the aggressive solutions 
with O2 and Cl−, a so-called anode is formed. The anodic reaction 
transforms Fe into free ferrous irons and electrons or iron oxides, 
Fe→Fe2+ + 2e−, (1)  

2Fe + 3H2O→Fe2O3 + 6H+ + 6e−. (2) 

Fig. 1. (a) Corrosion of reinforcement-concrete interface. (b) Dissolved O2, Cl− diffusion flux in intact concrete. (c) Rust development and crack influence on 
diffusion flux. (d) Local diffusion flux around crack. (e) Crack smeared with phase field. 
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The remaining part of the reinforcement forms the cathode where the 
free electrons combine with H2O and O2 and form the hydroxides, 
2H2O + O2 + 4e−→4OH−. (3) 

On the steel-concrete interface, the Fe2+ ions and OH− ions react to 
maintain overall electrical neutrality and form iron hydroxide, which is 
also called the rust, 
Fe2+ + 2OH−→Fe(OH)2. (4) 

This initially generated iron hydroxide may be oxidized further by 
dissolved oxygen, 
4Fe(OH)2 + 2H2O + O2→4Fe(OH)3. (5) 

This continuously generated rust leads to the radial pressure on the 
concrete cover until a crack initiates and propagates to the surface. 
Knowing that the final rust production and composition depends on the 
availability of dissolved O2 and surface pH value, many studies have 
investigated the volumetric change in this process, which plays an 
important role in fracture analysis of the concrete cover. Yu et al. [11] 
proposed a macro-cell corrosion model and predicted the corrosion rate 
of steel reinforcement in concrete structures based on the electro-
chemical principles. Cao et al. [12] conducted electrochemical analysis 
on the coupled micro- and macro-cell corrosion process where oxygen 
concentration and electrical potential distribution within the concrete 
cover were considered. The crack width evolution was then modeled 
based on a uniform thick-walled cylinder model. Nossoni et al. [13] 
developed an electrochemical-mechanistic model where the accumula-
tion of rust was related to the concentration of dissolved O2 on the 
interface. This volume expansion led to the internal radial pressure, 
which in turn drove the rust products to diffuse into the concrete pores. 
These models effectively simulated the steel-concrete interfacial corro-
sion process linked to a known diffusion field. However, the crack 
evolution is mostly neglected. The diffusivity change due to the fracture 
evolution was also not considered. Moreover, these electrochemical 
models are often computationally costly and may raise numerical issues 
if coupled with mechanical and fracture fields. 

To combine mechanical and fracture fields into the multi-physics 
problem, a phase field approach is proposed. Due to the discrete na-
ture of cracks, the classical finite element methods (FEM) is not equip-
ped to predict crack propagation, branching, and merging behaviors. 
There are several approaches to solve these problems such as extended 
finite element methods [14,15], meshless methods [16], and boundary 
element methods [17,18]. However, most of these approaches require 
re-meshing algorithms or a pre-defined crack propagation path, which 
greatly limited their application to problems with complex fracture 
patterns. 

Rashid pioneered the concept of a smeared crack model for the 
simulation of concrete applications [19]. By smearing the crack into a 
scalar phase field parameter, ϕ, where ϕ = 0 represents intact material 
and ϕ = 1.0 represents fully damaged material, the phase field method 
turns the problem into a continuous one. Later on, Francfort and Marigo 
proposed a variational free-discontinuity formulation for brittle fracture 
[20]. Msekh et al. [21] and Liu et al. [22] implemented phase field al-
gorithms for brittle fracture within the commercial software Abaqus. 
Ambati et al. [23] and Borden et al. [24] extended the algorithms to 
model ductile fracture problems. Benefiting from the continuous scheme 
of the phase field method, it is suitable for coupling with thermal, 
electrical, chemical or other fields [25,26]. Moreover, corrosion and 
diffusion problems have been modeled using the phase field method; 
Emilio et al. [27] coupled the phase field model with hydrogen diffusion 
where the fracture energy degradation due to the presence of hydrogen 
was modeled in metallic materials. Mai [28,29] modeled galvanic and 
pitting corrosion by relating the anodic current density to the interface 
kinetics parameter. For cementitious materials, Nguyen et al. [25] 
investigated shrinkage fracture in early-age cement using the phase field 
method. Wu et al. [30] coupled the diffusion field with the phase field 
parameter in hardened cement material by setting the diffusive coeffi-
cient dependent on the phase field gradient. The dissolved O2 flux along 
the crack propagation direction was compared to analytical solutions, 
which verified the diffusivity enhancement along the crack. However, 
the flux change along the direction perpendicular to the crack was not 
considered, which may play an important role within fracture problems 
under complex boundary conditions. The boundary conditions in their 
study are also applied artificially rather than linked to rust accumula-
tion. Until now, a comprehensive model with fully interacted diffusion, 
corrosion, mechanical and fracture fields for reinforced concrete struc-
tures has not been developed. 

The rest of the paper is structured as follows. In Section 2, the 
formulation of a phase field model fully interacted with diffusion, 
corrosion, and mechanical fields is presented via an energetic perspec-
tive, from which the governing equations are derived. This model is then 
implemented using finite element analysis algorithms within Abaqus. In 
Section 3, analytical solutions for the 1D concentration distribution are 
derived and singular points for fully fractured scenarios are approxi-
mated via Laurent series expansion with controllable error. A 1D finite 
element model is constructed and verified with analytical results. In 
Section 4, the corrosion-fracture coupling is conducted by relating the 
volume expansion to a stable diffusion field with constant diffusive co-
efficient. In addition, a plane strain finite element model is constructed 
and compared with analytical results obtained with linear elastic frac-
ture mechanics (LEFM). In Section 5, a phase field model for the me-
chanical strain and fracture fields is coupled with diffusion fields and 
corrosion processes. This model is applied on quarter circular and H-pile 
steel with concrete jacket cases. Parameter studies are conducted to 
determine the influence of material properties on the endurance of the 
concrete cover. Section 6 closes the paper with conclusions and 
discussions. 

2. Formulation 

In this paper, we aim to construct a multi-physics FEM model where 
diffusion, corrosion, mechanical and fracture fields are fully interacted 
to study the failure of the concrete cover due to corrosion. The diffusion 
field is (1) coupled with the phase field parameter to model the diffu-
sivity change due to material property degradation, (2) the corrosion 
process is coupled with the diffusion field by relating the rust expansion 
rate to the amount of dissolved O2 diffused to the steel-corrosion 
interface, and (3) the mechanical-fracture field in concrete cover is 
coupled with this volume change. In our analysis, homogeneous me-
chanical and diffusive properties are considered for the concrete cover. 

Fig. 2. Corrosion process in reinforced concrete.  
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2.1. Coupling of diffusion-corrosion-mechanics-fracture fields 

As shown in Fig. 3, the multi-physics model presented in our paper 
has the following main components.  

i. Corrosion process influenced by diffusion field change 

Under saturated or high relative humidity environments, the diffu-
sion coefficient of the oxygen within concrete will be the controlling 
factor of the anodic and cathodic reactions [31–33]. The low amount of 
dissolved O2 arriving at the interface between the reinforcement and 
concrete limits the rate of rust generation. Based on the corrosion pro-
cess described in Section 1, the corrosion rate is related to the dissolved 
O2 flux at the steel-concrete interface. The generation of rust, where iron 
hydroxides is assumed to compose the main part of the rust, is modeled 
based on the cathodic limiting reaction. The rust thickness development, 
δ, is estimated in [13] with 

dδ

dt
=

C2

(

jFe(OH)2
− jFe(OH)3

)

AFe(OH)2

ρFe

+ C3jFe(OH)3
AFe(OH)3

ρFe

, (6)  

where jFe(OH)2 and jFe(OH)3 are fluxes related to the limiting dissolved O2 
flux on the steel-concrete interface, AFe(OH)2 and AFe(OH)3are contacting 
areas, ρFe is the iron density, and C2 and C3 are constants. Considering all 
electrochemical processes and their coupling with mechanical and 
fracture fields is unrealistic and computational inefficient. To make the 
problem more amenable to numerical implementation while maintain-
ing the physics of the corrosion rate relation to the dissolved O2 flux, a 
simplified model relating the volume expansion rate of the rust layer 
directly to the dissolved O2 flux is introduced. It is assumed here that all 

of the dissolved O2 flux is consumed in the corrosion process, consid-
ering that the diffusion process in the concrete is relatively slow 
compared to the production of the rust. A linear correlation is assumed: 
Δv

V
= α

∫

∂Ω

tj⋅ndA = −αD

∫

∂Ω

t∇C⋅ndA, (7)  

where C is the concentration of dissolved O2 and V and Δv are the 
original volume and change in volume, respectively, of the steel- 
concrete interface layer where the corrosion process happens, referred 
to as the rust layer as shown in Fig. 1a. D is the diffusion coefficient. This 
rust layer in reinforced concrete structures normally ranges between 40 
and 100 μm[34–36], we choose the median, i.e., 70 μm as the rust layer 
thickness in our modeling. Also, j is the dissolved O2 flux related to the 
gradient of concentration field with j = − D ∇ C. Furthermore, n is the 
surface normal, α is the volume expansion per mole of dissolved O2, ∂Ω is 
the contacting area between rust layer and concrete, and t is time. The 
corrosion rate versus unit dissolved O2 flux for a changing environment 
could be adjusted with α based on the main rust production type. 
Quadratic or other types of relations could also be adopted depending on 
the specific corrosion processes. 

It is assumed that the reinforcement surrounded by the rust layer is 
not corroded and thus has no volume change, the interface between 
reinforcement and rust layer is fixed with respect to displacement d.o.f.s 
in the numerical modeling. Meanwhile, the interface between rust layer 
and concrete cover is free to move.  

ii. Stress field influenced by corrosion process 

The volume expansion of the rust layer creates an increasing radial 
pressure on the concrete cover, resulting in tensile hoop stresses and 

Fig. 3. (a) Coupling of diffusion-fracture-corrosion fields. (b) Calculation flow chart for the FEM implementation.  
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quasi-mode-I fracture scenarios for micro-cracks as shown in Fig. 1a.  

iii. Mechanical-fracture field evolution 

The phase field fracture parameter increases with increasing tensile 
stress. Once the critical energy release rate is reached, the crack starts to 
propagate until reaching the surface of the concrete cover, and in turn 
degrades the material properties. This is captured via the phase field 
parameter, ϕ, which increases in the direction of the propagating crack.  

iv. Diffusivity change due to material degradation 

Newly generated cracks create channels and accelerate the diffusion, 
which has been observed in experiments [37,38]. These channels create 
connected paths for dissolved O2 diffusion and thus the diffusivity is 
vastly enhanced along the crack. Meanwhile, the diffusivity remains the 
same along the direction normal to the crack. This coupling is modeled 
by setting the diffusion coefficient as a second order tensor, D, and 
relating it to the phase field parameter, ϕ, which was given in [30] by  
D(ϕ) = D(1 − ϕm)I + ϕmD(I − n1 ⊗ n1), (8)  

where D is the diffusivity for intact concrete, m is an adjustable power 
parameter, I is the identity matrix, n1 = ∇ϕ

||∇ϕ|| is the unit vector orthog-
onal to the crack plane. Since the diffusivity has little direct influence on 
the toughness of concrete materials, the diffusivity is one-way coupled 
to the phase field, while the phase field evolution is not directly linked to 
the diffusion field. 

2.2. Governing equations 

The governing equations in this paper are generated using the 
Rayleigh-Ritz method via an energetic approach [39] as well as Fick’s 
law of diffusion. The potential energy, Π, of the concrete occupying a 
region Ω is assumed to be composed of 3 parts: the elastic energy ψel with 
independent variables of total strain ε and degraded by phase field 
parameter ϕ, the fracture energy ψ frac with a single independent vari-
able, the phase field ϕ (these 2 parts compose the total stored energy 
density ψ), and external work W as shown in following equation: 

Π =
∫

Ω

ψdV − W =
∫

Ω

(

ψel + ψ frac

)

dV − W, (9)  

where ψel =
(

(1 − ϕ)2 +k
)

Φ(ε) = 1
2
(

(1 − ϕ)2 +k
)

ε⋅Eε with E being the 
elastic modulus tensor, ε = sym (∇u) is the total strain related to the 
displacement field u, Φ(ε) = ε ⋅ Eε is the elastic energy of the undamaged 
material. Linearized kinematics is assumed here in order to adopt the 
small-strain tensor concepts. A quadratic degradation function ((1 − ϕ)2 

+ k) is assumed, where k is a parameter keeping the system well- 
conditioned during the simulation. The constitutive equation for stress 
can be expressed as σ = ∂ψ

∂ε
. It should be noted that the diffusion has no 

direct influence on the stress and phase field for concrete, thus the total 
strain is equal to the elastic strain. For rust layer elements, the elastic 
strain εel is related to total strain, ε, and strain caused by corrosion, εc, 
with εel = ε − εc. Then the elastic energy function would change to Φ(ε) 
→ Φ(εel). For equilibrium expansion along all directions (in 2D), εc is 
obtained with 

εc = −1

2

(

αD

∫

∂Ω

t∇C⋅ndA

)

I. (10) 

The symbols have the same definitions as those in Eq. (7). The 
fracture energy part is given by 

ψ frac(ϕ,∇ϕ) = Gc

2

(

1

ℓ0

ϕ2 + ℓ0∇ϕ⋅∇ϕ

)

, (11)  

where Gc is the critical energy release rate and ℓ0 is the regularization 
scale parameter. The external work is given by 

W =
∫

Ω

b⋅udV +
∫

∂Ωt

h⋅udA, (12)  

where b and h are the body force and the traction on surface ∂Ωt, 
respectively. 

The governing equations regarding the displacement and phase field 
correspond to the Euler-Lagrange equation of the potential energy, 
which are found by taking the first variation of the potential energy with 
respect to each field variable, the derivation details could be found in 
our previous paper about phase field [40] and the resulting Gateaux 
derivatives are shown as follows, 

DδuΠ = −
∫

Ω

(∇⋅σ + b)⋅δudV +
∫

∂Ωt

(σn − h)⋅δudA, (13a)  

DδϕΠ =
∫

Ω

(

∂ψel

∂ϕ
+ Gcϕ

ℓ0

− Gcℓ0∇2ϕ

)

δϕdV  

+
∫

∂Ω

Gcℓ0∇ϕ⋅nδϕdA. (13b) 

Considering that potential energy formulations for diffusion process 
is too simplified and may loss authenticity within our formulation, we 
instead used the well verified Fick’s law of diffusion to construct the 
model. For a diffusion process following Fick’s law, the concentration 
field is governed by 
Ċ = ∇⋅(D∇C), (14)  

where the diffusion coefficient, D, is dependent on phase field parameter 
via Eq. (8). For the sake of simplification without considering the sec-
ondary derivatives, we neglect the spatial derivative of phase field in the 
D term; Eq. (14) is approximated with 
Ċ = (D(1 − ϕm)I + ϕmD(I − n1 ⊗ n1) )∇2C. (15) 

To verify that this approximation has only limited error, in Section 3, 
we derived the analytical solutions of Eq. (14) and obtained the nu-
merical solution of its approximation, Eq. (15), based on 1-D scenario, 
the results fit well with each other. 

Based on Eqs. (13a), (13b)–(15), the governing equations are ob-
tained as 
∇⋅σ + b = 0 in Ω, (16a) 
Ċ = (D(1 − ϕm)I + ϕmD(I − n1 ⊗ n1) )∇2C in Ω, (16b) 
−2(1 − ϕ)Φ(ε) − Gcℓ0∇2ϕ + Gc

1

ℓ0

ϕ = 0 in Ω, (16c) 
u = u on ∂Ω\∂Ωt, C = C on ∂Ω, (16d) 
σn = h on ∂Ωt. (16e) 

In these equations, Eq. (16a) is the balance of linear momentum, Eq. 
(16b) is Fick’s law and defines the coupling between diffusion and the 
phase field parameter, Eq. (16c) controls the phase field evolution and 
Eq. (16d)-(16e) are boundary conditions. The applied displacement is u 

and the applied concentration is C. In this model, the phase field evo-
lution is constrained to be within the concrete material by setting the 
critical energy release rate of reinforcement and rust layer to a large 
number to avoid damage development. In the following sections, the 
coupling between diffusion-fracture fields and corrosion-fracture fields 
are separately constructed and verified with analytical solutions. It 
should be noted that this formulation assumes monotonic loading sce-
narios, where no unloading or crack closure are considered. 

2.3. Finite element method implementation 

Based on the formulation and governing equations, a finite element 
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model is constructed with a flow chart as shown in Fig. 3b. The process 
follows typical FEM procedures that could be found in references such as 
[39,41] and implemented within Abaqus. UEL and UMAT subroutine 
files are coded to include the user defined element and material 
behavior. 3-Node triangle elements with plane strain conditions are 
considered as example in this paper. 

With the domain being divided with 3-node triangle elements, shape 
functions are first used for interpolation of displacement, phase field 
parameter, and concentration inside each element via 
(

ux

uy

)

= Nuue, (17a) 
ϕ = Nϕϕe, (17b) 
C = NCCe, (17c)  

where ϕe, Ce, and uestore node values for the phase field, concentration, 
and the displacement components for each element, respectively. The 
shape function vectors/matrices, Nu, Nϕ and NC are constructed with 
shape functions, N1, N2 and N3, and are defined as 

Nu =
[

N1 0 N2

0 N1 0

0 N2 0

N2 0 N2

]

, (18a) 
Nϕ = NC = [N1 N2 N3 ] (18b) 

The strain, phase field and concentration field gradients are obtained 
with B-matrices, Bu, B∇ϕ and B∇C, which are composed with derivatives 
of shape functions, 
ε = Buue, (19a) 
∇ϕ = B∇ϕϕe, (19b) 
∇C = B∇CCe. (19c) 

The displacement and phase field parameter in the concrete are 
solved using a two-step approach: First, we provide an initial condition 
for the oxygen concentration in the concrete (usually zero) to determine 
the strain of the rust layer, then we solve for the resulting equilibrium 
state for the displacement and fracture minimizing the potential energy 
by solving the following equation, 
[

Ku Kuϕ

Kϕu Kϕ

][

u

ϕ

]

=
[

ru

rϕ

]

(20) 

By replacing the displacement and phase field in Eq. (16a), c with the 
nodal values and B-matrices and taking first derivatives, the right hand 
side (RHS) terms, ru and rϕ in Eq. (20), are obtained by assembling their 
local (element) contributions denoted by the additional superscript e, 

ru,e =
∫

Ωe

[

(1 − ϕ)2 + k
]

B
T
u EBuuedV, (21a) 

rϕ,e =
∫

Ωe

(

Gcℓ0BT
∇ϕ(B∇ϕϕe) +

[

Gc

ℓ0

+ (ue)T
BT

u EBuue

]

NT
ϕNϕϕe

−
(

(ue)T
BT

u EBuue
)

NT
ϕ

)

dV, (21b)  

where Ωe is the volume of an element, E is the elastic modulus matrix 
(assumed to be written following Voigt notation). 

The element stiffness matrices, Kuu,e, Kuϕ,e, Kϕu,e and Kϕϕ,e (assem-
bled to get the global terms in Eq. (20)), are obtained by differentiating 
the RHS terms with respect to incremental nodal values of displacement 
and phase field, 

Kuu,e = ∂ru,e

∂ue
=
∫

Ωe

(

(1 − ϕ)2 + k
)

BT
u EBudV, (22a) 

Kuϕ,e = ∂ru,e

∂ϕe =
∫

Ωe

− 2(1 − ϕ)BT
u(Eε)NϕdV, (22b) 

Kϕu,e = ∂rϕ,e

∂ue
=
∫

Ωe

− 2(1 − ϕ)NT
ϕ(Eε)T

BudV, (22c) 

Kϕϕ,e = ∂rϕ,e

∂ϕe =
∫

Ωe

(

Gcℓ0BT
∇ϕB∇ϕ +

(

Gc

ℓ0

+ (ue)T
BT

u EBuue

)

NϕNT
ϕ

)

dV.

(22d) 
To solve for the evolution of the concentration distribution over 

time, we enforce Fick’s law in Eq. (14). In order to solve the PDE in the 
context of FEM, we convert it to the weak form using the Galerkin- 
weighted-residual method. From there we substitute our FEM interpo-
lation scheme and obtain the semi-discrete equation for Fick’s law: 
Mc Ċ + KcC = 0, (23)  

where Mc is the viscosity matrix, Kc is the stiffness matrix, and C is a 
vector containing the nodal values of the concentration. The subscript 
“c” is to distinguish from the corresponding terms for the elastic and 
fracture part of the simulation. The element viscosity matrix and 
element stiffness matrix are 

Me
c =

∫

Ωe

NTNdV, Ke
c =

∫

Ωe

BT
∇CDB∇CdV, (24)  

which are then assembled to obtain their global counterparts. Finally, to 
solve for the concentration evolution over time, we apply the forward 
Euler method to the semi-discrete equation (Eq. (23)), 
Cn+1 = Cn − ∆tM−1

c KcC
n, (25)  

where the superscripts n and n + 1 denote the timestep and ∆t is the 
timestep size. 

With the concentration distribution updated via Eq. (25), the rate of 
dissolved O2 involved in the corrosion process is obtained as 

Ȯ2 =
∫

∂Ω

j⋅ndA = −
∫

∂Ω

(D∇C)⋅ndA. (26) 

The corrosion introduced strain change of rust layer is then updated 
in accordance with this diffusion field change and further influences the 
displacement and phase field change in the concrete domain of the next 
step. 

For each modeling case, the geometry, material properties, modeling 
steps and boundary condition settings are included in a corresponding 
Abaqus input file. To define initial conditions and run a time dependent 
analysis for the concentration field, the modeling steps should be set as 
mechanical-temperature coupling steps where the concentration oc-
cupies the degree of freedom of the temperature field. In this manner, 
the density and specific heat variables are necessary for the calculation 
to move on but has no use for our analysis, thus these two variables are 
set as 1.0. The meshing should be refined and the element size for the 
expected crack propagation area should be lower than 0.1ℓ0 for accu-
racy consideration. In our plane strain models, 3-node triangular ele-
ments with 1 Gauss integration point were used, making use of its 
adaptability for complex geometries. Due to the limitations in Abaqus, 
the visualization was achieved by supplementary dummy elements 
composed with standard Abaqus elements and the user defined element 
nodal values are assigned to these dummy elements. 

3. Diffusion-fracture coupling verification 

To verify the coupling between the diffusion field and the phase field, 
the analytical solutions for a 1D problem are derived. A singularity point 
is found when the phase field reaches 1.0, corresponding to a fully 
cracked scenario. A Laurent series is used to approximate the solution to 
this singularity point with controllable error. Derivation details could be 
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found in Section A of the Appendix. A finite element model is then 
constructed and compared with the analytical solution. 

3.1. Analytical solution 

For the diffusion-fracture coupling governing equation in Eq. (16b) 
under plain strain conditions, and for a static diffusion state dC

dt = 0, the 
normal direction of the phase field parameter is 

n1 =
∇ϕ

||∇ϕ|| =
1

||∇ϕ||

⎡

⎢

⎢

⎢

⎣

∂ϕ

∂x

∂ϕ

∂y

⎤

⎥

⎥

⎥

⎦

, (27)  

where ||∇ϕ|| =
(

(

∂ϕ

∂x

)2
+
(

∂ϕ

∂y

)2 )1
2

.

For a plate with geometry shown in Fig. 4a, it is fixed at the boundary 
where x = 0 and stretched homogeneously along the positive x-direction 
at the right end boundary x = 1.0. This plate is set to have uniform 
Young’s modulus and critical energy release rate other than the 
compliant middle spot, which has a much lower critical energy release 
rate comparing with other locations. This centered crack could be 
smeared by a phase field distribution with following equation, as 
demonstrated in [42], 

ϕ(x) = ϕ0exp

(

− |x − a|
ℓ0

)

, (28)  

where a = 1
2 is the compliant spot location and ϕ0 is the phase field value 

at x = a. 
In 1D, the variation of the phase field along the y-direction can be 

neglected or set ∂ϕ

∂y = 0. Eq. (27) then becomes 

n1 =
[

1

0

]

(29)  

The diffusion coefficient tensor is then 

D = (D(1 − ϕm)I + ϕmD (I − n1 ⊗ n1) ) =
[

D(1 − ϕm) 0

0 D

]

(30) 

Plugging Eq. (30) into Eq. (14) yields 
∇⋅((D(1 − ϕm)I + ϕmD (I − n1 ⊗ n1) )∇C )

= −mDϕm−1∂ϕ

∂x

∂C

∂x
+ D(1 − ϕm) ∂2

C

∂x2
= 0. (31) 

Rearranging, Eq. (31) becomes, 

mϕm−1∂ϕ

∂x

∂C

∂x
= (1 − ϕm) ∂2

C

∂x2
. (32) 

For a phase field distribution described in Eq. (28), for x < a, 

∂2
C

∂x2
−

ϕm
0 mexp

(

m(x−a)
ℓ0

)

ℓ0

(

1 − ϕm
0 exp

(

m(x−a)
ℓ0

))

∂C

∂x
= 0. (33) 

The general solution for this ordinary differential equation is 

C = C2ℓ0

D

(

− (x − a)
ℓ0

+ 1

m
ln

(

ϕ−m
0 − exp

(

m(x − a)
ℓ0

)))

+ C3. (34) 

Following a similar process, the general solutions for x > a is 

Fig. 4. (a) Geometric and parameter setup. Phase field and concentration distribution for (b) ϕ0 = 0.9 and (c) ϕ0 = 1.0. Geometric variables are normalized by the 
domain length as shown in (a), concentration values are normalized by the left end concentration. 
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C = C4ℓ0

D

(

− (x − a)
ℓ0

− 1

m
ln

(

ϕ−m
0 − exp

(

− m(x − a)
ℓ0

)))

+ C5, (35)  

where C2through C5 are constants depending on the concentration 
boundary conditions. The detailed derivation can be found in the Sec-
tions A.1–A.2 of Appendix A. For the concentration boundary conditions 
shown in Fig. 4a, two solutions are calculated for ϕ0 = 0.9 and ϕ0 = 1.0 
and are shown in Fig. 4b-c. A singularity point is found when ϕ0 = 1.0. 
The concentration tends to +∞ as x tends to a−, and tends to −∞ as x 
tends to a+. From a numerical perspective, this is due to the singularity 
point of the logarithm terms in Eqs. (34) and (35). This corresponds to a 
physical scenario where the plate is totally broken where x = α, thus the 
diffusion process is completely blocked along the x-direction. However, 
a closed-form solution cannot be found to describe this singular behavior 
in this extreme situation. Approximation solutions are then sought 
which is described in the following section. 

3.2. Approximation of singularity with Laurent series 

For a better understanding of the diffusion-fracture coupling around 
a singularity Laurent series expansion is adopted to obtain an approxi-
mation with controllable error. The detailed derivation is shown in 
Section A.3 of the Appendix, where the Eq. (33) is reformed and 
expanded with Laurent series for integration with finite terms. 

The Laurent series is a generalized version of the Taylor series and 
composed with positive and/or negative power components. Being 
expanded in the complex plane, one major advantage of Laurent series 
over Taylor series is the capability to approximate around singular 
points for analytic functions. 

For x < a, take j =−D dC
dx as the flux, where D is the diffusion coef-

ficient, take L = (x−a)
ℓ0 for simplicity, Eq. (33) is reformed as 

ln j =
∫

Γ

mϕm
0 exp(mL)dL

(1 − ϕm
0 exp(mL) ), (36)  

where Γ is the 1-D domain as shown in Fig. 4a. Transforming the inte-
grated part in right hand side term of Eq. (36) gives 

f (Z) = mϕm
0 exp(mL)

(1 − ϕm
0 exp(mL) ) =

m

(ϕ−m
0 exp( − mL) − 1 ) = −m

1

(1 − Z), (37)  

where Z = ϕ0−mexp(−mL). The Laurent series expansion of Eq. (37) is 
obtained as 

ln j =
∫

Γ

mϕ0
mexp(mL)dL

(1 − ϕ0
mexp(mL) ) (38)  

= m

(

ϕm
0 exp(mL)

m
+ ϕ2m

0 exp(2mL)
2m

+ …

)

+ C6,

where C6 is a constant determined by boundary conditions. 
By selecting the number of terms adopted in the above derivations, 

the error can be reduced to an acceptable value. Taking only the first two 
terms as an example (and solving the left-hand-side of Eq. (38) for C by 
integration), the concentration distribution is 

C ≅
∫

Γ

− ℓ0

D
exp

(

ϕm
0 exp(mL) + ϕ2m

0 exp(2mL)
2

+ C6

)

dL. (39) 

Taking G(L) = ϕm
0 exp(mL) + ϕ2m

0 exp(2mL)
2 + C6 and computing the 

Taylor series of the integrand of Eq. (39) with respect to G(L) about zero, 
when only first two terms are selected, the integrating gives 

C ≅ −ℓ0

D

((

1 + C2
6

2

)

L + (1 + C6)
m

ϕm
0 exp(mL) + 1

2m
ϕ2m

0

(

1 + C6

2

)

exp(2mL)

+ 1

6m
ϕ3m

0 exp(3mL) + 1

32m
ϕ4m

0 exp(4mL) + C7

)

,

(40)  

where C6–C7 are constants determined by boundary conditions. The 
solutions for x > a follow the same procedure and the final expression 
can be found in Section A.3 of Appendix A. 

For the same problem shown in Fig. 4a and ϕ0 = 1.0, solutions with n 
terms of the Laurent series and p terms of the Taylor series are shown in 
Fig. 5a-b. With the Taylor series term number fixed to 10, the Laurent 
series term number is increased to around 5000 to minimize the error. 
The solution is approximately a step function: 
C = 0.0 for x < a, (41a) 
C = 1.0 for x > a. (41b) 

For the scenario with ϕ = 1.0 at x = a, the plate is completely frac-
tured, and the diffusion pathway is blocked. The x > a part forms a 
reservoir with a constant concentration with the value of left boundary. 
Similarly, x > a part has no diffusion from the left side and all the 
concentration outflows from the right boundary. Fig. 5c-d shows the 
phase field distribution and concentration evolution for different ϕ0 at, 
x = a. The concentration is continuously distributed, and the change is 
limited until ϕ0 reaches 1.0. 

3.3. 1-D FEM solutions 

To verify the accuracy of the numerical approach, a 1-D finite 
element model for the coupling of the diffusion field and phase field was 
implemented within MATLAB® and compared with the analytical re-
sults approximated with Laurent series expansion. The phase field 
parameter is preset and the concentration distribution is extracted from 
the modeling results to show the one way coupling of fracture to 
diffusivity. The process follows typical FEM modeling procedures: after 
initializing the concentration field, the Gauss integration locations and 
weights, shape function values (N matrix) and shape function derivative 
values (B matrix) are generated based on 2-node linear elements with 2 
Gauss points. The meshing is then carried out by decomposing the whole 
domain into elements of identical lengths. The nodal, integration point 
and integration point phase field values are then stored into corre-
sponding matrices, based on which the local K-matrix and RHS matrix 
for each element are generated. The global K-matrix and RHS matrix is 
then assembled and solved with the generalized minimum residual 
method solver within MATLAB® [43]. The corresponding pseudocode is 
included in Appendix B. 

Three phase field parameter distributions were considered. The 
corresponding concentration distribution results fit well with the 
analytical results approximated with Laurent series expansion, as shown 
in Fig. 6. When ϕ0 reaches 1.0, both the numerical and analytical results 
show the sudden change at the middle compliant point; the diffusion 
process is significantly reduced by this fully developed crack. 

4. Corrosion-fracture process coupling verification 

4.1. Volume change due to corrosion 

As discussed in Section 2.1, a linear relation is assumed for the link 
between the volume expansion rate and the dissolved O2 flux, as shown 
in Eq. (7). Volume expansion only occurs at the rust layer rather than 
within the concrete. Considering a uniform radial diffusion process 
where all dissolved O2 are consumed by the corrosion process at the 
steel-concrete interface, for a circular case of a homogeneous material 
and a pre-crack as shown in Fig. 7a, the concentration boundary con-
ditions are 
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C(r = r1) = 0,C(r = r2) = Cr2, (42)  

where r1 and r2 are the radius of the inside and outside boundary. 
Without the influence of the crack, the steady state diffusion will follow 
Fick’s law of diffusion (where a constant diffusion coefficient is assumed 
in this case) in polar coordinates: 

∇2C = 1

r

∂

∂r

(

r
∂C

∂r

)

= 0. (43)  

The solution with applied boundary conditions is 

C(r) = Cr2

ln(r2/r1)
lnr − Cr2ln(r1)

ln(r2/r1)
. (44) 

The volume expansion will be uniformly developed along the hoop 
direction. Thus, the effects on the concrete cover is equivalent to a 
uniform displacement boundary condition on the interface in the radial 
direction. 

Consider the gradient of concentration field at the interface, Γint (at r 
= r1), is obtained as 

∇C(r = r1) =
Cr2

ln(r2/r1)
1

r1

. (45) 

The displacement of Γint in the radial direction is then calculated via 
the volumetric change of reinforcement, 

R(t) = r1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + 2παt
DCr2

ln(r2/r1)

√

. (46)  

4.2. Linear elastic fracture mechanics (LEFM) analysis 

To focus on the coupling of corrosion-fracture fields, the coupling of 
the diffusion-fracture fields is temporally suppressed by setting the 
diffusion coefficient, D, as a constant rather than correlated to the phase 
field parameter. In this setting, the boundary conditions given by Eq. 
(42) apply for all processes and the tensile hoop stress will create a 
mode-I scenario for the pre-crack as shown in Fig. 7b. 

In LEFM, the crack initiation happens when the critical energy 
release rate, Gc, is reached, i.e., G = Gc. For a pre-crack with non-uniform 
mode-I loading conditions, the energy release rate, G, is found by taking 
G = K2

IE where KI is the mode-I stress intensity factor and is expressed in 
terms of a weight function based on a reference case. E is the Young’s 
modulus. It was shown by Bueckner [44] that the weight function, h, 
should depend only on the geometry and not on the loading conditions 
(if defined as the form in following equation), thus the KI under complex 
loading conditions could be calculated based on cases with identical 
geometries and simple loading conditions that have analytical solutions, 

h(r) = E

2KI

∂u

∂a
= E

2KI,ref

∂uref

∂a
, (47)  

Fig. 5. (a–b) Laurent series solution with varying terms. (c–d) Laurent series solution for varying ϕ0. Geometric variables and concentration values are normalized 
with the same method shown in Fig. 4. 
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Fig. 6. (a) 1D FEM model setup. (b) Phase field and (c) concentration distribution for 1D FEM comparing with analytical solutions approximated with Laurent series. 
Geometric variables are normalized by the domain length as shown in (a), concentration values are normalized by the left end concentration. 

Fig. 7. (a) Analytical model for crack initiation. (b) Hoop stress distribution. (c) Reference configuration for weight function.  
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where a is the pre-crack length, E is the Young’s modulus. KI and u are 
the mode-I stress intensity and y-direction displacement field for the 
problem to be solved while KI, ref and uref are for the reference system. 
For a pre-crack with loading conditions shown in Fig. 7b, the weight 
function is obtained by using a reference case with identical geometry 
and known analytical stress intensity factor, i.e., a mode-I edge crack 
applied with a uniform loading. The pre-crack here is assumed to be a 
minor crack with crack length a << r1. The stress intensity factor is then 
given by 

KI =
∫

Γc

p(r)h(r)dr, (48)  

where p(r) is the loading and Γc is the pre-crack length. 
Using Eq. (42) as the boundary conditions for the concrete cover 

shown in Fig. 7a, Lame’s equation under plane strain conditions under a 
polar coordinate system is 
d2ur

dr2
+ 1

r

dur

dr
− 1

r2
ur = 0, (49)  

where the displacement, strain and stress fields are given by 

ur =
A

r
+ Br, uθ = 0, (50a) 

εr =
∂ur

∂r
= −A

r2
+ B, εθ =

A

r2
+ B, (50b) 

σr =
E

(1 − 2ν)(1 + ν)

(

−(1− 2ν) A

r2
+B

)

, σθ

= E

(1 − 2ν)(1 + ν)

(

(1− 2ν) A

r2
+B

)

, (50c)  

where A and B are constants depending on the boundary conditions and 
are given by 

A = (R − r1)r2
2r1

(r2
2 + (1 − 2ν)r2

1 )
,B = (1 − 2ν)(R − r1)r1

(r2
2 + (1 − 2ν)r2

1 )
. (51) 

The stress intensity factor for the reference case shown in Fig. 7c is 
KI,ref = 1.12Rawσ0

̅̅̅̅̅

πa
√

, (52)  

where σ0 is the applied uniform stress, approximated with σθ in this case, 
and Raw is the shape coefficient obtained with following, 

Raw

(

a

r2 − r1

)

= sec

(

πa

2(r2 − r1)

)

1
2

(

1 − 0.025

(

a

r2 − r1

)2

+ 0.06

(

a

r2 − r1

)4
)

(53a) 

The crack opening displacement for the reference system is obtained 
from the displacement field of the crack tip area with θ = π [45], 

uref =
4(1 − ν2)

E
KI,ref

̅̅̅̅̅

r’

2π

√

= 4.48(1 − ν2)σ0

E

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a(a − (r − r1) )
2

√

, (53a) 
∂uref

∂a
= 2.24Raw(1 − ν2)σ0

̅̅̅

2
√

E

(

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a

(a − (r − r1) )

√

+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(a − (r − r1) )
a

√
)

, (53b)  

where r′ is the distance between the crack tip and the point of interest. 
Plugging Eq. (53b) into Eq. (47) and the weight function is obtained as 

h(r) = E

2KI,ref

∂uref

∂a
= (1 − ν2)

̅̅̅̅̅̅̅̅

2πa
√

(

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a

(a − (r − r1) )

√

+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(a − (r − r1) )
a

√
)

(54) 
Thus the mode-I stress intensity factor for Fig. 7b is obtained by 

plugging Eq. (54) into Eq. (48) 

KI =
∫ r1+a

r1

σθ(r)h(r)dr  

= E
(1 − ν)
̅̅̅̅̅̅̅̅

2πa
√

(

A
̅̅̅

a
√
(

− 1

2(a + r1)
3
2

ln

(

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(a + r1)
√

− ̅̅̅

a
√

̅̅̅

a
√ +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(a + r1)
√

)

+
̅̅̅

a
√

(a + r1)r1

)

+ A
̅̅̅

a
√

(

̅̅̅

a
√

r1

+ 1

2

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(a + r1)
√ ln

(

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(a + r1)
√

− ̅̅̅

a
√

̅̅̅

a
√ +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(a + r1)
√

))

+ 8Ba

3(1 − 2v)

)

(55) 
The energy release rate is then obtained with 

G = (1 − ν2)K2
I

E
. (56) 

The time when G reaches the critical energy release rate Gc is 
recorded as the crack initiation time, which will later be compared with 
the numerical results in the next section. 

4.3. Numerical implementation 

Parameter studies are conducted with finite element modeling and 
compared with analytical solutions. The influences of geometric settings 
and material properties on the fracture development are considered in 
this study: the pre-crack length is chosen as the geometric variable; for 
the material property, the volume expansion rate per mole of dissolved 
O2, α, and diffusion coefficient D have similar effects on the corrosion 
introduced volume expansion, i.e., it is expected that the volume 
expansion rate will be increased with either increased α and constant D 
or constant α and increased D. Since they are all of the first order from 
Eq. (7), we use their products, αD, to represent the influence of the 
material property change on the fracture development. The results are 
shown in Fig. 8. 

Quarter circular cases with geometry shown in Fig. 8a were used for 
the model. A circular steel bar with radius of 3 mm served as the rein-
forcement and the concrete cover also had a uniform thickness of 3 mm. 
The x-direction displacement of the top boundary and the y-direction 
displacement of bottom boundary were constrained. The outside 
boundary has no displacement constraints. It is assumed that this con-
crete structure is within an environment with constant dissolved O2 and 
all O2 at the reinforcement-concrete interface is consumed. Corre-
spondingly, the concentration is assumed to be 1.0 at the outside sur-
face, Γout, and 0.0 at the inside surface, Γin. A pre-crack with length a =
0.1r1 is introduced at the steel-concrete interface along the bottom 
boundary. Corresponding to the LEFM analysis, the crack initiation time 
is taken as the time when the phase field parameter at the crack tip 
reaches 0.99. The phase field distribution at this point in time is shown 
in Fig. 8b. The trend of crack initiation time obtained from the numerical 
approaches described in Section 2 with varying pre-crack length and αD 
fits well with the trends in the LEFM analytical results. The error in-
creases with increasing pre-crack length, which is due to the assumption 
of minor cracks in the LEFM analysis. For both the numerical and 
analytical results, the crack initiation time decreases with increasing 
pre-crack length and αD value, where α is the volume expansion rate per 
mole of O2 and D is the diffusion coefficient. LEFM analysis yields ac-
curate crack initiation times when the crack length is small and uniform 
hoop stress conditions are applied. However, when the crack length 
increases and the interface displacement is influenced by the changing 
diffusion processes, the LEFM model fails to describe the real phenom-
ena while the numerical model can still accurately simulate complex 
displacement and concentration conditions. 

5. Fully interacted modeling 

Now that the diffusion-fracture and corrosion-fracture coupling have 
been separately verified, steel bar reinforced and H-pile steel combined 
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concrete structures were modeled to study the corrosion induced frac-
ture behavior based on the formulation and numerical implementation 
processes discussed in Section 2. For computational efficiency, quarter 
structures were simulated to take advantage of symmetry. 

5.1. Cylindrical concrete cover 

First, a series of quarter circular cases are simulated with geometry 
shown in Fig. 8a. The crack propagation and corresponding concentra-
tion distribution for different stages are shown in Fig. 9. With the crack 

propagating, a diffusion channel is generated and the flux of oxygen is 
directed into the channel. As shown in Fig. 9g, along the route Γθ shown 
in Fig. 9c and f, for a large θ where the phase field parameter remains at 
a low level, the concentration distribution is only slightly influenced. 
With θ becoming lower, the phase field parameter increases rapidly 
while approaching the crack and the concentration increases corre-
spondingly after slightly decreasing, showing that crack propagation 
accelerates the diffusion process. 

The crack propagation was characterized by relating the crack length 
to time steps for different variables as shown in Fig. 10. Three stages are 

Fig. 8. (a) FEM model for crack initiation, where the inside boundary, Γin points to the interface of reinforcement and rust layer. (b) The phase field distribution of 
concrete at crack initiation step. (c-d) Crack initiation time step comparison with the analytical model. 
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found in this process. (1) The first stage begins at the start of the 
simulation until crack initiation. This stage includes the time steps 
required for the dissolved O2 and Cl− to reach the interface of the 
reinforcement and concrete and the energy release rate of the crack tip 
area reaching the critical value. (2) The second stage corresponds to the 
time steps required for the crack to propagate to the outer boundary. 
With the crack length increasing, the diffusion process is accelerated and 
thus rust accumulates faster, meanwhile, the system becomes more 
compliant and the time step needed for a unit increase in crack length 
decreases, resulting in a decreasing slope of the crack position versus 
time. (3) The third stage begins when the crack reaches the outer surface 
and the crack has reached its maximum length. At this point, the crack 
width will enlarge and concrete cover palling effects will be the main 
effects of this stage. Thus, the critical points in time correspond to crack 
initiation, t1, and failure, t2. 

Following the same procedures, the influence of material properties 
on the crack propagation was also studied. For different Gc and αD, crack 
propagation also follows the 3-stage behavior but with different crack 
initiation and propagation time steps. The crack initiation and failure 
time steps were determined for varying Gc and αD as shown in Fig. 11. As 
αD increases, the corrosion process is promoted and more rust is 

accumulated and the crack initiation and propagation processes are 
accelerated. As a result, the critical times for crack initiation and failure 
decrease. As Gc increases, a higher stress field will be needed for crack 
initiation. Thus, the propagation processes are delayed. 

5.2. H-pile steel with concrete jacket 

H-pile steel is widely used in bridge and other transportation struc-
tures. After being exposed to aggressive environments, severe localized 
corrosion damage has been detected in these weight supporting com-
ponents, which endangers the serviceability and durability. Many repair 
techniques could be used to restore the loading and buckling capacity to 
the design level. Compared to enhancement approaches on the flange 
with steel channels [46], the application of concrete jackets provides 
extra protection against the environmental erosion as well as alternative 
load paths to increase the loading capacity [47]. Like many other steel- 
concrete structures, the failure of fracture in concrete jackets due to H- 
pile steel expansion introduced by loading or corrosion are the main 
reasons for the serviceability loss. To understand this failure process, 
which is essential for the design of repair approaches for such types of 
structures, experimental studies have been conducted with push-out 

Fig. 9. (a–f) ϕ and C contour of concrete for critical time steps. (g) ϕ and C distribution along route Γθ as shown in (e) and (f).  
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tests [48]. However, numerical or analytical analysis on the failure 
processes of loading or corrosion-introduced concrete jacket failure are 
still lacking. 

In this section, the push-out induced concrete jacket fracture 
behavior was modeled with the proposed phase field formulation in two 
loading steps following the experiment in [49]. The mechanical loading 
was modeled first to calibrate the proposed phase-field model. The 
corrosion induced fracturing was modeled subsequently to understand 
the long-term reliability of the structure. In accordance with the ex-
periments, a combined structure with HP250×62 H-pile steel and con-
crete jacket as shown in Fig. 12a with a radius of r = 254 mm was used in 
the numerical modeling. A quarter of the cross section as shown in 
Fig. 12b was used for computational efficiency, taking advantage of 
symmetry. As shown in Fig. 12b, at the top and bottom boundaries, the 
displacement components are constrained along the x- and y-direction, 
respectively. For push-out induced fracture, a z-direction loading sce-
nario was considered. The equivalent boundary conditions are applied 
on the inside boundary, Γin, with following approach: for a given applied 
global strain, εz, the resulting in-plane displacement at the steel-concrete 
interface was calculated via Poisson’s ratio of the steel and applied on 
Γin. Considering that the Young’s modulus of steel could be 9–10 times 
higher than that of concrete, the steel is then assumed to be rigid 

Fig. 10. Crack length (normalized with the reinforcement radius) with respect 
to time for varying (a) Gc (unit: J/mm2) and (b) αD (unit: mole−1 × mm2/s), 
where t1 and t2 are for critical time of crack initiation and failure. 

Fig. 11. Critical times for crack initiation and failure for different (a-b) αD and 
(c) Gc. 
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relatively to concrete, so that elastic mismatch between steel and con-
crete can be neglected. The outside boundary, shown as Γout in Fig. 12b, 
is free to move. 

The critical steps of the crack propagation caused only by the me-
chanical loading are shown in Fig. 13a-c and show a similar pattern with 
the experimental results as shown in Fig. 13d. The propagation angles 

have some difference, which may come from the randomly distributed 
aggregates and micro-cracks in concrete. The average confining pressure 
on the steel-concrete interface is shown in Fig. 13e. The modeling result 
was found to be in close agreement with the experimental data. The 
crack initiates from the lower corner of the H-pile steel flange, which is 
due to the stress concentration induced by the geometry. The stress 

Fig. 12. (a) H-pile steel with concrete jackets under push-out experiments [49]. (b) Geometry of the quarter section structure used in the phase field model.  

Fig. 13. (a–c) Crack propagation of critical steps under push-out modeling of concrete jackets with the phase field formulation. (d) Concrete jacket crack patterns in 
push-out experiments [49] and numerical modeling. (e) Average pressure on the inside boundary versus strain applied along the z-direction. 
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concentration at the upper corner also leads to crack initiation and 
propagation before it connects to the crack initiated from the lower 
corner. Afterwards, the crack propagates towards Γout until final failure. 
Correspondingly, the average pressure increases linearly before crack 
initiation, and then starts to drop due to the material degradation 
induced by fracture development. The drop is sharp at first and then the 
slope decreases until the reaction force reaches nearly 0.0, indicating the 
final failure of the H-pile steel-concrete combined structure. 

For corrosion induced fracture, the push-out loading is first applied 
until the average pressure on Γin reaches 70% of the maximum pressure 
(the peak pressure point P1 as shown in Fig. 13e) to model the stress 
introduced by the supported upper bridge parts. Corrosion is not 
considered during this pre-loading process. After the pre-loading, the 
diffusion field is then introduced by setting the concentration as 1.0 on 
Γout and 0.0 on Γin boundaries separately. The corrosion effects on the 
fracture behavior were modeled using the proposed phase field formu-
lation. Fracture development and concentration distribution fields are 
shown in Fig. 14a-c and e-f, respectively. The average pressure after the 
diffusion field is introduced is calculated and shown in Fig. 14 g. The 
crack initiates from the H-pile steel flange corners as shown in Fig. 14a, 
and propagates as shown in Fig. 14b, before final failure shown in 
Fig. 14c. As a result of the crack propagation, a diffusion channel is 

formed that accelerates the dissolved O2 flux, as shown in Fig. 14d-f. 
This accelerated diffusion further aggravates the corrosion which con-
tinues to promote crack propagation until the crack grows through the 
concrete cover. The average pressure first increases nonlinearly until 
reaching the maximum value corresponding to the crack initiation step 
shown in Fig. 14a. Afterwards, a sudden average pressure drop was 
observed. This pressure drop continues until it falls below the initial 
pressure value under the pre-load, indicating the H-pile starts losing 
load bearing capacity. This pressure degradation continues until the 
concrete cover is cracked through and the H-pile completely loses its 
load bearing capacity. 

Using the model, the effect of concrete diffusivity (αD) on crack 
propagation was investigated. As shown in Fig. 14 h, increasing αD leads 
to the delayed crack initiation time. The peak average pressure, how-
ever, stays almost constant with varying αD. This indicates that the 
increased permeability will only affect the long-term durability of the H- 
pile, but it does not affect the peak strength. This brief case study 
demonstrates the capability of the proposed phase-field formulation to 
model structural scale, durability related problems. 

Fig. 14. (a–c) Corrosion induced crack propagation of critical times for concrete jackets. (d-f) Concentration distribution for critical steps. (g) Reaction force on the 
inside boundary with respect to time for varying αD (unit: mole−1 × mm2/s). (h) Crack initiation time and peak average pressure with respect to varying αD. 
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6. Conclusions 

A hydro-chemo-mechanical phase field formulation for corrosion 
induced fracture problems was constructed and verified. The FEM so-
lutions to three corrosion induced cracking problems ranging from the 
steel-concrete interface scale to the structural scale were calculated. 
These solutions demonstrated the feasibility of applying the proposed 
formulation to a wide range of corrosion induced durability problems of 
concrete structures. The specific conclusions are summarized below.  

(1) Simultaneous solutions to multifield coupling 

The proposed formulation can successfully model the cracking 
induced change in the diffusion field, as well as the associated changes in 
corrosion reactions at the steel-concrete interface. This, for the first 
time, directly linked the diffusion to rust, and eventually to fracture and 
mechanical strains.  

(2) Failure prediction at both the interface scale and structural scale 

The proposed formulation demonstrates the feasibility of modeling 
damage in terms cracking and straining with corrosion at the interface 
scale. This enables the investigation of corrosion induced deterioration 
of steel-concrete interface as well as concrete cover spalling associated 

with corrosion induced cracking. In addition, the H-pile modeling re-
sults demonstrate a successful structural response prediction while 
maintaining a highly coupled simulation using the proposed 
formulation. 
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Appendix A. Derivation for diffusion field evolution with known fracture field 

This appendix presents the derivation details for Sections 3.1–3.2. 

A.1. 1D general form 

Starting from Eq. (14): 
dC

dt
= ∇⋅(D∇C) = ∇⋅((D(1 − ϕm)I + ϕmD(I − n1 ⊗ n1) )∇C ) in Ω. (A.1)  

For 2-D steady flow state: dC
dt = 0 and  

n1 =
∇ϕ

||∇ϕ|| =
1

||∇ϕ||

⎡

⎢

⎢

⎢

⎣

∂ϕ

∂x

∂ϕ

∂y

⎤

⎥

⎥

⎥

⎦

, (A.2)  

where ||∇ϕ|| =
(

(

∂ϕ

∂x

)2
+
(

∂ϕ

∂y

)2 )1
2

. Consider a scenario where the phase field ϕ varies only in the x-direction, or ∂ϕ

∂y = 0, then 

n1 =
[

1

0

]

(A.3)  

The diffusive coefficient D in Eq. (A.1) could then be obtained as 

D = (D(1 − ϕm)I + ϕmD (I − n1 ⊗ n1) ) =
[

D(1 − ϕm) 0

0 D(1 − ϕm)

]

+ ϕmD

([

1 0

0 1

]

−
[

1 0

0 0

])

(A.4)  

=
[

D(1 − ϕm) 0

0 D(1 − ϕm)

]

+ϕmD

[

0 0

0 1

]

=
[

D(1 − ϕm) 0

0 D

]

(A.5)  

Plug Eq. A.5 into Eq. (A.1) and consider 2-D steady flow state, i.e., dC
dt = 0, 

C. Wei et al.                                                                                                                                                                                                                                     



Cement and Concrete Research 144 (2021) 106404

18

0 = ∇⋅(D(1 − ϕm)I + ϕmD (I − n1 ⊗ n1) )∇C = ∇⋅

⎛

⎜

⎜

⎜

⎝

[

D(1 − ϕm) 0

0 D

]

⎡

⎢

⎢

⎢

⎣

∂C

∂x

∂C

∂y

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

(A.6)  

= ∇⋅

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

D(1 − ϕm) ∂C

∂x

D
∂C

∂y

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

= ∂

∂x

(

D(1−ϕm) ∂C

∂x

)

+ ∂

∂y

(

D
∂C

∂y

)

= −mDϕm−1∂ϕ

∂x

∂C

∂x
+ D(1 − ϕm) ∂2

C

∂x2
+ D

∂2
C

∂y2
.

Adopting the assumption ∂ϕ

∂y = 0, then the concentration also remains constant along the y-direction. Eq. (A.6) is rewritten as 

mϕm−1∂ϕ

∂x

∂C

∂x
= (1 − ϕm) ∂2

C

∂x2
. (A.7)  

Rewriting Eq. (28) here, 

ϕ(x) = ϕ0exp

(

− |x − a|
ℓ0

)

(A.8)  

For x < a, Eq. (A.8) turns to 

ϕ(x) = ϕ0exp

(

x − a

ℓ0

)

(A.9)  

The gradient of ϕ along x-axis is then, 
∂ϕ

∂x
= ∂

∂x

(

ϕ0exp

(

x − a

ℓ0

))

= ϕ0

ℓ0

exp

(

x − a

ℓ0

)

(A.10)  

Eq. (A.7) is then rewritten as 

∂2
C

∂x2
−

mϕm
0 exp

(

m(x−a)
ℓ0

)

ℓ0

(

1 − ϕm
0 exp

(

m(x−a)
ℓ0

))

∂C

∂x
= 0. (A.11)  

Taking j =−D dC
dx as the flux, where D is the diffusion coefficient, taking L = (x−a)

ℓ0 for simplicity, thus dL = 1
ℓ0 dx, and substituting into Eq. (A.11) yields 

∂j

∂x
= mϕm

0 exp(mL)
ℓ0(1 − ϕm

0 exp(mL) ) j. (A.12)  

Following Eq. (A.12) and taking ∂j
∂x = dj

dx, using the fact that dx = ℓ0dL, Eq. (A.12) is then 
dj

j
= mϕm

0 exp(mL)
ℓ0(1 − ϕm

0 exp(mL) ) dx = mϕm
0 exp(mL)dL

(1 − ϕm
0 exp(mL) ). (A.13) 

Integration of Eq. (A.13) along the 1D domain Γ leads to 
∫

Γ

dj

j
= lnj =

∫

Ω

mϕm
0 exp(mL)dL

(1 − ϕm
0 exp(mL) ). (A.14)  

A.2. Analytical solution 

For x < a, the following inequalities apply: L = (x−a)
ℓ0 < 0, 0 < exp (mL) < 1, and (1 − exp (mL)) > 0. 

For scenarios with positive directed flux, i.e. j > 0, Eq. (A.14) leads to 
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lnj =
∫

Γ

mϕm
0 exp(mL)dL

(1 − ϕm
0 exp(mL) ) =

∫

Γ

mϕm
0 dL

(exp( − mL) − ϕm
0 )

= −mL − ln
(

exp( − mL) − ϕm
0

)

+ C1, (A.15)  

where C1 is a constant. Exponentiating both sides yields 
exp(lnj) = exp

(

−mL− ln
(

exp(−mL)−ϕm
0

)

+C1

)

exp(lnj) = j = −D
dC

dx
= C2exp( − mL)

exp( − mL) − ϕm
0

, (A.16)  

where C2 = exp (C1). Integrating Eq. (A.16) leads to 

C = C2ℓ0

D

(

− L + 1

m
ln
(

ϕ−m
0 − exp(mL)

)

)

+ C3 = C2ℓ0

D

(

− (x − a)
ℓ0

+ 1

m
ln

(

ϕ−m
0 − exp

(

m(x − a)
ℓ0

)))

+ C3. (A.17)  

Following same procedures, for x > a 

C = C4ℓ0

D

(

− L − 1

m
ln
(

ϕ−m
0 − exp( − mL)

)

)

+ C5 = C4ℓ0

D

(

− (x − a)
ℓ0

− 1

m
ln

(

ϕ−m
0 − exp

(

− m(x − a)
ℓ0

)))

+ C5, (A.18) 

where C2–C5 are constants. 

A.3. Approximation of singularity with Laurent expansion 

For x < a, take Z = ϕ0−m exp (−mL) and the rewritten integrand term of Eq. (A.14) as 

f (Z) = mϕm
0 exp(mL)

(1 − ϕm
0 exp(mL) ) = − m

(1 − ϕ−m
0 exp( − mL) ) = − m

(1 − Z). (A.19)  

For Eq. (A.19), the following conditions hold 
L = x − a

ℓ0

< 0, Z = ϕ−m
0 exp( − mL) > 1. (A.20)  

For any analytic function g(Z) on the annulus: r1 < |Z − Z0| < r2, its Laurent series expansion is expressed as, 

g(Z) =
∑

∞

n=1

bn

(Z − Z0)n +
∑

∞

n=0

an(Z − Z0)n, (A.21)  

where 

an =
1

2πi

∫

γ

g(ω)
(ω − Z0)n+1

dω, (A.22)  

bn =
1

2πi

∫

γ

g(ω)(ω − Z0)n−1
dω, (A.23)  

and where γ is any circle |ω − Z0| = r inside the annulus. Specializing for our case, 

1

1 − Z
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

∞

n=0

Zn, |Z| < 1

−
∑

∞

n=1

1

Zn, |Z| > 1

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(A.24)  

Plug Eq. (A.24) into Eq. (A.19) 

f (Z) = −m
1

(1 − Z) = m
∑

∞

n=1

1

Zn  

= m
(

ϕm
0 exp(mL) + ϕ2m

0 exp(2mL) + …
) (A.25)  

Plugging Eq. (A.25) into Eq. (A.14) and yields 
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lnj =
∫

Γ

mϕm
0 exp(mL)dL

(1 − ϕm
0 exp(mL) )

= m

(

ϕm
0 exp(mL)

m
+ ϕ2m

0 exp(2mL)
2m

+ …

)

+ C6. (A.26)  

Taking the first two terms: 

lnj ≅ ϕm
0 exp(mL) + ϕ2m

0 exp(2mL)
2

+ C6. (A.27)  

Exponentiating both sides, then integrating yields 
∫

Γ

dC = C =
∫

Γ

− ℓ0

D
exp

(

ϕm
0 exp(mL) + ϕ2m

0 exp(2mL)
2

+ C6

)

dL. (A.28)  

In order to integrate the above expression we consider function G(L) = ϕm
0 exp(mL)+ϕ2m

0 exp(2mL)
2 +C6 and compute the Taylor series of the integrand with 

respect to G(L). Eq. A.28 is then expanded as 

C =
∫

Γ

− ℓ0

D
exp( G(L) )dL =

∫

Γ

− ℓ0

D

(

1 + G(L) + 1

2!
G(L)2 + …

)

dL. (A.29)  

Just taking the first two terms, plugging G(L) into (A.29), and integrating gives 

C ≅ −ℓ0

D

((

1 + C2
6

2

)

L + (1 + C6)
m

ϕm
0 exp(mL) + 1

2m
ϕ2m

0

(

1 + C6

2

)

exp(2mL) + 1

6m
ϕ3m

0 exp(3mL) + 1

32m
ϕ4m

0 exp(4mL) + C7

)

, (A.30)  

where C6 and C7 are integration constants. For x > a, following same procedure the concentration distribution is calculated as 

C ≅ −ℓ0

D

((

1 + C2
8

2

)

L − (1 + C8)
m

ϕm
0 exp( − mL) − 1

2m
ϕ2m

0

(

1 + C8

2

)

exp( − 2mL) − 1

6m
ϕ3m

0 exp( − 3mL) − 1

32m
ϕ4m

0 exp( − 4mL)
)

+ C9, (A.31)  

where C7–C9 are constants. 

Appendix B. Pseudocode for 1D FEM solution 

The following pseudocode is for the 1D FEM solution of Section 3.3, where the lines starting with symbol ‘*’ states the purpose of the following 
pseudocode. 

* Input parameters: geometric settings, boundary conditions, number of nodes, constant variables and other necessary parameters. 
* Initialized concentration field. 
for each node. 
concentration = zeros. 
* Set Gauss integration locations and weights, N matrix and B matrix at integration point. 
* Generate topology. 
for each node. 
topo = [location(1st node), location(2nd node)]. 
* Generate local K-matrix and RHS for each element. 
for each element. 
ϕnode=f(node location) with Eq. (29) 
ϕint. point=N*ϕnode. 
ϕelement= ϕint. point 
Klocal=Klocal+0.5*D*(1-ϕelementm )*B*B′*Int. weight 
RHSlocal= RHSlocal+0.5*D*(1-ϕelementm )*B*B′*concentrationnode * Int. weight 
* Assemble global K-matrix and RHS 
for each element 
Kglobal=Kglobal+Klocal→global 
RHSglobal= RHSglobal+ RHSlocal→global 
* Add boundary conditions to the U matrix 

Ux=0 = 2  

Ux=L = 0 

* Solve KglobalU = RHS 
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