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Abstract

We show how a number of well-known uncertainty principles for the Fourier trans-
form, such as the Heisenberg uncertainty principle, the Donoho–Stark uncertainty
principle, and Meshulam’s non-abelian uncertainty principle, have little to do with
the structure of the Fourier transform itself. Rather, all of these results follow from
very weak properties of the Fourier transform (shared by numerous linear operators),
namely that it is bounded as an operator L1 → L∞, and that it is unitary. Using a
single, simple proof template, and only these (or weaker) properties, we obtain some
new proofs and many generalizations of these basic uncertainty principles, to new op-
erators and to new settings, in a completely unified way. Together with our general
overview, this paper can also serve as a survey of the many facets of the phenomena
known as uncertainty principles.
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1 Introduction

1.1 Background

The phrase “uncertainty principle” refers to any of a wide class of theorems, all of which
capture the idea that a non-zero function and its Fourier transform cannot both be “very
localized”. This phenomenon has been under intensive study for almost a century now, with
new results published continuously to this day. So while this introduction (and the paper
itself) discusses some broad aspects of it, this is not a comprehensive survey. For more
information on the history of the uncertainty principle, and for many other generalizations
and variations, we refer the reader to the excellent survey of Folland and Sitaram [16].

The study of uncertainty principles began with Heisenberg’s seminal 1927 paper [20], with
the corresponding mathematical formalism independently due to Kennard [24] and Weyl
[37]. The original motivation for studying the uncertainty principle came from quantum
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mechanics1, and thus most classical uncertainty principles deal with functions on R or R
n.

The first, so-called Heisenberg uncertainty principle, says that the variance (appropriately
defined, see Section 4) of a function and of its Fourier transform cannot both be small.
Following Heisenberg’s paper, many different notions of locality were studied. For example,
it is a simple and well-known fact that if f : R → C has compact support, then f̂ can be
extended to a holomorphic function on C, which in particular implies that f̂ only vanishes on
a discrete countable set, and so it is not possible for both f and f̂ to be compactly supported.
This fact was generalized by Benedicks [6] (and further extended by Amrein and Berthier
[1]), who showed that it is not possible for both f and f̂ to have supports of finite measure.
Another sort of uncertainty principle, dealing not with the sharp localization of a function,
but rather with its decay at infinity, has also been widely studied. The first such result is due
to Hardy [18], who proved (roughly) that it is not possible for both f and f̂ to decay faster
than e−x2

. Yet another type of uncertainty principle is the logarithmic version conjectured by
Hirschman [21] and proven by Beckner [4] and independently Bia lynicki-Birula and Mycielski
[7], which deals with the Shannon entropies of a function and its Fourier transform, and which
has connections to log-Sobolev and hypercontractive inequalities [5].

In 1989, motivated by applications to signal processing2, Donoho and Stark [14] initiated
the study of a new type of uncertainty principle, which deals not with functions defined
on R, but rather with functions defined on finite groups. Many of the concepts discussed
above, such as variance and decay at infinity, do not make sense when dealing with functions
on a finite group. However, other measures of “non-localization”, such as the size of the
support of a function, are well-defined in this context, and the Donoho–Stark uncertainty
principle deals with this measure. Specifically, they proved that if G is a finite abelian
group3, Ĝ is its dual group, f : G → C is a non-zero function, and f̂ : Ĝ → C is its Fourier
transform, then |supp(f)||supp(f̂)| ≥ |G|. They also proved a corresponding theorem for an
appropriate notion of “approximate support” (see Section 3.3 for more details). The work of
Donoho and Stark led to a number of other uncertainty principles for finite groups. Three
notable examples are Meshulam’s extension [26] of the Donoho–Stark theorem to arbitrary
finite groups, Tao’s strengthening [36] of the Donoho–Stark theorem in case G is a cyclic
group of prime order, and the discrete entropic uncertainty principles of Dembo, Cover, and
Thomas [12], which generalize the aforementioned theorems of Hirschman [21], Beckner [4]
and Bia lynicki-Birula and Mycielski [7].

Despite the fact that all uncertainty principles are intuitively similar, their proofs use a
wide variety of techniques and a large number of special properties of the Fourier transform.
Here is a sample of this variety. The standard proof of Heisenberg’s uncertainty principle
uses integration by parts, and the fact that the Fourier transform on R turns differentiation

1As some pairs of natural physical parameters, such as the position and momentum of a particle, can be
viewed as such dual functions, the phrase “uncertainty principle” is meant to indicate that it is impossible
to measure both to arbitrary precision.

2In this context, some similar theorems can be called “certainty principles”. Here, this indicates that one
can use the fact that one parameter is not localized to measure it well by random sampling.

3Strictly speaking, Donoho and Stark only proved this theorem for cyclic groups, but it was quickly
observed that the same result holds for all finite abelian groups.
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into multiplication by x. Benedicks’s proof that a function and its Fourier transform cannot
both have finite-measure supports uses the Poisson summation formula. The logarithmic
uncertainty principle follows from differentiating a deep fact of real analysis, namely the
sharp Hausdorff–Young inequality of Beckner [4]. The original proof of the Donoho–Stark
uncertainty principle uses the fact that the Fourier transform on a cyclic group G, viewed as a
|G|×|G| matrix, is a Vandermonde matrix, and correspondingly certain submatrices of it can
be shown to be non-singular. Tao’s strengthening of this theorem also uses this Vandermonde
structure, together with a result of Chebotarëv which says that in case |G| is prime, all square
submatrices of this Vandermonde matrix are non-singular. The proof of Donoho and Stark’s
approximate support inequality relates it to different norms of submatrices of the Fourier
transform matrix. Finally, Meshulam’s proof of the non-abelian uncertainty principle uses
linear-algebraic considerations in the group algebra C[G].

1.2 The simple theme and its variations

In this paper, we present a unified framework for proving many (but not all) of these un-
certainty principles, together with various generalizations of them. The key observation
throughout is that although the proofs mentioned above use a wide variety of analytic and
algebraic properties that are particular to the Fourier transform, these results can also be
proved using almost none of these properties. Instead, all of our results will follow from
two very basic facts about the Fourier transform, namely that it is bounded as an operator
L1 → L∞, and that it is unitary4. Because the Fourier transform is by no means the only
operator with these properties, we are able to extend many of these well-known uncertainty
principles to many other operators.

This unified framework is, at its core, very simple. The L1 → L∞ boundedness of
the Fourier transform gives an inequality relating ‖f̂‖∞ to ‖f‖1. Similarly, the L1 → L∞

boundedness of the inverse Fourier transform gives an analogous inequality relating ‖f‖∞
to ‖f̂‖1. Multiplying these two inequalities together yields our basic uncertainty principle,
which has the form

‖f‖1
‖f‖∞

· ‖f̂‖1
‖f̂‖∞

≥ C0,

for an appropriate constant C0. Thus, in a sense, the “measure of localization” H0(g) = ‖g‖1
‖g‖∞

is a primary one for us, and the uncertainty principle above,

H0(f) ·H0(f̂) ≥ C0 (1)

is the source of essentially all our uncertainty principles. Note that H0 really is a yet another
“measure of localization” of a function g, in that a function that is more “spread out” will
have a larger L1 norm than a more localized function, if both have the same L∞ norm. Here
is how we will use this primary uncertainty principle.

4In fact, a far weaker condition than unitarity is needed for our results, as will become clearer in the
technical sections.
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Suppose we want to prove any uncertainty principle, for any potential “measure of local-
ization” H on functions, e.g. one of the form

H(f) ·H(f̂) ≥ C. (2)

For example, our “measure of localization” H might be the variance of (the square of) a
function on the reals if we want to prove the Heisenberg uncertainty principle, or H might
be the support size of a finite-dimensional vector if we want to prove the Donoho–Stark
uncertainty principle.

We will derive (2) by first proving a universal5 bound, relating the measure of localization
H to our primary one H0, that holds for every function g. This reduction will typically take
the form

H(g) ≥ C ′ ·H0(g) = C ′ · ‖g‖1
‖g‖∞

.

Now this bound can be applied to both f and f̂ separately, which combined with our primary
principle (1) yields (with (C ′)2 = C · C0) the desired uncertainty principle (2)6.

Such an approach to proving simple uncertainty principles is by no means new; it goes
back at least to work of Williams [38] from 1979, who used it to prove a weak version of
an approximate-support inequality for the Fourier transform on R (see Section 3.3 for more
details). Moreover, this approach to proving the Donoho–Stark uncertainty principle has
apparently been independently rediscovered several times, e.g. [9, 31]. However, we are not
aware of any previous work on the wide applicability of this simple approach; indeed, we
found no other applications besides the two mentioned above. Importantly, the separation
of the two parts of the proof above is only implicit in these papers (after all, the whole proof
in these cases is a few lines), and we believe that making this partition explicit and general,
as presented above, is the source of its power. We note that though the second part of this
two-part approach is often straightforward to prove, it occasionally becomes interesting and
non-trivial; see for instance, Section 4.3.3.

In this paper, will see how this approach leads to a very different proof of the original
Heisenberg uncertainty principle, in which the measure H is the variance. We will then prove
other versions of that classical principle, which yield uncertainty when H captures higher
moments than the variance. We will also see how it extends to uncertainty principles where
H captures several notions of approximate support and “non-abelian” support, as well as
new uncertainty principles where H captures the ratio between other pairs of norms (which
in turn will be useful for other applications). Throughout the paper, we attempt to establish
tightness of the bounds, at least up to constant factors.

As mentioned, the primary uncertainty principle uses a very basic property that far from
special to the Fourier transform, but is shared by (and so applies to) many other operators
in different discrete and continuous settings, which we call k-Hadamard operators.

5This bound is universal in the sense that no operator like the Fourier transform is involved in this
inequality; it deals only with a single function g.

6Variants of this idea will come in handy as well, e.g. proving that H(g) ≥ H0(g)
C′

, yielding C = CC′

0
.
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Although the study of uncertainty principles is nearly a century old, it continues to be an
active and vibrant field of study, with new results coming out regularly (e.g. [8, 15, 17, 27,
29, 30]—all from the past 12 months!). While many uncertainty principles are unlikely to fit
into the simple framework above, we nonetheless hope that our technique will help develop
this theory and find further applications.

1.3 Outline of the paper

The paper has two main parts, which have somewhat different natures. The first is on finite-
dimensional uncertainty principles, and the second is on infinite-dimensional ones. Both
parts have several sections, each with a different incarnation of the uncertainty principle. In
most sections, we begin with a known result, which we then show how to reprove and gener-
alize using our framework. We remark that most sections and subsections are independent
of one another, and can be read in more or less any order. We therefore encourage the reader
to focus on those sections they find most interesting.

Before delving into these, we start with the preliminary Section 2. In it, we first formally
state and prove the (extremely simple) primary L1 → L∞ uncertainty principle, from which
everything else will follow. This leads to a natural abstract definition of operators amenable
to this proof, which we call k-Hadamard matrices; most theorems in the finite-dimensional
section will be stated in these terms (and a similar notion will be developed for the infinite-
dimensional section).

In Section 3, we survey, reprove, and generalize finite-dimensional uncertainty principles,
including the commutative and non-commutative support uncertainty principles of (respec-
tively) Donoho–Stark and Meshulam, several old and new approximate support uncertainty
principles, including those of Williams and Donoho–Stark, as well as some new uncertainty
principles on norms. In Section 4 we turn to infinite-dimensional vector spaces and the un-
certainty principles one can prove there. These include support inequalities for the Fourier
transform on topological groups and several variants and extensions of Heisenberg’s uncer-
tainty principle, in particular to higher moments. Moreover, these theorems apply to the
general class of Linear Canonical Transforms (which vastly extend the Fourier transform).
Finally, Appendix A collects the proofs of some technical theorems.

2 The primary uncertainty principle and k-Hadamard

matrices

As stated in the Introduction, the primary uncertainty principle that will yield all our other
results is a theorem that lower-bounds the product of two L1 norms by the product of two
L∞ norms. In this section, we begin by stating this primary principle, as well as giving its
(extremely simple) proof. We then define k-Hadamard matrices, which will be our main
object of study in Section 3, and whose definition is motivated from the statement of the
primary uncertainty principle (roughly, the definition of k-Hadamard matrices is “those
matrices to which the primary uncertainty principle applies”). We end this section with
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several examples of k-Hadamard matrices, which show that such matrices arise naturally
in many areas of mathematics, such as group theory, design theory, random matrix theory,
coding theory, and discrete geometry.

2.1 The primary uncertainty principle

We begin by recalling the definition of an operator norm. Let V, U be any two real or complex
vector spaces, and let ‖ · ‖V and ‖ · ‖U be any norms on V, U , respectively. Let A : V → U a
linear map. Then the operator norm of A is

‖A‖V→U = sup
06=v∈V

‖Av‖U
‖v‖V

= sup
v∈V

‖v‖V =1

‖Av‖U .

For 1 ≤ p, q ≤ ∞, we will denote by ‖A‖p→q the operator norm of A when ‖ · ‖V is the Lp

norm on V and ‖ · ‖U is the Lq norm on U .
With this notation, we can state our main theorem, which is the primary uncertainty

principle that will underlie all our other results. We remark that this theorem, as stated
below, is nearly tautological—our assumptions on the operators A and B are tailored to give
the desired result by a one-line implication. Despite this simple nature, the strength of this
theorem comes from the fact that many natural operators, such as the Fourier transform,
satisfy these hypotheses.

Theorem 2.1 (Primary uncertainty principle). Let V, U be real or complex vector spaces,
each equipped with two norms ‖ · ‖1 and ‖ · ‖∞, and let A : V → U and B : U → V be linear
operators. Suppose that ‖A‖1→∞ ≤ 1 and ‖B‖1→∞ ≤ 1. Suppose too that ‖BAv‖∞ ≥ k‖v‖∞
for all v ∈ V , for some parameter k > 0. Then for any v ∈ V ,

‖v‖1‖Av‖1 ≥ k‖v‖∞‖Av‖∞.

Proof. Since ‖A‖1→∞ ≤ 1, we have that

‖Av‖∞ ≤ ‖v‖1.

Similarly, since ‖B‖1→∞ ≤ 1,
‖BAv‖∞ ≤ ‖Av‖1.

Multiplying these two inequalities together, we find that

‖v‖1‖Av‖1 ≥ ‖Av‖∞‖BAv‖∞ ≥ k‖v‖∞‖Av‖∞,

as claimed.

Note that Theorem 2.1 holds regardless of the dimensions of V and U (so long as the
L1 and L∞ norms are well-defined on them), and in Section 4, we will use this primary
uncertainty principle in infinite dimensions. But for the moment, let us focus on finite
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dimensions, in which case we take ‖ · ‖1 and ‖ · ‖∞ to be the usual L1 and L∞ norms on R
n

or Cn. When applying Theorem 2.1, we will usually take B = A∗. Note that the 1 → ∞
norm of a matrix is simply the maximum absolute value of the entries in the matrix, so
‖A‖1→∞ ≤ 1 if and only if all entries of A are bounded by 1 in absolute value. Moreover,
if B = A∗, then7 ‖B‖1→∞ = ‖A‖1→∞. Thus, in this case, all we need to check in order to
apply Theorem 2.1 is that ‖A∗Av‖∞ ≥ k‖v‖∞ for all v ∈ V . This motivates the following
definition, of k-Hadamard matrices, which are defined essentially as “those matrices that
Theorem 2.1 applies to”. We note that a similar definition was made by Dembo, Cover, and
Thomas in [12, Section IV.C], and they state their discrete norm and entropy uncertainty
principles in similar generality.

Definition 2.2. Let A ∈ C
m×n be a matrix and k > 0. We say that A is k-Hadamard

if every entry of A has absolute value at most 1 and ‖A∗Av‖∞ ≥ k‖v‖∞ for all v ∈ Cn.
Equivalently, A is k-Hadamard if all its entries are bounded by 1 in absolute value, A∗A is
invertible, and ‖(A∗A)−1‖∞→∞ ≤ 1/k.

The next subsection consists of a large number of examples of k-Hadamard matrices which
arise naturally in many areas of mathematics. Before proceeding, we end this subsection with
three general observations. The first is the observation that the simplest way to ensure that8

‖A∗Av‖∞ ≥ k‖v‖∞ is to assume that A∗A = kI. As we will see in the next section, many
natural examples of k-Hadamard matrices have this stronger unitarity property.

Our second general observation is a rephrasing of Theorem 2.1, using the terminology
of k-Hadamard matrices. Note that it is really identical to Theorem 2.1, but we state it
separately for convenience.

Theorem 2.3 (Primary uncertainty principle, rephrased). Let A ∈ Cm×n be k-Hadamard.
Then for any v ∈ Cn, we have that

‖v‖1‖Av‖1 ≥ k‖v‖∞‖Av‖∞.

Thirdly, one can observe that the proof of Theorem 2.1 never actually used any properties
whatsoever of the (usual) L1 and L∞ norms, and the same result holds (with appropriately
modified assumptions) for any choice of norms. We chose above to state the primary un-
certainty principle specifically for the L1 and L∞ norms simply because it is that statement
that will be used to prove all subsequent theorems. However, for completeness, we now state
the most general version which holds for all norms. The proof is identical to that of Theorem
2.1, so we omit it.

Theorem 2.4 (Primary uncertainty principle, general version). Let V, U be real or complex
vector spaces, and let A : V → U and B : U → V be linear operators. Let ‖ · ‖V (1), ‖ · ‖V (2) be
two norms on V , and ‖ · ‖U (1), ‖ · ‖U (2) two norms on U . Suppose that ‖A‖V (1)→U (2) ≤ 1 and
‖B‖U (1)→V (2) ≤ 1, and suppose that ‖BAv‖V (2) ≥ k‖v‖V (2) for all v ∈ V and some k > 0.
Then for any v ∈ V ,

‖v‖V (1)‖Av‖U (1) ≥ k‖v‖V (2)‖Av‖U (2).
7In fact, this holds in greater generality: as long as ‖ · ‖1 and ‖ · ‖∞ are dual norms on any inner product

spaces, we will have that ‖A‖1→∞ = ‖A∗‖1→∞.
8And indeed, to have that ‖A∗Av‖ = k‖v‖ for any norm whatsoever.
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2.2 Examples of k-Hadamard matrices

We end this section by collecting several classes of examples of k-Hadamard matrices. While
this subsection may be skipped at first reading, its main point is to demonstrate the rich-
ness of operators for which uncertainty principles hold. As remarked above, many of these
matrices actually satisfy the stronger property that A∗A = kI.

Hadamard matrices Observe that if A is a k-Hadamard n × n matrix, then k ≤ n, and
thus n-Hadamard matrices are best possible. One important class of n-Hadamard
matrices are the ordinary9 Hadamard matrices, which are n × n matrices A with all
entries in {−1, 1} and with A∗A = nI. There are many constructions of Hadamard
matrices, notably Paley’s constructions [28] coming from quadratic residues in finite
fields. Moreover, one can always take the tensor product of two Hadamard matrices
and produce a new Hadamard matrix, which allows one to generate an infinite family
of Hadamard matrices from a single example, such as the 2 × 2 matrix ( 1 1

−1 1 ). Of
course, these examples are nothing but the Fourier transform matrices over Hamming
cubes. We remark that there are still many open questions about Hadamard matrices,
most notably the so-called Hadamard conjecture, which asserts that n× n Hadamard
matrices should exist for all n divisible by 4.

Complex Hadamard matrices However, n-Hadamard n × n matrices are more general
than Hadamard matrices, because we do not insist that the entries be real. In fact,
one can show that n-Hadamard matrices are precisely complex Hadamard matrices,
namely matrices with entries on the unit circle {z ∈ C : |z| = 1} whose rows are
orthogonal. There is a rich theory to these matrices, with connections to operator
algebras, quantum information theory, and other areas of mathematics; for more, we
refer to the survey [2].

The Fourier transform A very important class of complex Hadamard matrices consists
of Fourier transform matrices: if G is a finite abelian group, then we may normalize
its Fourier transform matrix so that all entries have norm 1, and the Fourier inversion
formula precisely says that this matrix multiplied by its adjoint is |G|I. Thus, Fourier
transform matrices are n-Hadamard n × n matrices, where n = |G|. More generally,
quantum analogues of the Fourier transform can also be seen as k-Hadamard matrices;
for more information, see [22].

Other explicit square matrices We do not insist that k = n in our n × n Hadamard
matrices. For k < n, special cases of k-Hadamard matrices with A∗A = kI have been
studied in the literature. For instance, such matrices with k = n− 1, real entries, and
zeros on the diagonal are called conference matrices, and weighing matrices are such
matrices with k < n and all entries in {−1, 0, 1}; both of these have been studied in
connection with design theory. See [11] for more details.

9Whence our name for such matrices.
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Random matrices For less structured examples of k-Hadamard matrices, let M be a ran-
dom n×n unitary (or orthogonal) matrix, i.e. a matrix sampled from the Haar measure
on U(n) (or O(n)). It is well-known that with high probability as n → ∞, every entry
of M will have norm O(

√
logn/n); see [13, Theorem 8.1] for a simple proof, and [23]

for far more precise results, including the determination of the correct constant hidden
in the big-O. Thus, if we multiply M by c

√
n/ logn for an appropriate constant c > 0,

we will obtain with high probability a k-Hadamard matrix with k = Ω(n/ log n). This
shows that an appropriately chosen random matrix will be Ω(n/ logn)-Hadamard with
high probability, which is best possible up to the logarithmic factor.

Rectangular matrices and codes Recall that we do not require our k-Hadamard ma-
trices to be square, which corresponds to not insisting that V and U have the same
dimension in Theorem 2.4. If A is an m × n k-Hadamard matrix, then k ≤ m. One
example of a non-square matrix attaining this bound is the 2n×n matrix S whose rows
consist of all vectors in {−1, 1}n. Then distinct columns of S are orthogonal because
they disagree in exactly 2n−1 coordinates, which implies that S∗S = 2nI, and so S is
2n-Hadamard.

Note that the columns of S are simply the codewords of the Hadamard code, viewed as
vectors in {−1, 1}2n rather than in {0, 1}2n. A similar construction works for all binary
codes with an appropriate minimum distance. If we view the codewords as vectors with
±1 entries and form a matrix S whose columns are these codewords, then the minimum
distance condition will imply that the columns are nearly orthogonal, and thus that
the diagonal entries of S∗S will be much larger than the off-diagonal entries. Thus, S
will be k-Hadamard for a value of k depending on the minimum distance of the code.

Incidence matrices of finite geometries If q is a prime power, let PG(2, q) be the pro-
jective plane over the field Fq. Then setting n = q2 + q + 1, we can let A be the
n× n incidence matrix of points and lines in PG(2, q), namely the matrix whose rows
and columns are indexed by the points and lines, respectively, of PG(2, q), and whose
(p, ℓ) entry is 1 if p ∈ ℓ, and 0 otherwise. Then A certainly has all its entries bounded
by 1. Moreover, each column has exactly q + 1 ones, and distinct columns have in-
ner product 1, since any two lines intersect at exactly one point. This implies that
A∗A = qI + J , where J is the all-ones matrix. It is not too hard to see from this
that ‖A∗Av‖∞ ≥ q

2
‖v‖∞ for any v ∈ Cn, which implies that A is a k-Hadamard n× n

matrix, where k ≥ q/2 = Θ(
√
n).

Similarly, one can consider the d-dimensional projective space PG(d, q) over Fq, and
form the incidence matrix of a-flats and b-flats, for any 0 ≤ a < b < d. It will be a (not
necessarily square) k-Hadamard matrix, for some value of k depending on a, b, and d.

10



3 Finite-dimensional uncertainty principles

In this section, we show how to use our general uncertainty principle for k-Hadamard ma-
trices, Theorem 2.3, to prove a number of uncertainty principles in finite dimensions. We
start with the basic support-size uncertainty principle of Donoho and Stark, and then move
on to Meshulam’s generalization of it to arbitrary finite groups. We next proceed to prove
several uncertainty principles for various notions of approximate support, and conclude with
a collection of uncertainty principles for ratios of other norms, which will be useful for us
later when we prove the Heisenberg uncertainty principle.

Most of our results in this section generalize known theorems about the Fourier transform
on finite groups. However, as we demonstrate below, they do not actually need any of the
algebraic structure of the Fourier transform (or even of an underlying group), and instead
all follow from the fact that Fourier transform matrices are k-Hadamard.

3.1 The Donoho–Stark support-size uncertainty principle

For a vector v ∈ Cn, let supp(v) be its support, namely the set of coordinates i where vi 6= 0.
Similarly, if f : G → C is a function on a finite group, we denote by supp(f) the set of x ∈ G

for which f(x) 6= 0. Recall that if G is a finite abelian group, we denote by Ĝ the dual group,

which consists of all homomorphisms from G to the circle group T = {z ∈ C : |z| = 1}. Ĝ
forms an abelian group under pointwise multiplication, and it is in fact (non-canonically)

isomorphic to G. We define the Fourier transform f̂ : Ĝ → C of a function f : G → C by
f̂(χ) =

∑
x∈G f(x)χ(x). The basic uncertainty principle for the Fourier transform on finite

abelian groups is the following theorem of Donoho and Stark.

Theorem 3.1 (Donoho–Stark [14]). Let G be a finite abelian group. If f : G → C is a

non-zero function and f̂ : Ĝ → C denotes its Fourier transform, then

|supp(f)||supp(f̂)| ≥ |G|.
Our first finite-dimensional result is an extension of Theorem 3.1 to arbitrary k-Hadamard

matrices.

Theorem 3.2 (Support-size uncertainty principle). Let A ∈ Cm×n be a k-Hadamard matrix.
Then for any non-zero v ∈ C

n,

|supp(v)||supp(Av)| ≥ k.

Proof. This is the first demonstration of the principle articulated in the Introduction. We
already have, from Theorem 2.3, that for any non-zero v, ‖v‖1‖Av‖1 ≥ k‖v‖∞‖Av‖∞. Thus,
all we need is to bound the support-size of a function by the ratio of its norms, which is
obvious: for any vector u,

‖u‖1 =

n∑

i=1

|ui| =
∑

i∈supp(u)
|ui| ≤ |supp(u)|‖u‖∞.

Applying this bound to both v and Av, we obtain the result.

11



In this proof, the measure of localization we wished to study was the support of a vector.
The uncertainty principle for this measure follows from the primary one (on the ratio of
norms) via an inequality that holds for all vectors (bounding it by that ratio). This is an
instance of the basic framework discussed in the Introduction, which will recur throughout.

Remark. We remark that in general, the bound in Theorem 3.1 (and thus also in Theorem
3.2) is tight. For instance, if f is the indicator function of some subgroup H ⊆ G, then f̂

will be a constant multiple of the indicator function of the dual subgroup H⊥ ⊆ Ĝ, and we
have that |H||H⊥| = |G|. Thus, |supp(f)||supp(f̂)| = |G|.

3.2 Support-size uncertainty principles for general finite groups

In this section, we show how our general framework can be used to extend the Donoho–
Stark support-size uncertainty principle to the Fourier transform over arbitrary finite groups,
abelian or non-abelian. Such an extension was already proved by Meshulam [26], for a linear-
algebraic notion of support-size. Here we propose a natural combinatorial notion of support10,
and prove an uncertainty principle for it within our framework. Further, we prove that these
two uncertainty principles are almost equivalent: they are identical for a certain class of
functions, and are always equivalent up to a factor of 4. We note that both notions of
support-size are natural and both extend the abelian case. Finally, at the end of the section,
we provide another, new uncertainty principle of norms for general groups, proved by Greg
Kuperberg, which provides a different proof Meshulam’s theorem using our framework.

To facilitate a natural combinatorial definition of support, we embed both the “time
domain” (namely, functions on the group), and the “Fourier domain” (namely, their image
under the Fourier transform) as sub-algebras of the matrix ring Cn×n, where n = |G|. Then
the notion of support becomes the standard one, namely the set of non-zero entries of these
matrices. This embedding does much more. It gives as well a natural definition of norms
(treating these matrices as vectors), and accommodates a description of the Fourier transform
as a k-Hadamard operator. These yield a proof of the our support-size uncertainty inequality
that is almost identical to the one in the abelian case.

3.2.1 Preliminaries: the Fourier transform in general finite groups

We now recall the basic notions of the Fourier transform of general finite groups (aka their
representation theory) using the embedding above, which also affords a definition of the
inverse Fourier transform which looks nearly identical to the abelian case. We refer the
reader to the comprehensive text [33] on the representation theory of finite groups for a
standard exposition of these concepts.

Let G be an arbitrary finite group of order n, and let C[G] denote its group algebra. We
embed C[G] as a sub-algebra of Cn×n as follows. Given an element f =

∑
x∈G f(x)x, let Tf

denote left-multiplication by f in C[G]. Then Tf is a linear map C[G] → C[G]. Moreover,

10In his paper, Meshulam also defines a certain combinatorial measure of support size, which (as he points
out) is much weaker than his linear-algebraic one.
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since C[G] is equipped with a standard basis, namely the basis of delta functions on G, we
can represent Tf as an n × n matrix, and it is straightforward to see that both addition
and multiplication of matrices corresponds to addition and multiplication in C[G]. So we
henceforth think of C[G] as the subspace of Cn×n consisting of all matrices Tf .

If G were abelian, then conjugating by the Fourier transform matrix would simultaneously
diagonalize all Tf , with the diagonal entries precisely being the values of f̂ . If G is non-
abelian, then such a complete simultaneous diagonalization is impossible, but we can get
maximal one possible; namely, conjugating by an appropriate matrix, which we also call
the Fourier transform, turns each Tf into a block-diagonal matrix with specified block sizes,
uniformly for all f , as follows.

Let ρ1, . . . , ρt be the irreducible representations of G over C, i.e. each ρi is a homomor-
phism G → GL(Wi), where Wi is a vector space over C of dimension di. We may assume
that ρ1, . . . , ρt are unitary representations, meaning that ρi(x) is a unitary transformation
on Wi for all x ∈ G. Recall that n = d21 + · · ·+ d2t . Then we define the Fourier transform as
follows.

Definition 3.3 (The Fourier transform). Given a function f : G → C, its Fourier transform
is defined by f̂(ρi) =

∑
x∈G f(x)ρi(x), so that f̂(ρi) is a linear transformation Wi → Wi.

We also henceforth fix an orthonormal basis Ei of each Wi, and everything that follows
will implicitly depend on these choices of bases. In particular, we may now think of the
linear maps ρi(x) and f̂(ρi) as a di × di matrices, represented in the basis Ei. We remark
that, as above, one can define the Fourier transform without reference to any bases, but that
everything we do from now on, such as defining the support and its size, will need these
bases.

To define the Fourier transform matrix, we describe its columns (first, up to scaling):
these are the so-called matrix entry vectors. For indices i ∈ [t] and j, k ∈ [di], we define the
matrix entry vector c(i; j, k) ∈ Cn as follows. It is a vector whose coordinates are indexed by
elements of G, and whose x coordinate is the (j, k) entry of the matrix ρi(x); observe that
in the abelian case these vectors are simply the n characters of G. A simple consequence of
Schur’s lemma is that these vectors are orthogonal; see [33, Corollaries 2–3] for a proof.

Proposition 3.4 (Orthogonality of matrix entries). We have

〈c(i; j, k), c(i′; j′, k′)〉 =

{
n/di if i = i′, j = j′, k = k′

0 otherwise.

We can now formally define the Fourier transform matrix and establish its basic proper-
ties.

Definition 3.5 (Fourier transform matrix). Let F be the n × n matrix whose rows are
indexed by G and whose columns are indexed by tuples (i; j, k) in lexicographic order, and
whose (i; j, k) column is the vector

√
dic(i; j, k). We call F the Fourier transform matrix.
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Observe that Proposition 3.4 implies that F ∗F = FF ∗ = nI. Moreover, the key diago-
nalization property of F mentioned above is that for any function f : G → C, we have that
FTfF

∗ is a block-diagonal matrix, whose blocks are just di copies of the matrices11 nf̂(ρi).
Thus, we think of the Fourier transform as simply a change of basis (and a dilation) on

the matrix space Cn×n. Recall that we had already embedded C[G] in this space by mapping
f ∈ C[G] to the matrix Tf . We think of its Fourier transform as the block-diagonal matrix

T̂f := FTfF
∗. Moreover, we think of the subspace of Cn×n consisting of all block-diagonal

matrices with di identical blocks of size di×di as the “Fourier subspace”. Then the change of
basis given by F precisely maps the subspace corresponding to C[G] to this Fourier subspace.

Note that if G is abelian, then each Wi is one-dimensional, and we find that T̂f is simply a

diagonal matrix whose diagonal entries are the values of f̂ .

3.2.2 Notions of support for f̂

With this setup, there is a clear candidate for the support of f̂ . Namely, we define supp(f̂)

to simply be the set of non-zero entries of the matrix T̂f . Note that since the block f̂(ρi)

appears di times in T̂f , we have that

|supp(f̂)| =

t∑

i=1

di|supp(f̂(ρi))|,

where supp(f̂(ρi)) denotes the set of non-zero entries of the matrix f̂(ρi). Recall that this
matrix depended on the choice of the bases Ei, so we also make the following definition.

Definition 3.6. The minimum support-size of f̂ is

|min-supp(f̂)| = min
E1,...,Et

|supp(f̂)|,

where the minimum is over all choices of orthonormal bases E1, . . . , Et for W1, . . . ,Wt.

Thus, the minimum support-size of f̂ is simply its support size in its most efficient rep-
resentation. We note that if G is abelian, then all Wi are one-dimensional, and in particular
the choice of basis affects nothing. So if G is abelian, then both |supp(f̂)| and |min-supp(f̂)|
simply recover our earlier notion of the support-size of f̂ .

Meshulam proposed an alternative notion for the support-size of f̂ , which we call the
rank-support, and which is defined as follows.

Definition 3.7 (Meshulam [26]). Given f : G → C, the rank-support of f̂ is rk-supp(f̂) =
rankTf .

11It is a little strange to have the blocks of T̂f be nf̂(ρi), rather than simply f̂(ρi). Of course, we could have
normalized F differently, so as to avoid this factor of n. However, we chose not to do this to be consistent
with our earlier normalization of k-Hadamard matrices.
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We note that, with this definition, it is not at all clear how rk-supp(f̂) even depends on
f̂ , let alone in what sense it can be thought of as a support-size. However, since similar
matrices have the same rank, we see that rankTf = rank T̂f , and since T̂f is a block-diagonal
matrix, we see that

rank T̂f =

t∑

i=1

di rank(f̂(ρi)).

In particular, this connection shows that if G is abelian, then we also get that rk-supp(f̂) =
|supp(f̂)|. Meshulam’s definition of rank-support has some advantages over our definition
of minimum support-size; importantly, the rank-support does not depend on the choices of
bases E1, . . . , Et. However, it is not obviously related to any notion of support of the Fourier
transform—instead, it jumps directly to a notion of its size. In contrast, we offer, for each
basis, a notion of support of f̂ , namely the set of non-zero entries in T̂f , and then we pick
the smallest possible (i.e. in the most “efficient” basis) to define its size. As mentioned, both
definitions agree with |supp(f̂)| for abelian groups G, so both can be considered reasonable
notions of support-size. The two notions can be related as follows, where we say that a
function f is Hermitian if f(x) = f(x−1) for all x ∈ G.

Lemma 3.8. For any function f : G → C, we have that rk-supp(f̂) ≤ |min-supp(f̂)|.
Moreover, if f is a Hermitian function, then rk-supp(f̂) = |min-supp(f̂)|.

Proof. If T̂f has s non-zero entries, then in particular it has at most s non-zero columns,

which implies that rank T̂f ≤ |supp(f̂)| for any bases E1, . . . , Et. This implies the first
inequality by minimizing over these bases.

For the second, suppose that f is Hermitian. This implies that each f̂(ρi) is Hermitian,
since

(
f̂(ρi)

)∗
=
∑

x∈G
f(x) (ρi(x))∗ =

∑

x∈G
f(x)ρi(x

−1) =
∑

x∈G
f(x−1)ρi(x

−1) = f̂(ρi).

Thus, there exists an orthonormal basis Ei for Wi in which f̂(ρi) is a diagonal matrix. Using

such a basis for each Wi, we see that T̂f is diagonal, at which point its rank precisely equals
the number of non-zero diagonal entries. This proves the reverse inequality for Hermitian
f .

3.2.3 Uncertainty principles for the min-support and the rank-support

One other connection between the rank-support and the minimum support-size is that both
of them satisfy an uncertainty principle like that of Donoho and Stark. For the rank-support,
this was proven by Meshulam.

Theorem 3.9 (Meshulam [26]). For any finite group G and any f : G → C,

|supp(f)| rk-supp(f̂) ≥ |G|.
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For the minimum support-size, this is main result of this section.

Theorem 3.10. For any finite group G and any f : G → C,

|supp(f)||min-supp(f̂)| ≥ |G|.

From Lemma 3.8, we see that Meshulam’s Theorem 3.9 implies our Theorem 3.10. More-
over, for Hermitian functions f , the two theorems are precisely equivalent. Finally, we can
prove a reverse implication, up to a factor of 4.

Lemma 3.11. Theorem 3.10 implies that for any function f : G → C,

|supp(f)| rk-supp(f̂) ≥ |G|
4

.

Proof. Consider the function g : G → C defined by g(x) = f(x) + f(x−1). Then g is
Hermitian, so by Lemma 3.8 we have that rk-supp(ĝ) = |min-supp(ĝ)|. As both the rank of
matrices and the support of vectors are subadditive, we have that

|supp(g)| ≤ 2|supp(f)| and rk-supp(ĝ) ≤ 2 rk-supp(f̂).

Putting this all together, we find that

|supp(f)| rk-supp(f̂) ≥ 1

4
|supp(g)| rk-supp(ĝ) =

1

4
|supp(g)||min-supp(ĝ)| ≥ |G|

4
.

Remark. The bound in Meshulam’s Theorem 3.9 is tight if f is the indicator function of
some subgroup of G, as observed in [26]. As such an indicator function is Hermitian, this
also shows that the bound in Theorem 3.10 is in general best possible.

Our proof of Theorem 3.10 more or less follows the abelian case, namely it’s a direct
application of our general framework. We define linear operators A,B : Cn×n → C

n×n by12

A ◦ M = FMF ∗ and B ◦ M = F ∗MF , for any M ∈ Cn×n. Note that A ◦ Tf = T̂f . The
main properties of these operators are captured in the following lemma, which simply says
that A acts as an n2-Hadamard operator on the subspace C[G] ⊂ Cn×n.

Lemma 3.12. Let C[G] ∼= V ⊂ Cn×n be the subspace consisting of the matrices Tf , and let
U ⊂ Cn×n be the Fourier subspace consisting of all block-diagonal matrices with di identical
blocks of size di × di. Then the following hold.

(i) For any M ∈ V , we have that B ◦ (A ◦M) = n2M .

(ii) For any M ∈ V , we have that ‖A ◦M‖∞ ≤ ‖M‖1

(iii) For any N ∈ U , we have that ‖B ◦N‖∞ ≤ ‖N‖1.
12We use the notation ◦ to denote the action of A and B to avoid confusion with the notation for matrix

multiplication.
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The proof is straightforward, and we defer it to Appendix A. However, with this lemma
in hand, we can prove Theorem 3.10.

Proof of Theorem 3.10. We begin by fixing bases E1, . . . , Et that are minimizers in the defi-
nition of |min-supp(f̂)|. By applying the support-size uncertainty principle for k-Hadamard
matrices, Theorem 2.1, to the operators A,B as above, we see that

|supp(Tf )||supp(A ◦ Tf )| ≥ n2.

Recall that A ◦ Tf is simply T̂f , so the second term is simply |min-supp(f̂)|. For the first
term, observe that each column of Tf is simply a permutation of the values that f takes.
This implies that |supp(Tf )| = n|supp(f)|, as every non-zero value of f is repeated exactly
n times in Tf . Thus, dividing by n gives the claimed bound.

3.2.4 Kuperberg’s proof of Meshulam’s uncertainty principle

After reading a draft of this paper, Greg Kuperberg (personal communication) discovered
a new norm uncertainty principle for the Fourier transform over non-abelian groups, which
can be proved using our framework and which implies Meshulam’s Theorem 3.9 as a simple
corollary. To state Kuperberg’s theorem, we first need to define the Schatten norms of a
matrix.

Definition 3.13 (Schatten norms). Let M ∈ Cn×n be a matrix and p ∈ [1,∞] be a param-

eter. The Schatten p-norm of M , denoted ‖M‖(S)p , is defined by

‖M‖(S)p = Tr
(
(M∗M)p/2

)1/p
.

Equivalently, if σ = (σ1, . . . , σn) is the vector of singular values of M , then the Schatten

p-norm of M is simply the ordinary Lp norm of σ, i.e. ‖M‖(S)p = ‖σ‖p.
The Schatten norms are invariant under left- or right-multiplication by unitary matrices,

so ‖Tf‖(S)p = 1
n
‖T̂f‖(S)p , with the factor of n coming from our normalization of F so that 1√

n
F

is unitary. Moreover, since T̂f is a block-diagonal matrix with di blocks of nf̂ρi, we have
that

‖Tf‖(S)1 =
1

n
‖T̂f‖(S)1 =

t∑

i=1

di‖f̂(ρi)‖(S)1 and ‖Tf‖(S)∞ =
1

n
‖T̂f‖(S)∞ = max

i∈[t]
‖f̂(ρi)‖(S)∞ . (3)

With this definition, we can state Kuperberg’s norm uncertainty principle for the Fourier
transform over finite groups. We state it for the Schatten norms of T̂f , but by (3), we could

just as well replace T̂f by Tf in the following theorem.

Theorem 3.14 (Kuperberg). Let G be a group of order n and f : G → C a non-zero
function. We have that

‖f‖1
‖f‖∞

· ‖T̂f‖(S)1

‖T̂f‖(S)∞
≥ n.
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Meshulam’s Theorem 3.9 is a simple corollary of this theorem.

Proof of Theorem 3.9. We already know that |supp(f)| ≥ ‖f‖1/‖f‖∞. Additionally, it is
well-known that for any matrix M ,

rankM ≥ ‖M‖(S)1

‖M‖(S)∞
.

This can be seen from the definition of ‖M‖(S)p as the Lp norm of the vector σ of singular
values of M . Indeed, the rank of M is simply the number of non-zero singular values, i.e.
rankM = |supp(σ)|, from which the above inequality follows. This shows, using Theorem
3.14, that

|supp(f)| rk-supp(f̂) = |supp(f)| rank T̂f ≥ ‖f‖1
‖f‖∞

· ‖T̂f‖(S)1

‖T̂f‖(S)∞
≥ n.

So to finish the proof, we need to prove Kuperberg’s Theorem 3.14, whose proof is another
application of our general framework.

Proof of Theorem 3.14. If we think of f ∈ C[G] as a row vector, then we can think of F as

a linear operator C[G] → U , which sends f to 1
n
T̂f ; note the additional factor of 1

n
, coming

from our earlier normalization of T̂f = FTfF
∗. We first claim that ‖ 1

n
T̂f‖(S)∞ ≤ ‖f‖1, i.e. that

F has norm 1 as an operator from ‖ · ‖1 to ‖ · ‖(S)∞ . By convexity of the Schatten-∞ norm,
it suffices to check this on the extreme points of the L1 unit ball, i.e. for a delta function
f = δx, the function that takes value 1 at x ∈ G and 0 on all other elements of G. But Tδx is

simply a permutation matrix, so all of its singular values are 1, implying that ‖Tδx‖(S)1 = 1.

This in turn implies that ‖T̂δx‖(S)1 = n, by (3).
Recall that the Schatten-1 and Schatten-∞ norms are dual on the matrix space Cdi×di ,

which implies that they are dual on U by the formulas in (3). Since the L1 and L∞ norms on

C[G] are also dual, the above also implies that F ∗ has norm 1 as an operator from ‖ · ‖(S)1 to
‖ · ‖∞. Finally, we already know that F ∗F = nI, so we conclude by the primary uncertainty
principle, Theorem 2.1, that

‖f‖1‖T̂f‖(S)1 ≥ n‖f‖∞‖T̂f‖(S)∞ .

3.3 Uncertainty principles for notions of approximate support

The support-size uncertainty principle of Theorem 3.2 is rather weak, in the sense that the
support size of a vector is a very fragile measure: coordinates with arbitrarily small non-zero
values contribute to it. Stronger versions of this theorem, in which one considers instead
the “essential support”, namely the support of a vector after deleting such tiny entries13,
are much more robust. Such versions were sought first by Williams [38] in the continuous

13More precisely, deleting a small fraction of the total mass in some norm.
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setting, and by Donoho and Stark [14] in the discrete setting. It turns out that using our
approach it is easy to extend Theorem 3.2 to such a robust form for the L1 norm, but not for
L2 (although Donoho and Stark’s original L2 proof does generalize to k-Hadamard matrices
with A∗A = kI). We will describe both and compare them.

We start with some notation. If v ∈ Cn is a vector and T ⊆ [n] is a set of coordinates,
we denote by v[T ] the vector in C

|T | obtained by restricting v to the coordinates in T . We
use T c to denote the complement of T in [n].

Definition 3.15. Let ε ∈ [0, 1] and p ∈ [1,∞]. For a vector v ∈ Cn and a set T ⊆ [n], we
say that v is (p, ε)-supported on T if ‖v[T c]‖p ≤ ε‖v‖p.

We also define the (p, ε)-support size of v to be

|suppp
ε(v)| = min{|T | : T ⊆ [n], v is (p, ε)-supported on T}.

Remark. In general, there may not exist a unique minimum-sized set T in the definition of
|suppp

ε(v)|, so the set “suppp
ε(v)” is not well-defined. However, we will often abuse notation

and nevertheless write suppp
ε(v) to denote an arbitrary set T achieving the minimum in the

definition of |suppp
ε(v)|.

The basic uncertainty principle concerning approximate supports was also given by
Donoho and Stark, who proved the following.

Theorem 3.16 (Donoho–Stark [14]). Let G be a finite abelian group and f : G → C a
non-zero function. For any ε, η ∈ [0, 1], we have that

|supp2
ε(f)||supp2

η(f̂)| ≥ |G|(1 − ε− η)2.

If one attempts to apply our basic framework to prove an uncertainty principle for ap-
proximate supports, one is naturally led to the following result. The analogous theorem for
the Fourier transform on R was proven by Williams [38], in what we believe is the earliest
application of this paper’s approach to uncertainty principles.

Theorem 3.17 (L1-approximate support uncertainty principle). Let A ∈ Cm×n be a k-
Hadamard matrix and let v ∈ Cn be a non-zero vector. For any ε, η ∈ [0, 1], we have that

|supp1
ε(v)||supp1

η(Av)| ≥ k(1 − ε)(1 − η) ≥ k(1 − ε− η).

Proof. The second inequality follows from the first, so it suffices to prove the first. We may
assume that ε, η < 1. The primary uncertainty principle, Theorem 2.3, says that

‖v‖1
‖v‖∞

· ‖Av‖1
‖Av‖∞

≥ k.

Following our framework, what we need to prove is the following claim: for every δ ∈ [0, 1)
and for every vector u,

|supp1
δ(u)|

1 − δ
≥ ‖u‖1

‖u‖∞
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Applying this inequality to v with ε and to Av with η yields the desired result, so it suffices
to prove this claim.

Let T = supp1
δ(u). Note that since ‖u‖1 = ‖u[T ]‖1 + ‖u[T c]‖1, the definition of T implies

that ‖u[T ]‖1 ≥ (1 − δ)‖u‖1. Observe too that ‖u[T ]‖∞ = ‖u‖∞, since T just consists of the
coordinates of u of maximal absolute value (with ties broken arbitrarily). Since u[T ] has
length |T |, this implies that ‖u[T ]‖1 ≤ |T |‖u[T ]‖∞ = |T |‖u‖∞. Combining our inequalities,
we find that

(1 − δ)‖u‖1 ≤ ‖u[T ]‖1 ≤ |T |‖u‖∞ = |supp1
δ(u)|‖u‖∞,

as claimed.

Again, we obtain as a special case an uncertainty principle for the L1 approximate support
of a function and its Fourier transform.

Corollary 3.18. Let G be a finite abelian group and f : G → C a non-zero function. For
any ε, η ∈ [0, 1], we have that

|supp1
ε(f)||supp1

η(f̂)| ≥ |G|(1 − ε)(1 − η) ≥ |G|(1 − ε− η).

At first glance, Corollary 3.18 looks quite similar to Theorem 3.16. However, it is easy
to construct vectors whose (2, ε)-support is much smaller than their (1, ε)-support. For
instance, we can take vH ∈ Cn to be the “harmonic vector” (1, 1

2
, 1
3
, . . . , 1

n
). Then for any

fixed ε ∈ (0, 1) and large n, we have that

supp1
ε(vH) = Θε(n

1−ε) and supp2
ε(vH) = Θ(ε−2).

In particular, if we keep ε fixed and let n → ∞, we see that supp1
ε(vH) will be much larger

than supp2
ε(vH), which suggests that Theorem 3.16 will be stronger than Corollary 3.18 for

such “long-tailed” vectors. In fact, this is not a coincidence or a special case: for constant
ε, the 1-support will be at least as large than the 2-support of any vector. More precisely,
we have the following.

Proposition 3.19. For any vector v ∈ Cn and any ε ∈ (0, 1),

|supp1
ε2(v)| ≥ |supp2

ε(v)|.

This proposition demonstrates that in general, Theorem 3.16 is stronger than our Corol-
lary 3.18. Because the proof is somewhat technical, we defer it to Appendix A.

To conclude this section, we state a generalization of Theorem 3.16 that applies to all
unitary k-Hadamard matrices.

Theorem 3.20 (L2-approximate support uncertainty principle). Let A ∈ C
n×n be a k-

Hadamard matrix with A∗A = kI, and let ε, η ∈ [0, 1]. Let v ∈ Cn be a non-zero vector.
Then

|supp2
ε(v)||supp2

η(Av)| ≥ k(1 − ε− η)2.

20



This proof is essentially identical to the original proof from [14], so we defer it to Appendix
A. We stress that this proof we need to assume the stronger condition that A∗A = kI: unlike
our other proofs, this proof uses crucially and repeatedly the fact that 1√

k
A preserves the L2

norm under this assumption. Similarly, it is important for this proof that the matrix A be
square, since we will need the same property for A∗.

We also note that it is impossible to prove this result in the same way we proved Theorem
3.17. Indeed, such a proof would necessarily need a 2 → ∞ norm uncertainty principle of the
form ‖v‖2‖Av‖2 ≥ C‖v‖∞‖Av‖∞. In the next subsection, we will show (in Theorem 3.23)
that such an inequality cannot hold unless C is a constant independent of k. Therefore, one
necessarily has to use an alternative approach (and stronger properties) to prove Theorem
3.20.

3.4 Uncertainty principles for other norms: possibility and im-

possibility

Generalizing the primary uncertainty principle, it is natural and useful to try to prove other
uncertainty principles on norms for the finite Fourier transform, or more generally for other
k-Hadamard operators. Indeed, it seems that one can use Theorem 2.4 directly to derive
inequalities of the form ‖v‖p‖Av‖p ≥ c(k)‖v‖q‖Av‖q for other norms p and q, and for some
constant c(k).

However, the situation for other norms is trickier than for p = 1 and q = ∞. It is
instructive to try this for two prototypical cases: first, p = 1 and q = 2, and next, p = 2 and
q = ∞. In both cases, the constant c(k) we obtain from a direct use of the general theorem
is 1. As we shall see, this happens for different reasons in these two cases. In the first (and
generally for p = 1 and any q), one can obtain a much better inequality, indeed a tight one,
indirectly from the case p = 1 and q = ∞. In the second (and in general for p ≥ 2 and any
q), the constant c(k) = 1 happens to be essentially optimal, and one can only obtain a trivial
result. We turn now to formulate and prove each of these statements. We note that, besides
natural mathematical curiosity, there is a good reason to consider uncertainty principles for
other norms: indeed, (a version of) the one we prove here for p = 1 and q = 2 will be key to
our new proof of Heisenberg’s uncertainty principle in Section 4.3.

3.4.1 Optimal norm uncertainty inequalities for p = 1

Consider first the case p = 1 and q = 2, and suppose we wish to prove such a norm uncertainty
principle for the Fourier transform on a finite abelian group G. To apply Theorem 2.4, we
would need to scale the Fourier transform matrix into a matrix A with ‖A‖1→2, ‖A∗‖1→2 ≤ 1.
The way to do so is to rescale so all the entries of A have absolute value 1/

√
|G|. But in that

case A∗A = I, so one would simply obtain the inequality ‖v‖1‖Av‖1 ≥ ‖v‖2‖Av‖2, which
is not sharp. In fact, this inequality is trivial (and has nothing to do with “uncertainty”),
since any vector u satisfies ‖u‖1 ≥ ‖u‖2. To obtain a stronger inequality, which is sharp, we
instead use a simple reduction to the 1 → ∞ result of Theorem 2.3, which is a variant of the
two-step framework articulated in the Introduction.
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Theorem 3.21 (Norm uncertainty principle, p = 1). Let A ∈ C
m×n be k-Hadamard, and

let v ∈ Cn be non-zero. Then for any 1 ≤ q ≤ ∞, we have

‖v‖1‖Av‖1 ≥ k1−1/q‖v‖q‖Av‖q.
Proof. The case q = ∞ is precisely Theorem 2.3, so we may assume that q < ∞. So,
following our approach, all we need to prove is the bound

‖u‖1
‖u‖q

≥
( ‖u‖1
‖u‖∞

)(q−1)/q

(4)

for any non-zero vector u, and plug it in our primary inequality ‖v‖1‖Av‖1 ≥ k‖v‖∞‖Av‖∞
for both v and Av. This is simple: we compute

‖u‖qq =
n∑

i=1

|ui|q ≤ ‖u‖q−1
∞

n∑

i=1

|ui| = ‖u‖q−1
∞ ‖u‖1,

which implies that ‖u‖q−1
1 ‖u‖qq ≤ ‖u‖q1‖u‖q−1

∞ , which yields the bound (4).

We get as a special case an uncertainty principle for the discrete Fourier transform, which
we believe has not been previously observed.

Corollary 3.22. For any 1 ≤ q ≤ ∞, any finite abelian group G, and any non-zero function
f : G → C, we have

‖f‖1‖f̂‖1 ≥ |G|1−1/q‖f‖q‖f̂‖q.
Remark. This is tight if f is the indicator function of a subgroup H ⊆ G. In that case, f̂
is a constant multiple of the indicator function of the dual subgroup H⊥ ⊆ Ĝ, and we have
that |H||H⊥| = |G|. This shows that the result is tight, since the q-norm of an indicator
function is exactly the 1/q power of its support size.

3.4.2 No non-trivial norm uncertainty inequalities for p ≥ 2

Two special cases of Corollary 3.22, one of which is just Theorem 2.3, are that if A is
k-Hadamard, then

‖v‖1‖Av‖1 ≥ k‖v‖∞‖Av‖∞ and ‖v‖1‖Av‖1 ≥
√
k‖v‖2‖Av‖2.

Looking at these two bounds, it is natural to conjecture that

‖v‖2‖Av‖2 ≥
√
k‖v‖∞‖Av‖∞, (5)

which would of course be best possible if true. If we again attempt to prove this for the
Fourier transform directly from Theorem 2.4, we need to scale the Fourier transform to a
matrix A with 2 → ∞ norm at most 1, which again requires taking A to have all entries
of absolute value 1/

√
|G|. Then we again get that A∗A = I, and only obtain the trivial

inequality ‖v‖2‖Av‖2 ≥ ‖v‖∞‖Av‖∞.
In contrast to the previous subsection, this trivial bound is essentially tight, as shown by

the following theorem.
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Theorem 3.23. Let G be a finite abelian group of order n, and let A be the Fourier transform
matrix of G. Let p ∈ [2,∞], q ∈ [1,∞] be arbitrary. There exists a vector v ∈ Cn with

‖v‖p‖Av‖p ≤ 2‖v‖q‖Av‖q.

In particular, (5) is false in general.

Proof. We normalize A so that all its entries have absolute value 1, and assume without loss
of generality that the first row and column of A consist of all ones14. We define the vector
v = (1 +

√
n, 1, 1, . . . , 1) ∈ Cn. Then Av =

√
nv, i.e. v is an eigenvector of A with eigenvalue√

n; this can be seen by observing that v is the sum of (
√
n, 0, 0, . . .0) and (1, 1, . . . , 1), and

the action of A on these vectors is to swap them and multiply each by
√
n.

Moreover, we can compute that

‖v‖p =
[(√

n + 1
)p

+ n− 1
]1/p

and ‖v‖q =
[(√

n + 1
)q

+ n− 1
]1/q

.

We claim that for any a ≥ 1, b ≥ 0, the function h(x) = (ax + b)1/x is monotonically
non-increasing for x ≥ 1. Indeed, its derivative is

h′(x) =
h(x)

x2(ax + b)
(ax log(ax) − (ax + b) log(ax + b)) .

The term h(x)/(x2(ax + b)) is positive, and the function t 7→ t log t is increasing for t ≥ 1,
which implies that the parenthesized term is non-positive, so h′(x) ≤ 0. This implies that
‖v‖x is a non-increasing function of x, so we have that

‖v‖p ≤ ‖v‖2 =

√
2n + 2

√
n and ‖v‖q ≥ ‖v‖∞ =

√
n + 1.

In particular, we find that
√

2‖v‖q ≥
√

2‖v‖∞ ≥ ‖v‖2 ≥ ‖v‖p. This shows us that

‖v‖p
‖v‖q

· ‖Av‖p‖Av‖q
=

‖v‖2p
‖v‖2q

≤ 2.

3.4.3 The Hausdorff–Young inequality and the regime 1 < p < 2

For the remaining range of 1 < p < 2, we can obtain norm inequalities like those for p = 1.
However, we need two additional hypotheses. First, we need to assume that our k-Hadamard
matrix satisfies the stronger unitarity property that A∗A = kI, while such an assumption
was unnecessary in the p = 1 case. Second, we will need to assume that the second norm
index, q, is at most p′ = p/(p−1); this assumption was immaterial in the p = 1 case, since the
dual index of 1 is ∞. We remark that we include this subsection only for completeness; the
results here are known and use standard techniques, namely the Riesz–Thorin interpolation
theorem and the log-convexity of the Lp norms.

14This simply corresponds to indexing the rows and columns of A so that the identity element of G and
Ĝ come first.
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To do this, we first prove a discrete analogue of the Hausdorff–Young inequality. This
inequality was already observed15 by Dembo, Cover, and Thomas [12, Equation (52)], who
also stated it in the same general setting of unitary k-Hadamard matrices, as we now do.

Proposition 3.24 (Discrete Hausdorff–Young inequality). Let A ∈ Cn×n be a k-Hadamard
matrix with A∗A = kI. Fix 1 < p < 2, and let p′ = p/(p − 1) ∈ (2,∞). Then ‖A‖p→p′ ≤
k(p−1)/p.

Proof. We already know that ‖A‖1→∞ ≤ 1, and our assumption that A∗A = kI implies that
‖A‖2→2 =

√
k. We may apply the Riesz–Thorin interpolation theorem [32, Theorem IX.17]

to these bounds, which implies that ‖A‖p→p′ ≤ k(p−1)/p, as claimed.

As a corollary, we obtain the following norm uncertainty principle for 1 < p < 2.

Theorem 3.25 (Norm uncertainty principle, 1 < p < 2). Let A ∈ Cn×n be a k-Hadamard
matrix with A∗A = kI. Let p ∈ (1, 2) and q ∈ [p, p′] be norm indices. Then for any v ∈ C

n,

‖v‖p‖Av‖p ≥ k
q−p

pq ‖v‖q‖Av‖q

Proof. First, suppose that q = p′. In that case, we may multiply the conclusion of Proposition
3.24 for A and A∗ and conclude that

k
2(p−1)

p ‖v‖p‖Av‖p ≥ ‖Av‖p′‖A∗Av‖p′ = k‖v‖p′‖Av‖p′,

which implies the desired bound ‖v‖p‖Av‖p ≥ k
2−p

p ‖v‖p′‖Av‖p′.
For smaller values of q, we use the above as a primary uncertainty principle, and derive

the result by showing that

‖u‖p
‖u‖q

≥
( ‖u‖p
‖u‖p′

) p−q

pq−2q

(6)

for any non-zero vector u and any p ≤ q ≤ p′. Let θ ∈ [0, 1] be the unique number such that

1

q
=

1 − θ

p
+

θ

p′
,

namely θ = p−q
pq−2q

. Then the log-convexity of the Lp norms (also known as the generalized

Hölder inequality) says that ‖u‖q ≤ ‖u‖1−θ
p ‖u‖θp′, and rearranging this yields (6).

We now apply (6) to u = v and u = Av, and conclude that

‖v‖p
‖v‖q

· ‖Av‖p‖Av‖q
≥
( ‖v‖p
‖v‖p′

· ‖Av‖p‖Av‖p′

) p−q

pq−2q

≥
(
k

2−p

p

) p−q

pq−2q
= k

q−p

pq .

15They used this discrete Hausdorff–Young inequality to prove a discrete entropic uncertainty principle,
analogous to that of Hirschman [21].
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Remark. We remark that, as with the 1 → q norm uncertainty principles above, Theorem
3.25 is tight for the Fourier transform. Indeed, if v is the indicator vector of a subgroup of
G, then Av will be a constant multiple of the indicator vector of the dual subgroup, and the
inequality in Theorem 3.25 will be an equality in this case.

What these subsections demonstrate is that the 1 → ∞ result of Theorem 2.3 is the
strongest result of its form, in two senses. First, it implies the optimal 1 → q inequalities for
any 1 ≤ q ≤ ∞, which cannot be obtained by a direct application of Theorem 2.4. Second,
such p → q uncertainty principles for p > 1 are false in general, as shown by the fact that
one cannot obtain a super-constant uncertainty even for the Fourier transform when p ≥ 2.
In the regime 1 < p < 2, one can obtain tight inequalities whenever p ≤ q ≤ p′, at least for
k-Hadamard matrices that satisfy the unitarity property A∗A = kI.

4 Uncertainty principles in infinite dimensions

In this section, we will state and prove various uncertainty principles that hold in infinite-
dimensional vector spaces, primarily the Heisenberg uncertainty principle and its generaliza-
tions. We begin in Section 4.1 with general results that hold for the Fourier transform on
arbitrary locally compact abelian groups. We then restrict to R, and discuss in Section 4.2
a large class of operators for which our results hold, namely infinite-dimensional analogues
of the k-Hadamard matrices we focused on in Section 3. These include the so-called Linear
Canonical Transforms (LCT), a family of integral transforms generalizing of the Fourier and
other transforms, which arise primarily in applications to optics. Finally, we move to prove
the Heisenberg uncertainty principle and its variations for such operators in Section 4.3. In
addition to obtaining a new proof which avoids using the analytic tools common in existing
proofs, we also prove a number of generalizations. Most notably, we establish uncertainty
principles for higher moments than the variance16. We also give new inequalities which are
similar to Heisenberg’s but are provably incomparable. We remark that in some of our proofs
of existing inequalities, the constants obtained are worse than in the classical proofs.

4.1 The Fourier transform on locally compact abelian groups

We begin by recalling the basic definitions of the Fourier transform on locally compact
abelian17 groups, and proving some generalizations of earlier results in this context.

Let G be a locally compact abelian group. Then G can be equipped with a left-invariant
Borel measure µ, called the Haar measure, which is unique up to scaling. If we let Ĝ denote
the set of continuous group homomorphisms G → T, then Ĝ is a group under pointwise multi-
plication. Moreover, if we topologize Ĝ with the compact-open topology, then Ĝ becomes an-

16Such results were already obtained by Cowling and Price [10], but again, our proof avoids their heavy
analytic machinery.

17In fact, we believe that, as in Section 3.2, many of our results can be extended to infinite non-abelian
groups, at least as long as all their irreducible representations are finite-dimensional.
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other locally compact abelian group, which is called the Pontryagin dual of G. Given a func-
tion f ∈ L1(G), we can define its Fourier transform f̂ : Ĝ → C by f̂(χ) =

∫
f(x)χ(x) dµ(x),

and it is easy to see that f̂ is a well-defined element of L∞(Ĝ). Moreover, having chosen

µ, there exists a unique Haar measure ν on Ĝ so that the Fourier inversion formula holds,
namely so that f(x) =

∫
f̂(χ)χ(x) dν(χ) for µ-a.e. x, as long as f̂ ∈ L1(Ĝ). With this choice

of ν, we also have the Plancherel formula, that
∫
|f |2 dµ =

∫
|f̂ |2 dν, as long as one side is

well-defined. From now on, we will fix these measures µ and ν, and all Lp norms of functions
will be defined by integration against these measures. Observe that from the definition of
f̂ and from the Fourier inversion formula, we have that the Fourier transform and inverse
Fourier transform have norm at most 1 as operators L1 → L∞. Using this, we can prove an
infinitary version of our primary uncertainty principle, Theorem 2.1.

Theorem 4.1 (Primary uncertainty principle, infinitary version). Let G be a locally compact

abelian group with a Haar measure µ, and let Ĝ, ν be the dual group and measure. Fix
1 ≤ q ≤ ∞ and let f ∈ L1(G) be such that f̂ ∈ L1(Ĝ). Then

‖f‖1‖f̂‖1 ≥ ‖f‖∞‖f̂‖∞.

Remark. Throughout this section, we will frequently need the assumption that f ∈ L1(G)

and f̂ ∈ L1(Ĝ). To avoid having to write this every time, we make the following definition.

Definition 4.2 (Doubly L1 function). We call function f : G → C doubly L1 if f ∈ L1(G)

and f̂ ∈ L1(Ĝ).

Note that f being doubly L1 implies that f, f̂ ∈ L∞, and thus that f, f̂ ∈ Lp for all
p ∈ [1,∞] by Hölder’s inequality.

Proof of Theorem 4.1. For any χ ∈ Ĝ, we have that

|f̂(χ)| =

∣∣∣∣
∫

f(x)χ(x) dµ(x)

∣∣∣∣ ≤
∫
|f(x)| dµ(x) = ‖f‖1,

since |χ(x)| = 1. This implies that ‖f̂‖∞ ≤ ‖f‖1. For the same reason, we see that
‖f‖∞ ≤ ‖f̂‖1. Multiplying these inequalities gives the desired result.

Remark. If we take G to be a finite abelian group, this result appears to be a factor of
|G| worse than Theorem 2.3. However, this discrepancy is due to the fact that previously,

we were equipping both G and Ĝ with the counting measure, which are not dual Haar
measures. If we instead equip them with dual Haar measures (e.g. equipping G with the

counting measure and then equipping Ĝ with the uniform probability measure), then this
“extra” factor of |G| would disappear, and we would get the statement of Theorem 4.1.

Using this theorem, we can obtain an analogue of the Donoho–Stark uncertainty principle,
which holds for every locally compact abelian group. This result was first proved by Matolcsi
and Szűcs [25], using the theory of spectral integrals.
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Theorem 4.3 (Support-size uncertainty principle for general abelian groups). Let G, µ, Ĝ, ν
be as above. Let f : G → C be non-zero and doubly L1. Then µ(supp(f))ν(supp(f̂)) ≥ 1.

Proof. The proof follows that of Theorem 3.2. Following our general approach, we claim
that for any non-zero integrable function g on any measure space (X, λ), we have that

λ(supp(g)) ≥ ‖g‖1
‖g‖∞

.

Applying this to f and f̂ and combining it with the primary uncertainty principle, Theorem
4.1, yields the desired result. To prove the claim, we simply compute

‖g‖1 =

∫

X

|g(x)| dλ(x) =

∫

supp(g)

|g(x)| dλ(x) ≤ ‖g‖∞
∫

supp(g)

dλ(x) = λ(supp(g))‖g‖∞.

In general, Theorem 4.3 is tight. This can be seen, for instance, by recalling that it is
equivalent to Theorem 3.1 when G is finite, and we already know that theorem to be tight
when f is the indicator function of a subgroup. However, Theorem 4.3 is tight even for some
infinite groups. For instance, let G be any compact abelian group, and let µ be the Haar
probability measure on G. Then Ĝ is a discrete group, and ν is the counting measure on Ĝ.
If we let f : G → C be the constant 1 function, then µ(supp(f)) = 1. Moreover, f̂ will be

the indicator function of the identity in Ĝ, so ν(supp(f̂)) = 1 as well.
However, when we restrict to G = R and µ the Lebesgue measure, we find that Theorem

4.3 is far from tight. Instead, the correct inequality is µ(supp(f))ν(supp(f̂)) = ∞, as proven
by Benedicks [6] and strengthened by Amrein and Berthier [1]. The proofs of these results
use the specific structure of R, and we are not able to reprove them with our framework,
presumably because our approach should work for any G, and Benedicks’s result is simply
false in general. There has been a long line of work on how much Theorem 4.3 can be
strengthened for other locally compact abelian groups G; see [16, Section 7] for more.

4.2 k-Hadamard operators in infinite dimensions

Continuing to restrict to functions on R, one can ask for other transforms which satisfy an
uncertainty principle, just as previously we investigated all k-Hadamard matrices, and not
just the Fourier transform matrices. From the proof of Theorem 4.1, and from the definition
of k-Hadamard matrices, the following definition is natural.

Definition 4.4. We say that a linear operator A : L1(R) → L∞(R) is k-Hadamard if
‖A‖1→∞ ≤ 1 and if ‖A∗Af‖∞ ≥ k‖f‖∞ for all functions f with f, Af ∈ L1(R).

Remark. Extending our earlier use of the word, we will say that f is doubly L1 for A if
f, Af ∈ L1(R). We will usually just say doubly L1 and omit “for A” when A is clear from
context.

The primary uncertainty principle for k-Hadamard operators, extending Theorem 4.1, is
the following, whose proof is identical to that of Theorem 4.1.
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Theorem 4.5 (Primary uncertainty principle for k-Hadamard operators). Suppose A is a
k-Hadamard operator and f is doubly L1. Then

‖f‖1‖Af‖1 ≥ k‖f‖∞‖Af‖∞.

We can also extend the uncertainty principles for other norms seen in Theorem 3.21 to
this infinite-dimensional setting, as follows.

Theorem 4.6 (Norm uncertainty principle, infinitary version). Suppose A is a k-Hadamard
operator and f is doubly L1. Then for any 1 ≤ q ≤ ∞,

‖f‖1‖Af‖1 ≥ k1−1/q‖f‖q‖Af‖q.

Proof. The proof follows that of Theorem 3.21. We may assume that q < ∞, since the
case of q = ∞ is precisely Theorem 4.5. It suffices to prove that for any non-zero function
g ∈ L1(R) ∩ L∞(R),

‖g‖1
‖g‖q

≥
( ‖g‖1
‖g‖∞

)(q−1)/q

, (7)

since we may then apply this bound to f and f̂ and use the primary uncertainty principle,
Theorem 4.5. To prove (7), we simply compute

‖g‖qq =

∫
|g(x)|q dx ≤ ‖g‖q−1

∞

∫
|g(x)| dx = ‖g‖q−1

∞ ‖g‖1,

which implies (7) after multiplying both sides by ‖g‖q−1
1 and rearranging.

We already saw in the previous section that the Fourier transform on R is 1-Hadamard.
As it turns out, the Fourier transform is one instance of a large class of k-Hadamard oper-
ators (with arbitrary values of k) known as linear canonical transformations (LCT), which
we define below. These transformations arise in the study of optics, and generalize many
other integral transforms on R, such as the fractional Fourier and Gauss–Weierstrass trans-
formations. Although their analytic properties are somewhat more complicated than those
of the Fourier transform, our framework treats them equally, since the only property we will
need of them is that they are k-Hadamard. For more information on LCT, see [39, Chapters
9–10] or [19].

We now define the LCT, following [3]. This is a family of integral transforms, indexed
by the elements of SL2(R). Specifically, given a matrix M = ( a b

c d ) ∈ SL2(R) with b 6= 0, we
can define the LCT LM associated to M to be

(LMf)(ξ) =
e−iπ sgn(b)/4

√
|b|

∫
f(x)eiπ(dξ

2−2xξ+ax2)/b dx.

One can also take the limit b → 0 and obtain a consistent definition of LM for all M ∈ SL2(R).
It turns out that this definition yields an infinite-dimensional representation of SL2(R); in
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particular, one sees that the inverse transform L−1
M is given by LM−1 = (LM )∗. From the

definition, we see that if b 6= 0,

|(LMf)(ξ)| =
1√
|b|

∣∣∣∣
∫

f(x)eiπ(dξ
2−2xξ+ax2)/b dx

∣∣∣∣ ≤
1√
|b|

∫
|f(x)| dx =

‖f‖1√
|b|

,

so ‖LM‖1→∞ ≤ 1/
√
|b|. This implies the following result.

Theorem 4.7. Let M = ( a b
c d ) ∈ SL2(R) be a matrix with b 6= 0. Let A =

√
|b|LM be a

rescaling of the LCT LM . Then A is |b|-Hadamard.

Proof. By the above, we see that ‖A‖1→∞ =
√

|b|‖LM‖1→∞ ≤ 1. Similarly, if we set

B = A∗ =
√
|b|LM−1 , then ‖B‖1→∞ ≤ 1 and BAf = |b|LM−1LMf = |b|f for any doubly L1

function f .

By combining the primary uncertainty principle for k-Hadamard operators with the ar-
gument of Theorem 4.3, we obtain the following generalization of the Matolcsi–Szűcs (or
Donoho–Stark) uncertainty principle for the LCT, or indeed for any k-Hadamard operator.

Corollary 4.8. If M = ( a b
c d ) ∈ SL2(R) and f : R → C is doubly L1 and non-zero, then

λ(supp(f))λ(supp(LMf)) ≥ |b|,

where λ denotes Lebesgue measure.

Proof. From the primary uncertainty principle, Theorem 4.5, we find that

‖f‖1
‖f‖∞

· ‖LMf‖1
‖LMf‖∞

≥ |b|.

In proving Theorem 4.3, we saw that ‖g‖1
‖g‖∞ ≤ λ(supp(g)) for all g, which yields the claim.

We believe that this fact was not previously observed for the LCT. Of course, one expects
that in general a much stronger result should hold, namely that λ(supp(f))λ(supp(LMf)) =
∞ whenever b 6= 0; this would generalize the result of Benedicks [6] from the Fourier trans-
form to all LCT. However, we are not able to obtain such a result with our approach, for
the same reason that we cannot reprove Benedicks’s theorem.

4.3 The Heisenberg uncertainty principle

In this section, we prove (with a somewhat worse constant) the well-known Heisenberg
uncertainty principle, as well as some extensions of it. Again, as in all previous proofs
we have seen, we use the elementary two-step process explained in the Introduction. Our
proof differs drastically from the classical ones, which use analytic techniques (integration
by parts) and special properties of the Fourier transform (that it turns differentiation into
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multiplication by x). Indeed it is not clear if these classical techniques can be used to prove
our generalizations.

For a doubly L1 function f , we define the variance of f to be

V (f) =

∫
x2|f(x)|2 dx.

If ‖f‖2 = 1, then we may think of |f |2 as a probability distribution, in which case V really
does measure the variance of this distribution (assuming, without loss of generality18, that
its mean is 0). This interpretation is natural from the perspective of quantum mechanics
(whence the original motivation for studying uncertainty principles): in quantum mechanics,
we would think of f as a wave function, and then |f |2 would define the probability distribution
for measuring some quantity associated to the wave function, such as a particle’s19 position
or momentum. Heisenberg’s20 uncertainty principle asserts that V (f) and V (f̂) cannot both
be small.

Theorem 4.9 (Heisenberg’s uncertainty principle [20, 24, 37]). There exists a constant
C > 0 such that for any doubly L1 function f 6= 0,

V (f)V (f̂) ≥ C‖f‖22‖f̂‖22.

Remark. It is in fact known that the optimal constant is C = 1/(16π2), with equality
attained for Gaussians.

Additionally, versions of the Heisenberg uncertainty principle have been established for
the LCT, see [35] for a survey. The most basic such extension is the following, stated without
proof as [39, Exercise 9.10] and first proven in print by Stern [34].

Theorem 4.10 (LCT uncertainty principle [34, 39]). There exists a constant C > 0 such
that the following holds for all doubly L1 functions f . If M = ( a b

c d ) ∈ SL2(R) and LM is the
associated LCT, then

V (f)V (LMf) ≥ Cb2‖f‖22‖LMf‖22.

4.3.1 A Heisenberg uncertainty principle for other norms

We begin by proving the following generalization of Heisenberg’s uncertainty principle. It
lets us bound V (f)V (Af) by any Lq norm of f and Af , for any k-Hadamard operator A
(recovering, for q = 2, the classical results of the previous subsection21). As far as we know,

18If its mean is at some point a, we can simply replace f(x) by f(x− a) to make V be the actual variance
of the distribution.

19Because of this interpretation, it is natural to have f be a function defined on Rn, to model a particle
moving in n-dimensional space. For the moment we focus on the case n = 1, though we discuss the
multidimensional analogue in Section 4.3.3.

20Though the physical justification for the uncertainty principle is due to Heisenberg [20], the proof of the
mathematical fact is due to Kennard [24] and Weyl [37].

21Note e.g. that one recovers the correct dependence on b when deducing the LCT uncertainty principle
above from this one.
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this result is new for q 6= 2, even for the Fourier transform. As we show below, the statements
for different q are in general of incomparable strength.

Theorem 4.11 (Heisenberg uncertainty principle for arbitrary norms). For any k-Hadamard
operator A, any doubly L1 function f , and any 1 < q ≤ ∞,

V (f)V (Af) ≥ Cqk
3−2/q‖f‖2q‖f̂‖2q ,

where Cq = 2− 10q−8
q−1 depends only on q. In particular, V (f)V (f̂) ≥ Cq‖f‖2q‖f̂‖2q.

Remark. No attempt was made to optimize the constant Cq. However, our proof is unlikely
to give the optimal constant even after optimization; for instance, in the case q = 2, it is
known that the optimal constant for the Fourier transform is C2 = 1/(16π2) ≈ 6.3 × 10−3,
whereas our proof gives the somewhat worse constant 2−12 ≈ 2.4 × 10−4.

As with our other proofs, the proof of this result proceeds in two stages. The first,
already done in Theorem 4.6, is establishing the “norm uncertainty principle” ‖f‖1‖Af‖1 ≥
‖f‖q‖Af‖q. After this, all that remains is to lower-bound V (g) as a function of ‖g‖1 and
‖g‖q for an arbitrary function g. Combining these two bounds will yield the result.

However, an important new ingredient which we did not use in the finite-dimensional
setting is a different way to upper-bound ‖g‖1. The idea is to choose a constant T , depending
on g and the target norm q, so that most of the the L1-mass of g is outside the interval [−T, T ].
This will allow us to lower bound the variance through a simple use of Hölder’s inequality.
Note that in the proof and subsequently, we use the usual conventions of manipulating q as
though it is finite, though everything works identically for q = ∞ by taking a limit, or by
treating expressions like ∞/(∞− 1) as equal to 1.

Proof of Theorem 4.11. We may assume that f 6= 0. Following our general framework, we
claim that the bound

‖g‖1
‖g‖q

≤
(

2
5q−4
q−1

V (g)

‖g‖2q

) q−1
3q−2

(8)

holds for any non-zero function g ∈ L1(R)∩L∞(R). Observe that this bound is homogeneous,
in that it is unchanged if we replace g by cg for some constant c. Once we have this bound,
we can apply it to the norm uncertainty principle, Theorem 4.6, which says that

‖f‖1
‖f‖q

· ‖Af‖1‖Af‖q
≥ k1−1/q.

Plugging in (8) for g = f and g = Af , we find that

(
2

10q−8
q−1

V (f)

‖f‖2q
V (Af)

‖Af‖2q

) q−1
3q−2

≥ k
q−1
q ,

and rearranging gives the desired conclusion. So it suffices to prove (8).
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Let T = 1
2
(‖g‖1/(2‖g‖q))q/(q−1), so that (2T )1−1/q‖g‖q = 1

2
‖g‖1. By Hölder’s inequality,

we have that

∫ T

−T

|g(x)| dx =

∫
1[−T,T ](x)|g(x)| dx ≤ ‖1[−T,T ]‖q/(q−1)‖g‖q = (2T )1−1/q‖g‖q =

1

2
‖g‖1,

where the last step follows from the definition of T . This implies that the interval [−T, T ]
contains at most half of the L1 mass of g, so 1

2
‖g‖1 ≤

∫
|x|>T

|g(x)| dx. Applying the Cauchy–

Schwarz inequality to this bound, we find that

1

2
‖g‖1 ≤

∫

|x|>T

|g(x)| dx

=

∫

|x|>T

1

x
(x|g(x)|) dx

≤
(∫

|x|>T

1

x2
dx

)1/2(∫

|x|>T

x2|g(x)|2 dx

)1/2

≤
(

2

T

)1/2

V (g)1/2

= 2

(
2‖g‖q
‖g‖1

)q/(2(q−1))

V (g)1/2.

Rearranging this inequality yields (8).

Theorem 4.11 contains within it infinitely many “Heisenberg-like” uncertainty principles,
one for each q ∈ (1,∞] (and one for each k-Hadamard operator A). It is natural to wonder
whether these are really all different, or whether one of them implies all the other ones. As a
first step towards answering this question in the case of the Fourier transform, we can show
that the q = 2 and q = ∞ cases are incomparable, in the sense that there exist functions
for which one is arbitrarily stronger than the other. More precisely, we have the following
result. We use S(R) to denote the Schwartz class of rapidly decaying smooth functions.

Theorem 4.12. Define a function F : S(R) \ {0} → R>0 by

F (f) =
‖f‖∞‖f̂‖∞
‖f‖2‖f̂‖2

=
‖f‖∞‖f̂‖∞

‖f‖22
.

Then the image of F is all of R>0.

We defer the proof of Theorem 4.12 to Appendix A.
Recall that the q = 2 case of Theorem 4.11 (which is just the classical Heisenberg un-

certainty principle) says that V (f)V (f̂) ≥ C‖f‖22‖f̂‖22, whereas the q = ∞ case of Theorem
4.11 says that V (f)V (f̂) ≥ C ′‖f‖2∞‖f̂‖2∞, for appropriate constants C,C ′ > 0. Thus, The-
orem 4.12 says that these two results are in general incomparable: there exist functions for
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which the q = 2 gives an arbitrarily stronger lower bound on V (f)V (f̂), while there exist
other functions for which the q = ∞ case gives an arbitrarily stronger bound. In fact, we
expect that in general, the uncertainty principles for any q 6= 2 should be incomparable to
the Heisenberg uncertainty principle, namely the case where q = 2. We are unable to prove
this, and therefore leave it as a conjecture.

Conjecture 4.13. Let 2 6= q ∈ (1,∞], and define a function Fq : S(R) \ {0} → R>0 by

Fq(f) =
‖f‖q‖f̂‖q
‖f‖2‖f̂‖2

=
‖f‖q‖f̂‖q
‖f‖22

.

Then the image of Fq is all of R>0.

4.3.2 An uncertainty principle for higher moments

Theorem 4.11 is itself a special case of a much more general uncertainty principle, which we
now state. Rather than proving uncertainty for the variance functional V (f), it proves it for
any moments greater than 1 of the distributions |f |2 and |Af |2. Namely, for any 1 < r < ∞,
let us define

Mr(f) =

∫
|x|r|f(x)|2 dx,

which is precisely the rth moment of the distribution |f |2 if ‖f‖2 = 1. Even when ‖f‖2 6= 1,
Mr(f) is still a good measure of how “spread” f is, in that it computes how much L2

mass of f is far from the origin, weighted according to |x|r. Uncertainty principles for such
functionals were studied by Cowling and Price [10], who established the q = 2 case of the
following result for the Fourier transform, as well as many more general results of this flavor
for the Fourier transform. As with the basic Heisenberg uncertainty principle, we believe
that the q 6= 2 case is new, as is the extension to arbitrary k-Hadamard operators.

Theorem 4.14 (Heisenberg uncertainty principle for higher moments). Let 1 < r, s < ∞
and 1 < q ≤ ∞. Then for any k-Hadamard operator A and any doubly L1 function f ,

Mr(f)
q−1

qr+q−2Ms(Af)
q−1

qs+q−2 ≥ Cr,qCs,qk
1− 1

q ‖f‖
2q−2

qr+q−2
q ‖Af‖

2q−2
qs+q−2
q ,

for some constants Cr,q, Cs,q > 0 depending only on r, q, and s, q, respectively. In particular,
if s = r, we have

Mr(f)Mr(Af) ≥ C ′
r,qk

qr+q−2
q ‖f‖2q‖f̂‖2q

for another constant C ′
r,q = C

2(qr+q−2)/(q−1)
r,q .

We defer the proof of this theorem to Appendix A, but the basic idea is the same as the
proof of Theorem 4.11: by the general framework, it suffices to upper-bound ‖f‖1/‖f‖q as
a function of Mr(f). To do so, we again choose an appropriate T so that most of the L1

mass of f is outside of [−T, T ], and then proceed by simple applications of the Hölder and
Cauchy–Schwarz inequalities.
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4.3.3 Further extensions and open questions

Cowling and Price [10] actually study a much more general question than what is in Theorem
4.14 (though restricting to q = 2 and the Fourier transform). They investigate integrals
of the form

∫
w(x)|f(x)|p for values of p other than 2 and for quite general functions w,

and finding necessary and sufficient conditions for an uncertainty principle to hold for such
functionals of f and f̂ . Using the same techniques, we can also obtain such results in the
case w(x) = |x|r, as above; the proof is identical to that of Theorem 4.14, except that instead
of using Cauchy–Schwarz to write

∫

|x|>T

|f(x)| dx =

∫

|x|>T

1

|x|r/2 (|x|r/2|f(x)|) dx ≤
(∫

|x|>T

dx

|x|r
)1/2(∫

|x|r|f(x)|2 dx

)1/2

,

we would instead use Hölder’s inequality to say

∫

|x|>T

|f(x)| dx =

∫

|x|>T

1

|x|r/p (|x|r/p|f(x)|) dx ≤
(∫

|x|>T

dx

|x| r
p−1

) p−1
p (∫

|x|r|f(x)|p
) 1

p

.

Then as long as r > p − 1, this first integral will converge, and the argument would go
through as before. We omit the details, since they are very similar to (but messier than) the
computations in the proof of Theorem 4.14.

However, an interesting point is raised by this argument, which is the fact that it only
works for r > p−1. Cowling and Price’s theorem works for all r > (p−2)/2, which is a larger
range, and they in fact prove a converse which says that no such result is true if r is any
smaller. It is not at present clear to us whether there is a genuine obstruction that prevents
our technique from working for all possible r, or if there is some variant manipulation that
would yield the full strength of Cowling and Price’s theorem.

A similar convergence issue arises when attempting to prove the multidimensional version
of Heisenberg’s uncertainty principle with our framework. The multidimensional version says
the following.

Theorem 4.15. Let n ≥ 1 be an integer and f ∈ L2(Rn). Then
(∫

‖x‖22|f(x)|2 dx

)(∫
‖ξ‖22|f̂(ξ)|2 dξ

)
≥ Cn2‖f‖22‖f̂‖22, (9)

where the constant C > 0 does not depend on the dimension n.

If one attempts to prove this by using the argument from the proof of Theorem 4.11, the
natural thing to try is to pick T appropriately and then to write

1

2
‖f‖1 ≤

∫

‖x‖2>T

|f(x)| dx ≤
(∫

‖x‖2>T

1

‖x‖22
dx

)1/2(∫

‖x‖2>T

‖x‖22|f(x)|2 dx

)1/2

.

However, once n > 1, the first integral is infinite for any T , causing this proof to break
down. The issue is again a convergence issue; in fact, one can make this proof go through
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by integrating 1/‖x‖r2 for any r > n, which means that one can prove a multidimensional
uncertainty principle for Mr(f) for any r > n. However, we still do not know how to
prove the ordinary Heisenberg uncertainty principle in any dimension greater than 1 using
our framework, and it would be very interesting to understand if these convergence issues
represent a real limitation of our approach, or if there is a way around them. We leave this
tantalizing question as an open problem.

Open problem. Can one prove the multidimensional Heisenberg uncertainty principle,
Theorem 4.15, using our framework? For instance, can one prove that if g ∈ L1(Rn)∩L∞(Rn),
then

‖g‖1
‖g‖∞

≤
(
Cn

V (g)

‖g‖2∞

)c

,

where V (g) =
∫
Rn ‖x‖22|g(x)|2 dx is the n-dimensional variance of g, and C, c > 0 are con-

stants independent of n? Alternately, can one prove such an inequality with ‖g‖∞ replaced
by ‖g‖q? In all these questions, the main interest is to obtain the correct dependence on the
dimension n.
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A Proofs of some technical results

In this section, we present the proofs of Lemma 3.12, Proposition 3.19, Theorem 3.20, The-
orem 4.12, and Theorem 4.14, which were omitted from the main text.

A.1 Proof of Lemma 3.12

Proof of Lemma 3.12.

(i) Recall that the operators A,B : Cn×n → Cn×n are defined by A ◦ M = FMF ∗ and
B ◦ N = F ∗NF , and that we showed from Proposition 3.4 that F ∗F = FF ∗ = nI.
This implies that

B ◦ (A ◦M) = F ∗(FMF ∗)F = (nI)M(nI) = n2M.

(ii) Recall that V consists of all matrices Tf for f ∈ C[G]. To prove this norm bound, it
suffices to prove it for the extreme points of the L1 ball. So we may assume that f = δx
is the function that takes value 1 at some x ∈ G and value 0 elsewhere. In that case,
Tf is a permutation matrix, and therefore every entry of FTδxF

∗ is the inner product
of two columns of F . By Proposition 3.4, all these inner products are either 0 or n,
which implies that ‖A ◦ Tδx‖∞ ≤ n = ‖Tδx‖1.

(iii) Note that B = A∗, and recall that the L1 and L∞ norms are dual to one another. This
implies that ‖B‖1→∞ = ‖A‖1→∞, and thus this is a direct consequence of (ii).

A.2 Proof of Proposition 3.19

Proof of Proposition 3.19. Assume this were not the case, and let n be the smallest dimen-
sion in which a counterexample exists. Consider the set of counterexamples v with ‖v‖1 = 1.
Since the L1 and L2 norms of a vector are unchanged if we replace each entry by its ab-
solute value and are unchanged if we permute the coordinates, we may restrict ourselves
to counterexamples v with non-negative real entries such that v1 ≥ v2 ≥ · · · ≥ vn. Finally,
observe that for any s, the set of vectors with |supp1

ε2(v)| = s is a closed set, and similarly for
|supp2

ε(v)|. So the set of all counterexamples v with v1 ≥ v2 ≥ · · · ≥ vn ≥ 0 and ‖v‖1 = 1 is
a compact subset of Rn, and we may therefore pick a counterexample v of minimal L2 norm.
So from now on, let v be a counterexample with v1 ≥ · · · ≥ vn ≥ 0, ‖v‖1 = 1, n chosen
to be minimal, and ‖v‖2 minimal among all such counterexamples. Let s1 = |supp1

ε2(v)|
and s2 = |supp2

ε(v)|, so we assume for contradiction that s1 < s2. We split v into three
sub-vectors,

vL = (v1, v2, . . . , vs1) vM = (vs1+1, . . . , vs2−1) vR = (vs2, . . . , vn),
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with the subscripts indicating Left, Middle, and Right. Note that vM may be the empty
vector if s2 = s1 + 1. Let the lengths of these vectors be ℓ = s1, m = s2 − s1 − 1, and
r = n− s2 + 1. We know that vL contains at least 1 − ε2 of the L1 mass of v, meaning that

‖vL‖1 ≥ (1 − ε2)‖v‖1 = (1 − ε2)(‖vL‖1 + (‖vM‖1 + ‖vR‖1)),

which implies that

‖vL‖1 ≥
1 − ε2

ε2
(‖vM‖1 + ‖vR‖1). (10)

Similarly, since vL and vM together contain s2 − 1 coordinates of v, they must collectively
have less than 1 − ε of the L2 mass of v, meaning that

‖vL‖22 + ‖vM‖22 < (1 − ε2)‖v‖22 = (1 − ε2)((‖vL‖22 + ‖vM‖22) + ‖vR‖22),

which implies

‖vL‖22 + ‖vM‖22 <
1 − ε2

ε2
‖vR‖22. (11)

Now, we claim that vL and vM are both constant vectors. Indeed, suppose not, and let w be
the vector gotten by replacing the first ℓ entries of v by the average value of v1, . . . , vℓ, and
replacing the next m entries by the average value of vs1+1, . . . , vs2−1. Then ‖w‖2 < ‖v‖2,
since the L2-norm is strictly convex, but ‖w‖1 = ‖v‖1. Therefore, inequalities (10) and (11)
both hold for w, meaning that w is a new counterexample with smaller L2 norm, which we
assumed did not exist. Thus, vL and vM are both constant vectors. In other words, we’ve
found that there exist constants a ≥ b ≥ 0 such that vL = (a, a, . . . , a), vM = (b, b . . . , b),
and every entry of vR is at most b. In that case, inequalities (10) and (11) become

ℓa ≥ 1 − ε2

ε2
(mb + ‖vR‖1) (12)

ℓa2 + mb2 <
1 − ε2

ε2
‖vR‖22. (13)

Multiplying (12) by a and using the fact that m, b ≥ 0, we find that

ℓa2 ≥ 1 − ε2

ε2
a‖vR‖1 ≥

1 − ε2

ε2
‖vR‖22,

where the last step uses the fact that every entry of vR is at most a. However, (13) implies
that

ℓa2 <
1 − ε2

ε2
‖vR‖22,

a contradiction.
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A.3 Proof of Theorem 3.20

Proof of Theorem 3.20. Let U = 1√
k
A be a rescaling of A, chosen so that U is unitary,

meaning that ‖Uw‖2 = ‖w‖2 for all w ∈ Cn. Note that since the definition of supp2 is
invariant under rescaling, we have that |supp2

η(Av)| = |supp2
η(Uv)|.

Let S = supp2
ε(v) and T = supp2

η(Uv). Let PS, PT denote the orthogonal projections
onto the coordinates indexed by S, T , respectively, and let M = PSU

∗PT be the submatrix
of U∗ with rows indexed by S and columns by T . Our goal is to obtain upper and lower
bounds on ‖M‖2→2, which we will combine to conclude the desired result. To begin with
the upper bound, we observe that for any vector w,

‖Mw‖22 =
n∑

i=1

|(Mw)i|2 =
∑

i∈S
|〈Mi, w〉|2 ≤

∑

i∈S
‖Mi‖22‖w‖22 ≤

|S||T |
k

‖w‖22,

where Mi denotes the ith row of M . The first inequality is Cauchy–Schwarz, while the
second uses the fact that every entry of M has absolute value at most 1/

√
k, and that there

are |S||T | entries in M . This shows that ‖M‖2→2 ≤
√

|S||T |/k.
For the lower bound, we first observe that the unitarity of U implies that

‖v − U∗PTUv‖2 = ‖U∗Uv − U∗PTUv‖2 = ‖U∗(Uv − PTUv)‖2 = ‖Uv − PTUv‖2 ≤ η‖v‖2,

where the last step follows from the definition of T . Since PS is a projection, it is a contraction
in L2, so

‖PSv −MUv‖2 = ‖PS(v − U∗PTUv)‖2 ≤ ‖v − U∗PTUv‖2 ≤ η‖v‖2.

Moreover, by the definition of S, we know that ‖v − PSv‖2 ≤ ε‖v‖2. Therefore,

‖v −MUv‖2 ≤ ‖PSv −MUv‖2 + ‖v − PSv‖2 ≤ (η + ε)‖v‖2.

Using the inequality ‖a− b‖2 ≥ ‖a‖2 − ‖b‖2, we conclude that

‖MUv‖2 ≥ (1 − ε− η)‖v‖2 = (1 − ε− η)‖Uv‖2.

Combining this with our bound ‖M‖2→2 ≤
√

|S||T |/k gives the desired result.

A.4 Proof of Theorem 4.12

Proof of Theorem 4.12. Let a > b > 0 be real numbers. Define

fa,b(x) = e−π((a+bi)x)2 = e−π(a2−b2)x2

e−2πiabx2

.

From the definition, we see that |fa,b(x)| = e−π(a2−b2)x2
. Since we assumed that a > b > 0,

we have that a2 − b2 > 0, and therefore |fa,b| decays superexponentially at infinity, and we
see that fa,b ∈ S(R). We can compute

‖fa,b‖22 =

∫
|fa,b(x)|2 dx =

∫
e−2π(a2−b2)x2

=
1√

2(a2 − b2)
.
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Additionally, for any fixed a > b > 0, we see that π(a2 − b2)x2 is minimized at x = 0,
implying that |fa,b(x)| is maximized at x = 0, and therefore

‖fa,b‖∞ = |fa,b(0)| = 1.

We can also compute the Fourier transform of fa,b explicitly, by recalling that the Fourier
transform of e−π(cx)2 is 1

c
e−π(ξ/c)2 , and that this holds for all c ∈ C for which e−π(cx)2 ∈ L2.

Setting c = a + bi, we find that

f̂a,b(ξ) =
1

a + bi
e−π( ξ

a+bi)
2

=
1

a + bi
e−πξ2(a2−b2)/(a2+b2)2e−2πiξ2ab/(a2+b2)2 .

In particular, ∣∣∣f̂a,b(ξ)
∣∣∣ =

1√
a2 + b2

e−πξ2(a2−b2)/(a2+b2)2 .

Again for fixed a > b > 0, we have that |f̂a,b(ξ)| is maximized at ξ = 0, and we conclude
that

‖f̂a,b‖∞ =
1√

a2 + b2
.

This implies that

F (fa,b) =
‖fa,b‖∞‖f̂a,b‖∞

‖fa,b‖22
=

√
2(a2 − b2)

a2 + b2
.

Finally, let us set b =
√
a2 − 1, and insist that a > 1 so that b > 0. Then we get that

F (fa,
√
a2−1) =

√
2

2a2 − 1
,

and as a ranges over (1,∞), the function
√

2/(2a2 − 1) ranges over (0,
√

2). So we conclude

that (0,
√

2) is in the image of F .
Next, we wish to construct a family of functions whose images under F cover the remain-

ing interval [
√

2,∞). For a real number c > 0, we define

gc(x) =
1√
c
e−π(x/c)2 +

√
ce−π(cx)2 .

From the property mentioned above about the Fourier transform of a Gaussian, we see that
gc is its own Fourier transform for all c. We can compute

‖ĝc‖∞ = ‖gc‖∞ = |gc(0)| =
√
c +

1√
c
.
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Moreover, we can also compute

‖gc‖22 =

∫ ∞

−∞

(
1√
c
e−π(x/c)2 +

√
ce−π(cx)2

)2

dx

=
1

c

∫ ∞

−∞
e−2π(x/c)2 dx + 2

∫ ∞

−∞
e−πx2(c2+1/c2) dx + c

∫ ∞

−∞
e−2π(cx)2 dx

=
1

c

(
c√
2

)
+ 2


 1√

c2 + 1
c2


+ c

(
1

c
√

2

)

=
√

2 +
2c√
c4 + 1

.

Thus, we find that

F (gc) =
‖gc‖∞‖ĝc‖∞

‖gc‖22
=

(
√
c + 1√

c
)2

√
2 + 2c√

c4+1

=
c + 2 + 1

c√
2 + 2c√

c4+1

.

This function is minimized at c = 1, where its value is
√

2. Moreover, as c → ∞, the
denominator converges to

√
2, whereas the numerator grows like c. Thus, we see that

limc→∞ F (gc) = ∞. Since this is a continuous function of c, we conclude that [
√

2,∞)
is in the image of F . Combining this with our result that (0,

√
2) is in the image of F , we

conclude that the image of F is all of R>0.

A.5 Proof of Theorem 4.14

Proof of Theorem 4.14. We may assume that f 6= 0. We mimic the proof of Theorem 4.11.
We first claim that for any non-zero g ∈ L1(R) ∩ L∞(R),

‖g‖1
‖g‖q

≤ 1

Cr,q

(
Mr(g)

‖g‖2q

) q−1
qr+q−2

, (14)

where
Cr,q = (r − 1)

q−1
qr+q−2 2− 2qr+q−r−2

qr+q−2

Once we have this, we can apply it with the norm uncertainty inequality, Theorem 4.6, to
obtain that

1

Cr,qCs,q

(
Mr(f)

‖f‖2q

) q−1
qr+q−2

(
Ms(Af)

‖Af‖2q

) q−1
qs+q−2

≥ ‖f‖1
‖f‖q

· ‖Af‖1‖Af‖1
≥ k

q−1
q ,

which is the claimed result. So it suffices to prove (14).
As before, we set T = 1

2
(‖g‖1/(2‖g‖q))q/(q−1), so that (2T )1−1/q‖g‖q = 1

2
‖g‖1. Hölder’s

inequality again gives that
∫ T

−T

|g(x)| dx ≤ 1

2
‖g‖1, implying

∫

|x|>T

|g(x)| dx ≥ 1

2
‖g‖1.
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Therefore, applying the Cauchy–Schwarz inequality, we can compute

1

2
‖g‖1 ≤

∫

|x|>T

|g(x)| dx

=

∫

|x|>T

1

|x|r/2
(
|x|r/2|g(x)|

)
dx

≤
(∫

|x|>T

1

|x|r dx

)1/2(∫

|x|>T

|x|r|g(x)|2 dx

)1/2

≤
√

2√
(r − 1)T r−1

Mr(g)1/2,

where we use the assumption that r > 1 to evaluate the (convergent) integral. Rearranging,
and using the definition of T , we obtain (14).
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