
On log motives

Tetsushi Ito, Kazuya Kato, Chikara Nakayama, Sampei Usui

Abstract

We define the categories of log motives and log mixed motives. The latter gives a
new formulation for the category of mixed motives. We prove that the former is a
semisimple abelian category if and only if the numerical equivalence and homological
equivalence coincide, and that it is also equivalent to that the latter is a Tannakian
category. We discuss various realizations, formulate Tate and Hodge conjectures,
and verify them in curve case.
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1 Introduction

1.1. In this paper, we define

(1) the category of log motives over an fs log scheme, and
(2) the category of log mixed motives over an fs log scheme.

(1) is a generalization of the category of Grothendieck motives over a field with respect
to the homological equivalence. The category (2) has ⊕,⊗, dual, kernel and cokernel. We
prove that the following (i), (ii), and (iii) are equivalent.

(i) The numerical equivalence and homological equivalence coincide in the category
(1).

(ii) The category (1) is a semisimple abelian category.
(iii) The category (2) is a Tannakian category.

The equivalence of (i) and (ii) is the log version of the famous theorem of Jannsen
([20]).
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1.2. We explain the organization briefly. In this paper, except in 2.1, an fs log scheme
means an fs log scheme which has charts Zariski locally.

Let S be an fs log scheme. We fix a prime number ℓ and assume that ℓ is invertible
over S.

After we give preparations in Section 2, we define in Section 3 the category of log
motives over S, which is the log version of the category of motives of Grothendieck. In
Section 4, we define the category of log mixed motives over S using the theory in Section
3.

Here we work modulo homological equivalence using ℓ-adic log étale cohomology the-
ory.

In the case where the log structure of S is trivial, our construction gives a category of
mixed motives over S modulo homological equivalence. This does not use the theory of
Voevodsky ([46]), though we hope our theory is connected to it. In the case S = Spec(k)
for a field k of characteristic 0 with trivial log structure, our definition of the category
of mixed motives over S is different from the definition of the category of mixed motives
over k given by Jannsen in [19]. The difference lies in the definition of morphisms. We
use K-theory whereas he uses absolute Hodge cycles.

Vologodsky ([47]) and Park ([41]) also defined log motives, respectively. They work
with the formalism of triangulated categories á la Voevodsky. Our approach is more
elementary to define the category of log mixed motives directly without defining its derived
category. One can ask to compare our theory with theirs.

In Section 5, we introduce realizations other than ℓ-adic one. In Section 6, we discuss
examples.

We explain each section of this paper more.

1.3. In Section 2, we give preparations on log geometry. We review results on log étale
cohomology, log Betti cohomology, log de Rham cohomology, and log Hodge theory in
2.1, and then review or prove results on fans (2.2), on log modifications (2.3), and on the
Grothendieck group of vector bundles on log schemes (2.4).

1.4. We explain more about Section 3.
Fix a prime number ℓ and let S be an fs log scheme on which ℓ is invertible. We define

the category of log motives over S by imitating the definition of motive by Grothendieck
modulo homological equivalence.

Recall that for a field k whose characteristic is not ℓ, the category of motives over k
modulo (ℓ-adic) homological equivalence is defined as follows (cf. [44]). For a projective
smooth scheme X over k and for r ∈ Z, consider a symbol h(X)(r). For projective smooth
schemes X, Y over k and for r, s ∈ Z, by a morphism h(X)(r) → h(Y )(s), we mean a
homomorphism

⊕
i H

i(X)ℓ(r) →
⊕

i H
i(Y )ℓ(s) which comes from CH(X × Y )Q. Here

H i(X)ℓ is the étale cohomology group H i
ét(X ⊗k k̄,Qℓ) with k̄ a fixed separable closure

of k, (r) denotes the r-th Tate twist, the same for Y and s, and where CH =
⊕

i CHi

is the Chow group and ( )Q means ⊗Q. A motive over k is a pair (h(X)(r), e), where
X is a projective smooth scheme over k, r ∈ Z, and e is an idempotent of the ring of
endomorphisms of h(X)(r).

Imitating this, we define the category of log motives over S is as follows. (See 3.1
for details.) For a projective vertical log smooth fs log scheme X over S and for r ∈ Z,
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consider a symbol h(X)(r). For projective vertical log smooth fs log schemes X, Y over
S and for r, s ∈ Z, by a morphism h(X)(r) → h(Y )(s), we mean a homomorphism
h :

⊕
i H

i(X)ℓ(r) →
⊕

i H
i(Y )ℓ(s) satisfying the condition (C) below. Here H i(X)ℓ is

the smooth Qℓ-sheaf on the log étale site on S defined to be the i-th relative log étale
cohomology of X over S, (r) denotes the r-th Tate twist, and the same for Y and s.

(C) For any geometric standard log point p (2.1.11) over S, the pullback of h to p
comes from an element of

⊕
i griK(Z)Q for some log modification Z of Xp ×p Yp, where

K(Z) denotes the Grothendieck group of the category of vector bundles on Z and gri

denotes the i-th graded quotient for the γ-filtration ([12]).

A log motive over S is a pair (h(X)(r), e), where X over S and r are as above and e
is an idempotent of the ring of endomorphisms of h(X)(r) (3.1.7).

The reason we need log modifications is explained in 3.1.5.
In the case where S = Spec(k) for a field k with the trivial log structure we have

griK(Z)Q = CHi(Z)Q for any smooth scheme Z over k and our category of log motives
over S coincides with the category of motives over k modulo homological equivalence due
to Grothendieck.

We will also define the category of log motives over S modulo numerical equivalence
by taking the quotient of the set of morphisms by numerical equivalence. We prove the
following log version of the theorem of Jannsen.

Theorem (= Theorem 3.4.1). (1) The category of log motives over S modulo numerical
equivalence is a semisimple abelian category.

(2) The category of log motives over S (defined in 3.1) is a semisimple abelian category
if and only if the numerical equivalence for morphisms of this category is trivial.

1.5. We explain more about Section 4. Let S and ℓ be as in 1.4. Roughly speaking,
we follow the method of Deligne ([3], [4]), who constructed mixed Hodge structures of
geometric origin by using only projective smooth schemes over C.

Our definition of log mixed motives is rather simple and is easily obtained by using
the category of log (pure) motives in Section 3. This may seem strange because usually
it is impossible to take care of mixed objects by using only pure objects. The reason why
such a simple definition works is explained in 4.3.

We will prove the following result.

Theorem (cf. Theorem 4.4.2). Assume that the category of log motives over S is
semisimple; that is, the numerical equivalence coincides with the homological equivalence
for this category (see (2) of the previous theorem). Then the category of log mixed motives
over S is a Tannakian category. In particular, it is an abelian category.

1.6. In Sections 2–4, our discussion only uses ℓ-adic étale realization. We consider in
Section 5 more realizations, and formulate Tate conjecture and Hodge conjecture for
log mixed motives. In the last section 6, we prove that these conjectures are true in
certain cases (Proposition 6.3.2, Proposition 6.3.4, Proposition 6.4.3). To prove the results
Proposition 6.3.4 and Proposition 6.4.3 on morphisms between H1 of log curves, we use
the theory of log abelian varieties in [24] and the theory of log Jacobian varieties [21].
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2 Preparations on log geometry

Basic references on log geometry are [27], [14]. Basic references on log étale cohomology
are [34], [35], [15]. Basic references on algebraic cycles and K-groups are [12], [10].

In this paper, except in 2.1, for technical reasons, we consider only fs log schemes
which have charts Zariski locally. (We hope that a generalization of our theory can be
developed without such a restriction, but we guess that the resulting categories are not
very different from the current ones.) A monoid means a commutative semigroup with a
unit element which is usually denoted by 1.

Let X be an fs log scheme over an fs log scheme S. We say that X is projective if
the underlying scheme of X is projective over the underlying scheme of S. We say that
X is vertical if for any point x of X, whose image in S is denoted by s, the face of MX,x

spanned by the image of MS,s is the whole MX,x. Cf. [34] Definition and Notation (7.3).
A morphism f : X → Y of integral log schemes is exact if for any x ∈ X, an element

of Mgp

Y,f(x)
whose image in Mgp

X,x belongs to MX,x belongs to MY,f(x). Cf. [27] Definition

(4.6).

2.1 Log cohomology theories

We review some theorems on log étale cohomology, log Betti cohomology, and log de
Rham cohomology.

First we discuss the theorems on log étale cohomology. There are two versions of étale
cohomology in log geometry. One is obtained using the Kummer étale (két) site, while
the other is obtained using the full log étale (lét) site. In this paper we mainly use log
étale cohomology defined using the full log étale site.

Let f : X → S be a morphism of fs log schemes. Let ℓ be a prime number which is
invertible on S. Let Λ = Z/ℓnZ (n ≥ 1).

Proposition 2.1.1. Assume that f : X → S is proper and log smooth. Then Rqflét∗Λ
(the higher direct image for the full log étale topology) is locally constant and constructible
(see [37], 8.1 for the definition) for all q ∈ Z.

Proof. This is by [37], Theorem 13.1 (1).

2.1.2. As in the classical case, we define a constructible Zℓ-sheaf as an inverse system

(Fn)n, where Fn is a constructible sheaf of Z/ℓn+1Z-modules such that Z/ℓnZ⊗Fn

∼=→ Fn−1.

4



A smooth Zℓ-sheaf is a constructible Zℓ-sheaf (Fn)n with each Fn locally constant. The
smooth Zℓ-sheaves form an abelian category. We define the category of constructible Qℓ-
sheaves as the localization of this abelian category by torsion objects, that is, those killed
by some power of ℓ. By the above proposition, we have, under the assumption there, a
smooth Qℓ-sheaf on Slét, which we denote by Rqflét∗Qℓ.

Proposition 2.1.3 (Poincaré duality). Let d ≥ 0. Assume that f : X → S is proper, log
smooth, vertical, and, full log étale locally on S, all fibers are of equi-d-dimensional. Then
there is a natural isomorphism

R2d−iflét∗Λ(d)
∼=→ Hom (Riflét∗Λ,Λ)

for any i.

Proof. This is by [37], Theorem 14.2 (3).

Corollary 2.1.4. Under the same assumptions, suppose further that S is noetherian.
Then, there is a natural isomorphism

R2d−iflét∗Qℓ(d)
∼=→ Hom (Riflét∗Qℓ,Qℓ)

for any i.

Proposition 2.1.5 (Künneth formula). Assume that S is quasi-compact and that f : X →
S is proper. Let g : Y → S be another proper morphism of fs log schemes. Let h be the
induced morphism X ×S Y → S. Then there is a natural isomorphism

Rflét∗Λ⊗L
Λ Rglét∗Λ

∼=→ Rhlét∗Λ.

Proof. This is by [37], Theorem 9.1.

As a corollary, we have

Corollary 2.1.6. Assume that S is quasi-compact and that f : X → S is proper and log
smooth. Let g : Y → S be another proper and log smooth morphism of fs log schemes.
Let h be the induced morphism X ×S Y → S. Then, for each n ≥ 0, there is a natural
isomorphism ⊕

p+q=n

Rpflét∗Qℓ ⊗Rqglét∗Qℓ

∼=→ Rnhlét∗Qℓ.

Proof. The natural homomorphism is seen to be bijective at stalks by the previous propo-
sition.

Next the theorems on log Betti cohomology are as follows. Let f : X → S be a
morphism of fs log analytic spaces.

Proposition 2.1.7. Assume that f : X → S is proper (i.e., the underlying map is uni-
versally closed and separated) and log smooth. Then Rqf log

∗ Z is a locally constant sheaf of
finitely generated abelian groups for all q ∈ Z.
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Proof. This is [22], Corollary 0.3.

Proposition 2.1.8 (Poincaré duality). Let d ≥ 0. Assume that f : X → S is proper,
log smooth, vertical, and all fibers are of equi-d-dimensional. Then there is a natural
isomorphism

R2d−if log
∗ Q

∼=→ Hom (Rif log
∗ Q,Q)

for any i.

Proof. The case where f is exact is by [39], Theorem 5.10 (3). The general case is reduced
to this case by exactification as follows. First, we assume that S has a chart by an fs
monoid and fix such a chart. Then, by exactification ([16] Proposition (A.4.4)), there is
a log blow-up ([16] Definition (6.1.1)) p : S ′ → S such that the base-changed morphism
f ′ : X ′ := X ×S S

′ → S ′ is exact. By the exact case, we have the natural isomorphism

(∗) R2d−if ′ log
∗ Q

∼=→ Hom (Rif ′ log
∗ Q,Q)

on S ′log. Below we will prove that sending this by plog∗ gives us an isomorphismR2d−if log
∗ Q

∼=→
Hom (Rif log

∗ Q,Q) on Slog. To see that the last isomorphism is independent of the choices
of log blow-ups, we can argue as in [37] (14.10), where the ℓ-adic analog of the same prob-
lem is treated. Then, it implies that the isomorphism is independent also of the choices
of charts, and is glued into the desired isomorphism.

Now we calculate plog∗ of each side of (∗). Since Rjf ′ log
∗ Q is locally constant for any j

(Proposition 2.1.7), by [22] Proposition 5.3 (2), we have

plog∗ Rf ′ log
∗ Q = Rplog∗ Rf ′ log

∗ Q = Rf log
∗ plog∗ Q = Rf log

∗ Q,

where we denote the base-changed morphism of p by the same symbol and the last equality
is by [22] Proposition 5.3 (1). Hence,

plog∗ R2d−if ′ log
∗ Q = R2d−if log

∗ Q.

On the other hand, as for the right-hand-side of (∗), again by [22] Proposition 5.3 (2),
we have

Rif ′ log
∗ Q = plog−1plog∗ Rif ′ log

∗ Q,
and it is isomorphic to plog−1Rif log

∗ Q by the same argument for the left-hand-side. Then,

plog∗ Hom (Rif ′ log
∗ Q,Q) = plog∗ Hom (plog−1Rif log

∗ Q,Q) = Hom (Rif log
∗ Q, plog∗ Q) = Hom (Rif log

∗ Q,Q),

where the last equality is again by [22] Proposition 5.3 (1). Thus we have an isomorphism

R2d−if log
∗ Q

∼=→ Hom (Rif log
∗ Q,Q).

Proposition 2.1.9. Let f : X → S be a proper and log smooth morphism of fs log analytic
spaces. Let g : S ′ → S be any morphism of fs log analytic spaces. Let f ′ : X ′ := X×SS

′ →
S ′ and g′ : X ′ → X be the base-changed morphisms. Let L be a locally constant sheaf of
abelian groups on X log. Then the base change homomorphism

glog−1Rf log
∗ L→ Rf ′ log

∗ glog ∗L

is an isomorphism.
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Proof. We may assume that S has a chart. By exactification ([16] Proposition (A.4.4)), we
take a log blow-up p : S1 → S such that the base-changed morphism f1 : X1 := X×SS1 →
S1 is exact. Then, by proper log smooth base change theorem in log Betti cohomology
([22] Theorem 0.1), the cohomologies of Rf log

1∗ p
log−1
X L are locally constant, where pX is

the base-changed morphism X1 → X. Hence, by the invariance of cohomology under log
blow-up ([22] Proposition 5.3), to prove Proposition 2.1.9, we can replace f and g by the
base-changed ones with respect to p, and L by its pullback plog−1

X L. Thus we may assume
that f is exact. Then the conclusion follows from the log proper base change theorem
[22] Proposition 5.1 (cf. [22] Remark 5.1.1).

Proposition 2.1.10 (Künneth formula). Let the notation and assumption be as in the
previous proposition. Assume that g is proper. Let h : X ′ → S be the induced morphism.
Then there is a natural isomorphism

Rf log
an∗Q⊗L

Q Rg
log
an∗Q

∼=→ Rhlogan∗Q.

Proof. This is by Proposition 2.1.9 and the usual projection formula.

Next is a comparison between log Betti cohomology and log étale cohomology.

2.1.11. A standard log point means the fs log scheme Spec(k) for a field k endowed with
the log structure associated to N → k ; 1 7→ 0. If we like to present k, we call it a
standard log point associated to k. The standard log point associated to an algebraically
closed field is called a geometric standard log point.

Proposition 2.1.12. Let f : X → S be a proper, log smooth and vertical morphism of fs
log schemes with S being of finite type over C. Let

X log
an

η→ Xkét
κ← Xlét

be natural morphisms of topoi (for η, see [30] Remark (2.7)). Let n ≥ 1 and Λ = Z/ℓnZ.
Then we have

η∗Rfkét∗Λ = Rf log
an∗Λ, κ∗Rfkét∗Λ = Rflét∗Λ.

Proof. The second one is shown in 13.4 of [37]. We prove the first one. First, note that the
cohomologies of the left-hand-side are locally constant and constructible by [37] Theorem
13.1 (2) and those of the right-hand-side are locally constant by Proposition 2.1.7.

We reduce to the case where f is exact. We may assume that S has a chart by
an fs monoid and fix such a chart. Then, by [37] Lemma 3.10, there is a log blow-up
p : S ′ → S such that the base-changed morphism f ′ : X ′ := X ×S S

′ → S ′ is exact. By
[37] Theorem 5.5 (1) and [37] Theorem 5.8 (1), we have p∗kétRfkét∗Λ = p∗kétRfkét∗Rpkét∗Λ =
p∗kétRpkét∗Rf

′
két∗Λ = Rf ′

két∗Λ, where we denote the base-changed morphism of p by the
same symbol.

Similarly, by [22] Proposition 5.3, we have plog ∗Rf log
∗ Λ = plog ∗Rf log

∗ Rplog∗ Λ = plog ∗Rplog∗ Rf ′ log
∗ Λ =

Rf ′ log
∗ Λ. Thus we may and will assume that f is exact.
Since the cohomologies of both sides are locally constant, we can work at stalks. Let

s0 be a point of S. By the following proposition 2.1.13, there are a morphism s→ S from
the standard log point s over C whose image is s0, and a log blow-up X ′ of Xs := X ×S s
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such that the composition X ′ → Xs → s is strict semistable, i.e., a log deformation
with smooth irreducible components. It is enough to show that the homomorphism at
a stalk over a point of slog0 is bijective. Then by the exact proper base change theorem
([34] Theorem (5.1) and Remark (5.1.1) for the log étale cohomology, [22] Proposition
5.1, Remark 5.1.1, and the usual proper base change theorem for topological spaces for
the log Betti cohomology), we may assume that S = s, and further, by [22] Proposition
5.3 (1) and [37] Theorem 5.5 (1), we may assume that X = X ′, that is, in the original
setting, we may assume that S is the standard log point over C and X is strict semistable
over S.

Here we use the Steenbrink–Rapoport–Zink (SRZ, for short) spectral sequences as
follows. In the proof of [7] Theorem 7.1, it is shown that there is a natural isomor-
phism between the ℓ-adic SRZ spectral sequence and the Betti SRZ spectral sequence.
Since these converge to the stalk of ℓ-adic log étale cohomologies and that of log Betti
cohomologies, respectively, we have the desired isomorphism.

Proposition 2.1.13. Let s = (Spec k,N) be a standard log point. Let X → s be a quasi-
compact, vertical, and log smooth morphism of fs log schemes. Then there are a positive
integer n and a log blow-up ([37] 2.2) X ′ → X ×s sn, where sn := (Spec k, 1

n
N), such that

the composition X ′ → sn is strict semistable.

This is a variant of the semistable reduction theorem of D. Mumford. The statement
here is due to [45] Proposition 2.4.2.1. (Cf. [25] Remark after Assumption 8.1.) Another
reference is [43] Theorem 2.9. Both papers based on the method of [48]. (Actually, [48]
and [43] treat the case of log smooth fs log schemes over a discrete valuation ring, but the
proof is in the same way. [43] treats the non-vertical case also.) See 2.3.14 for a variant
of Proposition 2.1.13.

Finally, we discuss log de Rham cohomology and log Hodge theory.

Proposition 2.1.14. Let k be a field of characteristic zero. Let f : X → S be a projective,
log smooth and vertical morphism of fs log schemes with S being log smooth over k. Let
q ∈ Z. Then we have the following.

(1) Hq
dR(X/S) := Rqfkét∗ω

·,két
X/S is a vector bundle endowed with a natural quasi-nilpotent

integrable connection with log poles, and the Hodge filters Rqfkét∗ω
·≥p,két
X/S are subbundles

of Hq
dR(X/S) for all p.
(2) When k = C, we have a natural log Hodge structure on Skét of weight q which is

underlain by Hq
dR(X/S) with the Hodge filter.

Proof. We may assume k = C, and (1) is deduced from (2). (2) is by the main theorem
of [29] Theorem 8.1.

Lemma 2.1.15. Let f : X → S be a proper, log smooth and vertical morphism of fs log
analytic spaces with S being ideally log smooth over C ([16] Definition (1.5)). Assume
that for any x, the cokernel of (MS/O×

S )
gp
f(x) → (MX/O×

X)
gp
x is torsion-free. Assume also

that either S is log smooth or f is exact. Then we have a canonical isomorphism

Rqf∗ω
·,két
X/S = ε∗Rqf∗ω

·
X/S

for any q ∈ Z. Here ε is the forgetting-log morphism, i.e., the projection from the két site
to the usual site.
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Proof. By [16] Theorems (6.2) and (6.3), the local systemRqf log
∗ C corresponds toRqf∗ω

·,két
X/S

by the két log Riemann–Hilbert correspondence, and it does to Rqf∗ω
·
X/S by the non-két

log Riemann–Hilbert correspondence, respectively. Hence the desired isomorphism fol-
lows from the compatibility of the both Riemann–Hilbert correspondences ([16] Theorem
(4.4)).

Lemma 2.1.16. Let the notation and the assumption be as in the previous lemma. Let
X ′ → X be a log blow-up and f ′ : X ′ → X → S the composite. Then the canonical
homomorphism

Rqf∗ω
·
X/S → Rqf ′

∗ω
·
X′/S

is an isomorphism.

Proof. By [16] Theorem (6.3), this homomorphism corresponds by the log Riemann–
Hilbert correspondence to the homomorphism Rqf log

∗ C→ Rqf ′ log
∗ C of local systems, which

is an isomorphism by [22] Proposition 5.3 (1).

Proposition 2.1.17. Let k be a field of characteristic zero. Let f : X → s be a projective,
log smooth and vertical morphism of fs log schemes with s being the standard log point
associated to k. Let q ∈ Z. Then we have the following.

(1) Hq
dR(X/s) := Rqfkét∗ω

·,két
X/s is a vector bundle with a natural quasi-nilpotent inte-

grable connection with log poles.
(2) When k = C, Hq

dR(X/s) carries a natural log Hodge structure on skét of weight q.

Proof. We may assume k = C, and (1) is deduced from (2). We prove (2). For this,
we can use a general result in [9]. Here we give a direct proof, which is essentially a
part of the arguments in [9]. In [8], the non-két version of the case of (2) where f is
strict semistable is proved with the Hodge filter Rqf∗ω

·≥p
X/s. We reduce (2) to this result

as follows. To prove (2), we slightly generalized the statement to the case where s is the
spectrum of a log Artin ring C[N]/(xn) for some n ≥ 1, where x is the generator of log.
In the rest of this proof, (2) means this generalized statement. We may assume that f
satisfies the assumptions in Lemma 2.1.15 by két localization of the base s. By a variant
of Proposition 2.1.13, we may assume further that there exists a log blow-up X ′ → X
such that the special fiber of X ′ → s is strict semistable. By Lemma 2.1.15, we see that
it is enough to show the non-két version of (2). By the argument in [17] and the strict
semistable case in [8], Rqf ′

∗ω
·
X′/s with the Hodge filters gives a log Hodge structure. The

non-két version of (2) is reduced to this by Lemma 2.1.16 and the induced Hodge filtration
on Rqf∗ω

·
X/s from Rqf ′

∗ω
·
X′/s does not depend on the choice of X ′.

Proposition 2.1.18. Let f : X → S be a projective, log smooth and vertical morphism
of fs log schemes with S being log smooth over C. Let s → S be a standard log point
associated to C over S. Let fs : Xs → s be the base-changed morphism. Let q ∈ Z. Then
the pullback of the log Hodge structure Hq

dR(X/S) is naturally isomorphic to the log Hodge
structure Hq

dR(Xs/s).

Proof. Since there is a natural base change map, it is enough to show that the local system
can be base-changed, which is by Proposition 2.1.9.

9



2.2 Fans in log geometry

Let (fs) be the category of fs log schemes which have charts Zariski locally. From now on,
in the rest of this paper, an fs log scheme means an object of this (fs).

We review the formulation of fans in [28] as unions of Spec of monoids. This is a
variant of the theory of polyhedral cone decompositions in [33], [40].

The material in paragraphs 2.2.16 and 2.2.17 is new and was not discussed in [28].

2.2.1. For a monoid P , an ideal of P means a subset I of P such that ab ∈ I for any
a ∈ P and b ∈ I. A prime ideal of P means an ideal p of P such that the complement
P ∖ p is a submonoid of P . We denote the set of all prime ideals of P by Spec(P ).

2.2.2. For a monoid P and for a submonoid S of P , we have the monoid S−1P =
{s−1a | a ∈ P, s ∈ S} obtained from P by inverting elements of S. Here s−1

1 a1 = s−1
2 a2 if

and only if there is an s3 ∈ S such that s3s2a1 = s3s1a2.
In the case where S = {fn | n ≥ 0} for f ∈ P , S−1P is denoted also by Pf .

2.2.3. By a monoidal space, we mean a topological space T endowed with a sheaf of
monoids P such that (Pt)

× = {1} for any t ∈ T . Here Pt denotes the stalk of P at t and
(−)× means the subgroup consisting of all invertible elements.

2.2.4. For a monoid P , Spec(P ) is regarded as a monoidal space in the following way.
We endow Spec(P ) with the topology for which the sets D(f) = {p ∈ Spec(P ) | f /∈ p}

with f ∈ P form a basis of open sets.
The sheaf P of monoids on Spec(P ) is characterized by the property that for f ∈ P ,

P(D(f)) = Pf/P
×
f .

The stalk of P at p ∈ Spec(P ) is identified with Pp/(Pp)
×, where Pp = (P ∖ p)−1P .

2.2.5. For a monoidal space Σ with the structure sheaf P of monoids and for a monoid
P , the natural map Mor(Σ, Spec(P ))→ Hom (P,P(Σ)) is bijective.

2.2.6. A monoidal space is called a fan if it has an open covering (Uλ)λ such that each
Uλ is isomorphic, as a monoidal space, to Spec(Pλ) for some monoid Pλ.

A fan which is isomorphic to Spec(P ) for some monoid P is called an affine fan. The
functor P 7→ Spec(P ) is an anti-equivalence from the category of monoids P such that
P× = {1} to the category of affine fans. The converse functor is given by Σ 7→ P(Σ),
where P is the structure sheaf of Σ.

2.2.7. For a fan Σ, let

[Σ] : (fs)→ (Sets)

be the contravariant functor which sendsX ∈ (fs) to the set of all morphisms (X,MX/O×
X)→

Σ of monoidal spaces.
If Σ = Spec(P ), we have [Σ](X) = Hom (P,Γ(X,MX/O×

X)).

Lemma 2.2.8. The functor Σ 7→ [Σ] from the category of fans to the category of con-
travariant functors (fs)→ (Sets) is fully faithful.
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Proof. Let Σ,Σ′ be fans. We have to prove that
(∗) Mor(Σ,Σ′)→ Mor([Σ], [Σ′])
is bijective.

First, we prove the case where both Σ and Σ′ are affine, that is, we prove that
the contravariant functor P 7→ [Spec(P )] from the category of monoids P such that
P× = {1} to the category of contravariant functors (fs) → (Sets) is fully faithful. For
monoids P and Q such that P× = {1} and Q× = {1} and for X = Spec(Z[Q]), we have
[Spec(P )](X) = Hom (P,Γ(X,MX/O×

X)) = Hom (P,Q). From this, we obtain easily that
the map Hom (P,Q)→ Mor([Spec(Q)], [Spec(P )]) is bijective.

Next, we prove the case where Σ = Spec(Q) (Q× = {1}) is affine and Σ′ is any.
We prove that (∗) is surjective. Let f : [Σ] → [Σ′] be a morphism. Let x be an fs log
point lying over X = Spec(Z[Q]) such that the homomorphism Q → (MX/O×

X)X,x is
bijective. Let ((x,Mx/O×

x ) → Σ′) ∈ [Σ′](x) be the image by f(x) of ((x,Mx/O×
x ) →

(X,MX/O×
X) → Spec(Q)) ∈ [Σ](x). Let U ′ be the smallest neighborhood in Σ′ of the

image s′ of this morphism (x,Mx/O×
x ) → Σ′. Then f factors through [U ′], which is by

the fact that any morphism (X,MX/O×
X)→ Σ′ sending x to s′ factors through U ′. Since

U ′ is affine, the surjectivity of (∗) is reduced to the previous case.
The injectivity of (∗) is also reduced to the previous case as follows. Let a, b be two

morphisms from Σ to Σ′ and assume that the induced morphisms from [Σ] to [Σ′] coincide.
Considering an fs log point lying over each point of Σ, we see that the underlying maps
of sets of a and b coincide. Then both a and b factor through the smallest neighborhood
U ′ in Σ′ of the image of the closed point. Since [U ′] → [Σ′] is injective, we reduce
to the previous case. Alternatively, we use, instead of the previous case, the fact that
(X,MX/O×

X)→ Spec(Q) is an epimorphism in the category of monoidal spaces.
Finally, the bijectivity of (∗) for any Σ and any Σ′ is reduced to the case where Σ is

affine because Σ is the limit of an inductive system of affine fans and open immersions.

2.2.9. According to Lemma 2.2.8, we will often identify a fan Σ with the functor [Σ].
For an fs log scheme X and for a fan Σ, we will regard a morphism (X,MX/O×

X)→ Σ
of monoidal spaces as a morphism X → [Σ] from the functor X on (fs) represented by X
to the functor [Σ]. We sometimes also denote a morphism X → [Σ] simply by X → Σ.

Lemma 2.2.10. For an fs log scheme X, a fan Σ, and a morphism X → Σ, the following
conditions (i) and (ii) are equivalent.

(i) The corresponding morphism (X,MX/O×
X)→ Σ of monoidal spaces is strict. Here

we say that a morphism f : (T,P)→ (T ′,P ′) of monoidal spaces is strict if f−1(P ′)→ P
is an isomorphism.

(ii) Locally on X, there is an open set Spec(P ) of Σ with P a monoid such that
X → Σ factors as X → Spec(Z[P ]) → Spec(P ) ⊂ Σ, where Spec(Z[P ]) is endowed with
the standard log structure and the homomorphism P → MX corresponding to the first
arrow is a chart of X (that is, the first morphism is strict, where we say a morphism of
log schemes X → Y is strict if the log structure of X coincides with the inverse image of
the log structure of Y ).

Proof. (ii) ⇒ (i). Since the projection Spec(Z[P ]) → Spec(P ) satisfies the condition (i),
(ii) implies (i).
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(i) ⇒ (ii). Let x ∈ X and we work around x. First, localizing X, we may assume
that X has a chart P such that P → (MX/O×

X)x is bijective. Next, localizing Σ, we may
assume Σ = Spec(Q) with Q → (MX/O×

X)x being bijective. Then P is isomorphic to Q
and, after further localizing X, we may replace Q with P .

2.2.11. We will say X → Σ is strict if the equivalent conditions in Lemma 2.2.10 are
satisfied.

2.2.12. Polyhedral cone decompositions which appear in toric geometry ([33], [40]) are
related to the above notion of fan (2.2.6) as follows.

Let N be a free Z-module of finite rank, and let NR := R⊗ZN . A rational polyhedral
cone in NR is a subset of the form

σ =
{ r∑

i=1

xiNi

∣∣ xi ∈ R≥0

}
for some N1, . . . , Nr ∈ N . A rational polyhedral cone σ is called strongly convex if it
does not contain a line, i.e. σ ∩ (−σ) = {0}. A subset τ ⊂ σ is called a face of σ if
there exists an element h ∈ Hom R(NR,R) such that σ ⊂ {x ∈ NR | h(x) ≥ 0} and
τ = σ ∩ {x ∈ NR | h(x) = 0}. A face of σ is also a rational polyhedral cone.

A rational polyhedral cone decomposition in NR (or a rational fan in NR) is a non-
empty set Σ of strongly convex rational polyhedral cones in NR satisfying the following
two conditions: (i) If σ ∈ Σ and τ is a face of σ, then τ ∈ Σ; (ii) If σ, τ ∈ Σ, the
intersection σ ∩ τ is a face of σ.

We regard a rational fan Σ in NR as a fan in the sense of 2.2.6 as follows.
We endow Σ with the topology for which the sets face(σ) of all faces of σ for σ ∈ Σ

form a basis of open sets.
We endow Σ with the sheaf P of monoids characterized by P(face(σ)) = Pσ/(Pσ)

×,
where

Pσ = {h ∈ Hom (N,Z) | h(x) ≥ 0 for all x ∈ σ}.

The open set face(σ) of Σ is identified with Spec(Pσ).

2.2.13. For a rational fan Σ in NR, we have the toric variety ToricΣ =
∪

σ∈Σ Spec(Z[Pσ])
over Z corresponding to Σ with the standard log structure, on which the torus N ⊗Gm

acts naturally. We have

[Σ] = ToricΣ/(N ⊗Gm)

as a sheaf on (fs), where ToricΣ is identified with the sheaf on (fs) that it represents.

2.2.14. For an fs log scheme X, in the following cases (i) and (ii), we can define a fan
ΣX associated to X and a strict morphism X → ΣX in a canonical way.

Case (i). X is log regular ([28]).
Case (ii). X is vertical and log smooth over a standard log point.

The case (i) was considered in [28]. The case (ii) is explained below.
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2.2.15. We review first the case (i). See [28] for the definition of log regularity. As a set,
ΣX is the set of all points x of X such that the maximal ideal mx of OX,x is generated by
the image of MX,x ∖O×

X,x, where MX,x is the stalk at x of the direct image of MX to the
Zariski site. The topology of ΣX is the restriction of the topology of X. The structural
sheaf P of ΣX is defined as the inverse image of the sheaf MX/O×

X on X. The morphism
(X,MX/O×

X) → ΣX is defined as follows. As a map, it sends x ∈ X to the point of
X corresponding to the prime ideal of OX,x generated by the image of MX,x ∖ O×

X,x. If
x ∈ X and if y ∈ X is the image of x in ΣX , there is a chart P → MU for some open
neighborhood U of x in X such that P → (MX/O×

X)x is an isomorphism, and via the
composite homomorphism P → (MX/O×

X)x → (MX/O×
X)y, Spec(P ) is identified with an

open neighborhood of y in ΣX . The chart defines a morphism (U,MU/O×
U ) → Spec(P )

and hence a morphism (U,MU/O×
U )→ ΣX and these local definitions are glued to a global

definition of (X,MX/O×
X)→ ΣX .

2.2.16. We consider the case (ii). As a set, ΣX is the disjoint union Σ′
X

⨿
{η} of the set

Σ′
X of all points x of X such that the maximal ideal mx of OX,x is generated by the image

of MX,x ∖O×
X,x and the one-point-set {η}. The topology on ΣX is as follows. First define

the topology of Σ′
X to be the restriction of the topology of X. A closed subset of ΣX is

either a closed subset of Σ′
X or ΣX . The structure sheaf P of monoids on ΣX is defined

as follows. First let the sheaf P ′ on Σ′
X be the inverse image of MX/O×

X . Let P = i∗P ′,
where i : Σ′

X → X is the inclusion map.
Then ΣX is a fan. This is reduced to the log regular case as follows. Let x ∈ X and

let P = MX,x/O×
X,x = MX,x/O×

X,x. Since the problem is local on X, we can work around
x. Since X is strict étale over some Spec k[Q]/(q), where Q is an fs monoid and q is an
interior of Q, Spec(OX,x) is locally isomorphic to the part t = 0 of a log regular scheme Y ,
where t is a section of log structure MY of Y such that the part of Y where t is invertible
coincides with the part where MY is trivial. By the case (i), we have a fan ΣY , which is
affine and naturally isomorphic to Spec(Q). Let Σ′

Spec(OX,x)
be the set of all points y of

Spec(OX,x) such that the maximal ideal at y is generated by the image of MX,y ∖O×
X,y.

We define a monoidal space ΣSpec(OX,x) = Σ′
Spec(OX,x)

⨿
{η} similarly to ΣX . Then this is

isomorphic to ΣY .
On the other hand, since X has a chart Zariski locally, we may assume that X has a

chart by P such that P → MX → MX,x/O×
X,x is the identity. Then, for any nonempty

prime ideal p of P , the ideal generated by the image of p in OX,x is a prime ideal because
its image generates a prime ideal in the strict localization. Thus we have a map f from
Spec(P )∖ {∅} to the set Σ′

Spec(OX,x)
of all points y of Spec(OX,x) such that the maximal

ideal at y is generated by the image of MX,y ∖O×
X,y, and we also have a factorization of

the above isomorphism Spec(P ) ∼= ΣY
∼= ΣSpec(OX,x) as

Spec(P )→ Σ′
Spec(OX,x)

⨿
{η} → ΣSpec(OX,x),

where the first morphism is induced from f , and the second is by the projection Spec(OX,x)→
Spec(OX,x). We see that the second morphism is an isomorphism so that the first is also
an isomorphism. Shrinking X if necessary, we may assume that Σ′

Spec(OX,x)
∼= Σ′

X so that

Spec(P ) ∼= ΣX .
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We define a map X → ΣX in the similar way to the case (i) described above. The
proof for the gluing also reduces to the case (i). The resulting map in fact factors through
X → Σ′

X .

2.2.17. Outside the cases (i) and (ii) in 2.2.14, it seems difficult to develop a general
theory of fans canonically associated to fs log schemes (cf. [1]). We give an example of an
fs log scheme X having the following nice property (1) but such that for any fan Σ, there
is no strict morphism (X,MX/O×

X)→ Σ.
(1) X is locally isomorphic to a closed subscheme of a log regular scheme Y defined

by an ideal of OY generated by the images of sections of the log structure MY of Y under
MY → OY endowed with the log structure induced by the log structure of Y . As a scheme,
X is a union of two P1

k obtained by identifying 0 of each P1 with ∞ of the other P1.
Let k be a field. Endow Spec(k[x1, x2, x3, x4]) with the log structure associated to

N4 → k[x1, x2, x3, x4] ; n 7→
∏4

i=1 x
n(i)
i . Let Z = Spec(k[x1, x2, x3, x4]/(x1x2, x3, x4)) with

the induced log structure, and let Z ′ be a copy of Z. (Hence as schemes, Z and Z ′ are
isomorphic to Spec(k[x, y]/(xy)).) Denote the copy of xi on Z

′ by x′i. Let U be the part
of Z on which x1 is invertible and let V be the part of Z on which x2 is invertible. Let
U ′ and V ′ be the copies of U and V in Z ′, respectively. Let X be the union of Z and Z ′

which we glue by identifying the open set U
⨿
V of Z and the open set U ′⨿V ′ of Z ′, as

follows. We identify U and U ′ by identifying x′1 with 1/x1, x
′
2 with x21x2, x

′
3 with x3, and

x′4 with x4 in the log structure. (Hence x2 is identified with (x′1)
2x′2 in the log structure.)

We identify V and V ′ by identifying x′2 with 1/x2, x
′
1 with x1x

2
2, x

′
3 with x4, and x

′
4 with

x3 in the log structure. (Hence x1 is identified with x′1(x
′
2)

2 in the log structure.)
We show that there is no strict morphism f : X → Σ to any fan Σ.
Assume f exists. Let p be the point of Z at which all xi have value 0, let p′ ∈ Z ′ be

the copy of p, let u be the generic point of U , and let v be the generic point of V . Let
P be the structure sheaf of monoids of Σ. Then Pf(p) is identified with (MX/O×

X)p
∼= N4

which is generated by x1, x2, x3, x4. Σ has an open neighborhood which is identified with
Spec(Pf(p)). Since p belongs to the closure of u in X, f(u) belongs to Spec(Pf(p)). We
have a commutative diagram

Pf(p) → Pf(u)

↓ ↓
(MX/O×

X)p → (MX/O×
X)u

in which vertical homomorphisms are isomorphisms, and hence f(u) is the prime ideal of
Pf(p) generated by x2, x3, x4. The open neighborhood of u in Σ which is identified with
Spec(Pf(u)) is regarded as an open set of Spec(Pf(p)). In this identification, the prime
ideal of Pf(p) generated by x3 is identified with the prime ideal of Pf(u) generated by x3.
Similarly, Spec(Pf(u)) is identified with an open set of Spec(Pf(p′)) and the prime ideal of
Pf(u) generated by x3 is identified with the prime ideal of Pf(p′) generated by x′3.

Similarly Spec(Pf(v)) is identified with an open set of Spec(Pf(p)) and also with an
open set of Spec(Pf(p′)). The prime ideal of Pf(v) generated by x4 is identified with the
prime ideal of Pf(p) generated by x4 and it is also identified with the prime ideal of Pf(p′)

generated by x′3. This shows that the prime ideal of Pf(p) generated by x3 is equal to the
prime ideal generated by x4. Contradiction.
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2.3 Subdivisions of fans and log modifications

2.3.1. We shall mainly consider fans Σ (2.2.6) satisfying the following condition (Sfan)
(like in [28]).

(Sfan) There exists an open covering (Uλ)λ such that for each λ, Uλ
∼= Spec(Pλ) as a

fan for some fs monoid Pλ.

2.3.2. Let N be as in 2.2.12, let σ be a strictly convex rational polyhedral cone in NR,
and let Σ be the rational fan face(σ) in NR consisting of all faces of σ. Then a finite
subdivision of Σ means a finite rational fan Σ′ in NR such that σ =

∪
τ∈Σ′ τ .

Lemma 2.3.3. Let Σ = (Σ,P) and Σ′ = (Σ′,P ′) be fans satisfying the condition (Sfan)
and let f : Σ′ → Σ be a morphism of fans. Then the following conditions (i) and (ii) are
equivalent.

(i) f satisfies the following (i-1)–(i-3).
(i-1) For any t ∈ Σ, the inverse image f−1(t) is finite.
(i-2) For any t ∈ Σ′, Pgp

f(t) → (P ′)gpt is surjective.

(i-3) The map Mor(Spec(N),Σ′)→ Mor(Spec(N),Σ) is bijective.
(ii) There exists an open covering (Uλ)λ of Σ such that for each λ, there are a finitely

generated free Z-module Nλ, a strongly convex rational polyhedral cone σλ in Nλ,R, a finite
subdivision Vλ of face(σλ), and a commutative diagram of fans

U ′
λ
∼= Vλ

↓ ↓
Uλ
∼= face(σλ),

where U ′
λ denotes the inverse image of Uλ in Σ′.

Proof. This is essentially proved in [28] Section 9. In fact, in (ii), each Vλ → face(σλ)
satisfies the condition (i) by [28] (9.5). Hence (ii) implies (i). Conversely, if f satisfies (i),
then any base change of f by an open immersion from an affine fan Uλ to Σ also satisfies
(i). Again by [28] (9.5), we can find Nλ, σλ and so on.

2.3.4. Let Σ be a fan satisfying (Sfan). A finite subdivision of Σ (called a proper subdivi-
sion of Σ in [28]) is a fan Σ′ satisfying (Sfan) endowed with a morphism Σ′ → Σ satisfying
the equivalent conditions (i) and (ii) in Lemma 2.3.3.

Lemma 2.3.5. Let Σ be a fan satisfying the condition (Sfan), let X be an fs log scheme,
let X → Σ be a morphism (2.2.9), and let Σ′ be a finite subdivision of Σ. Then the functor
X ×Σ Σ′ : (fs) → (Sets) is represented by an fs log scheme X ′ which is proper and log
étale over X. Here X ×Σ Σ′ denotes the fiber product of the functors X = Mor( , X)
and Σ′ = [Σ′] (2.2.7) on (fs) over the functor Σ = [Σ] on (fs) (it does not mean the set
theoretic fiber product of X and Σ′ over Σ).

Proof. We are reduced to the case Σ = face(σ) for a strongly convex rational polyhedral
cone σ and Σ′ is a finite subdivision of Σ. Locally on X, X → Σ is the composition
X → Spec(Z[Pσ]) → Σ. Hence we are reduced to the case X = Spec(Z[Pσ]). Then
X ×Σ Σ′ is represented by the toric variety

∪
τ∈Σ′ Spec(Z[Pτ ]) over Z associated to Σ′,

which is proper and log étale over X.
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2.3.6. We call a morphism X → Y of fs log schemes a log modification if locally on Y ,
there exist a fan Σ satisfying (Sfan), a morphism Y → Σ, and a finite subdivision Σ′ of Σ
such that X represents Y ×Σ Σ′.

Log modifications were studied in [32] for fs log analytic spaces over C.
The following lemma is easy to prove.

Lemma 2.3.7. (1) A log modification is proper and log étale.
(2) If X → Y is a log modification, the induced morphism of functors Mor( , X) →

Mor( , Y ) on (fs) is injective.
(3) If Xi → Y (i = 1, 2) are log modifications, X1 ×Y X2 → Y is a log modification.

Here X1 ×Y X2 denotes the fiber product in the category of fs log schemes.
(4) If X → Y and Y → Z are log modifications, the composition X → Z is a log

modification.

Proposition 2.3.8. Let f : X → Y be a log modification of fs log schemes.
(1) Let F be a torsion sheaf of abelian groups on Ylét. Then the natural homomorphism

F → Rflét∗f
∗
létF is an isomorphism.

(2) Let ℓ be a prime number which is invertible on Y . Then the natural homomorphism
Qℓ → Rflét∗Qℓ is an isomorphism.

Proof. (2) is reduced to (1). (1) is a slight generalization of Theorem 5.5 (2) of [37], and
the proof is similar, which is reduced easily to Lemma 2.3.7 (2).

2.3.9. (1) Let Σ be a fan with the structure sheaf P of monoids. We say Σ is free if for
any t ∈ Σ, the stalk Pt is isomorphic to Nr(t) for some r(t) ≥ 0.

(2) Let X be an fs log scheme. We say MX/O×
X is free if for any x ∈ X, (M/O×

X)x
∼=

Nr(x) for some r(x) ≥ 0.

Proposition 2.3.10. Let Σ be a finite fan satisfying the condition (Sfan). Then there is
a finite subdivision Σ′ → Σ which is free (2.3.9 (1)).

This is already explained in [28].

Lemma 2.3.11. Let Σ be a finite fan satisfying the condition (Sfan) with the structural
sheaf P, let t ∈ Σ, and let P be an fs submonoid of Pgp

t containing Pt. Then there is a
finite subdivision Σ′ of Σ such that there is an open immersion Spec(P )→ Σ′ over Σ.

Proof. Regard Σ as a conical polyhedral complex with an integral structure ([33] Chapter
II, §1, Definitions 5 and 6, pp.69–70). Let σ be its cell corresponding to Pt and τ ⊂ σ
be the subcone corresponding to P . Take a rational homomorphism f : σ → R≥0 such
that f−1({0}) is trivial, where R≥0 is the monoid of the nonnegative real numbers with
addition. Let f0 : S :=

∪
σ′∈Σ

Sk1(σ′) ∪ Sk1(τ) → R be the zero extension of the restriction

of f to Sk1(τ), that is, for any s ∈ S, f0(s) = f(s) if s ∈ Sk1(τ) and f0(s) = 0 otherwise.
Here Sk1 means the 1-skeleton ([33] Chapter I, §2, p.29). Let f1 : |Σ| → R≥0 be the
convex interpolation of f0 ([33], Chapter I, §2, p.29 and Chapter II, §2, p.92), where |Σ|
is the support of Σ. Then, f1 coincides with f on τ , and the coarsest subdivision of the
conical polyhedral complex Σ on any cell of which f1 is linear owes τ as a cell. Hence the
corresponding finite subdivision Σ′ of the fan Σ satisfies the desired property.
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Proposition 2.3.12. Let X be a quasi-compact fs log scheme, let Σ be a finite fan satis-
fying the condition (Sfan) with the structure sheaf P, and let f : X → Σ be a morphism
(2.2.9) such that for any x ∈ X, the map Pf(x) → (MX/O×

X)x is surjective. Then for a
sufficiently fine finite subdivision Σ′ of Σ, X ×Σ Σ′ → Σ′ is strict.

Proof. First notice that the problem is local on X as the category of finite subdivisions
of Σ is directed. Let x ∈ X, and let P be the fs submonoid of (Pf(x))

gp consisting of
all elements whose images in (Mgp

X /O×
X)x are contained in (MX/O×

X)x. Then P/P× →
(MX/O×

X)x is an isomorphism. Since X is quasi-compact and the problem is local on
X, replacing X by an open neighborhood of x, we may assume that X → Σ factors
as X → Spec(P ) → Spec(Pf(x)) → Σ and the first arrow is strict. Let Σ′ be a finite
subdivision of Σ such that there is an open immersion Spec(P ) → Σ′ over Σ (Lemma
2.3.11). Then the morphism X = X ×Σ Σ′ → Σ′ is strict because it is the composition of
strict morphisms X → Spec(P )→ Σ′.

Remark 2.3.13. This Proposition 2.3.12 will be used later in Proposition 3.1.4 to make
the diagonal of a vertical log smooth fs log scheme over a standard log point a regular
immersion, by log modification.

2.3.14. In the next section, we will use the following corollary of Proposition 2.1.13.
Let X be a projective vertical log smooth fs log scheme over a standard log point s.

Then, for some morphism of standard log points s′ → s whose underlying extension of
the fields is an isomorphism, we have a projective strict semistable fs log scheme X ′ over
s′ which is a log blow-up of X ×s s

′.

2.4 Grothendieck groups of vector bundles and log geometry

2.4.1. Recall the following theory in [12] till 2.4.2.
For a scheme X, let K(X) be the Grothendieck group of the category of locally free

OX-modules on X of finite rank. It is a commutative ring in which the multiplication
corresponds to tensor products.

The K-group K(X) has a decreasing filtration (F rK(X))r∈Z called the γ-filtration
(for details, see [12], [11], Chapter III, V). It satisfies F 0K(X) = K(X) and F rK(X) ·
F sK(X) ⊂ F r+sK(X). We define

grrK(X) := F rK(X)/F r+1K(X).

2.4.2. For a morphism X → Y of schemes, the pullback homomorphism K(Y )→ K(X)
is defined and it respects the γ-filtration.

On the other hand, for a morphism f : X → Y of schemes which is projective and
locally of complete intersection (cf. [12], Exposé VIII, Définition 1.1), the pushforward
homomorphism K(X) → K(Y ) is defined (cf. [12] Exposé IV, 2.12). It sends F iK(X)Q
to F i−dK(Y )Q. Here d is the relative dimension of f which is a locally constant function

on X characterized as follows. Locally on X, f is a composition X
i→ Z

g→ Y , where i is
a regular immersion and g is smooth. The relative dimension of f is d1 − d2, where d1 is
the relative dimension of g and d2 is the codimension of i.
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2.4.3. If X and Y are projective smooth schemes over a field k, any morphism X →
Y over k is projective and locally of complete intersection and hence the pushforward
homomorphism K(X) → K(Y ) is defined. However, in log geometry, we have no such a
nice property if we replace the smoothness by log smoothness.

We give some preliminaries to treat log smooth situations which we encounter in later
sections.

Proposition 2.4.4. Let S be an fs log scheme of log rank ≤ 1 (this means that for any
s ∈ S, (MS/O×

S )s is isomorphic to either N or {1}). Let f : X → S be a log smooth
morphism. Then the underlying morphism of schemes of f is flat.

Proof. [27], Corollary (4.4), Corollary (4.5).

Proposition 2.4.5. Let S be an fs log scheme of log rank ≤ 1, and let f : X → Y be a
morphism of fs log schemes over S. Assume that X,Y are log smooth over S, and assume
that MX/O×

X and MY /O×
Y are free (2.3.9). Then the underlying morphism of schemes of

f is locally of complete intersection.

Proof. Working étale locally on X and on Y , we may assume that f is the base change
of f ′ : X ′ → Y ′ over S ′ = Spec(Z[N]) by a strict morphism S → S ′, where S ′ is endowed
with log by N and X ′ and Y ′ are log smooth over S ′. By the assumption on the log of X
and Y , we may assume that M/O× of X ′ and that of Y ′ are also free (2.3.9) and hence
X ′ and Y ′ are smooth over Z as schemes. Hence f ′ is locally of complete intersection.
Since X ′ and Y ′ are flat over S ′, f is also locally of complete intersection. Here we used
the fact that any base change of a morphism f ′ : X ′ → Y ′ of locally complete intersection
of schemes which are flat over a scheme is locally of complete intersection. A proof of
this fact is as follows. Locally, f ′ is the composition of a regular immersion followed by
a smooth morphism, and hence we may assume that f ′ is a regular immersion. But for
a closed immersion defined by an ideal I being a regular immersion is equivalent to the
condition that I/I2 is locally free and In/In+1 = Symn(I/I2) for any n. The last property
is stable under any base change.

2.4.6. For an fs log scheme X, we define

Klim(X) := lim−→
X′

K(X ′),

where X ′ ranges over all log modifications (2.3.6) of X.

Lemma 2.4.7. Let X be a quasi-compact fs log scheme, let Σ be a finite fan satisfying
the condition (Sfan) with the structure sheaf P, and let f : X → Σ be a morphism (2.2.9)
such that for any x ∈ X, the map Pf(x) → (MX/O×

X)x is surjective. Then we have an
isomorphism

lim−→
Σ′

K(X ×Σ Σ′)
∼=→ Klim(X),

where Σ′ ranges over all finite subdivisions of Σ.
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Proof. Let X ′ → X be a log modification. Then the composition f ′ : X ′ → X → Σ
satisfies the condition that Pf ′(x) → (MX′/O×

X′)x is surjective for any x ∈ X ′. Hence
by Proposition 2.3.12, there is a finite subdivision Σ′ of Σ such that the morphisms
X ×Σ Σ′ → Σ and X ′ ×Σ Σ′ → Σ′ are strict. This shows that the log modification

X ′ ×Σ Σ′ → X ×Σ Σ′ is strict and hence X ′ ×Σ Σ′ ∼=→ X ×Σ Σ′.

2.4.8. Let s be a geometric standard log point (2.1.11), and let X be an fs log scheme
over s. Let ℓ be a prime number which is different from the characteristic of s and let
Hm(X)ℓ := Rmf∗Qℓ, where f is the morphism X → s and Rmf∗ is the m-th higher direct
image for the log étale topology (2.1.2). We will identify Hm(X)ℓ with its stalk.

We have a Chern class map griK(X)Q → H2i
ét (X,Qℓ)(i) to the classical étale cohomol-

ogy, which coincides with the Chern character map. By composing this with the canonical
map H2i

ét (X,Qℓ)(i)→ H2i(X)ℓ(i) and by going to the inductive limit for log modifications
using the invariance Proposition 2.3.8 for the log étale cohomology, we obtain the Chern
class map

griKlim(X)Q → H2i(X)ℓ(i).

Proposition 2.4.9. Let X (resp. Y ) be projective and vertical log smooth fs log scheme
over a geometric standard log point s such that (2.1.11) M/O× of X and that of Y are
free (2.3.9). Let f : X → Y be a morphism over s of relative dimension d. (d can be < 0.
Cf. 2.4.2.) Let ℓ be a prime number which is different from the characteristic of s. Then
for any i ∈ Z, the following diagram is commutative.

gri+dK(X)Q → H2(i+d)(X)ℓ(i+ d)
↓ ↓

griK(Y )Q → H2i(Y )ℓ(i).

Here the left vertical arrow is defined by Proposition 2.4.5 and 2.4.2 and the right vertical
arrow is the pushforward map (the dual of H2j(Y )ℓ(j)→ H2j(X)ℓ(j) for Poincaré duality
(Corollary 2.1.4), where j = dim(Y )− i).

Remark. In the above, d (resp. dim(Y )) is considered as a locally constant function on X
(resp. Y ) (cf. 2.4.2). In general, if m is a locally constant function on X, Hm(X) means⊕

i H
m(i)(Xi), where Xi are connected components of X and m(i) is the value of m on

Xi. The meaning of grmK(X)Q is similar.

Proof. Let X◦ (resp. Y ◦) be the underlying scheme of X (resp. Y ). The morphism f is
the composition of two morphisms X → Pn× Y → Y in which the underlying morphism
of schemes of the first arrow is a closed regular immersion and the second arrow is the
projection. It is sufficient to prove Proposition 2.4.9 for each of these two morphisms.
The proof for the latter morphism is standard. We consider the first morphism. It is
sufficient to prove the commutativity of the two squares in the diagram

griK(X◦)Q → H2i
ét (X

◦,Qℓ)(i) → H2i(X)ℓ(i)
↓ ↓ ↓

gri+cK(Y ◦)Q → H2i+2c
ét (Y ◦,Qℓ)(i+ c) → H2i+2c(Y )ℓ(i+ c)

assuming that the morphism X◦ → Y ◦ is a closed regular immersion of codimension
c. Here the central vertical arrow is the Gysin map which is defined as follows. Let
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ξ ∈ H2c
X◦(Y ◦,Qℓ)(c) be the localized Chern class of the OY -module OX ([18]). By using

the cup product
H i

ét(X
◦,Qℓ)×Hj

X◦(Y ◦,Qℓ)→ H i+j
X◦ (Y ◦,Qℓ),

let the Gysin map be the product with ξ. (Cf. [2] Section 5.4.)
The left square is commutative by Riemann–Roch theorem in Corollary 1 in Section

5.3 of [2] (see also [10]). We prove that the right square is commutative. By 2.3.14, we
may assume that X and Y are strict semistable. Let X ′ be X◦ with the inverse image of
the log structure of Y . Hence X → Y factors as X → X ′ → Y . Consider the diagram

H i
ét(X

◦,Qℓ) → H i(X ′)ℓ → H i(X)ℓ
↓ ↓ ↓

H i+2c
X◦ (Y ◦,Qℓ)(c) → H i+2c

X′ (Y )ℓ(c) → H i+2c(Y )ℓ(c).

The left square is evidently commutative. The compositionH i
ét(X

◦,Qℓ)→ H i+2c
ét (Y ◦,Qℓ)(c)→

H i+2c(Y )ℓ(c) coincides with the compositionH i
ét(X

◦,Qℓ)→ H i+2c
X◦ (Y ◦,Qℓ)(c)→ H i+2c

X′ (Y )ℓ(c)→
H i+2c(Y )ℓ(c). Hence it is sufficient to prove the commutativity of the right square. Let
p := dim(X), so dim(Y ) = p + c. Let j = 2p − i. It is sufficient to prove that for
a ∈ H i(X ′)ℓ and b ∈ Hj(Y )ℓ(p), we have (a ∪ ξ ∪ b)Y = (a ∪ b|X)X in Qℓ. Using
z = a ∪ b|X′ ∈ H2p(X ′)ℓ(p), we see that it is sufficient to prove that for z ∈ H2p(X ′)ℓ(p),
the image of z underH2p(X ′)ℓ(p)→ H2p+2c

X′ (Y )ℓ(p+c)→ H2p+2c(Y )ℓ(p+c)→ Qℓ (the first
arrow is the product with ξ) and the image of z under H2p(X ′)ℓ(p)→ H2p(X)ℓ(p)→ Qℓ

coincide. H2p(X ′)ℓ(p) is generated by the Chern classes of the OX-modules [κ(u)], where
u ranges over all non-singular closed points of X and κ(u) is the residue field at u. For
z = [κ(u)], the image of z in H2p+2c(Y )ℓ(p+ c) is the Chern class of the OY -module κ(u).
Hence the image of this z in Qℓ via H

2p+2c(Y )ℓ(p+ c) is 1. On the other hand, the image
of this z in Qℓ via H

2p(X)ℓ(p) is 1. Thus both images coincide.

Corollary 2.4.10. Let X be a projective vertical log smooth fs log scheme over a geometric
standard log point s. Let X ′ be a log blow-up of X such thatMX′/O×

X′ is free (2.3.9). Then
the image of the Chern class map griKlim(X) → H2i(X)ℓ(i) coincides with the image of
the Chern class map griK(X ′)→ H2i(X)ℓ(i).

Proof. Let Y be any log blow-up of X and let a ∈ griK(Y )Q. Take a log blow-up Y ′

of Y such that MY ′/O×
Y ′ is free and such that Y ′ is also a log blow-up of X ′. Let a′ be

the image of a in griK(Y ′) by pullback, and let b be the image of a′ in griK(X ′)Q by
pushforward. Then by Proposition 2.4.9, the image of a in H2i(X)ℓ(i) coincides with the
image of b.

2.4.11. The above Proposition 2.4.9 contains the following trace formula in [31]. Let X
be a projective vertical log smooth fs log scheme over a geometric standard log point s.
Assume that X is purely of dimension d. Let (X × X)′ be a log blow-up of X × X, let
α ∈ grdK((X ×X)′)Q, and let fα be the image of α under the composition grdKlim(X ×
X)Q → H2d(X ×X)ℓ(d) ∼=

⊕
i Hom (H i(X)ℓ, H

i(X)ℓ), where the last isomorphism is by
Poincaré duality (Corollary 2.1.4) and Künneth formula (Corollary 2.1.6). We consider
the trace Tr(fα). Let X

′ be the log blow-up X×X×X (X×X)′ of the diagonal, and let the
intersection of α with the diagonal α ·∆X ∈ Q be the image of α under the composition
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grdK((X ×X)′)Q → grdK(X ′)Q → K(s)Q = Q, where the first arrow is the pullback by
X ′ → (X×X)′ and the second arrow is the pushforward. Then we have the trace formula

Tr(fα) = α ·∆X ∈ Q.

This follows from Proposition 2.4.9 as follows. Consider the diagram

grdKlim(X ×X)Q → grdKlim(X)Q → gr0K(s)Q = Q
↓ ↓ ↓⊕

i Hom (H i(X)ℓ, H
i(X)ℓ) ∼= H2d(X ×X)ℓ(d) → H2d(X)ℓ(d) → H0(s)ℓ = Qℓ,

where the first arrow in the lower row is the pullback by the diagonal. The left square
is clearly commutative and the right square is commutative by Proposition 2.4.9. The
image of fα ∈

⊕
i Hom (H i(X)ℓ, H

i(X)ℓ) in Qℓ under the composition of the lower row is
Tr(fα). This gives a proof of the trace formula.

3 Log motives

In this Section 3, let S be an fs log scheme and let ℓ be a prime number which is invertible
on S. We define and study the category of log (pure) motives.

3.1 The category of log motives

We define the category of log motives over S.

3.1.1. For a projective vertical log smooth fs log scheme X over S and for r ∈ Z, consider
the symbol h(X)(r).

Let

h(X)(r)ℓ :=
⊕
m

Hm(X)ℓ(r), where Hm(X)ℓ = Rmf∗Qℓ (cf. 2.4.8)

with f : X → S and with Rmf∗ for the log étale topology. This is a smooth Qℓ-sheaf on
the log étale site of S (see 2.1.2).

3.1.2. Let X and Y be projective vertical log smooth fs log schemes over a geometric
standard log point (2.1.11). Let r, s ∈ Z.

An element α of griKlim(X × Y )Q with i = d + s − r, where d = dim(X) induces a
homomorphism h(X)(r)ℓ → h(Y )(s)ℓ as follows.

Let β be the image of α under the Chern class map

griKlim(X × Y )Q → H2i(X × Y )ℓ(i).

Then for m,n ∈ Z such that m− 2r = n− 2s, we have the composition

Hm(X)ℓ(r)→ Hm(X × Y )ℓ(r)→ Hm+2i(X × Y )ℓ(r + i)

→ Hm+2i−2d(Y )ℓ(r + i− d) = Hn(Y )ℓ(s).

Here the first arrow is the pullback, the second arrow is the cup product with β, the third
arrow is the pushforward by the projection X × Y → Y . This gives a map h(X)(r)ℓ →
h(Y )(s)ℓ.
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3.1.3. Let X and Y be projective vertical log smooth fs log schemes over S and let
r, s ∈ Z.

By definition, a morphism f : h(X)(r)→ h(Y )(s) is a homomorphism f : h(X)(r)ℓ →
h(Y )(s)ℓ of Qℓ-sheaves such that for any geometric standard log point p over S, the
pullback h(Xp)(r)ℓ → h(Yp)(s)ℓ of f is induced by an element of grd+s−rKlim(Xp ×p Yp)Q
with d = dim(Xp) in the above way.

Proposition 3.1.4. (1) The identity morphism h(X)(r)ℓ → h(X)(r)ℓ is a morphism
h(X)(r)→ h(X)(r).

(2) More generally, for a morphism Y → X over S, the induced map h(X)(r)ℓ →
h(Y )(r)ℓ is a morphism h(X)(r)→ h(Y )(r).

Proof. We may and do assume that S is a geometric standard log point s. Let d be the
dimension of X.

We prove (1). Let Z = X × X (the fiber product over S = s) and consider the fan
Σ := ΣZ associated to Z (2.2.16). By Proposition 2.3.12, there is a finite subdivision
Σ′ → Σ such that X ′ := X ×Σ Σ′ → Σ′ and Z ′ := Z ×Σ Σ′ → Σ′ are strict. Hence
the morphism X ′ → Z ′ is a strict closed immersion. Since a strict closed immersion
between log smooth schemes is a regular immersion as is seen as in the classical case (cf.
[27] Proposition (3.10)), this morphism X ′ → Z ′ is a regular immersion. Consider the
OZ′-module OX′ and its class [OX′ ] ∈ grdK(Z ′)Q with d = dim(X). By Poincaré duality
(Corollary 2.1.4) and by Künneth formula (Corollary 2.1.6), this class induces the identity
map h(X)ℓ(r)→ h(X)ℓ(r).

(2) follows from (1). The homomorphism h(X)ℓ(r) → h(Y )ℓ(r) associated to f is
induced by an element of grdKlim(X × Y )Q with d = dim(X) which is obtained from
the above element of grdKlim(X ×X)Q giving the identity morphism, by pulling back by
1× f .

3.1.5. The above Proposition 3.1.4 explains the reason why we must useKlim (not justK)
in the definition of morphism of the category of log motives. For a projective vertical log
smooth fs log scheme X over a geometric standard log point s, the diagonal X → X ×X
is usually not a regular immersion and cannot define an element of K(X×X). We need a
log modification Z → X ×X to have an element of K(Z) corresponding to the diagonal,
which gives the identity morphism h(X)→ h(X).

Proposition 3.1.6. For morphisms f : h(X1)(r1) → h(X2)(r2) and g : h(X2)(r2) →
h(X3)(r3), the composition g ◦ f : h(X1)(r1)→ h(X3)(r3) is a morphism.

Proof. We may assume that S is a geometric standard log point. If f is induced by
α ∈ grKlim(X1 × X2)Q and g is induced by α′ ∈ grKlim(X2 × X3)Q, g ◦ f is induced by
the following element α′′ of grKlim(X1 × X3)Q. Let u ∈ grKlim(X1 × X2 × X3)Q be the
product of the pullbacks of α and α′. Let (X1×X3)

′ be a log blow-up of X1×X3 having
free M/O× (2.3.9), and let (X1 × X2 × X3)

′ be a log blow-up of X1 × X2 × X3 having
free M/O× such that u comes from an element v of grK((X1 × X2 × X3)

′)Q and such
that we have a morphism (X1 × X2 × X3)

′ → (X1 × X3)
′ which is compatible with the

projection X1 ×X2 ×X3 → X1 ×X3. Let α′′ be the pushforward of v by the morphism
(X1 ×X2 ×X3)

′ → (X1 ×X3)
′. Then g ◦ f is induced by α′′ by Proposition 2.4.9.
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3.1.7. Imitating the definition of motives by Grothendieck, we define the category LM(S)
of log motives over S as the category of the symbols (h(X)(r), e), where e is an idempotent
in the endomorphism ring of h(X)(r). The set of morphisms is defined as

Hom ((h(X1)(r1), e1), (h(X2)(r2), e2)) := e2◦Hom (h(X1), h(X2))◦e1 ⊂ Hom (h(X1), h(X2)).

The identity morphism of (h(X), e) is e.

The ℓ-adic realization Mℓ of the log motive M = (h(X), e) is defined to be eh(X)ℓ.

3.1.8. In the case where the underlying scheme of S is Spec(k) for a field k, there is
a natural functor from the category of motives over k modulo homological equivalence
defined by Grothendieck to our category LM(S) sending the motive defined by a projective
smooth scheme X over k to the log motive defined by X endowed with the pullback log
structure from S. This is because CHr(X × Y )Q = grrK(X × Y )Q.

Further, when the log structure of S is trivial, this functor is an equivalence. This is
because, in this case, we have grrK(X × Y )Q = grrKlim(X × Y )Q.

3.1.9. For a morphism S ′ → S of fs log schemes, we have the evident pullback functor
LM(S)→ LM(S ′).

3.1.10. For a két morphism p′ → p of standard log points whose underlying extension of
fields is Galois, we have

Hom LM(p)(h(X)(r), h(Y ))(s))
∼=→ Hom LM(p′)(h(X

′)(r), h(Y ′)(s))G,

where X ′ and Y ′ are the base-changed objects from X and Y , r, s ∈ Z, and (−)G denotes
the G-invariant part for G = Autp(p

′).

3.2 Basic things

3.2.1. Direct sums and direct products exist in LM(S), and they coincide.

In fact, we have h(X) ⊕ h(Y ) := h(X
⨿
Y ), and if r ≤ s, h(X)(r) ⊕ h(Y )(s) =

(h((X ×Pn)
⨿
Y )(s), e) for n ≥ s− r and for some e.

Conjecture 3.2.2. For a projective vertical log smooth fs log scheme X of relative
dimension d over S, h(X) has a decomposition

h(X) = h0(X)⊕ h1(X)⊕ · · · ⊕ h2d(X)

in the category LM(S) of log motives such that hi(X)ℓ = H i(X)ℓ.

Note that such a decomposition is unique if it exists.

3.2.3. We have the following: h(Pn) =
⊕n

i=0 h2i(Pn). h2i(Pn) ∼= Q(−i) canonically for
0 ≤ i ≤ n. Here Q = h(S).
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3.2.4. We define the category LMspl(S) as follows. For a projective vertical log smooth
fs log scheme X over S and for m, r ∈ Z, consider the symbol hm(X)(r).

For projective vertical log smooth fs log schemes X and Y over S and form,n, r, s ∈ Z,
a morphism h : hm(X)(r)→ hn(Y )(s) means a homomorphism Hm(X)ℓ(r)→ Hn(Y )ℓ(s)
of smooth Qℓ-sheaves on S satisfying the following condition. If m − 2r ̸= n − 2s, then
h = 0. If m − 2r = n − 2s, then for any geometric standard log point p over S, the
pullback of h to p comes from an element of grd+s−rKlim(Xp ×p Yp), where d = dim(X0).

An object of LMspl(S) is (hm(X)(r), e), where X is a projective vertical log smooth
fs log scheme over S, m, r ∈ Z, and e is an idempotent of the ring of endomorphism of
hm(X)(r). Morphisms are defined like the case of LM(S).

3.2.5. Similarly to the case of LM(S) (3.2.1), direct sums exist in LMspl(S). We have a
functor

LM(S)→ LMspl(S) ; h(X)(r) 7→
⊕
m

hm(X)(r).

Conjecture 3.2.2 is that this functor is an equivalence of categories.

3.2.6. Tensor products are defined in LM(S) as follows.

(h(X)(r), e)⊗ (h(X ′)(s), e′) := (h(X ×X ′)(r + s), e⊗ e′).
For a log motiveM over S, the Tate twistM(−r) (r ≥ 0) is identified withM⊗h2r(Pn)

with n ≥ r.

3.2.7. Compared with LM(S), a disadvantage of the category LMspl(S) is that the tensor
products cannot be defined.

3.2.8. Duals are defined in LM(S) as follows.

(h(X)(r), e)∗ = (h(X)(d− r), e(d− 2r)), where d is the relative dimension of X over
S.

Note that any morphism h(X)(r)→ h(Y )(s) induces a homomorphism (h(Y )(s)∗)ℓ →
(h(X)(r)∗)ℓ of Qℓ-sheaves by Poincaré duality (Corollary 2.1.4). We can easily check that
this homomorphism gives a morphism h(Y )(s)∗ = h(Y )(d′−s)→ h(X)(d−r) = h(X)(r)∗

of motives, where d′ is the relative dimension of Y over S by using the same elements of
griKlim(Xp×p Yp)Q, where p is a geometric standard log point over S and i = d+ s− r =
d′ + (d− r)− (d′ − s).

3.2.9. Let X be a projective vertical log smooth fs log scheme over S. We conjecture that,
for any morphism s → S from a standard log point associated to some finite field and
for each m ∈ Z, the filtration (the monodromy filtration) on the stalk over s of Hm(X)ℓ
determined by the monodromy operator coincides with the Frobenius weight filtration.
We call this the monodromy-weight conjecture for X.

Proposition 3.2.10. Let X and Y be projective vertical log smooth fs log schemes over
S. Assuming the monodromy-weight conjecture for X and Y , we have the following:

If m− 2r > n− 2s and if S is of finite type over Z, there is no non-zero homomorphism
Hm(X)ℓ(r)→ Hn(Y )ℓ(s).
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Proof. This is reduced to the case where S is a standard log point associated to a finite
field k. Let w = m − 2r, w′ = n − 2s. Monodromy-weight conjecture tells that as a
finite-dimensional Qℓ-vector space with actions of Gal(k̄/k) and the monodromy operator
N , the stalk of Hm(X)ℓ(r) (resp. H

n(Y )ℓ(s)) is isomorphic to a direct sum of subobjects
Q (resp. R) being isomorphic to SymiH1(E)ℓ ⊗ V , where the action of Gal(k̄/k) on V is
of weight w − i (resp. w′ − i) and the action of N on V is trivial. Hence, it is enough
to show that there is no non-zero Qℓ-linear map Q → R which is compatible with the
actions of Gal(k̄/k) and N . Let Q→ R be such a map. For any non-zero element x ∈ R
of weight u ≥ w′, we have N u−w′

(x) ̸= 0. But as a Qℓ-vector space with an action of N ,
Q is generated by an element y of weight u ≥ w such that N u−w+1(y) = 0. The image x
of this y in R is of weight u ≥ w′ and N u−w′

(x) = 0 because u− w′ ≥ u− w + 1. Hence
x = 0. Therefore the map Q→ R is the zero map.

Remark 3.2.11. On the other hand, a non-trivial homomorphismHm(X)ℓ(r)→ Hn(Y )ℓ(s)
can exist even if m − 2r < n − 2s and even if S is of finite type over Z. In fact, let S
be a standard log point, X = S, and Y the log Tate curve. Then we have an ex-
act sequence 0 → Qℓ → H1(Y )ℓ → Qℓ(−1) → 0. Hence a non-trivial homomorphism
H0(X)ℓ → H1(Y )ℓ exists.

3.2.12. For an X strict semistable over a standard log point, H1(XZar,M
gp
X /O×

X) = 0
because Mgp

X /O×
X
∼= p∗Z, where p : X ′ → X is a normalization, is a flasque sheaf, which

implies that Pic (X) = H1(XZar,O×
X)→ H1(XZar,M

gp
X ) is surjective. Hence by 2.3.14, we

have:
LetX,Y be projective vertical log smooth fs log schemes over an fs log scheme S. Then

an element of H1((X×Y )Zar,M
gp
X×Y ) gives a homomorphism h(X)(r)→ h(Y )(r+1− d),

where r ∈ Z and d is the relative dimension of X over S.
To see this, it is enough to show that the induced homomorphism h(X)(r)ℓ → h(Y )(r+

1 − d)ℓ comes from an element of the K-group after the base change to any geometric
standard log point. We assume that the base S is a geometric standard log point over
a field k. Apply 2.3.14 to X × Y , and find a strict semistable X ′ over X × Y after
the base change by the morphism S ′ = (Spec k,N) → S = (Spec k,N) induced by the
multiplication by n for some n ≥ 1. If n = 1, since Pic (X ′) = gr1K(X ′), we have a
desired element of gr1Klim(X×Y )Q. For a general n, after the base change, take a desired
element a of gr1Klim(X × Y ×S S

′)Q. Then the 1/n times of Tr(a) is a desired element.

3.3 Numerical equivalence

Proposition 3.3.1. For any log motive M over S and for any morphism f : M → M ,
Tr(f) ∈ Qℓ belongs to Q. (Precisely speaking, Tr(f) is a locally constant function S → Q.
It is constant if S is connected.)

Proof. We are reduced to the case where S is a geometric standard log point. Then the
result follows from the trace formula 2.4.11.

3.3.2. Definition of numerical equivalence.
For objects M and M ′ of LM(S) and for a morphism f : M → M ′, we say that f is

numerically equivalent to 0 if for any morphism g : M ′ → M , we have Tr(gf) = 0, that
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is, Tr(fg) = 0. (Note that when S is the spectrum of a field endowed with the trivial log
structure, it coincides with the usual definition (cf. [20] Lemma 1).)

Morphisms f, g :M →M ′ are said to be numerically equivalent if f − g is numerically
equivalent to 0.

Lemma 3.3.3. Let ∼ be the numerical equivalence. Let f, g : M → N be morphisms in
LM(S). Assume f ∼ g. Then

(1) fh ∼ gh for any morphism h : L→M from a log motive L over S.
(2) hf ∼ hg for any morphism h : N → L to a log motive L over S.

Proof. We may assume that g is 0.
(1) Let k : N → L be any morphism. Then Tr(fhk) = Tr(f(hk)) = 0. Hence fh ∼ 0.
(2) Let k : L → M be any morphism. Then Tr(khf) = Tr((kh)f) = 0. Hence

hf ∼ 0.

3.3.4. By Lemma 3.3.3, we have the category LMnum(S) of log motives over S modulo
numerical equivalence.

Conjecture 3.3.5. In LM(S), f ∼ g implies f = g. That is, LM(S) = LMnum(S).

3.3.6. When S is a geometric standard log point, the category LMnum(S) is independent
of the choice of ℓ. This is a consequence of Proposition 3.3.1 since in this case, the
group Hom (h(X)(r), h(Y )(s)) is identified with a quotient of grd+s−rKlim(X ×S Y )Q in
the notation in 3.1.3.

3.4 Semisimplicity

Theorem 3.4.1. (1) The category LMnum(S) is a semisimple abelian category.

(2) The category LM(S) is a semisimple abelian category if and only if the numerical
equivalence for morphisms of this category is trivial.

To prove this, we imitate the method of U. Jannsen in [20].

3.4.2. The following fact is known.
A pseudo-abelian category C is a semisimple abelian category if the following (i) and

(ii) are satisfied for any objects X and Y .
(i) Hom (X,Y ) is a Q-vector space, the composition of morphisms is bilinear, and any

idempotent of End (X) has a kernel.
(ii) End (X) is a finite-dimensional semisimple Q-algebra.

Lemma 3.4.3. Let F be a field, A, B finite-dimensional F -vector spaces, ( , ) : A×B →
F an F -bilinear map, F0 a subfield of F , A0 an F0-subspace of A, and B0 an F0-subspace
of B. Assume that A is generated by A0 over F , B is generated by B0 over F , and
(a, b) ∈ F0 for any a ∈ A0 and b ∈ B0. Let K = {a ∈ A | (a, b) = 0 for any b ∈ B}, and
K0 = {a ∈ A0 | (a, b) = 0 for any b ∈ B0}. Then:

F ⊗F0 A0/K0

∼=→ A/K.
In particular, A0/K0 is finite-dimensional over F0.
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Proof. Take an F0-subspace A
′
0 of A0 such that F ⊗F0 A

′
0

∼=→ A and an F0-subspace B
′
0

of B0 such that F ⊗F0 B
′
0

∼=→ B. Then A′
0 and B′

0 are finite-dimensional over F0. Let
K ′

0 = {a ∈ A′
0 | (a, b) = 0 for any b ∈ B} = {a ∈ A′

0 | (a, b) = 0 for any b ∈ B′
0}. Let

L′
0 = {b ∈ B′

0 | (a, b) = 0 for any a ∈ A} = {b ∈ B′
0 | (a, b) = 0 for any a ∈ A′

0}. The
composition

A′
0/K

′
0 → A0/K0 → Hom (B′

0/L
′
0, F0)

is an isomorphism and the two arrows here are injective. Hence we have

(∗) A′
0/K

′
0 → A0/K0 is an isomorphism.

On the other hand, the paring A × B → F is identified with F⊗F0 of the pairing
A′

0 ×B′
0 → F0. Hence we have

(∗∗) F ⊗F0 A
′
0/K

′
0 → A/K is an isomorphism.

By (∗) and (∗∗), we have that F ⊗F0 A0/K0 → A/K is an isomorphism.

Lemma 3.4.4. Let F be a field of characteristic 0, V a finite-dimensional F -vector space,
and A an F -subalgebra of EndF (V ). Let J be the Jacobson radical of A, that is, J is the
largest nilpotent two-sided ideal of A. Let I = {a ∈ A | Tr(ab) = 0 for any b ∈ A}. Here
Tr is the trace of an F -linear map V → V . Then I = J .

Proof. Let a ∈ J . Then for any b ∈ A, ab is nilpotent and hence Tr(ab) = 0. Hence a ∈ I.
Next we prove I ⊂ J . We may assume that F is algebraically closed. It is sufficient to
prove that all elements of I are nilpotent. Let a ∈ I. Let (αi)1≤i≤n (n = dimF (V )) be the
eigenvalues of a counted with multiplicity. We have 0 = Tr(an) =

∑n
i=1 α

n
i for any n ≥ 1.

This proves that αi = 0 for all i. Hence a is nilpotent.

Lemma 3.4.5. Let F be a field of characteristic 0, V a finite-dimensional F -vector space,
A an F -subalgebra of EndF (V ), F0 a subfield of F , and A0 an F0-subalgebra of A. Assume
that A0 generates the F -vector space A and assume that Tr(a) ∈ F0 for any a ∈ A0. Let
I0 = {a ∈ A0 | Tr(ab) = 0 for any b ∈ A0}. Then I0 is a two-sided ideal of A0, A0/I0 is a
finite-dimensional semisimple F0-algebra, and all elements of I0 are nilpotent.

Proof. The fact that I0 is a two-sided ideal of A0 is shown easily. Let I = {a ∈
A | Tr(ab) = 0 for any b ∈ A}. Then I is nilpotent and A/I is a semisimple algebra
by Lemma 3.4.4. Hence all elements of I0 are nilpotent. By Lemma 3.4.3, A0/I0 is
finite-dimensional and F ⊗F0 A0/I0 is isomorphic to A/I. Hence A0/I0 is semisimple.

3.4.6. We prove Theorem 3.4.1 (1). Let M be a log motive over S. In Lemma 3.4.5,
take F = Qℓ, F0 = Q, and let A be the Qℓ-subalgebra of EndQℓ

(Mℓ) generated by
A0 := EndLM(S)(M). Then the endomorphism ring of M in the category of log motives
over S modulo numerical equivalence is A/I0, where I0 is as in Lemma 3.4.5. By Lemma
3.4.5, A/I0 is a finite-dimensional semisimple Q-algebra. This proves (1) of Theorem
3.4.1.

We prove Theorem 3.4.1 (2). The if part follows from (1). We prove the only if part.
Let F = Qℓ, F0 = Q, and A,A0, I0 be as in the proof of (1). By Lemma 3.4.5, all elements
of I0 are nilpotent. Assume that A0 is semisimple. Since I0 is a two-sided ideal of A0

and all elements of I0 are nilpotent, we have I0 = 0. That is, the numerical equivalence
is trivial.
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4 Log mixed motives

We define the category of log mixed motives.

4.1 The category CS
4.1.1. Let ℓ be a prime number. Let S be an fs log scheme over Z[1/ℓ] of finite type.

Let CS be the following category.
Objects: (F ,W, (Xw)w∈Z, (Vw,1)w∈Z, (Vw,2)w∈Z, (ιw)w∈Z).
Here F is a smooth Qℓ-sheaf on the log étale site of S. W is an increasing filtration

on F by smooth Qℓ-subsheaves. The Xw are projective vertical log smooth fs log schemes
over S. For each w ∈ Z, Vw,1 and Vw,2 are smooth Qℓ-subsheaves of

⊕
r∈ZH

w+2r(Xw)ℓ(r)
such that Vw,1 ⊂ Vw,2. The ιw are isomorphisms grWw F ∼= Vw,2/Vw,1.

W is called the weight filtration.
A morphism

(F ,W, (Xw)w∈Z, (Vw,1)w∈Z, (Vw,2)w∈Z, (ιw)w∈Z)→ (F ′,W ′, (X ′
w)w∈Z, (V

′
w,1)w∈Z, (V

′
w,2)w∈Z, (ι

′
w)w∈Z)

in CS is a homomorphism of Qℓ-sheaves F → F ′ which respects the weight filtrations
such that for each w ∈ Z, the pullback of grWw F → grW

′
w F ′ to any geometric standard log

point s over S is induced from the sum of morphisms h(Xw ×S s)(r) → h(X ′
w ×S s)(r

′)
for various r, r′ ∈ Z which sends Vw,i to V

′
w,i over s for i = 1, 2.

4.1.2. The category CS has ⊕, kernels, and cokernels.
Furthermore, ⊗, the dual, and Tate twists are defined in CS.
These are explained in 4.1.3–4.1.7.

4.1.3. We have

(F ,W, (Xw)w∈Z, (Vw,1)w∈Z, (Vw,2)w∈Z, (ιw)w∈Z)⊕(F ′,W ′, (X ′
w)w∈Z, (V

′
w,1)w∈Z, (V

′
w,2)w∈Z, (ι

′
w)w∈Z)

= (F ⊕ F ′,W ⊕W ′, (Xw

⨿
X ′

w)w∈Z, (Vw,1 ⊕ V ′
w,1)w∈Z, (Vw,2 ⊕ V ′

w,2)w∈Z, (ιw ⊕ ι′w)w∈Z).

4.1.4. The kernel of a morphism

(F ,W, (Xw)w∈Z, (Vw,1)w∈Z, (Vw,2)w∈Z, (ιw)w∈Z)→ (F ′,W ′, (X ′
w)w∈Z, (V

′
w,1)w∈Z, (V

′
w,2)w∈Z, (ι

′
w)w∈Z)

is (F ′′,W ′′, (X ′′
w)w∈Z, (V

′′
w,1)w∈Z, (V

′′
w,2)w∈Z, (ι

′′
w)w∈Z), where F ′′ is the kernel of F → F ′,W ′′

is induced from W , X ′′
w = Xw, V

′′
w,2 is the kernel of Vw,2 → V ′

w,2/V
′
w,1, V

′′
w,1 = V ′′

w,2 ∩ Vw,1,
and ι′′w is induced from ιw.

4.1.5. The cokernel of the above morphism is (F ′′,W ′′, (X ′′
w)w∈Z, (V

′′
w,1)w∈Z, (V

′′
w,2)w∈Z, (ι

′′
w)w∈Z),

where F ′′ is the cokernel of F → F ′, W ′′ is induced from W ′, X ′′
w = X ′

w, V
′′
w,2 =

V ′
w,2 + Image(Vw,2), V

′′
w,1 = V ′

w,1 + Image(Vw,2), and ι
′′
w is induced by ι′w.

4.1.6.

(F ,W, (Xw)w∈Z, (Vw,1)w∈Z, (Vw,2)w∈Z, (ιw)w∈Z)⊗(F ′,W ′, (X ′
w)w∈Z, (V

′
w,1)w∈Z, (V

′
w,2)w∈Z, (ι

′
w)w∈Z)

is defined as (F ′′,W ′′, (X ′′
w)w∈Z, (V

′′
w,1)w∈Z, (V

′′
w,2)w∈Z, (ι

′′
w)w∈Z), where F ′′ = F ⊗ F ′, W ′′

is the convolution of W and W ′, X ′′
w =

⨿
i+j=wXi × X ′

j, V
′′
w,2 =

⊕
i+j=w Vi,2 ⊗ V ′

j,2,
V ′′
w,1 =

⊕
i+j=w(Vi,1 ⊗ V ′

j,2 + Vi,2 ⊗ V ′
j,1), ι

′′
w =

⊕
i+j=w ιi ⊗ ι′j.

4.1.7. The definition of the dual and the Tate twists are the evident ones.
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4.2 The category of log mixed motives

In his papers [3] and [4], Deligne showed how we can obtain mixed Hodge structures of
geometric origin basing on the theory of pure Hodge structures. We imitate his method
to formulate objects of CS of geometric origin.

In this 4.2, S denotes an fs log scheme and ℓ denotes a prime number which is invertible
on S.

For an fs log scheme X over S, Hm(X)(r)ℓ denotes R
mf∗Qℓ(r), where f is the mor-

phism X → S.

4.2.1. Consider (U,X,D), where X is a projective vertical log smooth fs log scheme over
S, D = (Dλ)λ∈Λ is a finite family of Cartier divisors on X, and U is the open subscheme
of X defined as the complement of

∪
λ∈ΛDλ in X satisfying the following condition:

For any subset Λ′ of Λ, DΛ′ :=
∩

λ∈Λ′ Dλ with the inverse image of the log structure
of X is log smooth over S, and of codimension ♯(Λ′) in X at each point of it.

To describe a typical example, let X be a projective and strict semistable family over
a trait S = SpecA endowed with natural log structures. Let D = (Dλ)λ∈Λ be a finite
family of Cartier divisors on X. Assume that strict étale locally on X, X is strict étale
over Spec(A[T1, . . . , Tn]/(T1 · · ·Ti − π)), where i ≤ n, π is a prime element of A and the
log of X is given by T1, . . . , Ti, and that for some i ≤ j ≤ n, each of the Ti+1, . . . , Tj gives
some Dλ and the other Dλ are empty there. Then these satisfy the above condition.

4.2.2. Let the notation and the assumptions be as in 4.2.1.
For i ≥ 0, let D(i) be the disjoint union of DΛ′ for all Λ′ ⊂ Λ such that ♯(Λ′) = i. In

particular, D(0) = X.
For i ≥ 0, we have a smooth Qℓ-sheaf H

m(D(i))ℓ on the log étale site of S (cf. 2.1.2).

4.2.3. Let the notation and the assumptions be as in 4.2.1. Endow U with the inverse
image of the log structure of X.

Then Hm(U)ℓ is a smooth Qℓ-sheaf on the log étale site of S and we have a spectral
sequence

Ei,j
1 = H2i+j(D(−i))ℓ(i)⇒ Em

∞ = Hm(U)ℓ

in the category of smooth Qℓ-sheaves. In fact, first, by relative purity in log étale coho-
mology ([13]), we have a spectral sequence with finite coefficients. By Proposition 2.1.1,
the E1-terms of this spectral sequence determines a smooth Qℓ-sheaves, which implies the
above facts.

4.2.4. Consider a simplicial system (U•, X•, D•) of objects (U,X,D) of 4.2.1 (here we
follow [4]). Let Hm(U•)ℓ be the smooth Qℓ-sheaf on S defined to be the m-th hyper-
cohomology (relative to S) of the simplicial system. The spectral sequence in 4.2.3 is
generalized to the spectral sequence

Ei,j
1 =

⊕
s≥0

Hj−2s(D
(s)
s+i)ℓ(−s)⇒ Em

∞ = Hm(U•)ℓ.

4.2.5. Let the notation be as in 4.2.4. Let m ∈ Z. We define an increasing filtration W
on Hm(U•)ℓ, which we call the weight filtration, as the filtration defined by the spectral
sequence in 4.2.4.
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4.2.6. If S is of finite type over Z[1/ℓ], let Cmot
S be the full subcategory of CS consisting of

objects which are obtained from the following standard objects in 4.2.7 below by taking
⊕, kernels, cokernels, ⊗, the duals, and Tate twists.

4.2.7. In the above, a standard object means:
Consider (U•, X•, D•,m), where (U•, X•, D•) is as in 4.2.4 and m ∈ Z. The associated

standard object is as follows:
Let F = Hm(U•)ℓ on S.
LetW be the filtration onHm(U•)ℓ defined by the spectral sequence in 4.2.5. Then, for

w ∈ Z, grWw Hm(U•)ℓ = V ′
w,2/V

′
w,1 for someQℓ-subsheaves V

′
w,1, V

′
w,2 of

⊕
s≥0H

w−2s(D
(s)
s+m−w)ℓ(−s)

such that V ′
w,1 ⊂ V ′

w,2.

Let Xw =
⊔

s≥0D
(s)
s+m−w.

Consider the natural projection
⊕

r∈ZH
w+2r(Xw)ℓ(r)→

⊕
s≥0H

w−2s(D
(s)
s+m−w)ℓ(−s).

For i = 1, 2, let Vw,i be the pullbacks of V
′
w,i by this natural projection. Then we have

the isomorphism ιw : gr
W
w F ∼= Vw,2/Vw,1.

4.2.8. If S is affine and is the inverse limit of Sλ which are of finite type over Z[1/ℓ], we
define Cmot

S as the inductive limit of the categories Cmot
Sλ

. This does not depend on the
choice of limits.

4.2.9. We define the category of log mixed motives LMM(S) over S as the Zariski sheafi-
fication of the categories Cmot

S in 4.2.8. More precisely, to give a log mixed motive M over
S is to give an affine covering (Si)i∈I of S, objects Mi of Cmot

Si
, affine coverings (Sijλ)λ

of Si ∩ Sj for each i, j ∈ I, and isomorphisms between the restrictions of Mi and Mj to
each Sijλ which are compatible to each other. The set of morphisms is similarly defined
as the quotient of the set of compatible local morphisms over affine open sets under an
appropriate equivalence.

4.2.10. For a morphism S ′ → S of fs log schemes, we have the pullback functor LMM(S)→
LMM(S ′).

4.2.11. We have a fully faithful functor

LMspl(S)→ LMM(S)

which sends Hm(X)(r) to the object associated to (U•, X•, D•,m)(r) with X• determined
by X, U• = X•, D• empty.

4.2.12. If the log structure of S is trivial, we define the categoryMM(S) of mixed motives
to be the category of log mixed motives over S.

4.3 Justifications of our definition

Here we explain the reason why we think our definition of log mixed motives is reasonable.

4.3.1. The reader may feel strange that in our definition of a morphism of log mixed
motives (4.1.1), we do not put much conditions other than the condition that its grW is
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motivic, though it is usually impossible to take care of mixed objects by using only pure
objects.

We hope that the following Proposition 4.3.4 (resp. Proposition 4.3.5) justifies our
definition of log mixed motive (resp. of morphism of log mixed motives) in 4.2 (resp.
4.1.1).

We hope that if S is of finite type over Z and if we take the category of log mixed
motives over S and the category of smooth Qℓ-sheaves on the log étale site of S as C1 and
C2, respectively, the conditions in 4.3.2 below are satisfied. (Especially we hope that the
finiteness assumption on S assures that the condition (v) in 4.3.2 below is satisfied.)

4.3.2. Let C1 and C2 be abelian categories. Assume that we have exact subfunctors
Ww : C1 → C1 (w ∈ Z) of the identify functor C1 → C1 such that Ww ◦Ww = Ww and such
that Ww′ ⊂ Ww if w′ ≤ w. Assume that we have a functor F : C1 → C2. Assume that
these satisfy the following six conditions.

(i) For each object M of C1, WwM =M if w ≫ 0 and WwM = 0 if w ≪ 0.
(ii) The functor F is exact.
(iii) Let w ∈ Z and let M and N be objects of C1. Assume that M and N are pure

of weight w (that is, WwM = M , Ww−1M = 0, WwN = N , Ww−1N = 0). Then the
canonical map Hom C1(M,N)→ Hom C2(F (M), F (N)) is injective.

(iv) Let w,w′ ∈ Z and assume w > w′. Let M and N be objects of C1 and assume
that M is pure of weight w and N is pure of weight w′. Then Hom C1(M,N) = 0 and
Hom C2(F (M), F (N)) = 0.

(v) Let w,w′ ∈ Z and assume w ≥ w′. Let M and N be objects of C1 and assume that
M is pure of weight w andN is pure of weight w′. Then the canonical map Ext 1

C1(M,N)→
Ext 1

C2(F (M), F (N)) is injective.
(vi) Let w ∈ Z. Then the full subcategory of C1 consisting of all objects which are

pure of weight w is semisimple.

Remark. By Proposition 3.2.10, Hom (F (M), F (N)) = 0 in the condition (iv) is rea-
sonable. (This is clearly reasonable if the log structure of S is trivial, but not trivial
otherwise.) Further, the condition (v) is related to Tate conjecture. In fact, it means that
an extension of motives splits if the ℓ-adic realization splits; two extensions are isomorphic
if their ℓ-adic realizations are isomorphic. These are analogues of Tate conjectures.

Lemma 4.3.3. Let the notation and the assumptions be as in 4.3.2 and let M and N be
objects of C1.

(1) The morphism Hom C1(M,N)→ Hom C2(F (M), F (N)) is injective.
(2) If there is a w ∈ Z such that WwM = 0 and WwN = N , then Hom C1(M,N) = 0,

Hom C2(F (M), F (N)) = 0, and the map Ext 1
C1(M,N)→ Ext 1

C2(F (M), F (N)) is injective.

Proof. By the induction on the lengths of the weight filtrations of M and N together
with the assumptions (i) and (ii), both statements reduce to the case where M and N are
pure. Let w (resp. w′) be the weight of M (resp. N).

(1) If w = w′ (resp. w > w′), (1) is by (iii) (resp. (iv)). If w < w′, Hom C1(M,N) = 0,
and (1) holds.

(2) Since w > w′, (iv) and (v) implies (2).
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Proposition 4.3.4. Let the notation and the assumptions be as in 4.3.2. Let M be an
object of C1 and let V be a subobject of F (M) in C2 such that for any w ∈ Z, the subobject
grWw V := (V ∩ F (WwM))/(V ∩ F (Ww−1M)) of F (grWw M) is F (Nw) for some subobject
Nw of grWw M in C1. Then there is a unique subobject N of M in C1 such that V coincides
with F (N).

Proof. By downward induction on w, we may assume that Ww−1M = 0 and that if we
denote V ∩ F (WwM) by V ′, the subobject V ′′ := V/V ′ of F (M/WwM) coincides with
F (N ′′) for some subobject N ′′ of M/WwM . By the assumption, the subobject V ′ of
F (WwM) = F (grWw M) coincides with F (N ′) for some subobject N ′ of WwM .

Let the exact sequence 0 → WwM → U → N ′′ → 0 be the pullback of the exact
sequence 0 → WwM → M → M/WwM → 0 by N ′′ → M/WwM . Then class(F (U)) ∈
Ext 1

C2(F (N
′′), F (WwM)) coincides with the image of class(V ) ∈ Ext 1

C2(F (N
′′), F (N ′))

under the homomorphism Ext 1
C2(F (N

′′), F (N ′)) → Ext 1
C2(F (N

′′), F (WwM)) induced by
the morphism N ′ → WwM .

Claim 1. There are an object N of C1 and an exact sequence 0→ N ′ → N → N ′′ → 0
such that class(F (N)) ∈ Ext 1

C2(F (N
′′), F (N ′)) coincides with class(V ) ∈ Ext 1

C2(F (N
′′)), F (N ′)).

We prove Claim 1. By the condition (vi) in 4.3.2 on semisimplicity, there is a morphism
WwM = grWw M → N ′ such that the composition N ′ → WwM → N ′ is the identity
morphism. Let the exact sequence 0 → N ′ → N → N ′′ → 0 be the pushforward of
0 → WwM → U → N ′′ → 0 under WwM → N ′. Then this satisfies the condition in
Claim 1.

Claim 2. class(U) ∈ Ext 1
C1(N

′′,WwM) coincides with the image of class(N) ∈
Ext 1

C1(N
′′, N ′) under the homomorphism induced by N ′ → WwM .

This follows from the injectivity of Ext 1
C1(N

′′,WwM) → Ext 1
C2(F (N

′′), F (WwM))
(Lemma 4.3.3) and the fact that class(F (U)) ∈ Ext 1

C2(F (N
′′), F (WwM)) coincides with

the image of class(V ) ∈ Ext 1
C2(F (N

′′), F (N ′)) under the homomorphism induced by the
morphism N ′ → WwM .

By Claim 2, there is a morphism N →M such that the diagram

0 → N ′ → N → N ′′ → 0
↓ ↓ ↓

0 → WwM → M → M/WwM → 0

is commutative. This proves Proposition 4.3.4.

Proposition 4.3.5. Let the notation and the assumptions be as in 4.3.2 (actually the
condition (vi) is not used for this proposition). Let M and N be objects of C1. Then
we have a bijection from Hom C1(M,N) to the set of pairs (h, (hw)w∈Z), where h is a
morphism F (M)→ F (N) and hw is a morphism grWw M → grWw N satisfying the following
conditions (i) and (ii).

(i) h sends F (WwM) to F (WwN) for any w ∈ Z.
(ii) For any w ∈ Z, the morphism F (grWw M)→ F (grWw N) induced by h coincides with

F (hw).
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Proof. We first prove

Claim 1. Let M and N be objects of C1. Let w ∈ Z. Then we have a bijection from
Hom C1(M,N) to the set of pairs (a, b), where a is a morphism WwM → WwN and b is a
morphism M/WwM → N/WwN satisfying the following condition (∗).

(∗) The image of class(M) ∈ Ext 1
C1(M/WwM,WwM) in Ext 1

C1(M/WwM,WwN) under
the map induced by a coincides with the image of class(N) ∈ Ext 1

C1(N/WwN,WwN) in
Ext 1

C1(M/WwM,WwN) under the map induced by b.

We prove Claim 1. Let a : WwM → WwN and b :M/WwM → N/WwN be morphisms.
Let the exact sequence 0 → WwN → X → M/WwM → 0 be the pushforward of 0 →
WwM → M → M/WwM → 0 under a, and let the exact sequence 0 → WwN → Y →
M/WwM → 0 be the pullback of 0 → WwN → N → N/WwN → 0 under b. Then the
condition (∗) is that the extension classes of X and Y coincide. On the other hand, a
morphism M → N which induces a and b corresponds bijectively to a morphism X → Y
which induces identity morphisms of WwN and M/WwM . By the first part of (2) of
Lemma 4.3.3, we have Hom C1(M/WwM,WwN) = 0. Hence we have the bijection in
Claim 1.

We can prove similarly

Claim 2. Let M and N be objects of C1. Let w ∈ Z. Then we have a bijection from
{h ∈ Hom (F (M), F (N)) | h(F (WwM)) ⊂ F (WwN)} to the set of pairs (a, b), where a
is a morphism F (WwM) → F (WwN) and b is a morphism F (M/WwM) → F (N/WwN)
satisfying the following condition (∗∗).

(∗∗) The image of

class(F (M)) ∈ Ext 1
C2(F (M/WwM), F (WwM))

in Ext 1
C2F ((WwM), F (WwN)) under the map induced by a coincides with the image of

class(F (N)) ∈ Ext 1
C2(F (N/WwN), F (WwN))

in Ext 1
C2(F (M/WwM), F (WwN)) under the map induced by b.

Now we prove Proposition 4.3.5. By downward induction on w, we may assume that
there is a w ∈ Z such that Ww−1M = M , Ww−1N = N and such that Proposition 4.3.5
is true if we replace M and N by M/WwM and N/WwN , respectively. By the Claim 1
and Claim 2, we have a commutative diagram with exact rows

0 → A → B → C
↓ ↓ ↓

0 → A′ → B′ → C ′,

where
A = Hom C1(M,N), A′ = Hom C2,W (F (M), F (N)),

B = Hom C1(WwM,WwN)× Hom C1(M/WwM,N/WwN),

B′ = Hom C2(F (WwM), F (WwN))× Hom C2,W (F (M/WwM), F (N/WwN)),
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C = Ext 1
C1(M/WwM,WwN), C ′ = Ext 1

C2(F (M/WwM), F (WwN)).

Here Hom C2,W means the set of homomorphisms of C2 which respect the filtrations W .
The vertical arrows are injective by Lemma 4.3.3. This proves

A
∼=→ {x ∈ A′ | the image of x in B′ comes from B},

which proves Proposition 4.3.5 by downward induction on w.

4.4 Main theorem

4.4.1. Recall that the following (i) and (ii) are equivalent (Theorem 3.4.1 (2)).

(i) In the category of log motives, homological equivalence (i.e. the trivial equivalence)
coincides with the numerical equivalence.

(ii) The category of log motives is a semisimple abelian category.

Theorem 4.4.2. (i) and (ii) are equivalent to the following (iii).

(iii) The category of log mixed motives is a Tannakian category ([42], [5]).

4.4.3. We prove (ii)⇒ (iii). It is sufficient to prove that a morphism f is an isomorphism
if it induces an isomorphism F → F ′. By (ii), there is a morphism h(X ′

w) → h(Xw)
which induces the inverse map V ′

w,2/V
′
w,1 → Vw,2/Vw,1. Thus the inverse map F ′ → F is

a morphism of log mixed motives.

We prove (iii) ⇒ (i). Let X be a projective vertical log smooth fs log scheme over
S. Consider a morphism f : h(X) → h(X) which is numerically equivalent to 0. We
prove f = 0. Let V1 be the kernel of f : h(X)ℓ → h(X)ℓ and let V2 = h(X)ℓ. On the
other hand, let V ′

1 = 0 and V ′
2 be the image of f : h(X)ℓ → h(X)ℓ. Then f induces an

isomorphism f : V2/V1
∼=→ V ′

2/V
′
1 . By (iii), there is a morphism g : h(X) → h(X) which

induces the inverse map V ′
2/V

′
1 → V2/V1. Then fg : h(X)ℓ → h(X)ℓ is a projection to V ′

2 .
Hence Tr(fg) = dim(V ′

2). Hence Tr(fg) = 0 implies V ′
2 = 0 and hence f = 0.

4.4.4. One can consider the following unconditional variant of the above statement (iii).

Let LMMnum(S) be the category of log mixed motives over S modulo numerical equiv-
alence. Here morphisms f, g : F → F ′ of log mixed motives are said to be numerically
equivalent if gr(f) and gr(g) are numerically equivalent. Then one can ask if LMMnum(S)
is a Tannakian category.

This is a mixed analogue of Theorem 3.4.1 (1).

5 Formulation with various realizations

In Sections 3 and 4, we considered ℓ-adic realizations of log mixed motives fixing a prime
number ℓ. Here we consider various realizations.
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5.1 Log motives and log mixed motives with many realizations

5.1.1. Let R be the union of the set of all prime numbers and the set of three letters
{B,D,H}: B means Betti realization; D means de Rham realization; H means Hodge
realization.

Let S be an fs log scheme. Let R be a nonempty subset of R. If a prime number ℓ is
contained in R, assume that S is over Z[1/ℓ]. If B ∈ R, assume that S is locally of finite
type over C. If D ∈ R, assume that S is log smooth over a field of characteristic 0 or S
is a standard log point associated to a field of characteristic 0. If H ∈ R, assume that S
is log smooth over C or S is the standard log point associated to C.

5.1.2. We define the categories

LMR(S), LMMR(S)

of log motives over S and of log mixed motives over S, respectively, with respect to
realizations in R.

The definition of LMR(S) is similar to Section 3. For a projective vertical log smooth
fs log scheme f : X → S over S and for r ∈ Z, consider the symbol hR(X)(r).

When a prime ℓ belongs to R, let

hR(X)(r)ℓ :=
⊕
m

Hm(X)ℓ(r).

When B ∈ R, let

hR(X)(r)B :=
⊕
m

Hm(X)B(r), where Hm(X)B = Rmf log
∗ Q.

This is a locally constant sheaf of finite dimensional Q-vector spaces on Slog (see Propo-
sition 2.1.7).

When D ∈ R, let

hR(X)(r)D :=
⊕
m

Hm(X)D(r), where Hm(X)D = Rmfkét∗ω
·,két
X/S.

This is a locally free sheaf of Okét-modules of finite rank with a quasi-nilpotent integrable
connection with log poles on Skét (see Propositions 2.1.14 (1) and 2.1.17 (1)).

When H ∈ R, let

hR(X)(r)H :=
⊕
m

Hm(X)H(r), where Hm(X)H = Rmfkét∗ω
·,két
X/S

endowed with the natural log Hodge structures. This is a log mixed Hodge structures on
Skét (see Propositions 2.1.14 (2) and 2.1.17 (2)).

A morphism hR(X)(r) → hR(Y )(s) is defined as a family of morphisms between
realizations for each element of R satisfying, for any geometric standard log point p over
S, the pull-backed morphism is induced by a common element of gr of the K-group. Note
that we do not impose any comparison isomorphism between different realizations. The
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rest is the same as in 3.1, and we have the category LMR(S). Here we use the Poincaré
duality (Proposition 2.1.8) and the Künneth formula (Proposition 2.1.10) in log Betti
cohomology, which implies the necessary corresponding theorems in log de Rham and log
Hodge theory via log Riemann–Hilbert correspondence ([16] Theorem (6.2)). We also use
the Riemann–Roch theorems.

5.1.3. The definition of LMMR(S) is also similar to the case where R consists of one
prime. We first define CS,R as follows.

First, for an R consisting of one prime ℓ, CS,R is CS in 4.1.1.
Second, for R = {B}, we define CS,R as the following category.
Objects: (F ,W, (Xw)w∈Z, (Vw,1)w∈Z, (Vw,2)w∈Z, (ιw)w∈Z).
Here F is a locally constant sheaf of finite dimensional Q-vector spaces on Slog

an . TheW
is an increasing filtration on F by locally constant Q-subsheaves. The Xw is a projective
vertical log smooth fs log scheme over S. For each w ∈ Z, Vw,1 and Vw,2 are locally constant
Q-subsheaves of

⊕
r∈ZH

w+2r(Xw)B(r) such that Vw,1 ⊂ Vw,2. The ιw is an isomorphism
grWw F ∼= Vw,2/Vw,1.

A morphism

(F ,W, (Xw)w∈Z, (Vw,1)w∈Z, (Vw,2)w∈Z, (ιw)w∈Z)→ (F ′,W ′, (X ′
w)w∈Z, (V

′
w,1)w∈Z, (V

′
w,2)w∈Z, (ι

′
w)w∈Z)

is a homomorphism of Q-sheaves F → F ′ which respects the weight filtrations such that
for each w ∈ Z, the pullback of grWw F → grW

′
w F ′ to any geometric standard log point

s associated to C over S is induced from the sum of morphisms h{B}(Xw ×S s)(r) →
h{B}(X

′
w ×S s)(r

′) for various r, r′ which sends Vw,i to V
′
w,i over s for i = 1, 2.

Third, for R = {D}, we define CS,R as the following category.
Objects: (F ,W, (Xw)w∈Z, (Vw,1)w∈Z, (Vw,2)w∈Z, (ιw)w∈Z).
Here F is a locally free OSkét

-modules of finite rank endowed with a quasi-nilpotent
integrable connection with log poles. The W is an increasing filtration on F by locally
free OSkét

-submodules with the compatible connections such that the graded quotients
are also locally free. The Xw is a projective vertical log smooth fs log scheme over S.
For each w ∈ Z, Vw,1 and Vw,2 are locally free OSkét

-submodules with the compatible
connections of

⊕
r∈ZH

w+2r(Xw)D(r) such that Vw,1 ⊂ Vw,2. The ιw is an isomorphism
grWw F ∼= Vw,2/Vw,1.

A morphism

(F ,W, (Xw)w∈Z, (Vw,1)w∈Z, (Vw,2)w∈Z, (ιw)w∈Z)→ (F ′,W ′, (X ′
w)w∈Z, (V

′
w,1)w∈Z, (V

′
w,2)w∈Z, (ι

′
w)w∈Z)

is a homomorphism of OSkét
-modules F → F ′ which respects the weight filtrations such

that for each w ∈ Z, the pullback of grWw F → grW
′

w F ′ to any geometric standard log point
s over S is induced from the sum of morphisms h{D}(Xw ×S s)(r) → h{D}(X

′
w ×S s)(r

′)
for various r, r′ which sends Vw,i to V

′
w,i over s for i = 1, 2.

Fourth, for R = {H}, we define CS,R as the following category.
Objects: (F ,W, (Xw)w∈Z, (Vw,1)w∈Z, (Vw,2)w∈Z, (ιw)w∈Z).
Here (F ,W ) is a log mixed Hodge structure on Skét. The Xw is a projective vertical

log smooth fs log scheme over S. For each w ∈ Z, Vw,1 and Vw,2 are sub-log Hodge
structures of

⊕
r∈ZH

w+2r(Xw)H(r) such that Vw,1 ⊂ Vw,2. The ιw is an isomorphism
grWw F ∼= Vw,2/Vw,1.
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A morphism

(F ,W, (Xw)w∈Z, (Vw,1)w∈Z, (Vw,2)w∈Z, (ιw)w∈Z)→ (F ′,W ′, (X ′
w)w∈Z, (V

′
w,1)w∈Z, (V

′
w,2)w∈Z, (ι

′
w)w∈Z)

is a homomorphism of log mixed Hodge structures (F ,W )→ (F ′,W ′) such that for each
w ∈ Z, the pullback of grWw F → grW

′
w F ′ to any standard log point s associated to C

over S is induced from the sum of morphisms h{H}(Xw ×S s)(r)→ h{H}(X
′
w ×S s)(r

′) for
various r, r′ which sends Vw,i to V

′
w,i over s for i = 1, 2.

Lastly, for any R, we define CS,R as follows.
Objects: (Yρ)ρ∈R, where Yρ is an object of CS,{ρ}, satisfying the condition that for any

w ∈ Z, the Xw of Yρ is common.
A morphism (Yρ)ρ∈R → (Y ′

ρ)ρ∈R is (fρ)ρ∈R, where fρ : Yρ → Y ′
ρ is a morphism of CS,{ρ},

satisfying the condition that for any w, r, r′ ∈ Z and any s→ S, the element of gr of the
K-group inducing the morphism hρ(Xw ×S s)(r)→ hρ(X

′
w ×S s)(r

′) is common.
Note that in this definition, we do not impose any comparison isomorphism between

different realizations.

5.1.4. We define Cmot
S,R ⊂ CS,R and LMMR(S) imitating 4.2. Here the objects associated

to standard objects for B, D, and H are defined by virtue of Propositions 2.1.7, 2.1.14,
and 2.1.17.

5.2 Conjectures and results

We state the conjecture that our categories LMR(S) and LMMR(S) are independent of
the choices of the family R of realizations. We also state Tate conjecture and Hodge
conjecture. For the latter, we explain in Section 6 that they hold in a simple case. In
there, we use the theories of log abelian varieties and log Jacobian varieties.

Conjecture 5.2.1. Let R′ be a non-empty subset of R. Then the restriction of realiza-
tions give an equivalence of categories

LMR(S)
≃→ LMR′(S), LMMR(S)

≃→ LMMR′(S).

Theorem 5.2.2. The following (i)–(iii) are equivalent.
(i) In the category LMR(S), homological equivalence (i.e. the trivial equivalence) coin-

cides with the numerical equivalence.
(ii) The category LMR(S) is a semisimple abelian category.
(iii) The category LMMR(S) is a Tannakian category.

Proof. Similar to Theorems 3.4.1 (2) and 4.4.2.

For ρ ∈ R, we denote the realization for ρ of M ∈ LMM(S) by Mρ.

Conjecture 5.2.3. (Tate conjecture for log mixed motives.) Assume that ℓ is invertible
over S. Assume that either one of the following (i) and (ii) is satisfied.

(i) S is of finite type over some field which is finitely generated over the prime field.
(ii) S is of finite type over Z.
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Then for any objects M and N of LMM{ℓ}(S), we have

Qℓ ⊗ Hom (M,N)
∼=→ HomW (Mℓ, Nℓ).

Here the right-hand-side denotes the set of homomorphisms of Qℓ-sheaves which respect
the weight filtrations.

Remark. If either the log structure of S is trivial orM and N are pure, “W” on the right-
hand-side in this conjecture can be eliminated (for the weight filtrations are automatically
respected).

Conjecture 5.2.4. (The second Tate conjecture.) Assume that S is of finite type over
Q and let M,N be objects of LMM{ℓ,B}(S). Then we have a bijection from Hom (M,N)
to the set of all pairs (a, b), where a is a morphism Mℓ → Nℓ, and b is a homomorphism
MB → NB defined on (S ⊗ C)logan , such that the pullback of a on (S ⊗ C)logan is induced
from b (cf. Proposition 2.1.12).

5.2.5. The above second Tate conjecture follows from Tate conjecture. In fact, in Qℓ ⊗
Hom (M,N)→ Qℓ⊗{(a, b)} → Hom (Mℓ, Nℓ), the composition is an isomorphism if Tate
conjecture is true and the second map is an injection.

Conjecture 5.2.6. (Hodge conjecture for log mixed motives.) Assume that S is log
smooth over C or is the standard log point over C. LetM andN be objects of LMM{H}(S).
Then we have

Hom (M,N)
∼=→ Hom (MH , NH).

By Proposition 2.1.18, the conjecture 5.2.6 is reduced to the case where S is the
standard log point associated to C.

6 Examples

6.1 Log abelian varieties

This 6.1 and 6.2 are preparations for 6.3 and 6.4. In this 6.1, we review the theory of log
abelian varieties [24] and supply some results. See [38] for a survey of the theory. We
only consider log abelian varieties over a standard log point, for we need only this case in
6.3 and 6.4.

6.1.1. For an fs log scheme S, let (fs/S) be the category of fs log schemes over S, and
let (fs/S)ét be the site (fs/S) endowed with the classical étale topology. A log abelian
variety over S is a sheaf of abelian groups on (fs/S)ét satisfying certain conditions. If s is
the standard log point associated to a field k, a log abelian variety over s is described as
in 6.1.2–6.1.5 below.

6.1.2. Let Gm,log be the sheaf U 7→ Γ(U,Mgp
U ) on (fs/s)ét.

For a semiabelian variety G over k with the exact sequence 0 → T → G → B → 0,
where T is a torus over k and B is an abelian variety over k, let Glog be the pushout of
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G ← T → Hom(X(T ),Gm,log) in the category of sheaves of abelian groups on (fs/s)ét.
Here X(T ) := Hom(T,Gm) is the character group of T . We have G ⊂ Glog.

Let M1 be the category of systems (Γ, G, h), where Γ is a locally constant sheaf of
free Z-modules of finite rank on (fs/s)ét, G is a semiabelian variety over k, and h is a
homomorphism Γ→ Glog.

An object ofM1 was called a log 1-motif in [24].

6.1.3. For an object (Γ, G, h) ofM1 with T the torus part of G, we have the Z-bilinear
paring

⟨ , ⟩ : X(T )× Γ→ Z

(called the monodromy pairing) defined as follows. The map h induces Γ → Glog →
Glog/G ∼= Tlog/T and hence X(T )×Γ→ X(T )×Tlog/T → Gm,log/Gm. Since Gm,log/Gm

restricted to the small étale site of the underlying scheme Spec(k) of s is Z, we have the
above monodromy pairing.

6.1.4. Let E = (Γ, G, h) be an object ofM1. The dual E
∗ = (Γ∗, G∗, h∗) of E is an object

ofM1 defined as in [24]. We have Γ∗ = X(T ), the torus part T ∗ of G∗ is Hom(Γ,Gm),
and the abelian variety G∗/T ∗ is the dual abelian variety B∗ of B = G/T .

Let E = (Γ, G, h) be an object ofM1.
A polarization on E is a homomorphism p : E → E∗ satisfying the following conditions

(i)–(iv).

(i) The homomorphism B → B∗ induced by p is a polarization of the abelian variety
B.

(ii) The homomorphism Γ⊗Q→ Γ∗ ⊗Q induced by p is an isomorphism.
(iii) The pairing Γ×Γ→ Z ; (a, b) 7→ ⟨p(a), b⟩ is a positive definite symmetric bilinear

form, where ⟨ , ⟩ denotes the monodromy pairing (6.1.3) and p denotes the homomorphism
Γ→ Γ∗ = X(T ) induced by p.

(iv) The homomorphism Tlog → (T ∗)log induced by p comes from T → T ∗ = Hom(Γ,Gm)
which is dual to the homomorphism Γ→ Γ∗ = X(T ) induced by p.

LetM0 be the full subcategory ofM1 consisting of objects which have polarizations
after base change to k.

6.1.5. For an object (Γ, G, h) ofM1, we have a subgroup sheaf G
(Γ)
log of Glog containing G

and h(Γ) defined as in [24].
A log abelian variety over s is a sheaf of abelian groups A on (fs/s)ét such that A =

G
(Γ)
log/h(Γ) for some object (Γ, G, h) of M0. Let LAV(s) be the category of log abelian

varieties over s. We have an equivalence of categories

M0
∼→ LAV(s) ; (Γ, G, h) 7→ G

(Γ)
log/h(Γ)

by [24] Theorem 3.4 (cf. [24] Proposition 4.5 and [24] Theorem 4.6 (2)).

6.1.6. Let E be an object of M0 and let A be the corresponding log abelian variety.
Then the log abelian variety A∗ corresponding to the dual E∗ of E is called the dual log
abelian variety of A. We have an embedding A∗ ⊂ Ext1(A,Gm,log). A polarization of A
gives a homomorphism A→ A∗.
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6.1.7. For an additive category C, let C ⊗Q be the following category. Objects of C ⊗Q
are the same as those of C. For objects E,E ′ of C, Hom C⊗Q(E,E

′) = Hom C(E,E
′)⊗Q.

6.1.8. The categoryM1 ⊗ Q is an abelian category as is seen easily. M0 ⊗ Q is stable
inM1 ⊗Q under taking kernels, cokernels, and direct sums (cf. [49]), and hence, it is an
abelian category. Hence LAV(s)⊗Q is an abelian category.

6.1.9. Let A be a log abelian variety over s corresponding to an object (Γ, G, h) ofM0.
Let ℓ be a prime number which is different from the characteristic of k. Then the ℓ-adic
Tate module TℓA is defined in the natural way as a smooth Zℓ-sheaf on the log étale site
of s (cf. [26] 18.9). Let VℓA = Qℓ ⊗ TℓA.

We have an exact sequence 0→ TℓG→ TℓA→ Γ⊗ Zℓ → 0 (cf. [26] 18.10).
We have Tℓ(A

∗) = Hom(TℓA,Zℓ(1)).
If T is the torus part of G, the monodromy operator N : TℓA → TℓA(−1) coincides

with the composition TℓA → Γ ⊗ Zℓ → TℓT (−1) → TℓA(−1), where the second arrow
Γ ⊗ Zℓ → TℓT (−1) = Hom (X(T ),Zℓ) is the map induced by the monodromy pairing
⟨ , ⟩ : X(T )× Γ→ Z (6.1.3).

6.1.10. Let A be a polarizable log abelian variety over s. Fix a polarization p : A→ A∗.
Then p is an isomorphism in LAV(s) ⊗ Q. For f ∈ EndLAV(s)⊗Q(A), let f

♯ := p−1f ∗p ∈
EndLAV(s)⊗Q(A), where f

∗ : A∗ → A∗ is the dual of f .

Proposition 6.1.11. Let A and p be as above and let f ∈ EndLAV(s)⊗Q(A), f ̸= 0. Then
Tr(ff ♯) > 0. Here Tr is the trace of the induced Qℓ-linear map VℓA→ VℓA.

Proof. Let E = (Γ, G, h) be an object ofM0 corresponding to A, let T be the torus part
of G, and let B = G/T be the quotient abelian variety of G. Let f0, f

♯
0 : Γ⊗Qℓ → Γ⊗Qℓ,

f1, f
♯
1 : VℓB → VℓB, and f2, f

♯
2 : VℓT → VℓT be the map induced by f , f ♯, respectively.

Then

Tr(ff ♯) =
2∑

i=0

Tr(fif
♯
i ).

By the usual theory of abelian varieties, Tr(f1f
♯
1) ≥ 0 and it is non-zero if f1 ̸= 0.

Tr(f0f
♯
0) ≥ 0 and this is non-zero if f0 ̸= 0, for we have a positive definite symmetric

form. We have Tr(f2f
♯
2) ≥ 0 and it is non-zero if f2 ̸= 0 by duality. Hence Tr(ff ♯) ≥ 0

and this is non-zero unless f0 = f1 = f2 = 0. If f0 = f1 = f2 = 0, f = 0 because any
homomorphism B → T is zero.

Corollary 6.1.12. The category LAV(s)⊗Q is semisimple.

Proof. This is deduced from the above proposition by the arguments in 3.4.

6.1.13. Let A be a log abelian variety over s. Assume k = C. Then we have the
polarizable log Hodge structure over s of weight −1 corresponding to A ([23]), which we
denote by H1(A)H . The underlying locally constant sheaf of finite-dimensional Q-vector
spaces on the topological space slogan (which is homeomorphic to a circle S1) will be denoted
by H1(A)B. If (Γ, G, h) denotes the object ofM0 corresponding to A, we have an exact
sequence

0→ H1(G,Z)→ H1(A)B → Γ→ 0.
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Proposition 6.1.14. Let A1 and A2 be log abelian varieties over s.

(1) If k is finitely generated over a prime field, we have Zℓ ⊗Z Hom (A1, A2)
∼=→

Hom (TℓA1, TℓA2).
(2) If k is a subfield of C which is finitely generated over Q, we have a bijection from

Hom (A1, A2) to the set of pairs (a, b), where a is a homomorphism TℓA1 → TℓA2 and b
is a homomorphism H1(A1)B → H1(A2)B on (s ⊗k C)log such that the pullback of a on
(s⊗k C)log is induced by b.

(3) If k = C, Hom (A1, A2)
∼=→ Hom (H1(A1)H , H1(A2)H).

Proof. For an object E = (Γ, G, h) ofM1, define the filtration W on E by WwE = E for
w ≥ 0, W−1E = (0, G, 0), W−2E = (0, T, 0) with T the torus part of G, and WwE = 0 for
w ≤ −3. Then grW0 E = (Γ, 0, 0), grW−1E = (0, B, 0), where B is the abelian variety G/T ,
grW−2E = (0, T, 0), and grWw E = 0 for w ̸= 0,−1,−2. Let C1 =M1 ⊗Q and let C2 be the
category of smooth Qℓ-sheaves on the log étale site of s. Then (1) and (2) follow from
the Tate conjecture on homomorphisms of abelian varieties proved by Faltings ([6]) and
from the injectivity of G(k)⊗Q→ H1(k, VℓG) for a semiabelian variety G over k, by the
method of 4.3.

(3) follows from [23].

6.2 Log Jacobian varieties

We review the theory of log Jacobian varieties of log curves over a standard log point in
[21], and supply some results. In this subsection and the next, we omit some details of
proofs, which will be treated in a forthcoming paper.

6.2.1. Let s be the standard log point associated to a field k. Let X be a projective
vertical log smooth connected curve over s which is strict semistable, whose double points
are rational and whose components are geometrically irreducible.

Then we have a log abelian variety over s associated to X called the log Jacobian
variety of X. We will denote it by J .

This J is essentially constructed by Kajiwara in [21]. We explain his construction
below in 6.2.4.

This J has the following properties 6.2.2 and 6.2.3.

6.2.2. Let H1(X,Mgp) be the sheafification of the presheaf U 7→ H1(X ×s U,M
gp) on

(fs/s)ét. We have a degree map H1(X,Mgp) → Z. Let H1(X,Mgp)0 ⊂ H1(X,Mgp) be
the kernel of the degree map. Then J is a subgroup sheaf of H1(X,Mgp)0.

6.2.3. Let E = (Γ, G, h) be the object ofM0 corresponding to J , let T be the torus part
of G, and let B = G/T be the quotient abelian variety of G. Then Γ, T , B are described
as follows.

Let Γ be the first homology group of the graph ofX as usual, that is, Γ = Ker (
⊕

I1
Z→⊕

I0
Z), where I0 is the set of generic points of X, and I1 is the set of singular points of

X. Hom (T,Gm) = Hom (Γ,Z). B =
∏

ν∈I0 JD(ν), where D(ν) is the closure of ν in X
which is a projective smooth curve over k and JD(ν) is the Jacobian variety of D(ν). We
have a canonical isomorphism J ∼= J∗ (cf. 6.2.7) which induces the evident isomorphisms
Γ ∼= Γ∗, T ∼= T ∗ and B ∼= B∗.
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6.2.4. We explain the construction of J , which is essentially due to Kajiwara. For sim-
plicity, we assume that k is algebraically closed. By [21] (2.18), we have a commutative
diagram

0 0 0y y y
Γ Glog H1(X,Mgp)y y ∥∥∥

0 −−−→
⊕

I1
Z −−−→ P log

X/s −−−→ H1(X,Mgp) −−−→ 0y y y
0 −−−→

⊕
I0
Z

⊕
I0
Z −−−→ 0y

Z
with exact rows and columns, where G = Ker (H1(X,Gm) →

⊕
I0
Z), and P log

X/s is de-

fined in [21]. This diagram yields a log 1-motif (Γ, G, h : Γ → Glog) and the degree map

H1(X,Mgp) → Z whose kernel H1(X,Mgp)0 ∼= Glog/h(Γ) contains G
(Γ)
log/h(Γ). The last

sheaf is J .

6.2.5. Let Y := X ×sX. We have a Mgp
Y -torsor on Y called the Poincaré torsor, defined

as follows.
Let U = Y ∖

∪
x∈I1({x} × {x}). Let M

′
U be the pushout over the trivial log structure

on U of the log structure MY |U and the log structure consisting of the sections of OU

which are invertible outside the diagonal X in Y . Let M ′
Y be the unique fs log structure

on Y whose restriction to U coincides with M ′
U . (See the following local description for

the existence of such an fs log structure.) We have Mgp
Y ⊂ (M ′

Y )
gp. There is a unique

global section t of (M ′
Y )

gp/Mgp
Y having the following property: Let π be a generator of

the log structure of s. At any singular point x of X, let f1, g1 be generators of the log of
the left X in X ×s X around x such that f1g1 = π, and let f2, g2 be the copies of them
for the right X in X ×s X. Let f1 − f2 be the section of M ′

Y around {x} × {x} which is
f1 − f2 on the locus {g1 = g2 = 0}, which is f1 on the locus {g1 = f2 = 0}, which is −f2
on the locus {f1 = g2 = 0}, and which is (−πg−1

1 g−1
2 )(g1− g2) on the locus {f1 = f2 = 0}.

Define g1 − g2 similarly. Then, we have g1 − g2 = (−πf−1
1 f−1

2 )(f1 − f2) in (M ′
Y )

gp and
−πf−1

1 f−1
2 ∈ Mgp

Y . The desired t coincides around {x} × {x} with the class of f1 − f2
which is also the class of g1 − g2. Note that the ideal of OY which defines the diagonal is
generated around {x} × {x} by the image of f1 − f2 and by the image of g1 − g2.

Let the Poincaré torsor be the inverse image of t−1 in (M ′
Y )

gp under (M ′
Y )

gp →
(M ′

Y )
gp/Mgp

Y . This is an Mgp
Y -torsor.

If X is a projective smooth curve over k endowed with the pullback log structure from
s, this Poincaré torsor comes from the usual Poincaré Gm-torsor.

6.2.6. We have a morphism φ : X → H1(X,Mgp) which sends x to the pullback of the
Poincaré torsor (6.2.5) with respect to X → X ×X; y 7→ (x, y).
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If b is a morphism s→ X over s, we have a canonical morphism

φb : X → J ⊂ H1(X,Mgp) ; x 7→ φ(x)− φ(b)

called the log Albanese mapping associated to b.

6.2.7. (Self-duality of the log Jacobian.) Let b and φb be as above. Then the pulling back
via φb gives an isomorphism

Ext1(J,Gm,log)
∼=→ H1(X,Mgp)0,

which is independent of the choice of b. Hence the subgroup sheaf J of H1(X,Mgp)0 is
regarded as a subgroup sheaf of Ext1(J,Gm,log). Via this inclusion J ⊂ Ext1(J,Gm,log),
J is identified with the dual log abelian variety J∗ of J . Since this isomorphism J ∼= J∗

does not depend on b, it is defined canonically even if there is no b.

Proposition 6.2.8. Let b : s→ X be a morphism over s. Let A be any log abelian variety
over s. Then the map

Hom (J,A)→ Mor(X,A) ; h 7→ h ◦ φb

is bijective.

Proof. The inverse map is given as follows. Let f : X → A be a morphism. Then we
have A∗ → Ext1(A,Gm,log) → H1(X,Mgp)0, where the second arrow is the pullback by
f . This induces A∗ → J . Taking the dual log abelian varieties, we have J → A.

6.2.9. Let ℓ be a prime number which is invertible in k. Then we have canonical isomor-
phisms

VℓJ ∼= H1(X)ℓ(1) ∼= Hom(H1(X)ℓ,Qℓ).

6.3 Examples I

This subsection Examples I is for the pure case. The next subsection Examples II is for
the mixed case.

The following is a part of Conjecture 3.2.2.

Proposition 6.3.1. Let X be a projective vertical log smooth curve over an fs log scheme
S. Then h(X) = h0(X)⊕ h1(X)⊕ h2(X).

Proof. It is enough to show that for i = 0, 1, 2, the composite of the i-th projection and
the i-th inclusion

h(X)ℓ =
2⊕

j=0

Hj(X)ℓ → H i(X)ℓ →
2⊕

j=0

Hj(X)ℓ = h(X)ℓ

comes from an element of K-group ⊗Q after pulling back to any geometric standard log
point. So we may assume that S is a geometric standard log point over a field k. It is
enough to show it for i = 0, 2. By the duality, the case i = 2 is reduced to i = 0. We
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prove the case i = 0. If there is a section S → X, the composite for i = 0 coincides with
h(X)ℓ → h(S)ℓ → h(X)ℓ and induced by an element of K-group. In the general case,
there is a section after kummer log flat localization of the base ([36] Proposition 4.1), so
we have the desired element a of K-group after the base change by (Spec k, n : N → N)
for some n ≥ 1. Then the 1/n times of Tr(a) is a desired element.

Proposition 6.3.2. Assume that S is the standard log point over C. Let X be a con-
nected projective strict semistable curve over S. Then the Hodge conjecture 5.2.6 for
Hom (Q, h2(X)(1)) is true.

Proof. Assume that we are given a homomorphism h : Q → H2(X)B(1). By invariant
cycle theorem, this comes from the classical Betti cohomology H2(Xan,Q(1)). Since h(1)
belongs to Fil1H2(X)H , it vanishes in H2(X,OX). Hence it comes from the kernel of
H2(Xan,Q(1))→ H2(X,OX). By the exponential sequence 0→ Z(1)→ OXan → O×

Xan
→

0, it comes from Pic(X)⊗Q.

The next will be proved in a forthcoming paper.

Proposition 6.3.3. Let s be a geometric standard log point of characteristic ̸= ℓ. For
i = 1, 2, let Xi be a projective vertical log smooth curve over s which is strict semistable,
and let Ji be the log Jacobian variety of Xi. For a homomorphism h : H1(X1)ℓ → H1(X2)ℓ,
the following two conditions (i) and (ii) are equivalent.

(i) h is a morphism H1(X1)→ H1(X2) of log motives over s.

(ii) h comes from a morphism J1 → J2 in LAV(s) (via the isomorphisms H1(Xi)ℓ(1) ∼=
VℓJi in 6.2.9).

Proposition 6.3.4. Let X and Y be projective vertical log smooth curves over an fs log
scheme S whose geometric fibers are connected.

(1) Assume that S is the standard log point over C and that X and Y are strict
semistable over S. Then the Hodge conjecture 5.2.6 for Hom (h(X), h(Y )) is true.

(2) Assume that S is of finite type over Q. Then the second Tate conjecture 5.2.4 for
Hom (h(X), h(Y )) is true.

(3) Assume that S is a standard log point associated to a finitely generated field over
a prime field whose characteristic is different from a prime number ℓ. Then the Tate
conjecture 5.2.3 for Hom (h(X), h(Y )) is true.

(4) For f, g ∈ Hom (h(X), h(Y )), if f and g are numerically equivalent, then f = g.

(5) The endomorphism ring of h(X) is a finite-dimensional semisimple algebra over
Q.

Proof. By 2.3.14, Proposition 2.1.9 and ℓ-adic log proper base change theorem [22] Propo-
sition 5.1 (cf. [22] Remark 5.1.1), we may assume that S is a standard log point and X
and Y are strict semistable and that their double points are rational and their compo-
nents are geometrically irreducible. Let J and J ′ be the log Jacobian variety of X and
Y , respectively. By Propositions 6.3.1, 6.3.3, and the method of 4.3, we can identify
Hom (h(X), h(Y )) with Hom LAV(S)⊗Q(J, J

′). Then we reduce to the results in 6.1.
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6.4 Examples II

6.4.1. Let X be a projective vertical log smooth curve over an fs log scheme S. Let n ≥ 1
and s1, . . . , sn : S → X be strict morphisms over S such that si(S) ∩ sj(S) = ∅ if i ̸= j.
Let D :=

∪n
i=1 si(S) and let U := X ∖D.

We will denote the log mixed motive corresponding to the standard object associated
to (U,X,D, 1) over S by H1(U).

Let Γ = Ker(sum : Zn → Z). We have W0M = M , W−2M = 0, W−1M = H1(X),
grW0 M = Γ⊗Q(−1), where M = H1(U).

The spectral sequence as in 4.2.4 for each realization degenerates at E2.

6.4.2. Let the notation be as in 6.4.1.
If S is over Z[1/ℓ], we have an exact sequence
(1) 0→ H1(X)ℓ → H1(U)ℓ → Γ⊗Qℓ(−1)→ 0

of Qℓ-sheaves.
If S is either log smooth over C or the standard log point associated to C, we have an

exact sequence
(2) 0→ H1(X)H → H1(U)H → Γ⊗Q(−1)→ 0

of log mixed Hodge structures over S.
Assume that S is a standard log point associated to a field k, and assume that X

is connected and strict semistable and that their double points are rational and their
components are geometrically irreducible. Let J be the log Jacobian variety of X. Then
(si)i induces a homomorphism ψ := φ ◦ (si)i : Γ → J by the log Albanese mapping φ
(6.2.6).

Note that for any log abelian variety A over S, we have a canonical homomorphism
(3) A(S)⊗Q→ Ext1(Qℓ, VℓA)

by Kummer theory, which is injective if k is finitely generated over a prime field. If k = C,
we have also a canonical injective map

(4) A(S)→ Ext1(Z, H1(A)H).
We have:
(5) Under the homomorphism Hom (Γ, J)→ Ext1(Γ⊗Qℓ, VℓJ) induced by (3) (applied

to the log abelian variety A = Hom(Γ, J)), the extension class of (1) coincides with the
image of ψ : Γ→ J .

(6) If k = C, under the homomorphism Hom (Γ, J) → Ext1(Γ, H1(J)H) induced by
(4), the extension class of (2) coincides with the image of ψ : Γ→ J .

Proposition 6.4.3. Let U1, U2 be objects as U in 6.4.1.
(1) Assume that S is the standard log point over C and that X1 and X2 are connected

and strict semistable. Then the Hodge conjecture 5.2.6 for Hom (H1(U1), H
1(U2)) is true.

(2) Assume that S is of finite type over Q. Then the second Tate conjecture 5.2.4 for
Hom (H1(U1), H

1(U2)) is true.
(3) Assume that S is the standard log point associated to a finitely generated field over

a prime field whose characteristic is different from a prime number ℓ. Then the Tate
conjecture 5.2.3 for Hom (H1(U1), H

1(U2)) is true.

Proof. Similarly as in Proposition 6.3.4, we may assume that S is a standard log point
and Xi are connected and strict semistable and that their double points are rational and
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their components are geometrically irreducible. For i = 1, 2, let Ji be the log Jacobian
variety of Xi. By (5) in 6.4.2, by the injectivity of the map (3) in 6.4.2, and by Proposition
6.3.3, the method of 4.3 shows that

(∗) the set of morphisms H1(U1) → H1(U2) is identified with the set of pairs (a, b),
where a is a homomorphism Γ1⊗Q→ Γ2⊗Q and b is a morphism J1 → J2 in LAV(s)⊗Q
such that ψ2 ◦ a = b ◦ ψ1.

Hence by (5) in 6.4.2, by the injectivity of the map (3) in 6.4.2, and by this (∗), the
method of 4.3 proves (2) and (3). Similarly, by (6) in 6.4.2, by the injectivity of the map
(4) in 6.4.2, and by (∗), the method of 4.3 proves (1).
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[4] Deligne, P, Théorie de Hodge III, Publ. Math. I.H.E.S., 44 (1974) 5–77.

[5] Deligne, P, Catégories Tannakiennes, In: the Grothendieck Festschrift, vol. 2
(Cartier, P. et al. eds.), Springer (1990), 111–195.

[6] Faltings, G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent.
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pects of Dwork Theory, volume II (Ed. A. Adolphson, F. Baldassarri, P. Berthelot,
N. Katz, and F. Loeser), Walter de Gruyter, Berlin, New York, 2004, 983–1039.

[46] Voevodsky, V., Triangulated categories of motive s over a field, In: Cycles, trans-
fers, and motivic homology theories, Ann. of Math. Studies 143, Princeton Univer-
sity Press, Princeton, NJ, 2000, 188–238.

[47] Vologodsky, V., Motivic homotopy type of a log scheme, talk in a con-
ference in honor of Arthur Ogus on the occasion of his 70th birthday,
http://www.ihes.fr/̃ abbes/Ogus/ogus70-programme.html, 2015.

[48] Yoshioka, H., Semistable reduction theorem for logarithmically smooth varieties,
Master thesis at University of Tokyo, 1995.

[49] Zhao, H., Log abelian varieties over a log point, Doc. Math. 22 (2017) 505–550.

Tetsushi ITO
Department of Mathematics
Kyoto University
Kitashirakawa, Kyoto 606-8502, Japan
tetsushi@math.kyoto-u.ac.jp

Kazuya KATO
Department of Mathematics
University of Chicago
Chicago, Illinois, 60637, USA
kkato@math.uchicago.edu

Chikara NAKAYAMA
Department of Economics
Hitotsubashi University
2-1 Naka, Kunitachi, Tokyo 186-8601, Japan
c.nakayama@r.hit-u.ac.jp

Sampei USUI
Graduate School of Science
Osaka University
Toyonaka, Osaka, 560-0043, Japan
usui@math.sci.osaka-u.ac.jp

49


