On log motives

Tetsushi Ito, Kazuya Kato, Chikara Nakayama, Sampei Usui

Abstract

We define the categories of log motives and log mixed motives. The latter gives a
new formulation for the category of mixed motives. We prove that the former is a
semisimple abelian category if and only if the numerical equivalence and homological
equivalence coincide, and that it is also equivalent to that the latter is a Tannakian
category. We discuss various realizations, formulate Tate and Hodge conjectures,
and verify them in curve case.
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1 Introduction

1.1. In this paper, we define

(1) the category of log motives over an fs log scheme, and
(2) the category of log mixed motives over an fs log scheme.

(1) is a generalization of the category of Grothendieck motives over a field with respect
to the homological equivalence. The category (2) has @, ®, dual, kernel and cokernel. We
prove that the following (i), (ii), and (iii) are equivalent.

(i) The numerical equivalence and homological equivalence coincide in the category

(1).
(ii) The category (1) is a semisimple abelian category.
(iii) The category (2) is a Tannakian category.

The equivalence of (i) and (ii) is the log version of the famous theorem of Jannsen
([200).
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1.2. We explain the organization briefly. In this paper, except in 2.1, an fs log scheme
means an fs log scheme which has charts Zariski locally.

Let S be an fs log scheme. We fix a prime number ¢ and assume that ¢ is invertible
over S.

After we give preparations in Section 2, we define in Section 3 the category of log
motives over S, which is the log version of the category of motives of Grothendieck. In
Section 4, we define the category of log mixed motives over S using the theory in Section
3.

Here we work modulo homological equivalence using ¢-adic log étale cohomology the-
ory.

In the case where the log structure of S is trivial, our construction gives a category of
mixed motives over S modulo homological equivalence. This does not use the theory of
Voevodsky ([46]), though we hope our theory is connected to it. In the case S = Spec(k)
for a field k£ of characteristic 0 with trivial log structure, our definition of the category
of mixed motives over S is different from the definition of the category of mixed motives
over k given by Jannsen in [19]. The difference lies in the definition of morphisms. We
use K-theory whereas he uses absolute Hodge cycles.

Vologodsky ([47]) and Park ([41]) also defined log motives, respectively. They work
with the formalism of triangulated categories & la Voevodsky. Our approach is more
elementary to define the category of log mixed motives directly without defining its derived
category. One can ask to compare our theory with theirs.

In Section 5, we introduce realizations other than ¢-adic one. In Section 6, we discuss
examples.

We explain each section of this paper more.

1.3. In Section 2, we give preparations on log geometry. We review results on log étale
cohomology, log Betti cohomology, log de Rham cohomology, and log Hodge theory in
2.1, and then review or prove results on fans (2.2), on log modifications (2.3), and on the
Grothendieck group of vector bundles on log schemes (2.4).

1.4. We explain more about Section 3.

Fix a prime number ¢ and let S be an fs log scheme on which ¢ is invertible. We define
the category of log motives over S by imitating the definition of motive by Grothendieck
modulo homological equivalence.

Recall that for a field k£ whose characteristic is not ¢, the category of motives over k
modulo (/-adic) homological equivalence is defined as follows (cf. [44]). For a projective
smooth scheme X over k and for r € Z, consider a symbol h(X)(r). For projective smooth
schemes X, Y over k and for r,s € Z, by a morphism h(X)(r) — h(Y)(s), we mean a
homomorphism @, H(X).(r) — B, H'(Y).(s) which comes from CH(X x Y)g. Here
H'(X), is the étale cohomology group H: (X ®y, k, Q) with k a fixed separable closure
of k, (r) denotes the r-th Tate twist, the same for Y and s, and where CH = @, CH’
is the Chow group and ( )g means ®Q. A motive over k is a pair (h(X)(r),e), where
X is a projective smooth scheme over k, r € Z, and e is an idempotent of the ring of
endomorphisms of h(X)(r).

Imitating this, we define the category of log motives over S is as follows. (See 3.1
for details.) For a projective vertical log smooth fs log scheme X over S and for r € Z,

2



consider a symbol h(X)(r). For projective vertical log smooth fs log schemes X, Y over
S and for r,s € Z, by a morphism h(X)(r) — h(Y)(s), we mean a homomorphism
h:@, H(X)o(r) — @, H'(Y)(s) satisfying the condition (C) below. Here H'(X), is
the smooth Q-sheaf on the log étale site on S defined to be the i-th relative log étale
cohomology of X over S, (r) denotes the r-th Tate twist, and the same for Y and s.

(C) For any geometric standard log point p (2.1.11) over S, the pullback of h to p
comes from an element of @, gr'K(Z)q for some log modification Z of X,, x,, Y,, where
K(Z) denotes the Grothendieck group of the category of vector bundles on Z and gr’
denotes the i-th graded quotient for the ~-filtration ([12]).

A log motive over S is a pair (h(X)(r),e), where X over S and r are as above and e
is an idempotent of the ring of endomorphisms of h(X)(r) (3.1.7).

The reason we need log modifications is explained in 3.1.5.

In the case where S = Spec(k) for a field k& with the trivial log structure we have
gr'K(Z)g = CH'(Z)q for any smooth scheme Z over k and our category of log motives
over S coincides with the category of motives over £ modulo homological equivalence due
to Grothendieck.

We will also define the category of log motives over S modulo numerical equivalence
by taking the quotient of the set of morphisms by numerical equivalence. We prove the
following log version of the theorem of Jannsen.

Theorem (= Theorem 3.4.1). (1) The category of log motives over .S modulo numerical
equivalence is a semisimple abelian category.

(2) The category of log motives over S (defined in 3.1) is a semisimple abelian category
if and only if the numerical equivalence for morphisms of this category is trivial.

1.5. We explain more about Section 4. Let S and ¢ be as in 1.4. Roughly speaking,
we follow the method of Deligne ([3], [4]), who constructed mixed Hodge structures of
geometric origin by using only projective smooth schemes over C.

Our definition of log mixed motives is rather simple and is easily obtained by using
the category of log (pure) motives in Section 3. This may seem strange because usually
it is impossible to take care of mixed objects by using only pure objects. The reason why
such a simple definition works is explained in 4.3.

We will prove the following result.

Theorem (cf. Theorem 4.4.2). Assume that the category of log motives over S is
semisimple; that is, the numerical equivalence coincides with the homological equivalence
for this category (see (2) of the previous theorem). Then the category of log mixed motives
over S is a Tannakian category. In particular, it is an abelian category.

1.6. In Sections 24, our discussion only uses (-adic étale realization. We consider in
Section 5 more realizations, and formulate Tate conjecture and Hodge conjecture for
log mixed motives. In the last section 6, we prove that these conjectures are true in
certain cases (Proposition 6.3.2, Proposition 6.3.4, Proposition 6.4.3). To prove the results
Proposition 6.3.4 and Proposition 6.4.3 on morphisms between H' of log curves, we use
the theory of log abelian varieties in [24] and the theory of log Jacobian varieties [21].

3



Acknowledgments. A part of this paper was written while the first author was staying at
Institut des Hautes Etudes Scientifiques. He would like to thank ITHES for its hospitality.
We thank Takeshi Saito and Takeshi Kajiwara for helpful discussions, the referee for
careful reading and valuable comments, and Heer Zhao for pointing out an earlier error in
6.2.5. The second author is partially supported by NSF grants DMS 1303421 and DMS
1601861. The third author is partially supported by JSPS, Kakenhi (C) No. 22540011,
(B) No. 23340008, and (C) No. 16K05093. The fourth author is partially supported by
JSPS, Kakenhi (B) No. 23340008 and (C) No. 17K05200.

2 Preparations on log geometry

Basic references on log geometry are [27], [14]. Basic references on log étale cohomology
are [34], [35], [15]. Basic references on algebraic cycles and K-groups are [12], [10].

In this paper, except in 2.1, for technical reasons, we consider only fs log schemes
which have charts Zariski locally. (We hope that a generalization of our theory can be
developed without such a restriction, but we guess that the resulting categories are not
very different from the current ones.) A monoid means a commutative semigroup with a
unit element which is usually denoted by 1.

Let X be an fs log scheme over an fs log scheme S. We say that X is projective if
the underlying scheme of X is projective over the underlying scheme of S. We say that
X is vertical if for any point x of X, whose image in .S is denoted by s, the face of Mx z
spanned by the image of Mgy is the whole Mx z. Cf. [34] Definition and Notation (7.3).

A morphism f: X — Y of integral log schemes is exact if for any x € X, an element

of Mf/iv(T) whose image in M%”; belongs to My z belongs to My 575 Cf. [27] Definition

(4.6).

2.1 Log cohomology theories

We review some theorems on log étale cohomology, log Betti cohomology, and log de
Rham cohomology.

First we discuss the theorems on log étale cohomology. There are two versions of étale
cohomology in log geometry. One is obtained using the Kummer étale (két) site, while
the other is obtained using the full log étale (1ét) site. In this paper we mainly use log
étale cohomology defined using the full log étale site.

Let f: X — S be a morphism of fs log schemes. Let ¢ be a prime number which is
invertible on S. Let A =Z/0"Z (n > 1).

Proposition 2.1.1. Assume that f: X — S is proper and log smooth. Then R fig. A

(the higher direct image for the full log étale topology) is locally constant and constructible
(see [37], 8.1 for the definition) for all q € Z.

Proof. This is by [37], Theorem 13.1 (1). O

2.1.2. As in the classical case, we define a constructible Zy-sheaf as an inverse system
(Fy,)n, where F, is a constructible sheaf of Z /("1 Z-modules such that Z/("Z&F,, — F,_.
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A smooth Zy-sheaf is a constructible Zg,-sheaf (F),), with each F,, locally constant. The
smooth Z,-sheaves form an abelian category. We define the category of constructible Q-
sheaves as the localization of this abelian category by torsion objects, that is, those killed
by some power of £. By the above proposition, we have, under the assumption there, a
smooth Qg-sheaf on Sy, which we denote by RY fie. Q.

Proposition 2.1.3 (Poincaré duality). Let d > 0. Assume that f: X — S is proper, log
smooth, vertical, and, full log étale locally on S, all fibers are of equi-d-dimensional. Then
there is a natural isomorphism

RQd_iflét*A(d) E) Hom (Rif]ét*A, A)
for any i.
Proof. This is by [37], Theorem 14.2 (3). O

Corollary 2.1.4. Under the same assumptions, suppose further that S is noetherian.
Then, there is a natural isomorphism

RQd_iflét*QAd) = Hom (Riflét*@éa Q)
for any i.

Proposition 2.1.5 (Kiinneth formula). Assume that S is quasi-compact and that f: X —
S is proper. Let g :' Y — S be another proper morphism of fs log schemes. Let h be the
induced morphism X xgY — S. Then there is a natural isomorphism

Rficee A % Rgiaee A = Rhygei A

Proof. This is by [37], Theorem 9.1. O

As a corollary, we have

Corollary 2.1.6. Assume that S is quasi-compact and that f: X — S is proper and log
smooth. Let g :' Y — S be another proper and log smooth morphism of fs log schemes.
Let h be the induced morphism X xXsY — S. Then, for each n > 0, there is a natural
1somorphism

EB R? fi60:Qp @ R g1¢e Qo 5 R" Py Qp.

p+q=n

Proof. The natural homomorphism is seen to be bijective at stalks by the previous propo-
sition. O

Next the theorems on log Betti cohomology are as follows. Let f: X — S be a
morphism of fs log analytic spaces.

Proposition 2.1.7. Assume that f: X — S is proper (i.e., the underlying map is uni-
versally closed and separated) and log smooth. Then RIf1°87 is a locally constant sheaf of
finitely generated abelian groups for all q € Z.
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Proof. This is [22], Corollary 0.3. O

Proposition 2.1.8 (Poincaré duality). Let d > 0. Assume that f: X — S is proper,
log smooth, vertical, and all fibers are of equi-d-dimensional. Then there is a natural
1somorphism

de—ifiog@ E) Hom (Rifiog@a Q)
for any i.

Proof. The case where f is exact is by [39], Theorem 5.10 (3). The general case is reduced
to this case by exactification as follows. First, we assume that S has a chart by an fs
monoid and fix such a chart. Then, by exactification ([16] Proposition (A.4.4)), there is
a log blow-up ([16] Definition (6.1.1)) p: S” — S such that the base-changed morphism
fo X' =X xg 8" — 5 is exact. By the exact case, we have the natural isomorphism

() R fo8Q = Hom (R f1¢Q, Q)

on S"°¢. Below we will prove that sending this by p'°¢ gives us an isomorphism R4~ flog(Q 5
Hom (R f°6Q, Q) on S™&. To see that the last isomorphism is independent of the choices
of log blow-ups, we can argue as in [37] (14.10), where the ¢-adic analog of the same prob-
lem is treated. Then, it implies that the isomorphism is independent also of the choices
of charts, and is glued into the desired isomorphism.

Now we calculate p'°® of each side of (x). Since R’ f/1°8Q is locally constant for any j
(Proposition 2.1.7), by [22] Proposition 5.3 (2), we have

pERFIQ = RPZERIQ = Rf#pEQ = Rf®Q,

where we denote the base-changed morphism of p by the same symbol and the last equality
is by [22] Proposition 5.3 (1). Hence,

piogRQd—ifi log@ — RQd_iingQ.

On the other hand, as for the right-hand-side of (x), again by [22] Proposition 5.3 (2),
we have

Ri[5Q = s~ 1ples R 11,
and it is isomorphic to p°s ~1R! f°8Q by the same argument for the left-hand-side. Then,
pEHom (R fI'#Q, Q) = p¥Hom (p°* ' R f°Q, Q) = Hom (R' f**Q, p*Q) = Hom (R'£,*Q,Q),
where the last equality is again by [22] Proposition 5.3 (1). Thus we have an isomorphism
R¥7f%5Q = Hom (R f*Q, Q).
O

Proposition 2.1.9. Let f: X — S be a proper and log smooth morphism of fs log analytic
spaces. Let g: 8" — S be any morphism of fs log analytic spaces. Let f': X' := X x5 —
S" and ¢': X' — X be the base-changed morphisms. Let L be a locally constant sheaf of
abelian groups on X'°¢. Then the base change homomorphism

glog flRfiogL N Rfilogglog I

18 an isomorphism.



Proof. We may assume that S has a chart. By exactification ([16] Proposition (A.4.4)), we
take a log blow-up p: S; — S such that the base-changed morphism f;: X; := X xg5; —
Sp is exact. Then, by proper log smooth base change theorem in log Betti cohomology
([22] Theorem 0.1), the cohomologies of Rf,%8p's8 'L are locally constant, where py is
the base-changed morphism X; — X. Hence, by the invariance of cohomology under log
blow-up ([22] Proposition 5.3), to prove Proposition 2.1.9, we can replace f and g by the
base-changed ones with respect to p, and L by its pullback pl)‘;gflL. Thus we may assume
that f is exact. Then the conclusion follows from the log proper base change theorem

[22] Proposition 5.1 (cf. [22] Remark 5.1.1). O

Proposition 2.1.10 (Kiinneth formula). Let the notation and assumption be as in the
previous proposition. Assume that g is proper. Let h: X' — S be the induced morphism.
Then there is a natural isomorphism

Rf,%5Q ®F RgEQ — RhZEQ.
Proof. This is by Proposition 2.1.9 and the usual projection formula. O

Next is a comparison between log Betti cohomology and log étale cohomology.

2.1.11. A standard log point means the fs log scheme Spec(k) for a field k endowed with
the log structure associated to N — k ; 1 — 0. If we like to present k, we call it a
standard log point associated to k. The standard log point associated to an algebraically
closed field is called a geometric standard log point.

Proposition 2.1.12. Let f: X — S be a proper, log smooth and vertical morphism of fs
log schemes with S being of finite type over C. Let

log 71 K
X = Xiar — Xigt

be natural morphisms of topoi (for n, see [30] Remark (2.7)). Letn > 1 and A = Z/("Z.
Then we have
N R free N = R KR fraws\ = R fign\.

an*x )

Proof. The second one is shown in 13.4 of [37]. We prove the first one. First, note that the
cohomologies of the left-hand-side are locally constant and constructible by [37] Theorem
13.1 (2) and those of the right-hand-side are locally constant by Proposition 2.1.7.

We reduce to the case where f is exact. We may assume that S has a chart by
an fs monoid and fix such a chart. Then, by [37] Lemma 3.10, there is a log blow-up
p: S" — S such that the base-changed morphism f': X' := X xg 5" — 5 is exact. By
[37] Theorem 5.5 (1) and [37] Theorem 5.8 (1), we have pfy R fuet« A = Diige R frsts RPxers A =
Do Rovets Rfvso A = Rfig. A, where we denote the base-changed morphism of p by the
same symbol.

Similarly, by [22] Proposition 5.3, we have p°8* Rfl°¢ A = plog* R floe Rplog A = plos* Rplog R f/los \ —
Rf!°8A. Thus we may and will assume that f is exact.

Since the cohomologies of both sides are locally constant, we can work at stalks. Let
so be a point of S. By the following proposition 2.1.13, there are a morphism s — S from
the standard log point s over C whose image is sg, and a log blow-up X’ of X, := X xg s

7



such that the composition X' — X, — s is strict semistable, i.e., a log deformation
with smooth irreducible components. It is enough to show that the homomorphism at
a stalk over a point of si)og is bijective. Then by the exact proper base change theorem
([34] Theorem (5.1) and Remark (5.1.1) for the log étale cohomology, [22] Proposition
5.1, Remark 5.1.1, and the usual proper base change theorem for topological spaces for
the log Betti cohomology), we may assume that S = s, and further, by [22] Proposition
5.3 (1) and [37] Theorem 5.5 (1), we may assume that X = X', that is, in the original
setting, we may assume that S is the standard log point over C and X is strict semistable
over S.

Here we use the Steenbrink-Rapoport-Zink (SRZ, for short) spectral sequences as
follows. In the proof of [7] Theorem 7.1, it is shown that there is a natural isomor-
phism between the (-adic SRZ spectral sequence and the Betti SRZ spectral sequence.
Since these converge to the stalk of (-adic log étale cohomologies and that of log Betti
cohomologies, respectively, we have the desired isomorphism. O]

Proposition 2.1.13. Let s = (Speck,N) be a standard log point. Let X — s be a quasi-
compact, vertical, and log smooth morphism of fs log schemes. Then there are a positive
integer nand a log blow-up ([37) 2.2) X' — X X, s,, where s,, := (Speck, =N), such that
the composition X' — s, is strict semistable.

This is a variant of the semistable reduction theorem of D. Mumford. The statement
here is due to [45] Proposition 2.4.2.1. (Cf. [25] Remark after Assumption 8.1.) Another
reference is [43] Theorem 2.9. Both papers based on the method of [48]. (Actually, [48]
and [43] treat the case of log smooth fs log schemes over a discrete valuation ring, but the
proof is in the same way. [43] treats the non-vertical case also.) See 2.3.14 for a variant
of Proposition 2.1.13.

Finally, we discuss log de Rham cohomology and log Hodge theory.

Proposition 2.1.14. Let k be a field of characteristic zero. Let f: X — S be a projective,
log smooth and vertical morphism of fs log schemes with S being log smooth over k. Let
q € Z. Then we have the following.

(1) HiR(X/S) = qukét*w')’(k/% is a vector bundle endowed with a natural quasi-nilpotent

integrable connection with log poles, and the Hodge filters R? fkét*w')?/pblkét are subbundles

of Hiz(X/S) for all p.
(2) When k = C, we have a natural log Hodge structure on Sy of weight q which is
underlain by Hip (X/S) with the Hodge filter.

Proof. We may assume k = C, and (1) is deduced from (2). (2) is by the main theorem
of [29] Theorem 8.1. O

Lemma 2.1.15. Let f: X — S be a proper, log smooth and vertical morphism of fs log
analytic spaces with S being ideally log smooth over C ([16] Definition (1.5)). Assume
that for any x, the cokernel of (MS/(’)g)ff()x) — (Mx/O%)& is torsion-free. Assume also
that either S s log smooth or f is exact. Then we have a canonical isomorphism

RO [ = e RY fuy s

for any q € Z. Here ¢ is the forgetting-log morphism, i.e., the projection from the két site
to the usual site.



Proof. By [16] Theorems (6.2) and (6.3), the local system R? f1°6C corresponds to R4 f*ka/eg
by the két log Riemann-Hilbert correspondence, and it does to R?f,w /8 by the non-két
log Riemann—Hilbert correspondence, respectively. Hence the desired isomorphism fol-

lows from the compatibility of the both Riemann—Hilbert correspondences ([16] Theorem
(4.4)). O

Lemma 2.1.16. Let the notation and the assumption be as in the previous lemma. Let
X' — X be a log blow-up and f': X' — X — S the composite. Then the canonical
homomorphism

Rif.wys — R fiwy s

18 an isomorphism.

Proof. By [16] Theorem (6.3), this homomorphism corresponds by the log Riemann—
Hilbert correspondence to the homomorphism RYf°¢C — R?f/1°8C of local systems, which
is an isomorphism by [22] Proposition 5.3 (1). O

Proposition 2.1.17. Let k be a field of characteristic zero. Let f: X — s be a projective,
log smooth and vertical morphism of fs log schemes with s being the standard log point
associated to k. Let q € Z. Then we have the following.

(1) Hiz(X/s) = qukét*w')’(k/it is a vector bundle with a natural quasi-nilpotent inte-
grable connection with log poles.

(2) When k =C, Hi;(X/s) carries a natural log Hodge structure on sxs of weight q.

Proof. We may assume k = C, and (1) is deduced from (2). We prove (2). For this,
we can use a general result in [9]. Here we give a direct proof, which is essentially a
part of the arguments in [9]. In [8], the non-két version of the case of (2) where f is
strict semistable is proved with the Hodge filter R? f*w')?/}; . We reduce (2) to this result
as follows. To prove (2), we slightly generalized the statement to the case where s is the
spectrum of a log Artin ring C[N]/(z") for some n > 1, where z is the generator of log.
In the rest of this proof, (2) means this generalized statement. We may assume that f
satisfies the assumptions in Lemma 2.1.15 by két localization of the base s. By a variant
of Proposition 2.1.13, we may assume further that there exists a log blow-up X’ — X
such that the special fiber of X’ — s is strict semistable. By Lemma 2.1.15, we see that
it is enough to show the non-két version of (2). By the argument in [17] and the strict
semistable case in [8], RIflwy, /s with the Hodge filters gives a log Hodge structure. The
non-két version of (2) is reduced to this by Lemma 2.1.16 and the induced Hodge filtration
on R?f.wy,, from R fiwy )5 does not depend on the choice of X ‘. O]

Proposition 2.1.18. Let f: X — S be a projective, log smooth and vertical morphism
of fs log schemes with S being log smooth over C. Let s — S be a standard log point
associated to C over S. Let fs: Xs — s be the base-changed morphism. Let q € Z. Then
the pullback of the log Hodge structure Hiz (X/S) is naturally isomorphic to the log Hodge
structure Hip(Xs/s).

Proof. Since there is a natural base change map, it is enough to show that the local system
can be base-changed, which is by Proposition 2.1.9. O
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2.2 Fans in log geometry

Let (fs) be the category of fs log schemes which have charts Zariski locally. From now on,
in the rest of this paper, an fs log scheme means an object of this (fs).

We review the formulation of fans in [28] as unions of Spec of monoids. This is a
variant of the theory of polyhedral cone decompositions in [33], [40].
The material in paragraphs 2.2.16 and 2.2.17 is new and was not discussed in [28].

2.2.1. For a monoid P, an ideal of P means a subset I of P such that ab € I for any
a € Pand b € I. A prime ideal of P means an ideal p of P such that the complement
P~ p is a submonoid of P. We denote the set of all prime ideals of P by Spec(P).

2.2.2. For a monoid P and for a submonoid S of P, we have the monoid S™'P =
{s7'a | a € P,s € S} obtained from P by inverting elements of S. Here s;'a; = s, ay if
and only if there is an s3 € S such that s3sea; = s3sqas.

In the case where S = {f™ | n > 0} for f € P, S™'P is denoted also by P;.

2.2.3. By a monoidal space, we mean a topological space T endowed with a sheaf of
monoids P such that (P;)* = {1} for any ¢t € T'. Here P; denotes the stalk of P at ¢ and
(—)* means the subgroup consisting of all invertible elements.

2.2.4. For a monoid P, Spec(P) is regarded as a monoidal space in the following way.

We endow Spec(P) with the topology for which the sets D(f) = {p € Spec(P) | f ¢ p}
with f € P form a basis of open sets.

The sheaf P of monoids on Spec(P) is characterized by the property that for f € P,
P(D(f)) = Py/ P

The stalk of P at p € Spec(P) is identified with B,/(B,)*, where B, = (P~ p)~'P.

2.2.5. For a monoidal space ¥ with the structure sheaf P of monoids and for a monoid
P, the natural map Mor(3, Spec(P)) — Hom (P, P(X)) is bijective.

2.2.6. A monoidal space is called a fan if it has an open covering (U, ), such that each
U, is isomorphic, as a monoidal space, to Spec(Py) for some monoid Pj.

A fan which is isomorphic to Spec(P) for some monoid P is called an affine fan. The
functor P +— Spec(P) is an anti-equivalence from the category of monoids P such that
P* = {1} to the category of affine fans. The converse functor is given by ¥ — P (%),
where P is the structure sheaf of .

2.2.7. For a fan X, let
[X] : (fs) — (Sets)

be the contravariant functor which sends X € (fs) to the set of all morphisms (X, Mx/O%) —
> of monoidal spaces.

If ¥ = Spec(P), we have [X](X) = Hom (P, I'(X, Mx/O%)).

Lemma 2.2.8. The functor ¥ — [X] from the category of fans to the category of con-
travariant functors (fs) — (Sets) is fully faithful.
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Proof. Let 3,3 be fans. We have to prove that
(%) Mor (%, ¥') — Mor([X], [X'])
is bijective.

First, we prove the case where both ¥ and Y’ are affine, that is, we prove that
the contravariant functor P — [Spec(P)] from the category of monoids P such that
P* = {1} to the category of contravariant functors (fs) — (Sets) is fully faithful. For
monoids P and @) such that P* = {1} and Q> = {1} and for X = Spec(Z[Q)]), we have
[Spec(P)](X) = Hom (P, I'(X, Mx/O%)) = Hom (P, Q). From this, we obtain easily that
the map Hom (P, Q) — Mor([Spec(Q)], [Spec(P)]) is bijective.

Next, we prove the case where ¥ = Spec(Q) (Q* = {1}) is affine and ¥’ is any.
We prove that (x) is surjective. Let f: [X] — [¥] be a morphism. Let x be an fs log
point lying over X = Spec(Z[Q]) such that the homomorphism @ — (Mx/O%)xz is
bijective. Let ((x,M,/O)) — ¥') € [¥'](x) be the image by f(z) of ((x,M,/O)) —
(X, Mx/O%) — Spec(Q)) € [E](z). Let U be the smallest neighborhood in ¥’ of the
image s’ of this morphism (x, M,/O)) — ¥’. Then f factors through [U’], which is by
the fact that any morphism (X, Mx/O%) — ¥’ sending z to s’ factors through U’. Since
U’ is affine, the surjectivity of (%) is reduced to the previous case.

The injectivity of (x) is also reduced to the previous case as follows. Let a,b be two
morphisms from ¥ to ¥/ and assume that the induced morphisms from [¥] to [¥'] coincide.
Considering an fs log point lying over each point of X, we see that the underlying maps
of sets of a and b coincide. Then both a and b factor through the smallest neighborhood
U’ in ¥ of the image of the closed point. Since [U'] — [¥'] is injective, we reduce
to the previous case. Alternatively, we use, instead of the previous case, the fact that
(X, Mx/O%) — Spec(Q) is an epimorphism in the category of monoidal spaces.

Finally, the bijectivity of () for any > and any ¥’ is reduced to the case where ¥ is
affine because ¥ is the limit of an inductive system of affine fans and open immersions. [

2.2.9. According to Lemma 2.2.8, we will often identify a fan ¥ with the functor [X].
For an fs log scheme X and for a fan ¥, we will regard a morphism (X, Mx/O%) — X

of monoidal spaces as a morphism X — [¥] from the functor X on (fs) represented by X

to the functor [¥X]. We sometimes also denote a morphism X — [¥] simply by X — .

Lemma 2.2.10. For an fs log scheme X, a fan X2, and a morphism X — 3, the following
conditions (i) and (ii) are equivalent.

(i) The corresponding morphism (X, Mx/O%) — X of monoidal spaces is strict. Here
we say that a morphism f : (T,P) — (T",P") of monoidal spaces is strict if f~(P') — P
18 an isomorphism.

(ii) Locally on X, there is an open set Spec(P) of ¥ with P a monoid such that
X — X factors as X — Spec(Z[P]) — Spec(P) C X, where Spec(Z[P)) is endowed with
the standard log structure and the homomorphism P — My corresponding to the first
arrow is a chart of X (that is, the first morphism is strict, where we say a morphism of
log schemes X — 'Y s strict if the log structure of X coincides with the inverse image of
the log structure of ).

Proof. (ii) = (i). Since the projection Spec(Z[P]) — Spec(P) satisfies the condition (i),
(ii) implies (i).
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(i) = (ii). Let z € X and we work around z. First, localizing X, we may assume
that X has a chart P such that P — (Mx/O%)z is bijective. Next, localizing ¥, we may
assume > = Spec(Q) with @ — (Mx/O% )z being bijective. Then P is isomorphic to @
and, after further localizing X, we may replace ) with P. O]

2.2.11. We will say X — X is strict if the equivalent conditions in Lemma 2.2.10 are
satisfied.

2.2.12. Polyhedral cone decompositions which appear in toric geometry ([33], [40]) are
related to the above notion of fan (2.2.6) as follows.

Let N be a free Z-module of finite rank, and let Ng := R ®z N. A rational polyhedral
cone in Np is a subset of the form

g = {ZZEZNZ } €T; GRZO}
i=1

for some Ny,..., N, € N. A rational polyhedral cone o is called strongly convex if it
does not contain a line, i.e. 0 N (—o) = {0}. A subset 7 C o is called a face of o if
there exists an element h € Homg(Ng,R) such that ¢ C {x € Ng | h(z) > 0} and
T=0N{x € Ng | h(xz) = 0}. A face of o is also a rational polyhedral cone.

A rational polyhedral cone decomposition in Ng (or a rational fan in Ng) is a non-
empty set X of strongly convex rational polyhedral cones in Ny satisfying the following
two conditions: (i) If 0 € ¥ and 7 is a face of o, then 7 € ¥; (ii) If 0,7 € X, the
intersection o N 7 is a face of .

We regard a rational fan ¥ in Ny as a fan in the sense of 2.2.6 as follows.
We endow 3 with the topology for which the sets face(o) of all faces of o for o € X
form a basis of open sets.
We endow ¥ with the sheaf P of monoids characterized by P(face(o)) = P,/(P,)*,
where
P, ={h € Hom (N,Z) | h(x) > 0 for all z € o}.

The open set face(o) of ¥ is identified with Spec(P,).

2.2.13. For a rational fan ¥ in Ng, we have the toric variety Torics = |J, .y, Spec(Z[F;])
over Z corresponding to X with the standard log structure, on which the torus N ® Gy,
acts naturally. We have

[X] = Torics /(N ® G,)

as a sheaf on (fs), where Toricy, is identified with the sheaf on (fs) that it represents.

2.2.14. For an fs log scheme X, in the following cases (i) and (ii), we can define a fan
Yx associated to X and a strict morphism X — Xy in a canonical way.

Case (i). X is log regular ([28]).
Case (ii). X is vertical and log smooth over a standard log point.

The case (i) was considered in [28]. The case (ii) is explained below.
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2.2.15. We review first the case (i). See [28] for the definition of log regularity. As a set,
Y x is the set of all points z of X such that the maximal ideal m, of Ox , is generated by
the image of Mx , (’))Xm, where M , is the stalk at x of the direct image of M to the
Zariski site. The topology of X x is the restriction of the topology of X. The structural
sheaf P of ¥y is defined as the inverse image of the sheaf Mx/O% on X. The morphism
(X, Mx/O%) — Xx is defined as follows. As a map, it sends z € X to the point of
X corresponding to the prime ideal of Ox, generated by the image of My, \ Ox . If
x € X and if y € X is the image of x in X, there is a chart P — My for some open
neighborhood U of z in X such that P — (Mx/O%), is an isomorphism, and via the
composite homomorphism P — (Mx/0%). — (Mx/O%),, Spec(P) is identified with an
open neighborhood of y in ¥x. The chart defines a morphism (U, My /O};) — Spec(P)
and hence a morphism (U, My /O};) — Xx and these local definitions are glued to a global
definition of (X, Mx/O0%) — Xx.

2.2.16. We consider the case (ii). As a set, ¥x is the disjoint union ¥ [[{n} of the set
¥’y of all points x of X such that the maximal ideal m, of Ox , is generated by the image
of My .\ O, and the one-point-set {n}. The topology on Xy is as follows. First define
the topology of ¥’y to be the restriction of the topology of X. A closed subset of ¥y is
either a closed subset of ¥’y or X x. The structure sheaf P of monoids on Xx is defined
as follows. First let the sheaf P’ on ¥y be the inverse image of Mx/O%. Let P = i,P’,
where i : ¥y — X is the inclusion map.

Then Y x is a fan. This is reduced to the log regular case as follows. Let x € X and
let P = Mx,/Ox, = Mxz/Ox. Since the problem is local on X, we can work around
x. Since X is strict étale over some Spec k[Q]/(q), where @ is an fs monoid and ¢ is an
interior of ), Spec(Ox z) is locally isomorphic to the part ¢t = 0 of a log regular scheme Y,
where t is a section of log structure My of Y such that the part of Y where ¢ is invertible
coincides with the part where My is trivial. By the case (i), we have a fan Yy, which is
affine and naturally isomorphic to Spec(Q). Let Z/Spec((’)xj) be the set of all points y of

Spec(Oxz) such that the maximal ideal at y is generated by the image of My 7 ~\ O)X@.
We define a monoidal space Xgpec(0y ) = Z/SpeC(OXJ) [1{n} similarly to 3Xx. Then this is
isomorphic to Xy.

On the other hand, since X has a chart Zariski locally, we may assume that X has a
chart by P such that P — My — Mx,/O%, is the identity. Then, for any nonempty
prime ideal p of P, the ideal generated by the image of p in Ox, is a prime ideal because
its image generates a prime ideal in the strict localization. Thus we have a map f from
Spec(P) ~ {@} to the set Ypec(0y.,) Of all points y of Spec(Ox ) such that the maximal
ideal at y is generated by the image of Mx, \ (’))ng, and we also have a factorization of
the above isomorphism Spec(P) = Xy = Ygpec(0y 5) 88

Sp@C(P) — Z/Spec((QXw) H{n} - ZSPQC(OX,E)7

where the first morphism is induced from f, and the second is by the projection Spec(Oxz) —
Spec(Ox ). We see that the second morphism is an isomorphism so that the first is also
an isomorphism. Shrinking X if necessary, we may assume that E,Spec((’)x o= ¥’y so that

Spec(P) = Xx.
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We define a map X — X x in the similar way to the case (i) described above. The
proof for the gluing also reduces to the case (i). The resulting map in fact factors through
X — Y.

2.2.17. Outside the cases (i) and (ii) in 2.2.14, it seems difficult to develop a general
theory of fans canonically associated to fs log schemes (cf. [1]). We give an example of an
fs log scheme X having the following nice property (1) but such that for any fan 3, there
is no strict morphism (X, Mx/0%) — X.

(1) X is locally isomorphic to a closed subscheme of a log regular scheme Y defined
by an ideal of Oy generated by the images of sections of the log structure My of Y under
My — Oy endowed with the log structure induced by the log structure of Y. As a scheme,
X is a union of two P} obtained by identifying 0 of each P! with oo of the other P!.

Let k be a field. Endow Spec(k[xy,xq,x3,x4]) with the log structure associated to
N* = klzy, 2o, 23, 24] 5 1 = [[oy x?(i). Let Z = Spec(k[x1, x2, 3, x4]/(T122, T3, 24)) With
the induced log structure, and let Z’ be a copy of Z. (Hence as schemes, Z and Z’ are
isomorphic to Spec(k|x,y]/(zy)).) Denote the copy of z; on Z' by x}. Let U be the part
of Z on which z; is invertible and let V' be the part of Z on which x5 is invertible. Let
U’ and V' be the copies of U and V in Z’, respectively. Let X be the union of Z and Z’
which we glue by identifying the open set U [[V of Z and the open set U'[[ V' of Z’; as
follows. We identify U and U’ by identifying x} with 1/xy, ), with z3z,, 25 with x3, and
x, with x, in the log structure. (Hence x is identified with (z})?z} in the log structure.)
We identify V' and V' by identifying , with 1/, 2} with 122, 25 with x4, and 2/, with
73 in the log structure. (Hence z; is identified with 2 (z5)? in the log structure.)

We show that there is no strict morphism f : X — ¥ to any fan X.

Assume f exists. Let p be the point of Z at which all z; have value 0, let p’ € Z’ be
the copy of p, let u be the generic point of U, and let v be the generic point of V. Let
P be the structure sheaf of monoids of . Then Py, is identified with (Mx/0%), = N*
which is generated by x1, zo, x3, 4. ¥ has an open neighborhood which is identified with
Spec(Py(py). Since p belongs to the closure of u in X, f(u) belongs to Spec(Py(). We
have a commutative diagram

Prip) - Pru)

XS !
(Mx/Ox)p — (Mx/Ox)u

in which vertical homomorphisms are isomorphisms, and hence f(u) is the prime ideal of
Py(p) generated by xo, 3, z4. The open neighborhood of w in ¥ which is identified with
Spec(Py)) is regarded as an open set of Spec(Py()). In this identification, the prime
ideal of Py, generated by z3 is identified with the prime ideal of Py, generated by xs.
Similarly, Spec(Py () is identified with an open set of Spec(Py(,) and the prime ideal of
Pyuy generated by x3 is identified with the prime ideal of Py () generated by 7.

Similarly Spec(Py(y) is identified with an open set of Spec(Py(,)) and also with an
open set of Spec(Py(y)). The prime ideal of Py, generated by x4 is identified with the
prime ideal of Py, generated by x4 and it is also identified with the prime ideal of Py,
generated by «5. This shows that the prime ideal of Py(,) generated by w3 is equal to the
prime ideal generated by x,. Contradiction.
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2.3 Subdivisions of fans and log modifications

2.3.1. We shall mainly consider fans ¥ (2.2.6) satisfying the following condition (St )
(like in [28]).

(Stan) There exists an open covering (U, ), such that for each A, Uy = Spec(P,) as a
fan for some fs monoid Py.

2.3.2. Let N be as in 2.2.12, let o be a strictly convex rational polyhedral cone in Ng,
and let ¥ be the rational fan face(o) in Ny consisting of all faces of 0. Then a finite
subdivision of ¥ means a finite rational fan ¥’ in Ng such that o =, oy, 7.

Lemma 2.3.3. Let ¥ = (X,P) and X' = (X, P’) be fans satisfying the condition (St.n)
and let f: ¥ — % be a morphism of fans. Then the following conditions (i) and (ii) are
equivalent.

(i) f satisfies the following (i-1)—(i-3).

(i-1) For any t € X, the inverse image f~'(t) is finite.

(i-2) For any t € X', P3y — (P')i" is surjective.

(i-3) The map Mor(Spec(N), 3') — Mor(Spec(N), ) is bijective.

(ii) There exists an open covering (Ux)x of X such that for each A, there are a finitely
generated free Z-module Ny, a strongly convex rational polyhedral cone oy in Nyr, a finite
subdivision V) of face(oy), and a commutative diagram of fans

UL~ W,
\J )

Uy, = face(oy),
where U3 denotes the inverse image of Uy in X'.

Proof. This is essentially proved in [28] Section 9. In fact, in (ii), each V) — face(oy)
satisfies the condition (i) by [28] (9.5). Hence (ii) implies (i). Conversely, if f satisfies (i),
then any base change of f by an open immersion from an affine fan U, to X also satisfies
(i). Again by [28] (9.5), we can find Ny, o, and so on. O

2.3.4. Let X be a fan satisfying (Spn). A finite subdivision of 3 (called a proper subdivi-
sion of ¥ in [28]) is a fan ¥’ satisfying (St.,) endowed with a morphism ' — ¥ satisfying
the equivalent conditions (i) and (ii) in Lemma 2.3.3.

Lemma 2.3.5. Let ¥ be a fan satisfying the condition (St ), let X be an fs log scheme,
let X — X be a morphism (2.2.9), and let 3 be a finite subdivision of 3. Then the functor
X x5 X' ¢ (fs) — (Sets) is represented by an fs log scheme X' which is proper and log
¢tale over X. Here X xx X/ denotes the fiber product of the functors X = Mor( ,X)
and X' = [¥'] (2.2.7) on (fs) over the functor ¥ = [¥] on (fs) (it does not mean the set
theoretic fiber product of X and ¥ over X).

Proof. We are reduced to the case ¥ = face(o) for a strongly convex rational polyhedral
cone o and Y is a finite subdivision of ¥. Locally on X, X — Y is the composition
X — Spec(Z[P,]) — ¥. Hence we are reduced to the case X = Spec(Z[F,]). Then
X x5 ¥ is represented by the toric variety J, .y, Spec(Z[P;]) over Z associated to X,
which is proper and log étale over X. Il
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2.3.6. We call a morphism X — Y of fs log schemes a log modification if locally on Y,
there exist a fan X satisfying (S, ), @ morphism Y — 3, and a finite subdivision ¥’ of ¥
such that X represents Y xx Y.

Log modifications were studied in [32] for fs log analytic spaces over C.
The following lemma is easy to prove.

Lemma 2.3.7. (1) A log modification is proper and log étale.

(2) If X = Y is a log modification, the induced morphism of functors Mor( , X) —
Mor(,Y) on (fs) is injective.

(3) If X; = Y (i = 1,2) are log modifications, X1 Xy Xo — Y is a log modification.
Here X, xy Xy denotes the fiber product in the category of fs log schemes.

(4) If X =Y and Y — Z are log modifications, the composition X — Z is a log
modification.

Proposition 2.3.8. Let f: X — Y be a log modification of fs log schemes.

(1) Let F be a torsion sheaf of abelian groups on Yie. Then the natural homomorphism
F — Rfise ie F is an isomorphism.

(2) Let € be a prime number which is invertible on'Y . Then the natural homomorphism
Qv — RfieexQy is an isomorphism.

Proof. (2) is reduced to (1). (1) is a slight generalization of Theorem 5.5 (2) of [37], and
the proof is similar, which is reduced easily to Lemma 2.3.7 (2). O]

2.3.9. (1) Let X be a fan with the structure sheaf P of monoids. We say X is free if for
any t € 3, the stalk P; is isomorphic to N"®) for some r(t) > 0.

(2) Let X be an fs log scheme. We say Mx/O% is free if for any = € X, (M/O% ), =
N'@ for some 7(z) > 0.

Proposition 2.3.10. Let X be a finite fan satisfying the condition (Sg.n). Then there is
a finite subdivision ¥' — ¥ which is free (2.3.9 (1)).

This is already explained in [28].

Lemma 2.3.11. Let ¥ be a finite fan satisfying the condition (Sgn) with the structural
sheaf P, let t € X, and let P be an fs submonoid of P’ containing P;. Then there is a
finite subdivision ¥’ of ¥ such that there is an open immersion Spec(P) — ¥ over X.

Proof. Regard ¥ as a conical polyhedral complex with an integral structure ([33] Chapter
I1, §1, Definitions 5 and 6, pp.69-70). Let o be its cell corresponding to P, and 7 C o
be the subcone corresponding to P. Take a rational homomorphism f: ¢ — R>( such
that f~1({0}) is trivial, where R>q is the monoid of the nonnegative real numbers with
addition. Let fo: S := |J Sk'(¢’) USk'(7) — R be the zero extension of the restriction
o'ex
of f to Sk'(7), that is, for any s € S, fo(s) = f(s) if s € Sk'(7) and fo(s) = 0 otherwise.
Here Sk' means the 1-skeleton ([33] Chapter I, §2, p.29). Let fi: |%] — Rsg be the
convex interpolation of fy ([33], Chapter I, §2, p.29 and Chapter II, §2, p.92), where |X|
is the support of X. Then, f; coincides with f on 7, and the coarsest subdivision of the
conical polyhedral complex ¥ on any cell of which f; is linear owes 7 as a cell. Hence the
corresponding finite subdivision ¥’ of the fan ¥ satisfies the desired property. n
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Proposition 2.3.12. Let X be a quasi-compact fs log scheme, let 32 be a finite fan satis-
fying the condition (Sgn) with the structure sheaf P, and let f: X — ¥ be a morphism
(2.2.9) such that for any x € X, the map Py = (Mx/Ox), is surjective. Then for a
sufficiently fine finite subdivision X' of ¥, X xx X/ — X' is strict.

Proof. First notice that the problem is local on X as the category of finite subdivisions
of ¥ is directed. Let x € X, and let P be the fs submonoid of (Py(,))®" consisting of
all elements whose images in (M8 /0%), are contained in (Mx/O%),. Then P/P* —
(Mx/O%), is an isomorphism. Since X is quasi-compact and the problem is local on
X, replacing X by an open neighborhood of x, we may assume that X — ¥ factors
as X — Spec(P) — Spec(Py()) — X and the first arrow is strict. Let X' be a finite
subdivision of ¥ such that there is an open immersion Spec(P) — ¥’ over ¥ (Lemma
2.3.11). Then the morphism X = X xy 3’ — ¥/ is strict because it is the composition of
strict morphisms X — Spec(P) — . O

Remark 2.3.13. This Proposition 2.3.12 will be used later in Proposition 3.1.4 to make
the diagonal of a vertical log smooth fs log scheme over a standard log point a regular
immersion, by log modification.

2.3.14. In the next section, we will use the following corollary of Proposition 2.1.13.

Let X be a projective vertical log smooth fs log scheme over a standard log point s.
Then, for some morphism of standard log points s’ — s whose underlying extension of
the fields is an isomorphism, we have a projective strict semistable fs log scheme X’ over
s’ which is a log blow-up of X x .

2.4 Grothendieck groups of vector bundles and log geometry

2.4.1. Recall the following theory in [12] till 2.4.2.

For a scheme X, let K(X) be the Grothendieck group of the category of locally free
Ox-modules on X of finite rank. It is a commutative ring in which the multiplication
corresponds to tensor products.

The K-group K(X) has a decreasing filtration (F"K(X)),cz called the ~-filtration
(for details, see [12], [11], Chapter III, V). Tt satisfies FOK(X) = K(X) and F"K(X) -
FK(X) C Fr*K(X). We define

e K(X) = F K (X)/Fr K (X).

2.4.2. For a morphism X — Y of schemes, the pullback homomorphism K(Y) — K(X)
is defined and it respects the ~-filtration.

On the other hand, for a morphism f : X — Y of schemes which is projective and
locally of complete intersection (cf. [12], Exposé VIII, Définition 1.1), the pushforward
homomorphism K(X) — K(Y) is defined (cf. [12] Exposé IV, 2.12). Tt sends F'K(X)g
to F'""K(Y)q. Here d is the relative dimension of f which is a locally constant function

on X characterized as follows. Locally on X, f is a composition X ENAEN Y. where i is
a regular immersion and g is smooth. The relative dimension of f is d; — do, where d; is
the relative dimension of g and ds is the codimension of i.
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2.4.3. If X and Y are projective smooth schemes over a field k, any morphism X —
Y over k is projective and locally of complete intersection and hence the pushforward
homomorphism K(X) — K(Y) is defined. However, in log geometry, we have no such a
nice property if we replace the smoothness by log smoothness.

We give some preliminaries to treat log smooth situations which we encounter in later
sections.

Proposition 2.4.4. Let S be an fs log scheme of log rank < 1 (this means that for any
s €8, (Mg/OF)s is isomorphic to either N or {1}). Let f : X — S be a log smooth
morphism. Then the underlying morphism of schemes of f is flat.

Proof. [27], Corollary (4.4), Corollary (4.5). O

Proposition 2.4.5. Let S be an fs log scheme of log rank < 1, and let f: X — Y be a
morphism of fs log schemes over S. Assume that X,Y are log smooth over S, and assume
that Mx /O% and My /Oy are free (2.3.9). Then the underlying morphism of schemes of
f is locally of complete intersection.

Proof. Working étale locally on X and on Y, we may assume that f is the base change
of f': X" = Y’ over S" = Spec(Z|N]) by a strict morphism S — S’, where S’ is endowed
with log by N and X’ and Y’ are log smooth over S’. By the assumption on the log of X
and Y, we may assume that M/O* of X’ and that of Y’ are also free (2.3.9) and hence
X’ and Y’ are smooth over Z as schemes. Hence [’ is locally of complete intersection.
Since X’ and Y’ are flat over S’, f is also locally of complete intersection. Here we used
the fact that any base change of a morphism f’: X’ — Y of locally complete intersection
of schemes which are flat over a scheme is locally of complete intersection. A proof of
this fact is as follows. Locally, f’ is the composition of a regular immersion followed by
a smooth morphism, and hence we may assume that f’ is a regular immersion. But for
a closed immersion defined by an ideal I being a regular immersion is equivalent to the
condition that /17 is locally free and I™/I"*' = Sym™(I/I?) for any n. The last property
is stable under any base change. O

2.4.6. For an fs log scheme X, we define

Ko (X) 1= lim K (X),

X/
where X’ ranges over all log modifications (2.3.6) of X.

Lemma 2.4.7. Let X be a quasi-compact fs log scheme, let ¥ be a finite fan satisfying
the condition (St.n) with the structure sheaf P, and let f: X — X be a morphism (2.2.9)
such that for any v € X, the map Py — (Mx/Ox). is surjective. Then we have an
1somorphism

lim K (X x5 %) = Kym(X),

El

where X' ranges over all finite subdivisions of 3.
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Proof. Let X’ — X be a log modification. Then the composition ' : X' — X — X
satisfies the condition that P,y — (Mx//O%/), is surjective for any z € X'. Hence
by Proposition 2.3.12, there is a finite subdivision ¥’ of ¥ such that the morphisms
X x5 ¥ — ¥ and X' x5 ¥/ — Y/ are strict. This shows that the log modification

X' x5 ¥ — X x5 Y is strict and hence X’ xx ' 5 X X5 2. O

2.4.8. Let s be a geometric standard log point (2.1.11), and let X be an fs log scheme
over s. Let ¢ be a prime number which is different from the characteristic of s and let
H™(X), := R™f.Qq, where f is the morphism X — s and R™ f, is the m-th higher direct
image for the log étale topology (2.1.2). We will identify H™(X), with its stalk.

We have a Chern class map gr' K (X))o — HZ/(X, Q) (i) to the classical étale cohomol-
ogy, which coincides with the Chern character map. By composing this with the canonical
map HZ (X, Qy)(i) — H*(X),(:) and by going to the inductive limit for log modifications
using the invariance Proposition 2.3.8 for the log étale cohomology, we obtain the Chern

class map ' '
ot Ky (X))o — H*(X),(3).

Proposition 2.4.9. Let X (resp. Y') be projective and vertical log smooth fs log scheme
over a geometric standard log point s such that (2.1.11) M/O* of X and that of Y are
free (2.3.9). Let f: X — Y be a morphism over s of relative dimension d. (d can be < 0.
Cf. 2.4.2.) Let € be a prime number which is different from the characteristic of s. Then
for any i € Z, the following diagram is commutative.

gr'K(X)g — H (X)) (i + d)
+ +
g'K(Y)g —  H¥(Y)0).

Here the left vertical arrow is defined by Proposition 2.4.5 and 2.4.2 and the right vertical
arrow is the pushforward map (the dual of H* (Y ),(j) — H*(X)(j) for Poincaré duality
(Corollary 2.1.4), where j = dim(Y) — ).

Remark. In the above, d (resp. dim(Y")) is considered as a locally constant function on X
(resp. Y) (cf. 2.4.2). In general, if m is a locally constant function on X, H™(X) means
@, H™D(X;), where X; are connected components of X and m(i) is the value of m on
X;. The meaning of gr" K (X)q is similar.

Proof. Let X° (resp. Y°) be the underlying scheme of X (resp. V). The morphism f is
the composition of two morphisms X — P" x Y — Y in which the underlying morphism
of schemes of the first arrow is a closed regular immersion and the second arrow is the
projection. It is sufficient to prove Proposition 2.4.9 for each of these two morphisms.
The proof for the latter morphism is standard. We consider the first morphism. It is
sufficient to prove the commutativity of the two squares in the diagram

eK(X)e —  HEXQ)0) = HEOO0)
+ \ +
BK(Y)g — HEH(YY,Q)li+e) — HY(Y)ii+o)

assuming that the morphism X° — Y° is a closed regular immersion of codimension
c. Here the central vertical arrow is the Gysin map which is defined as follows. Let
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¢ € H2(Y°,Qy)(c) be the localized Chern class of the Oy-module Ox ([18]). By using
the cup product ' ‘ o
Hi (X°, Q) X Hia (Y2, Q) — HYZ (Y, Qu),

let the Gysin map be the product with £. (Cf. [2] Section 5.4.)

The left square is commutative by Riemann—Roch theorem in Corollary 1 in Section
5.3 of [2] (see also [10]). We prove that the right square is commutative. By 2.3.14, we
may assume that X and Y are strict semistable. Let X’ be X° with the inverse image of
the log structure of Y. Hence X — Y factors as X — X’ — Y. Consider the diagram

Hi(X°,Q) —  H{(X), — HY(X),
1 1 1
HEZY°, Qo)) — HYEF(Y)le) = H™P2(Y)i(o).

The left square is evidently commutative. The composition HE (X°, Q) — H*(Y°,Qu)(c) —
H™*2(Y),(c) coincides with the composition HE (X°, Q) — HE2(Y°, Qo) (c) — HYE(Y)e(c) —
H™2¢(Y),(c). Hence it is sufficient to prove the commutativity of the right square. Let

p = dim(X), so dim(Y) = p+c. Let 7 = 2p —i. It is sufficient to prove that for

a € H(X'), and b € H/(Y),(p), we have (a UE Ub)y = (aUb|x)x in Q. Using
z=aUb|x € H®(X"),(p), we see that it is sufficient to prove that for z € H?*(X"),(p),

the image of z under H?(X"),(p) — H3 (Y )e(ptc) — H*2(Y)y(p+c) — Qq (the first
arrow is the product with ¢) and the image of z under H?*(X"),(p) — H*(X),(p) — Q,
coincide. H*(X'),(p) is generated by the Chern classes of the O x-modules [r(u)], where

u ranges over all non-singular closed points of X and x(u) is the residue field at u. For

z = [k(u)], the image of z in H**2(Y'),(p+ c) is the Chern class of the Oy-module x(u).
Hence the image of this z in Q, via H*™2(Y),(p + ¢) is 1. On the other hand, the image

of this z in Q; via H?(X),(p) is 1. Thus both images coincide. O

Corollary 2.4.10. Let X be a projective vertical log smooth fs log scheme over a geometric
standard log point s. Let X' be a log blow-up of X such that Mx//O%., is free (2.3.9). Then
the image of the Chern class map gr' Ky (X) — H*(X),(i) coincides with the image of
the Chern class map gr' K (X') — H*(X),(7).

Proof. Let Y be any log blow-up of X and let a € gr'K(Y)g. Take a log blow-up Y’
of Y such that My//Oy, is free and such that Y is also a log blow-up of X’. Let a’ be
the image of a in gr' K(Y’) by pullback, and let b be the image of @’ in gr' K(X')g by
pushforward. Then by Proposition 2.4.9, the image of a in H?(X),(i) coincides with the
image of b. O

2.4.11. The above Proposition 2.4.9 contains the following trace formula in [31]. Let X
be a projective vertical log smooth fs log scheme over a geometric standard log point s.
Assume that X is purely of dimension d. Let (X x X) be a log blow-up of X x X, let
a € grlK((X x X)), and let f, be the image of o under the composition gré Ky, (X x
X)o = H*(X x X)¢(d) = @, Hom (H(X),, H(X),), where the last isomorphism is by
Poincaré duality (Corollary 2.1.4) and Kiinneth formula (Corollary 2.1.6). We consider
the trace Tr(f,). Let X’ be the log blow-up X X xyx (X x X)’ of the diagonal, and let the
intersection of o with the diagonal o - Ax € Q be the image of a under the composition
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griK((X x X))o — gr’K(X")g — K(s)g = Q, where the first arrow is the pullback by
X" — (X x X)" and the second arrow is the pushforward. Then we have the trace formula

Tr(f,) =a-Ax € Q.
This follows from Proposition 2.4.9 as follows. Consider the diagram

gl Kim(X X X)g — gr'Kim(X)o — gi'K(s)g=Q

} } 3
@, Hom (H'(X), H'(X)e) = H*(X x X)o(d) — H*(X)(d) — H%s)e=Q,

where the first arrow in the lower row is the pullback by the diagonal. The left square
is clearly commutative and the right square is commutative by Proposition 2.4.9. The
image of f, € @, Hom (H'(X),, H(X),) in Q, under the composition of the lower row is
Tr(f,). This gives a proof of the trace formula.

3 Log motives

In this Section 3, let S be an fs log scheme and let £ be a prime number which is invertible
on S. We define and study the category of log (pure) motives.

3.1 The category of log motives

We define the category of log motives over S.

3.1.1. For a projective vertical log smooth fs log scheme X over S and for r € Z, consider
the symbol h(X)(r).
Let

h(X)(r)e =@ H™X)y(r), where H™(X),=R"f.Qy (cf. 2.4.8)

with f: X — S and with R™ f, for the log étale topology. This is a smooth Q-sheaf on
the log étale site of S (see 2.1.2).

3.1.2. Let X and Y be projective vertical log smooth fs log schemes over a geometric
standard log point (2.1.11). Let r, s € Z.

An element a of gr'Kj, (X X Y)g with ¢ = d + s — r, where d = dim(X) induces a
homomorphism h(X)(r), — h(Y)(s), as follows.

Let 8 be the image of o under the Chern class map

gt K (X X Y)g — H*(X x Y),(4).
Then for m,n € Z such that m — 2r = n — 2s, we have the composition
H™(X)o(r) = H™(X x Y)g(r) — H™ (X x Y)y(r +1)
— H™P72UY )y (r+ i —d) = H*(Y)(s).

Here the first arrow is the pullback, the second arrow is the cup product with 3, the third
arrow is the pushforward by the projection X x Y — Y. This gives a map h(X)(r), —

h(Y)(S)g
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3.1.3. Let X and Y be projective vertical log smooth fs log schemes over S and let
r,s € Z.

By definition, a morphism f : h(X)(r) = h(Y)(s) is a homomorphism f : h(X)(r), —
h(Y)(s), of Qg-sheaves such that for any geometric standard log point p over S, the
pullback h(X,)(r)e — h(Y,)(s)¢ of f is induced by an element of gré™~" Ky, (X, X, ¥;,)o
with d = dim(X,) in the above way.

Proposition 3.1.4. (1) The identity morphism h(X)(r); — h(X)(r)e is a morphism
h(X)(r) = h(X)(r).

(2) More generally, for a morphism Y — X over S, the induced map h(X)(r), —
h(Y)(r)e is a morphism h(X)(r) — h(Y)(r).

Proof. We may and do assume that S is a geometric standard log point s. Let d be the
dimension of X.

We prove (1). Let Z = X x X (the fiber product over S = s) and consider the fan
Y := ¥ associated to Z (2.2.16). By Proposition 2.3.12, there is a finite subdivision
Y — ¥ such that X/ == X Xy ¥/ — ¥ and 7' = Z xyx ¥/ — Y/ are strict. Hence
the morphism X' — Z’ is a strict closed immersion. Since a strict closed immersion
between log smooth schemes is a regular immersion as is seen as in the classical case (cf.
[27] Proposition (3.10)), this morphism X’ — Z’ is a regular immersion. Consider the
Oz-module Ox: and its class [Ox] € gr'K(Z')q with d = dim(X). By Poincaré duality
(Corollary 2.1.4) and by Kiinneth formula (Corollary 2.1.6), this class induces the identity
map h(X)e(r) = h(X)(r).

(2) follows from (1). The homomorphism A(X),(r) — h(Y).(r) associated to f is
induced by an element of grfKj,(X x Y)g with d = dim(X) which is obtained from
the above element of gr?Kj;, (X x X)g giving the identity morphism, by pulling back by
1x f. O

3.1.5. The above Proposition 3.1.4 explains the reason why we must use Kj,, (not just K)
in the definition of morphism of the category of log motives. For a projective vertical log
smooth fs log scheme X over a geometric standard log point s, the diagonal X — X x X
is usually not a regular immersion and cannot define an element of K(X x X). We need a
log modification Z — X x X to have an element of K (Z) corresponding to the diagonal,
which gives the identity morphism h(X) — h(X).

Proposition 3.1.6. For morphisms f : h(X3)(r1) = h(X2)(re) and g : h(X3)(rs) —
h(X3)(r3), the composition go f : h(X1)(r1) = h(X3)(r3) is a morphism.

Proof. We may assume that S is a geometric standard log point. If f is induced by
a € grKum (X1 X Xa)g and ¢ is induced by o € grKyn(Xse X X3)g, g o f is induced by
the following element o of grKjm(X; x X3)p. Let u € grKn (X, x Xo x X3)g be the
product of the pullbacks of @ and o’. Let (X; x X3)" be a log blow-up of X; x X3 having
free M/O* (2.3.9), and let (X; x X5 X X3)' be a log blow-up of X; x X3 x X3 having
free M/O* such that u comes from an element v of grK ((X; x Xy x X3)')o and such
that we have a morphism (X; x X5 X X3)" — (X7 X X3)" which is compatible with the
projection X; x Xy x X3 — X; x X3. Let o’ be the pushforward of v by the morphism
(X1 x Xo x X3) — (Xy x X3)'. Then go f is induced by o” by Proposition 2.4.9. O
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3.1.7. Imitating the definition of motives by Grothendieck, we define the category LM(S)
of log motives over S as the category of the symbols (h(X)(r), e), where e is an idempotent
in the endomorphism ring of h(X)(r). The set of morphisms is defined as

Hom ((h(X1)(r1), e1), (h(X2)(r2),e2)) := eaoHom (h(X;), h(X2))oe; C Hom (h(X1), h(X32)).

The identity morphism of (h(X),e) is e.
The (-adic realization M, of the log motive M = (h(X), e) is defined to be eh(X),.

3.1.8. In the case where the underlying scheme of S is Spec(k) for a field k, there is
a natural functor from the category of motives over k£ modulo homological equivalence
defined by Grothendieck to our category LM(.S) sending the motive defined by a projective
smooth scheme X over k to the log motive defined by X endowed with the pullback log
structure from S. This is because CH"(X X Y)g = gr" K(X X Y)g.

Further, when the log structure of .S is trivial, this functor is an equivalence. This is
because, in this case, we have gr" K(X X Y)g = gr" Kiim(X X Y)g.

3.1.9. For a morphism S — S of fs log schemes, we have the evident pullback functor
LM(S) — LM(S").

3.1.10. For a két morphism p’ — p of standard log points whose underlying extension of
fields is Galois, we have

Hom paggp (h(X)(r), A(Y))(s)) = Hom Lty (h(X")(r), h(Y")(5))°,

where X’ and Y” are the base-changed objects from X and Y, r,s € Z, and (—)¢ denotes
the G-invariant part for G = Aut,(p’).

3.2 Basic things

3.2.1. Direct sums and direct products exist in LM(S), and they coincide.
In fact, we have h(X) @ h(Y) := A(X]]Y), and if r < s, A(X)(r) & A(Y)(s) =
(h(X x P")J]Y)(s),e) for n > s — r and for some e.

Conjecture 3.2.2. For a projective vertical log smooth fs log scheme X of relative
dimension d over S, h(X) has a decomposition

h(X)=h(X)®h(X)D- - @ h*X)
in the category LM(S) of log motives such that h'(X), = H'(X),.
Note that such a decomposition is unique if it exists.

3.2.3. We have the following: h(P") = ., h*(P"). h*(P") = Q(—i) canonically for
0 <i <n. Here Q = h(S5).
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3.2.4. We define the category LM*!(S) as follows. For a projective vertical log smooth
fs log scheme X over S and for m,r € Z, consider the symbol h™(X)(r).

For projective vertical log smooth fs log schemes X and Y over S and for m,n,r,s € Z,
a morphism h : h"(X)(r) — h™(Y)(s) means a homomorphism H™(X),(r) — H"(Y )(s)
of smooth Q-sheaves on S satisfying the following condition. If m — 2r # n — 2s, then
h =0. If m —2r = n — 2s, then for any geometric standard log point p over S, the
pullback of h to p comes from an element of gré™*=" Ky, (X, x, Y,), where d = dim(Xj).

An object of LM*P(S) is (h™(X)(r),e), where X is a projective vertical log smooth
fs log scheme over S, m,r € Z, and e is an idempotent of the ring of endomorphism of
h™(X)(r). Morphisms are defined like the case of LM(.S).

3.2.5. Similarly to the case of LM(S) (3.2.1), direct sums exist in LM**'(S). We have a
functor

LM(S) — LM¥(S) 5 h(X)(r) = @ h™(X)(r).

Conjecture 3.2.2 is that this functor is an equivalence of categories.

3.2.6. Tensor products are defined in LM(S) as follows.

(H(X)(r), €) @ (M(X")(s), ¢) := (WX x X')(r + 5),e @ €).

For a log motive M over S, the Tate twist M (—r) (r > 0) is identified with M ®@h* (P™)
with n > r.

3.2.7. Compared with LM(S), a disadvantage of the category LM () is that the tensor
products cannot be defined.

3.2.8. Duals are defined in LM(S) as follows.

(h(X)(r),e)* = (h(X)(d —1),e(d — 2r)), where d is the relative dimension of X over
S.

Note that any morphism h(X)(r) — h(Y')(s) induces a homomorphism (h(Y')(s)*), —
(h(X)(r)*), of Qp-sheaves by Poincaré duality (Corollary 2.1.4). We can easily check that
this homomorphism gives a morphism A(Y')(s)* = h(Y')(d'—s) — h(X)(d—7r) = h(X)(r)*
of motives, where d’ is the relative dimension of Y over S by using the same elements of

gr' Kim (X, X, Yp)g, where p is a geometric standard log point over S and i =d+s—r =
d+(d—r)—(d—s).

3.2.9. Let X be a projective vertical log smooth fs log scheme over S. We conjecture that,
for any morphism s — S from a standard log point associated to some finite field and
for each m € Z, the filtration (the monodromy filtration) on the stalk over s of H™(X),
determined by the monodromy operator coincides with the Frobenius weight filtration.
We call this the monodromy-weight conjecture for X.

Proposition 3.2.10. Let X and Y be projective vertical log smooth fs log schemes over
S. Assuming the monodromy-weight conjecture for X and Y , we have the following:
If m —2r >n — 2s and if S is of finite type over Z, there is no non-zero homomorphism

H™(X)o(r) = H™"(Y)e(s).
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Proof. This is reduced to the case where S is a standard log point associated to a finite
field k. Let w = m — 2r,w’ = n — 2s. Monodromy-weight conjecture tells that as a
finite-dimensional Q,-vector space with actions of Gal(k/k) and the monodromy operator
N, the stalk of H™(X),(r) (resp. H"(Y)¢(s)) is isomorphic to a direct sum of subobjects
Q (resp. R) being isomorphic to Sym’H'(E), ® V, where the action of Gal(k/k) on V is
of weight w — i (resp. w' — i) and the action of N” on V is trivial. Hence, it is enough
to show that there is no non-zero QQ,-linear map () — R which is compatible with the
actions of Gal(k/k) and N. Let Q — R be such a map. For any non-zero element z € R
of weight u > w’, we have N“~*'(z) # 0. But as a Q-vector space with an action of N,
Q is generated by an element y of weight v > w such that N*~“*1(y) = 0. The image x
of this y in R is of weight u > w’ and N~ (x) = 0 because u — w’ > u — w + 1. Hence
x = 0. Therefore the map () — R is the zero map. n

Remark 3.2.11. On the other hand, a non-trivial homomorphism H™ (X ),(r) — H"(Y).(s)
can exist even if m — 2r < n — 2s and even if S is of finite type over Z. In fact, let S
be a standard log point, X = S, and Y the log Tate curve. Then we have an ex-
act sequence 0 — Q, — HY(Y); — Q(—1) — 0. Hence a non-trivial homomorphism
HY(X), — HYY), exists.

3.2.12. For an X strict semistable over a standard log point, H'(Xz,., M /O%) = 0
because MY /O% = p.Z, where p: X' — X is a normalization, is a flasque sheaf, which
implies that Pic (X) = HY(Xza,, O%) = H'(Xzar, M$) is surjective. Hence by 2.3.14, we
have:

Let X, Y be projective vertical log smooth fs log schemes over an fs log scheme S. Then
an element of H*((X X Y)zar, MY,y gives a homomorphism h(X)(r) — h(Y)(r+1—d),
where r € Z and d is the relative dimension of X over S.

To see this, it is enough to show that the induced homomorphism h(X)(r), — h(Y)(r+
1 — d); comes from an element of the K-group after the base change to any geometric
standard log point. We assume that the base S is a geometric standard log point over
a field k. Apply 2.3.14 to X x Y, and find a strict semistable X’ over X x Y after
the base change by the morphism S = (Speck,N) — S = (Speck,N) induced by the
multiplication by n for some n > 1. If n = 1, since Pic(X’) = gr' K(X’), we have a
desired element of gr! Ki;,,, (X x Y)q. For a general n, after the base change, take a desired
element a of gr' Ky, (X x Y x5 5")g. Then the 1/n times of Tr(a) is a desired element.

3.3 Numerical equivalence

Proposition 3.3.1. For any log motive M over S and for any morphism f : M — M,
Tr(f) € Qg belongs to Q. (Precisely speaking, Tr(f) is a locally constant function S — Q.
It is constant if S is connected.)

Proof. We are reduced to the case where S is a geometric standard log point. Then the
result follows from the trace formula 2.4.11. O

3.3.2. Definition of numerical equivalence.
For objects M and M’ of LM(S) and for a morphism f : M — M’  we say that f is
numerically equivalent to 0 if for any morphism g : M’ — M, we have Tr(gf) = 0, that
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is, Tr(fg) = 0. (Note that when S is the spectrum of a field endowed with the trivial log
structure, it coincides with the usual definition (cf. [20] Lemma 1).)

Morphisms f, g : M — M’ are said to be numerically equivalent if f — g is numerically
equivalent to 0.

Lemma 3.3.3. Let ~ be the numerical equivalence. Let f,g: M — N be morphisms in
LM(S). Assume f ~ g. Then

(1) fh ~ gh for any morphism h : L — M from a log motive L over S.

(2) hf ~ hg for any morphism h: N — L to a log motive L over S.

Proof. We may assume that g is 0.
(1) Let k: N — L be any morphism. Then Tr(fhk) = Tr(f(hk)) = 0. Hence fh ~ 0.
(2) Let k: L — M be any morphism. Then Tr(khf) = Tr((kh)f) = 0. Hence
hf ~ 0. 0

3.3.4. By Lemma 3.3.3, we have the category LM,,(S) of log motives over S modulo
numerical equivalence.

Conjecture 3.3.5. In LM(S), f ~ ¢ implies f = g. That is, LM(S) = LMpum(5).

3.3.6. When S is a geometric standard log point, the category LM, (S) is independent
of the choice of ¢. This is a consequence of Proposition 3.3.1 since in this case, the
group Hom (h(X)(r), h(Y)(s)) is identified with a quotient of grit*="Kj, (X xgY)g in
the notation in 3.1.3.

3.4 Semisimplicity
Theorem 3.4.1. (1) The category LMuum(S) is a semisimple abelian category.

(2) The category LM(S) is a semisimple abelian category if and only if the numerical
equivalence for morphisms of this category is trivial.

To prove this, we imitate the method of U. Jannsen in [20].

3.4.2. The following fact is known.

A pseudo-abelian category C is a semisimple abelian category if the following (i) and
(ii) are satisfied for any objects X and Y.

(i) Hom (X,Y) is a Q-vector space, the composition of morphisms is bilinear, and any
idempotent of End (X) has a kernel.

(ii) End (X) is a finite-dimensional semisimple Q-algebra.

Lemma 3.4.3. Let F' be a field, A, B finite-dimensional F-vector spaces, (, ) : Ax B —
F an F-bilinear map, Fy a subfield of F', Ay an Fy-subspace of A, and By an Fy-subspace
of B. Assume that A is generated by Ag over F, B is generated by By over F, and
(a,b) € Fy for any a € Ag and b € By. Let K ={a € A | (a,b) =0 for any b € B}, and
Ko ={a€ Ay | (a,b) =0 for anyb € By}. Then:

F®p, Ag/ Ko = A/K.
In particular, Ay/Ky is finite-dimensional over Fy.
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Proof. Take an Fy-subspace A} of Ay such that F ®@g, A} = A and an Fy-subspace B

of By such that F ®p, B| S B. Then Aj and Bj are finite-dimensional over Fp. Let
Kl ={a € A})| (a,b) =0 forany b € B} = {a € A | (a,b) = 0 for any b € Bj}. Let
Ly ={be B | (a,b) =0 forany a € A} = {b € B} | (a,b) = 0 for any a € Aj}. The
composition

AL/ Ky — Ao/ Ko — Hom (By/ Ly, Fy)

is an isomorphism and the two arrows here are injective. Hence we have
(%) Ay/ K — Ao/ Ky is an isomorphism.

On the other hand, the paring A x B — F' is identified with F'®p, of the pairing
Al x By — F. Hence we have

(xx) F ®@p, Ay/ Kl — A/K is an isomorphism.
By (%) and (*x), we have that F ®p, Ag/Ky — A/K is an isomorphism. O

Lemma 3.4.4. Let F' be a field of characteristic 0, V' a finite-dimensional F-vector space,
and A an F-subalgebra of Endp (V). Let J be the Jacobson radical of A, that is, J is the
largest nilpotent two-sided ideal of A. Let I = {a € A | Tr(ab) = 0 for anyb € A}. Here
Tr is the trace of an F-linear map V- — V. Then [ = J.

Proof. Let a € J. Then for any b € A, ab is nilpotent and hence Tr(ab) = 0. Hence a € I.
Next we prove I C J. We may assume that F' is algebraically closed. It is sufficient to
prove that all elements of I are nilpotent. Let a € I. Let (a;)1<i<n (n = dimpg(V')) be the
eigenvalues of a counted with multiplicity. We have 0 = Tr(a”) = >, of for any n > 1.
This proves that a; = 0 for all 7. Hence a is nilpotent. O]

Lemma 3.4.5. Let F' be a field of characteristic 0, V' a finite-dimensional F'-vector space,
A an F-subalgebra of Endp(V'), Fy a subfield of F', and Ay an Fy-subalgebra of A. Assume
that Ay generates the F-vector space A and assume that Tr(a) € Fy for any a € Ay. Let
In={a € Ay | Tr(ab) =0 for any b € Ap}. Then Iy is a two-sided ideal of Ay, Ao/Iy is a
finite-dimensional semisimple Fy-algebra, and all elements of Iy are nilpotent.

Proof. The fact that Iy is a two-sided ideal of Ay is shown easily. Let I = {a €
A | Tr(ab) = 0 for any b € A}. Then I is nilpotent and A/I is a semisimple algebra
by Lemma 3.4.4. Hence all elements of Iy are nilpotent. By Lemma 3.4.3, A/l is
finite-dimensional and F ®pg, Ao/ is isomorphic to A/I. Hence Ay/Iy is semisimple. [

3.4.6. We prove Theorem 3.4.1 (1). Let M be a log motive over S. In Lemma 3.4.5,
take [' = Qu, Fy = Q, and let A be the Q-subalgebra of Endg,(M;) generated by
Ao = Endpmsy(M). Then the endomorphism ring of M in the category of log motives
over S modulo numerical equivalence is A/I,, where j is as in Lemma 3.4.5. By Lemma
3.4.5, A/l is a finite-dimensional semisimple Q-algebra. This proves (1) of Theorem
3.4.1.

We prove Theorem 3.4.1 (2). The if part follows from (1). We prove the only if part.
Let F' = Qq, Fy = Q, and A, Ay, Iy be as in the proof of (1). By Lemma 3.4.5, all elements
of Iy are nilpotent. Assume that Ag is semisimple. Since I is a two-sided ideal of A
and all elements of [ are nilpotent, we have Iy = 0. That is, the numerical equivalence
is trivial.
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4 Log mixed motives

We define the category of log mixed motives.

4.1 The category Cg

4.1.1. Let £ be a prime number. Let S be an fs log scheme over Z[1/¢] of finite type.
Let Cs be the following category.

ObjeCtS: (F, W7 (Xw)wGZ; (Vw,l)wela (Vw,Q)weza (Lw)wEZ)-

Here F is a smooth Qg-sheaf on the log étale site of S. W is an increasing filtration
on F by smooth Qy-subsheaves. The X,, are projective vertical log smooth fs log schemes
over S. For each w € Z, V,,; and V,,» are smooth Q-subsheaves of @, ., H**?"(X.,)e(r)
such that V,,; C Vi, 9. The ¢, are isomorphisms gr}V F =V, 5/V,, ;.

W is called the weight filtration.

A morphism

(F, W, (Xw)wez, Vi, )wez, (Vi 2)wez, (tw)wez) = (F, W (X wez, Vi1 Jwez, (Vip2)wez, (ty)wez)

in Cg is a homomorphism of Q-sheaves F — F’ which respects the weight filtrations
such that for each w € Z, the pullback of gr'V F — gr’V' F to any geometric standard log
point s over S is induced from the sum of morphisms h(X, xg s)(r) — h(X], xg s)(r')
for various r,7" € Z which sends V,,; to V, ; over s for i = 1,2.

4.1.2. The category Cg has &, kernels, and cokernels.
Furthermore, ®, the dual, and Tate twists are defined in Cg.
These are explained in 4.1.3-4.1.7.

4.1.3. We have
(f, W7 (Xw>w€Z7 (Vw,l)weZa (Vw,Z)wela (Lw)w€Z>®(F/> Wla (X;)weZv (Vu/;71)w€Za (Vé,g)wez, (L;)weZ)

= (F b ‘Flv 44 S Wla (Xw H X’[’U)’LUGZ? (Vw,l > V1:;71)w€Z7 (Vw,2 S VJ;,Z)U)EZ? (l’w D Liu)wEZ)'
4.1.4. The kernel of a morphism

(‘Fa VVa (Xw)wEZ7 (Vw,l)wEZa (Vw,Q)wEZa (Lw)wGZ) — (F/a W/> (quu)wEZa (Vu,;71)w627 (V11,172)w627 (L;;)wEZ)

is (F"', W" (X )wezs (Vi 1)wezs (Vi 2)wez, (L )wez), where F” is the kernel of F — F', W"
is induced from W, X/ = X, V.7, is the kernel of Vi, o — Vi 5/V, 1, Vii'y = Vil N Vi,
and ¢ is induced from ¢,,.

4.1.5. The cokernel of the above morphism is (", W", (X7} )wez, (Vi1 )wez, (Vi )we% (t)wez),
where F” is the cokernel of F — F', W” is induced from W', X = , Vo =
Vo +Image(Vi2), Vi = Vi + Image(Vw, ), and ¢/ is induced by ¢, .

w,l —
4.1.6.
(]:a VV: (Xw>w€Z7 (Vw,1>wEZa (Vw,2)wEZu (Lw)w€Z>®(F/) W,7 (X;U>wEZa (Vu,;,1>wEZa (V'L:),Q)IUEZ7 (wa)wEZ>

is defined as (F", W", (X}))wez, Vi1 )wez, Vipo)wez, (ty)wez), where F" = F @ F', W"
is the convolution of W and W', Xy = [[,,,_, Xi x X}, Vb = @D, ;_, Vize ® V},,
VU/J/I - @i—i—j:w(‘/i,l ® V7 ‘/Z 2 ® V/ )a w - ®i+j=w Li X L;w

4.1.7. The definition of the dual and the Tate twists are the evident ones.
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4.2 The category of log mixed motives

In his papers [3] and [4], Deligne showed how we can obtain mixed Hodge structures of
geometric origin basing on the theory of pure Hodge structures. We imitate his method
to formulate objects of Cg of geometric origin.

In this 4.2, S denotes an fs log scheme and ¢ denotes a prime number which is invertible
on S.

For an fs log scheme X over S, H™(X)(r), denotes R™ f.Qy(r), where f is the mor-
phism X — S.

4.2.1. Consider (U, X, D), where X is a projective vertical log smooth fs log scheme over
S, D = (Dy)xea is a finite family of Cartier divisors on X, and U is the open subscheme
of X defined as the complement of (J,_, D) in X satisfying the following condition:

For any subset A’ of A, Dy := (o, D with the inverse image of the log structure
of X is log smooth over S, and of codimension #(A’) in X at each point of it.

To describe a typical example, let X be a projective and strict semistable family over
a trait S = Spec A endowed with natural log structures. Let D = (Dy)xea be a finite
family of Cartier divisors on X. Assume that strict étale locally on X, X is strict étale
over Spec(A[Ty,...,T,])/(T1---T; — 7)), where i < n, 7 is a prime element of A and the
log of X is given by T1,...,T;, and that for some 7 < j < n, each of the T;,,,...,T; gives
some D) and the other D, are empty there. Then these satisfy the above condition.

4.2.2. Let the notation and the assumptions be as in 4.2.1.

For i > 0, let D® be the disjoint union of Dy, for all A’ C A such that §(A’) = 4. In
particular, D© = X.

For i > 0, we have a smooth Q-sheaf H™(D®), on the log étale site of S (cf. 2.1.2).

4.2.3. Let the notation and the assumptions be as in 4.2.1. Endow U with the inverse
image of the log structure of X.

Then H™(U), is a smooth Qg-sheaf on the log étale site of S and we have a spectral
sequence

By = (DU, (i) = EZ = H™(U),

in the category of smooth QQ;-sheaves. In fact, first, by relative purity in log étale coho-
mology ([13]), we have a spectral sequence with finite coefficients. By Proposition 2.1.1,
the F;-terms of this spectral sequence determines a smooth Q-sheaves, which implies the
above facts.

4.2.4. Consider a simplicial system (Us,, X, Do) of objects (U, X, D) of 4.2.1 (here we
follow [4]). Let H™(U,), be the smooth Q-sheaf on S defined to be the m-th hyper-
cohomology (relative to S) of the simplicial system. The spectral sequence in 4.2.3 is
generalized to the spectral sequence

By =D (D) —s) = B = H"(UL)e.
s>0

4.2.5. Let the notation be as in 4.2.4. Let m € Z. We define an increasing filtration W
on H™(U,),, which we call the weight filtration, as the filtration defined by the spectral
sequence in 4.2.4.
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4.2.6. If S is of finite type over Z[1/¢], let CZ°* be the full subcategory of Cg consisting of
objects which are obtained from the following standard objects in 4.2.7 below by taking
@, kernels, cokernels, ®, the duals, and Tate twists.

4.2.7. In the above, a standard object means:

Consider (U,, X, Do, m), where (U,, X,, D,) is as in 4.2.4 and m € Z. The associated
standard object is as follows:

Let F =H"(U,); on S.

Let W be the filtration on Hm(U.) ¢ defined by the spectral sequence in 4.2.5. Then, for
w € Z, gry H™(Us)y = Vi) 5/ Vi, | for some Qg-subsheaves V,, |, Vi, of @, H*~ 2S(Dng)m w)e(—s)
such that V,; , CV, ,

Let X, = |5 D(S)

stm—w:*
Consider the natural projection @, o, H* " (Xy)e(r) = D, Hw*ZS(Dng w)e(—8).
For i = 1,2, let V,; be the pullbacks of V;; ; by this natural projection. Then we have
the isomorphism ¢, : grlV F =V, 5/V, 1.

4.2.8. If § is affine and is the inverse limit of Sy which are of finite type over Z[1/¢], we
define Cg*°" as the inductive limit of the categories Cg'®*. This does not depend on the
choice of limits.

4.2.9. We define the category of log mixed motives LMM(S) over S as the Zariski sheafi-
fication of the categories C2° in 4.2.8. More precisely, to give a log mixed motive M over
S is to give an affine covering (S;);cr of S, objects M; of C&°', affine coverings (Sj;x)x
of S; N S; for each 7,j € I, and isomorphisms between the restrictions of M; and M; to
each S;j, which are compatible to each other. The set of morphisms is similarly defined
as the quotient of the set of compatible local morphisms over affine open sets under an
appropriate equivalence.

4.2.10. For a morphism S” — S of fs log schemes, we have the pullback functor LMM(S) —
LMM(S").

4.2.11. We have a fully faithful functor
LMY(S) — LMM(S)

which sends H™(X)(r) to the object associated to (U,, X, D, m)(r) with X, determined
by X, Uy, = X,, D, empty.

4.2.12. If the log structure of S is trivial, we define the category M M (S) of mixed motives

to be the category of log mixed motives over S.

4.3 Justifications of our definition

Here we explain the reason why we think our definition of log mixed motives is reasonable.

4.3.1. The reader may feel strange that in our definition of a morphism of log mixed
motives (4.1.1), we do not put much conditions other than the condition that its gr'V
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motivic, though it is usually impossible to take care of mixed objects by using only pure
objects.

We hope that the following Proposition 4.3.4 (resp. Proposition 4.3.5) justifies our
definition of log mixed motive (resp. of morphism of log mixed motives) in 4.2 (resp.
4.1.1).

We hope that if S is of finite type over Z and if we take the category of log mixed
motives over S and the category of smooth Q;-sheaves on the log étale site of S as C; and
Cso, respectively, the conditions in 4.3.2 below are satisfied. (Especially we hope that the
finiteness assumption on S assures that the condition (v) in 4.3.2 below is satisfied.)

4.3.2. Let C; and Cy be abelian categories. Assume that we have exact subfunctors
Wy : C1 — Cy (w € Z) of the identify functor C; — C; such that W,, o W,, = W, and such
that W,, ¢ W, if v’ < w. Assume that we have a functor F' : C; — Cy. Assume that
these satisfy the following six conditions.

(i) For each object M of C;, W,,M = M if w > 0 and W,,M =0 if w < 0.

(ii) The functor F' is exact.

(iii) Let w € Z and let M and N be objects of C;. Assume that M and N are pure
of weight w (that is, W,,M = M, W, 1M =0, W,N = N, W,,_1N = 0). Then the
canonical map Hom ¢, (M, N) — Hom ¢, (F(M), F(N)) is injective.

(iv) Let w,w’ € Z and assume w > w'. Let M and N be objects of C; and assume
that M is pure of weight w and N is pure of weight w'. Then Home, (M, N) = 0 and
Home,(F (M), F(N)) = 0.

(v) Let w,w" € Z and assume w > w’. Let M and N be objects of C; and assume that
M is pure of weight w and N is pure of weight w'. Then the canonical map Ext 5 (M, N) —
Ext ¢, (F(M), F(N)) is injective.

(vi) Let w € Z. Then the full subcategory of C; consisting of all objects which are
pure of weight w is semisimple.

Remark. By Proposition 3.2.10, Hom (F (M), F(N)) = 0 in the condition (iv) is rea-
sonable. (This is clearly reasonable if the log structure of S is trivial, but not trivial
otherwise.) Further, the condition (v) is related to Tate conjecture. In fact, it means that
an extension of motives splits if the ¢-adic realization splits; two extensions are isomorphic
if their (-adic realizations are isomorphic. These are analogues of Tate conjectures.

Lemma 4.3.3. Let the notation and the assumptions be as in 4.3.2 and let M and N be
objects of Cy.

(1) The morphism Home, (M, N) — Home,(F (M), F(N)) is injective.

(2) If there is a w € Z such that Wy,M =0 and W,,N = N, then Hom¢, (M, N) = 0,
Hom ¢, (F(M), F(N)) =0, and the map Ext ;, (M, N) — Ext ¢, (F(M), F(N)) is injective.

Proof. By the induction on the lengths of the weight filtrations of M and N together
with the assumptions (i) and (ii), both statements reduce to the case where M and N are
pure. Let w (resp. w’) be the weight of M (resp. N).

(1) If w =w' (resp. w > w'), (1) is by (iii) (resp. (iv)). If w < w’, Hom¢, (M, N) = 0,
and (1) holds.

(2) Since w > w', (iv) and (v) implies (2). O
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Proposition 4.3.4. Let the notation and the assumptions be as in 4.3.2. Let M be an
object of Cy and let V' be a subobject of F(M) in Cy such that for any w € Z, the subobject
gWV .= (VNFW,M))/(VNFW,_1M)) of F(gtW M) is F(N,) for some subobject
Ny, of gt M in Cy. Then there is a unique subobject N of M in Cy such that V coincides
with F(N).

Proof. By downward induction on w, we may assume that W, 1M = 0 and that if we
denote V- N F(W,M) by V', the subobject V" := V/V' of F(M/W,M) coincides with
F(N") for some subobject N” of M/W,,M. By the assumption, the subobject V' of
F(W,M) = F(gr’V M) coincides with F(N’) for some subobject N’ of W,,M.

Let the exact sequence 0 — W, ,M — U — N” — 0 be the pullback of the exact
sequence 0 — W,M — M — M/W, M — 0 by N" — M/W,,M. Then class(F(U)) €
Ext s, (F(N"), F(W,M)) coincides with the image of class(V) € Extg, (F(N"), F(N'))
under the homomorphism Ext  (F(N"), F(N')) — Ext 5, (F(N"), F(W,,M)) induced by
the morphism N’ — W, M.

Claim 1. There are an object N of C; and an exact sequence 0 - N —- N — N” — 0
such that class(F(N)) € Ext (F(N"), F(N')) coincides with class(V) € Ext ¢, (F(N")), F(N')).

We prove Claim 1. By the condition (vi) in 4.3.2 on semisimplicity, there is a morphism
WoM = gt M — N’ such that the composition N — W,M — N’ is the identity
morphism. Let the exact sequence 0 — N’ — N — N” — 0 be the pushforward of
00— WM — U — N" — 0 under W,,M — N’. Then this satisfies the condition in
Claim 1.

Claim 2. class(U) € Ext} (N",W,M) coincides with the image of class(N) &
Ext ¢ (N”, N') under the homomorphism induced by N' — W, M.

This follows from the injectivity of Extg (N”, W,M) — Extg (F(N"), F(W,M))
(Lemma 4.3.3) and the fact that class(F(U)) € Ext (F(N"), F(W,M)) coincides with
the image of class(V) € Ext/, (F(N”), F(N')) under the homomorphism induced by the
morphism N’ — W, M.

By Claim 2, there is a morphism N — M such that the diagram

O - N —= N — N" — 0

] ! 3
0 - WM - M — M/W,M — 0

is commutative. This proves Proposition 4.3.4. O]

Proposition 4.3.5. Let the notation and the assumptions be as in 4.3.2 (actually the
condition (vi) is not used for this proposition). Let M and N be objects of C;. Then
we have a bijection from Home, (M, N) to the set of pairs (h, (hy)wez), where h is a
morphism F(M) — F(N) and h,, is a morphism gr’’ M — gtV N satisfying the following
conditions (i) and (ii).

(i) h sends F(W,M) to F(W,N) for any w € Z.

(ii) For any w € Z, the morphism F(gr!¥ M) — F(gr'V N) induced by h coincides with
F(hy).
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Proof. We first prove

Claim 1. Let M and N be objects of C;. Let w € Z. Then we have a bijection from
Hom ¢, (M, N) to the set of pairs (a,b), where a is a morphism W,,M — W,,N and b is a
morphism M /W, M — N/W,N satisfying the following condition (x).

(*) The image of class(M) € Ext s (M/W,, M, W,,M) in Ext 5 (M /W, M, W,,N) under
the map induced by a coincides with the image of class(N) € Ext ¢ (N/W,,N, W,,N) in
Ext ¢ (M /WM, W,,N) under the map induced by b.

We prove Claim 1. Let a : W,,M — W,,N and b : M/W,M — N/W,,N be morphisms.
Let the exact sequence 0 — W,,N — X — M/W,M — 0 be the pushforward of 0 —
WM — M — M/W,M — 0 under a, and let the exact sequence 0 - W,N — Y —
M/W,M — 0 be the pullback of 0 - W,,N - N — N/W,,N — 0 under b. Then the
condition (x) is that the extension classes of X and Y coincide. On the other hand, a
morphism M — N which induces a and b corresponds bijectively to a morphism X — Y
which induces identity morphisms of W,,N and M/W,,M. By the first part of (2) of
Lemma 4.3.3, we have Hom¢, (M/W,,M,W,,N) = 0. Hence we have the bijection in
Claim 1.

We can prove similarly

Claim 2. Let M and N be objects of C;. Let w € Z. Then we have a bijection from
{h € Hom (F(M),F(N)) | h(F(W,M)) C F(W,N)} to the set of pairs (a,b), where a
is a morphism F'(W,M) — F(W,N) and b is a morphism F(M/W,M) — F(N/W,N)
satisfying the following condition (xx).

(%) The image of
class(F(M)) € Ext o, (F(M/W,M), F(W,M))
in Ext ¢, F(W,M), F(W,N)) under the map induced by a coincides with the image of
class(F(N)) € Ext, (F(N/W,N), F(W,N))

in BExt 5 (F(M/W,M),F(W,N)) under the map induced by b.

Now we prove Proposition 4.3.5. By downward induction on w, we may assume that
there is a w € Z such that W,,_ M = M, W,,_1N = N and such that Proposition 4.3.5
is true if we replace M and N by M /W, M and N/W,N, respectively. By the Claim 1

and Claim 2, we have a commutative diagram with exact rows

0 - A - B — (C

I 1 1
0 - A —- B — (',

where
A =Home, (M,N), A = Hom ¢, w(F (M), F(N)),
B =Home, (WM, W,N) x Hom ¢, (M /WM, N/W,N),
B = Hom ¢, (F(W,M), F(W,N)) x Hom ¢, w(F(M/Wy,M), F(N/Wy,N)),
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C = Ext (M/WyM,W,N), C" =Ext, (F(M/W,M),F(W,N)).

Here Hom ¢, jy means the set of homomorphisms of C, which respect the filtrations W.
The vertical arrows are injective by Lemma 4.3.3. This proves

A S {2 € A’ | the image of z in B’ comes from B},

which proves Proposition 4.3.5 by downward induction on w. Il

4.4 Main theorem

4.4.1. Recall that the following (i) and (ii) are equivalent (Theorem 3.4.1 (2)).

(i) In the category of log motives, homological equivalence (i.e. the trivial equivalence)
coincides with the numerical equivalence.

(ii) The category of log motives is a semisimple abelian category.

Theorem 4.4.2. (i) and (ii) are equivalent to the following (iii).
(iii) The category of log mized motives is a Tannakian category ([42], [5]).

4.4.3. We prove (ii) = (iii). It is sufficient to prove that a morphism f is an isomorphism
if it induces an isomorphism F — F’. By (ii), there is a morphism h(X]) — h(X,)
which induces the inverse map V, ,/V,, | — Vi2/Vi1. Thus the inverse map F' — F is
a morphism of log mixed motives.

We prove (iii) = (i). Let X be a projective vertical log smooth fs log scheme over
S. Consider a morphism f : h(X) — h(X) which is numerically equivalent to 0. We
prove f = 0. Let V; be the kernel of f : h(X), — h(X), and let V5 = h(X),. On the
other hand, let V/ = 0 and VJ be the image of f : h(X), — h(X),. Then f induces an
isomorphism f : Va/Vi — VJ/V{. By (iii), there is a morphism ¢ : h(X) — A(X) which
induces the inverse map V; /V] — Vo /Vi. Then fg: h(X), — h(X), is a projection to V3.
Hence Tr(fg) = dim(V5). Hence Tr(fg) = 0 implies V; = 0 and hence f = 0.

4.4.4. One can consider the following unconditional variant of the above statement (iii).
Let LMM,,uim (S) be the category of log mixed motives over S modulo numerical equiv-
alence. Here morphisms f,g: F — F’ of log mixed motives are said to be numerically
equivalent if gr(f) and gr(g) are numerically equivalent. Then one can ask if LMMp,(.5)
is a Tannakian category.
This is a mixed analogue of Theorem 3.4.1 (1).

5 Formulation with various realizations

In Sections 3 and 4, we considered ¢-adic realizations of log mixed motives fixing a prime
number ¢. Here we consider various realizations.
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5.1 Log motives and log mixed motives with many realizations

5.1.1. Let R be the union of the set of all prime numbers and the set of three letters
{B, D, H}: B means Betti realization; D means de Rham realization; H means Hodge
realization.

Let S be an fs log scheme. Let R be a nonempty subset of R. If a prime number ¢ is
contained in R, assume that S is over Z[1/¢]. If B € R, assume that S is locally of finite
type over C. If D € R, assume that S is log smooth over a field of characteristic 0 or .S
is a standard log point associated to a field of characteristic 0. If H € R, assume that S
is log smooth over C or S is the standard log point associated to C.

5.1.2. We define the categories

of log motives over S and of log mixed motives over S, respectively, with respect to
realizations in R.

The definition of LMg(S) is similar to Section 3. For a projective vertical log smooth
fs log scheme f: X — S over S and for r € Z, consider the symbol hr(X)(r).

When a prime ¢ belongs to R, let

ha(X)(r)e == €D H™(X)(r).

When B € R, let

he(X)(r)s == @ H™(X)p(r), where H™X)p = R"[*Q.

m

This is a locally constant sheaf of finite dimensional Q-vector spaces on S°8 (see Propo-
sition 2.1.7).
When D € R, let

hr(X)(r)p = EB H™(X)p(r), where H™(X)p= Rmfkét*w.)}k/ig.

m

This is a locally free sheaf of Oys-modules of finite rank with a quasi-nilpotent integrable
connection with log poles on Sy (see Propositions 2.1.14 (1) and 2.1.17 (1)).
When H € R, let

h(X) (1) = @ H™(X)u(r), where H™(X)y = Rmfkét*wf}l{/%

endowed with the natural log Hodge structures. This is a log mixed Hodge structures on
Siet (see Propositions 2.1.14 (2) and 2.1.17 (2)).

A morphism hg(X)(r) — hgr(Y)(s) is defined as a family of morphisms between
realizations for each element of R satisfying, for any geometric standard log point p over
S, the pull-backed morphism is induced by a common element of gr of the K-group. Note
that we do not impose any comparison isomorphism between different realizations. The
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rest is the same as in 3.1, and we have the category LMg(.S). Here we use the Poincaré
duality (Proposition 2.1.8) and the Kiinneth formula (Proposition 2.1.10) in log Betti
cohomology, which implies the necessary corresponding theorems in log de Rham and log
Hodge theory via log Riemann—Hilbert correspondence ([16] Theorem (6.2)). We also use
the Riemann-Roch theorems.

5.1.3. The definition of LMMg(S) is also similar to the case where R consists of one
prime. We first define Cg i as follows.

First, for an R consisting of one prime ¢, Cs r is Cg in 4.1.1.

Second, for R = {B}, we define Cg x as the following category.

Objects: (F, W, (Xu)wez, Viw1)wezs Vw2)wez, (tw)wez)-

Here F is a locally constant sheaf of finite dimensional Q-vector spaces on S2°6. The W
is an increasing filtration on F by locally constant Q-subsheaves. The X, is a projective
vertical log smooth fs log scheme over S. For each w € Z, V,,; and V,, » are locally constant
Q-subsheaves of @, ., H***"(X,,)5(r) such that V,,; C Vi, 2. The ¢, is an isomorphism
gV F 2 Vyo/Via.

A morphism

(]:a VV: (Xw>w€Z7 (Vw,1>wEZa (Vw,Q)wEZa (Lw)w€Z> — (f/a Wl) (quv)wEZa (V1:)71)w627 <V1:;72)w627 (L;y)wEZ)

is a homomorphism of Q-sheaves F — F’ which respects the weight filtrations such that
for each w € Z, the pullback of gr'VF — grV'F to any geometric standard log point
s associated to C over S is induced from the sum of morphisms hypy (X, xg s)(r) —
hipy(X,, xs 5)(r'") for various r,r’" which sends V,,; to V,, ; over s for i = 1,2,

Third, for R = {D}, we define Cg x as the following category.

Objects: (.F, W, (Xw)w627 (Vw71)wez, (Vw,g)wez, (Lw)wEZ)~

Here F is a locally free Og,, -modules of finite rank endowed with a quasi-nilpotent
integrable connection with log poles. The W is an increasing filtration on F by locally
free Og,,,-submodules with the compatible connections such that the graded quotients
are also locally free. The X, is a projective vertical log smooth fs log scheme over S.
For each w € Z, V,,1 and V,, 5 are locally free Og,,, -submodules with the compatible
connections of @, ., H w2 (X, )p(r) such that Vi1 C V2. The ¢, is an isomorphism
W F 2V, o/Vi1.

A morphism

(fa VVa (Xw>w627 (Vw,l)wEZa (Vw,Q)wEZa (Lw)w€Z> - (F/a W/> (X{U)wEZa (Vu,;71)w627 (V11,172)w627 (L;])wEZ)

is a homomorphism of Og,  -modules F — F’ which respects the weight filtrations such
that for each w € Z, the pullback of gr’V F — gV’ F’ to any geometric standard log point
s over S is induced from the sum of morphisms hypy (X Xg 5)(r) = hipy (X}, x5 5)(1")
for various r, 7" which sends V,,; to V, ; over s for i = 1,2.

Fourth, for R = {H}, we define Cg  as the following category.

Objects: (F, W, (Xu)wez, Viw1)wezs Vw2)wez, (tw)wez)-

Here (F,W) is a log mixed Hodge structure on Sie. The X, is a projective vertical
log smooth fs log scheme over S. For each w € Z, V,,; and V, 5 are sub-log Hodge
structures of @, ., H*t* (Xy)u(r) such that V,,; C V2. The ¢, is an isomorphism
gtV F 2 Vyo/Vir.
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A morphism

(F, W, (Xw)wez, Vi, )wezs (Vi 2)wez, (tw)wez) = (F, W (X0 wez, (Vi1 wezs (Vip2)wez, (ty)wez)

is a homomorphism of log mixed Hodge structures (F, W) — (F', W) such that for each
w € 7Z, the pullback of gr'’ F — gV’ F to any standard log point s associated to C
over S is induced from the sum of morphisms hgxy (X Xg5)(r) = hymy (X, Xg s)(r') for
various 7,7’ which sends V,,; to V, ; over s for i =1, 2.

Lastly, for any R, we define Cg g as follows.

Objects: (Y},),er, where Y, is an object of Cg ¢y, satisfying the condition that for any
w € Z, the X, of Y, is common.

A morphism (Y,),er — (Y))er 18 (f,)per, where f,: Y, — Y is a morphism of Cg g},
satisfying the condition that for any w,r, 7" € Z and any s — S, the element of gr of the
K-group inducing the morphism h,(X,, xg s)(r) = h,(X/, xg s)(r") is common.

Note that in this definition, we do not impose any comparison isomorphism between
different realizations.

5.1.4. We define C§'%y C Csr and LMMg(S) imitating 4.2. Here the objects associated
to standard objects for B, D, and H are defined by virtue of Propositions 2.1.7, 2.1.14,
and 2.1.17.

5.2 Conjectures and results

We state the conjecture that our categories LMg(S) and LMMg(S) are independent of
the choices of the family R of realizations. We also state Tate conjecture and Hodge
conjecture. For the latter, we explain in Section 6 that they hold in a simple case. In
there, we use the theories of log abelian varieties and log Jacobian varieties.

Conjecture 5.2.1. Let R’ be a non-empty subset of R. Then the restriction of realiza-
tions give an equivalence of categories

LMg(S) = LMp(S), LMMg(S) = LMMg(S).

Theorem 5.2.2. The following (1)—(iii) are equivalent.

(i) In the category LMg(S), homological equivalence (i.e. the trivial equivalence) coin-
citdes with the numerical equivalence.

(ii) The category LMg(S) is a semisimple abelian category.

(iii) The category LMMg(S) is a Tannakian category.

Proof. Similar to Theorems 3.4.1 (2) and 4.4.2. O
For p € R, we denote the realization for p of M € LMM(S) by M,,.

Conjecture 5.2.3. (Tate conjecture for log mixed motives.) Assume that ¢ is invertible
over S. Assume that either one of the following (i) and (ii) is satisfied.
(i) S is of finite type over some field which is finitely generated over the prime field.
(ii) S is of finite type over Z.
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Then for any objects M and N of LMMy(S), we have

Q¢ @ Hom (M, N) = Hom v (My, Ny).

Here the right-hand-side denotes the set of homomorphisms of Q,-sheaves which respect
the weight filtrations.

Remark. If either the log structure of S is trivial or M and N are pure, “W” on the right-
hand-side in this conjecture can be eliminated (for the weight filtrations are automatically
respected).

Conjecture 5.2.4. (The second Tate conjecture.) Assume that S is of finite type over
Q and let M, N be objects of LMMy, 5y(S). Then we have a bijection from Hom (M, N)
to the set of all pairs (a,b), where a is a morphism M, — N, and b is a homomorphism
Mp — Np defined on (S ® C)8 such that the pullback of a on (S ® C)¢ is induced

an ’

from b (cf. Proposition 2.1.12).

5.2.5. The above second Tate conjecture follows from Tate conjecture. In fact, in Q, ®
Hom (M, N) — Q,®{(a,b)} — Hom (M,, N;), the composition is an isomorphism if Tate
conjecture is true and the second map is an injection.

Conjecture 5.2.6. (Hodge conjecture for log mixed motives.) Assume that S is log
smooth over C or is the standard log point over C. Let M and N be objects of LMMy3(.5).
Then we have

o)

Hom (M, N) — Hom (Mg, Ng).

By Proposition 2.1.18, the conjecture 5.2.6 is reduced to the case where S is the
standard log point associated to C.

6 Examples

6.1 Log abelian varieties

This 6.1 and 6.2 are preparations for 6.3 and 6.4. In this 6.1, we review the theory of log
abelian varieties [24] and supply some results. See [38] for a survey of the theory. We

only consider log abelian varieties over a standard log point, for we need only this case in
6.3 and 6.4.

6.1.1. For an fs log scheme S, let (fs/S) be the category of fs log schemes over S, and
let (fs/S)s be the site (fs/S) endowed with the classical étale topology. A log abelian
variety over S is a sheaf of abelian groups on (fs/.S)e, satisfying certain conditions. If s is
the standard log point associated to a field k, a log abelian variety over s is described as
in 6.1.2-6.1.5 below.

6.1.2. Let G, 104 be the sheaf U — I'(U, ME") on (fs/s)et.
For a semiabelian variety G over k with the exact sequence 0 - T — G — B — 0,
where T" is a torus over k£ and B is an abelian variety over k, let Gy be the pushout of
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G T — Hom(X(T),Gpog) in the category of sheaves of abelian groups on (fs/s).
Here X(T') := Hom(T, G,,) is the character group of T. We have G C Giqg.

Let M be the category of systems (I', G, h), where I' is a locally constant sheaf of
free Z-modules of finite rank on (fs/s)g, G is a semiabelian variety over k, and h is a
homomorphism I' = Gje,.

An object of M, was called a log 1-motif in [24].

6.1.3. For an object (I', G, h) of M; with T the torus part of G, we have the Z-bilinear
paring
(,Y: X(T)xT = Z

(called the monodromy pairing) defined as follows. The map h induces I' = Gy —
Glog/G = Tiog /T and hence X(T') X I' = X(T') X Tiog/T — Gniog/Gm. Since Gy 1og/ G
restricted to the small étale site of the underlying scheme Spec(k) of s is Z, we have the
above monodromy pairing.

6.1.4. Let £ = (I', G, h) be an object of M;. The dual E* = (I'*, G*, h*) of E is an object
of My defined as in [24]. We have I'* = X (T'), the torus part 7% of G* is Hom(I', G,,,),
and the abelian variety G*/T™ is the dual abelian variety B* of B = G/T.

Let E = (I', G, h) be an object of M.

A polarization on E is a homomorphism p : £ — E* satisfying the following conditions
(i)—(iv).

(i) The homomorphism B — B* induced by p is a polarization of the abelian variety
B.

(ii) The homomorphism I' ® Q — I'" ® Q induced by p is an isomorphism.

(iii) The pairing I' xI' = Z ; (a,b) — (p(a),b) is a positive definite symmetric bilinear
form, where ( , ) denotes the monodromy pairing (6.1.3) and p denotes the homomorphism
' —» I'™ = X(T) induced by p.

(iv) The homomorphism Tjog — (T7)10g induced by p comes from ' — T = Hom(T', G,,)
which is dual to the homomorphism I' — I'* = X (7T') induced by p.

Let My be the full subcategory of M consisting of objects which have polarizations
after base change to k.

6.1.5. For an object (I', G, h) of My, we have a subgroup sheaf Gl(org) of Gl containing G
and h(T") defined as in [24].
A log abelian variety over s is a sheaf of abelian groups A on (fs/s)g such that A =

Gl(org)/h(I’) for some object (I', G, h) of My. Let LAV(s) be the category of log abelian
varieties over s. We have an equivalence of categories

Mo S LAV(s) ; (I, G, h) = Gii) /h(T)
by [24] Theorem 3.4 (cf. [24] Proposition 4.5 and [24] Theorem 4.6 (2)).

6.1.6. Let E be an object of My and let A be the corresponding log abelian variety.
Then the log abelian variety A* corresponding to the dual E* of FE is called the dual log
abelian variety of A. We have an embedding A* C Ext'(A, Gy 10g). A polarization of A
gives a homomorphism A — A*.
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6.1.7. For an additive category C, let C ® Q be the following category. Objects of C @ Q
are the same as those of C. For objects E, E’ of C, Hom ¢go(F, E') = Hom¢(E, E') ® Q.

6.1.8. The category M; ® Q is an abelian category as is seen easily. My ® Q is stable
in M; ® Q under taking kernels, cokernels, and direct sums (cf. [49]), and hence, it is an
abelian category. Hence LAV (s) ® Q is an abelian category.

6.1.9. Let A be a log abelian variety over s corresponding to an object (I', G, h) of M.
Let ¢ be a prime number which is different from the characteristic of k. Then the (-adic
Tate module T, A is defined in the natural way as a smooth Z,-sheaf on the log étale site
of s (cf. [26] 18.9). Let V;A = Q, ® T, A.

We have an exact sequence 0 — T,G — T)A — ' ® Zy — 0 (cf. [26] 18.10).

We have Ty(A*) = Hom(T,A, Z(1)).

If T is the torus part of G, the monodromy operator N : T, A — T;A(—1) coincides
with the composition T)A — I' ® Z, — T,7(—1) — T,A(—1), where the second arrow
I'®Z¢ — T,T7(—1) = Hom (X(T),Z) is the map induced by the monodromy pairing
(,): X(T)xT' = Z (6.1.3).

6.1.10. Let A be a polarizable log abelian variety over s. Fix a polarization p : A — A*.
Then p is an isomorphism in LAV(s) ® Q. For f € Endpav(seq(4), let fi=plfpe
Endpav(s)zo(A), where f* : A* — A* is the dual of f.

Proposition 6.1.11. Let A and p be as above and let f € Endpavsee(A), f # 0. Then
Tr(ff*) > 0. Here Tr is the trace of the induced Qq-linear map V,A — V4 A.

Proof. Let E = (I', G, h) be an object of M, corresponding to A, let T" be the torus part
of G, and let B = G/T be the quotient abelian variety of G. Let fj, fg TRQ — TI'wQ,
fl,f{i :ViB — V,B, and fg,f§ : V,T — V,T be the map induced by f, f* respectively.

Then
2

Te(ff*) =) Te(fiff).
=0
By the usual theory of abelian varieties, Tr(f; ff) > 0 and it is non-zero if f; # 0.
Tr(foff) > 0 and this is non-zero if fy # 0, for we have a positive definite symmetric
form. We have Tr(fof%) > 0 and it is non-zero if f, # 0 by duality. Hence Tr(ff*) > 0
and this is non-zero unless fo = f1 = fo = 0. If fo = fi = fo =0, f = 0 because any
homomorphism B — T is zero. O]

Corollary 6.1.12. The category LAV (s) ® Q is semisimple.
Proof. This is deduced from the above proposition by the arguments in 3.4. O

6.1.13. Let A be a log abelian variety over s. Assume k = C. Then we have the
polarizable log Hodge structure over s of weight —1 corresponding to A ([23]), which we
denote by Hi(A)g. The underlying locally constant sheaf of finite-dimensional Q-vector
spaces on the topological space 5'°¢ (which is homeomorphic to a circle S*) will be denoted
by Hi(A)g. If (I',G, h) denotes the object of M, corresponding to A, we have an exact
sequence

0— Hl(G,Z) — Hl(A)B — 1 —0.
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Proposition 6.1.14. Let A; and Ay be log abelian varieties over s.

(1) If k is finitely generated over a prime field, we have Z; ®7 Hom (A;, As) 5
Hom (T[Ah EAQ)

(2) If k is a subfield of C which is finitely generated over Q, we have a bijection from
Hom (A;, Ay) to the set of pairs (a,b), where a is a homomorphism T, Ay — Ty Ay and b
is a homomorphism Hy(A))p — Hi(A3)p on (s @ C)°8 such that the pullback of a on
(s @ C)8 is induced by b.

(3) If k = C, Hom (A;, Ay) = Hom (Hy (A1) w, Hi(A2)w).

Proof. For an object £ = (I', G, h) of My, define the filtration W on E by W,,E = E for
w>0,W_1FE=(0,G,0), WoFE = (0,7,0) with T the torus part of G, and W, E = 0 for
w < —3. Then grff E = (T',0,0), g™ E = (0, B,0), where B is the abelian variety G/T,
gr,E = (0,7,0), and grlV £ = 0 for w # 0,—1,—2. Let C; = M; ® Q and let Cy be the
category of smooth Qg-sheaves on the log étale site of s. Then (1) and (2) follow from
the Tate conjecture on homomorphisms of abelian varieties proved by Faltings ([6]) and
from the injectivity of G(k) @ Q — H'(k,V,G) for a semiabelian variety G over k, by the
method of 4.3.

(3) follows from [23]. O

6.2 Log Jacobian varieties

We review the theory of log Jacobian varieties of log curves over a standard log point in
[21], and supply some results. In this subsection and the next, we omit some details of
proofs, which will be treated in a forthcoming paper.

6.2.1. Let s be the standard log point associated to a field k. Let X be a projective
vertical log smooth connected curve over s which is strict semistable, whose double points
are rational and whose components are geometrically irreducible.

Then we have a log abelian variety over s associated to X called the log Jacobian
variety of X. We will denote it by J.

This J is essentially constructed by Kajiwara in [21]. We explain his construction
below in 6.2.4.

This J has the following properties 6.2.2 and 6.2.3.

6.2.2. Let H'(X, M*®) be the sheafification of the presheaf U — H'(X x, U, M%) on
(fs/s)s. We have a degree map H!'(X, Me) — Z. Let H'(X, M#)? C H' (X, M®) be
the kernel of the degree map. Then J is a subgroup sheaf of H!(X, M#P)P.

6.2.3. Let £ = (I', G, h) be the object of M corresponding to J, let T" be the torus part
of G, and let B = G/T be the quotient abelian variety of G. Then I', T', B are described
as follows.

Let I" be the first homology group of the graph of X as usual, that is, I' = Ker (9, Z —
@D, Z), where Iy is the set of generic points of X, and I; is the set of singular points of
X. Hom (T,G,,) = Hom (I, Z). B = [[,¢;, JDw), where D(v) is the closure of v in X
which is a projective smooth curve over k and Jp, is the Jacobian variety of D(v). We

have a canonical isomorphism J = J* (cf. 6.2.7) which induces the evident isomorphisms
F=r*T=T"and B = B*.
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6.2.4. We explain the construction of J, which is essentially due to Kajiwara. For sim-
plicity, we assume that k is algebraically closed. By [21] (2.18), we have a commutative
diagram

0 0 0
r Glog H1<X7 Mgp)

0 — D, 2 — D, 2 — 0
Z
with exact rows and columns, where G = Ker (H'(X, G,,) — @, Z), and P;?;g’s is de-

fined in [21]. This diagram yields a log 1-motif (I', G, h: I' = Gl,y) and the degree map
7—}[11();3 Aggp) — Z whose kernel H'(X, M#P)? = Gy, /h(I") contains Gl((l:g)/h(F). The last
sheaf is J.

6.2.5. Let Y := X x; X. We have a M;P-torsor on Y called the Poincaré torsor, defined
as follows.

Let U =Y N U,e,({z} x {z}). Let M;; be the pushout over the trivial log structure
on U of the log structure My|y and the log structure consisting of the sections of Oy
which are invertible outside the diagonal X in Y. Let Mj be the unique fs log structure
on Y whose restriction to U coincides with M{;. (See the following local description for
the existence of such an fs log structure.) We have M:® C (Mj,)8. There is a unique
global section t of (Mj, )& /MP having the following property: Let 7 be a generator of
the log structure of s. At any singular point x of X, let fi, g1 be generators of the log of
the left X in X x4 X around x such that fig; = m, and let fs, go be the copies of them
for the right X in X x, X. Let fi — fa be the section of Mj, around {x} x {z} which is
fi — f2 on the locus {g; = g2 = 0}, which is f; on the locus {g; = fo = 0}, which is —f,
on the locus {fi = g» = 0}, and which is (—7g; 'g5")(g1 — g2) on the locus {fi = fo = 0}.
Define g, — g, similarly. Then, we have g1 — go = (—7f; ' f5 )(fi — f2) in (M) and
—7mf € M. The desired t coincides around {z} x {z} with the class of f; — f»
which is also the class of g; — go. Note that the ideal of Oy which defines the diagonal is
generated around {z} x {x} by the image of f; — f» and by the image of g; — ¢o.

Let the Poincaré torsor be the inverse image of ¢~ in (M, )8 under (M )eP —
(M3, )P /MEP. This is an MP-torsor.

If X is a projective smooth curve over k endowed with the pullback log structure from
s, this Poincaré torsor comes from the usual Poincaré G,,-torsor.

6.2.6. We have a morphism ¢ : X — H!'(X, M#P) which sends z to the pullback of the
Poincaré torsor (6.2.5) with respect to X — X x X;y — (x,y).
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If b is a morphism s — X over s, we have a canonical morphism
wop: X = JCHNX, M) ; z— ¢(z) — o(b)
called the log Albanese mapping associated to b.

6.2.7. (Self-duality of the log Jacobian.) Let b and ¢} be as above. Then the pulling back
via @, gives an isomorphism

Ext'(J, Griog) — H (X, M#)°,

which is independent of the choice of b. Hence the subgroup sheaf J of H(X, M®P)° is
regarded as a subgroup sheaf of Ext!(J, G, 10g). Via this inclusion J C Ext!(J, G log),
J is identified with the dual log abelian variety J* of J. Since this isomorphism J = J*
does not depend on b, it is defined canonically even if there is no b.

Proposition 6.2.8. Letb: s — X be a morphism over s. Let A be any log abelian variety
over s. Then the map

Hom (J, A) — Mor(X,A) ; h+— hoy,
18 bijective.

Proof. The inverse map is given as follows. Let f : X — A be a morphism. Then we
have A* = Ext* (A, Ginog) — HY(X, M®)°, where the second arrow is the pullback by
f. This induces A* — J. Taking the dual log abelian varieties, we have J — A. O

6.2.9. Let ¢ be a prime number which is invertible in k. Then we have canonical isomor-
phisms
‘/gJ = Hl(Xﬂ(l) = ’Hom(Hl(X)g, Qg)

6.3 Examples I

This subsection Examples I is for the pure case. The next subsection Examples II is for
the mixed case.
The following is a part of Conjecture 3.2.2.

Proposition 6.3.1. Let X be a projective vertical log smooth curve over an fs log scheme
S. Then h(X) = h*(X) ® h'(X) & h*(X).

Proof. 1t is enough to show that for ¢+ = 0, 1,2, the composite of the i-th projection and
the i-th inclusion

WX)e =@ H (X)e = H'(X)e = @ H/ (X)e = h(X),

comes from an element of K-group ®Q after pulling back to any geometric standard log
point. So we may assume that S is a geometric standard log point over a field k. It is
enough to show it for + = 0,2. By the duality, the case ¢ = 2 is reduced to i = 0. We
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prove the case i = 0. If there is a section S — X, the composite for ¢ = 0 coincides with
h(X)e — h(S); — h(X), and induced by an element of K-group. In the general case,
there is a section after kummer log flat localization of the base ([36] Proposition 4.1), so
we have the desired element a of K-group after the base change by (Speck,n: N — N)
for some n > 1. Then the 1/n times of Tr(a) is a desired element. O

Proposition 6.3.2. Assume that S is the standard log point over C. Let X be a con-
nected projective strict semistable curve over S. Then the Hodge conjecture 5.2.6 for
Hom (Q, h?(X)(1)) is true.

Proof. Assume that we are given a homomorphism h : Q — H?*(X)g(1). By invariant
cycle theorem, this comes from the classical Betti cohomology H?*(X,,, Q(1)). Since h(1)
belongs to Fil' H?(X)y, it vanishes in H?(X,Ox). Hence it comes from the kernel of
H?*(Xan,Q(1)) = H*(X, Ox). By the exponential sequence 0 — Z(1) — Ox,, — 0% —
0, it comes from Pic(X) ® Q.

The next will be proved in a forthcoming paper.

Proposition 6.3.3. Let s be a geometric standard log point of characteristic # (. For
1=1,2, let X; be a projective vertical log smooth curve over s which is strict semistable,
and let J; be the log Jacobian variety of X;. For a homomorphism h : H(X,), — H'(X3)y,
the following two conditions (1) and (ii) are equivalent.

(i) h is a morphism H'(X1) — H'(X3) of log motives over s.

(ii) h comes from a morphism J, — Jy in LAV (s) (via the isomorphisms H'(X;),(1) =
Vidi in 6.2.9).

Proposition 6.3.4. Let X and Y be projective vertical log smooth curves over an fs log
scheme S whose geometric fibers are connected.

(1) Assume that S is the standard log point over C and that X and Y are strict
semistable over S. Then the Hodge conjecture 5.2.6 for Hom (h(X), h(Y)) is true.

(2) Assume that S is of finite type over Q. Then the second Tate conjecture 5.2.4 for
Hom (h(X), h(Y)) is true.

(3) Assume that S is a standard log point associated to a finitely generated field over
a prime field whose characteristic is different from a prime number £. Then the Tate
conjecture 5.2.3 for Hom (h(X), h(Y)) is true.

(4) For f,g € Hom (h(X),h(Y)), if f and g are numerically equivalent, then f = g.

(5) The endomorphism ring of h(X) is a finite-dimensional semisimple algebra over

Q.

Proof. By 2.3.14, Proposition 2.1.9 and ¢-adic log proper base change theorem [22] Propo-
sition 5.1 (cf. [22] Remark 5.1.1), we may assume that S is a standard log point and X
and Y are strict semistable and that their double points are rational and their compo-
nents are geometrically irreducible. Let J and J’ be the log Jacobian variety of X and
Y, respectively. By Propositions 6.3.1, 6.3.3, and the method of 4.3, we can identify
Hom (h(X), h(Y)) with Hom pav(s)eq(/, J'). Then we reduce to the results in 6.1. O
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6.4 Examples II

6.4.1. Let X be a projective vertical log smooth curve over an fs log scheme S. Let n > 1
and s1,...,8, : S — X be strict morphisms over S such that s;(S) N s;(S) =0 if i # j.
Let D :=J, si(S) and let U := X \ D.

We will denote the log mixed motive corresponding to the standard object associated
to (U, X, D, 1) over S by H'(U).

Let I' = Ker(sum : Z" — Z). We have WoM = M, W_oM =0, W_1M = H'(X),
gr¥ M =T ® Q(—1), where M = H'(U).

The spectral sequence as in 4.2.4 for each realization degenerates at Es.

6.4.2. Let the notation be as in 6.4.1.

If S is over Z[1//], we have an exact sequence

(1) 0— HYX), —» HY(U), > T @ Qu(—1) = 0
of Qy-sheaves.

If S is either log smooth over C or the standard log point associated to C, we have an
exact sequence

(2)0 = H(X)y - HU)g > T®Q(-1) —» 0
of log mixed Hodge structures over S.

Assume that S is a standard log point associated to a field k, and assume that X
is connected and strict semistable and that their double points are rational and their
components are geometrically irreducible. Let J be the log Jacobian variety of X. Then
(s;); induces a homomorphism ¢ := @ o (s;); : ' = J by the log Albanese mapping ¢
(6.2.6).

Note that for any log abelian variety A over S, we have a canonical homomorphism

(3) A(S) ® Q — Ext'(Qy, V,A)
by Kummer theory, which is injective if £ is finitely generated over a prime field. If £ = C,
we have also a canonical injective map

(4) A(S) — Ext(Z, Hi(A)g).

We have:

(5) Under the homomorphism Hom (T, J) — Ext!'(I'®Qy, V;.J) induced by (3) (applied
to the log abelian variety A = Hom(I',J)), the extension class of (1) coincides with the
image of ¢ : ' — J.

(6) If & = C, under the homomorphism Hom (T, J) — Ext*(I', H,(J)g) induced by
(4), the extension class of (2) coincides with the image of ¢ : ' — J.

Proposition 6.4.3. Let Uy, Uy be objects as U in 6.4.1.

(1) Assume that S is the standard log point over C and that Xy and X5 are connected
and strict semistable. Then the Hodge conjecture 5.2.6 for Hom (HY(Uy), H'(Us)) is true.

(2) Assume that S is of finite type over Q. Then the second Tate conjecture 5.2.4 for
Hom (H'(Uy), HY(Uy)) is true.

(3) Assume that S is the standard log point associated to a finitely generated field over
a prime field whose characteristic is different from a prime number €. Then the Tate
conjecture 5.2.3 for Hom (H'(Uy), HY(Us)) is true.

Proof. Similarly as in Proposition 6.3.4, we may assume that S is a standard log point
and X; are connected and strict semistable and that their double points are rational and
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their components are geometrically irreducible. For i = 1,2, let J; be the log Jacobian
variety of X;. By (5) in 6.4.2, by the injectivity of the map (3) in 6.4.2, and by Proposition
6.3.3, the method of 4.3 shows that

(%) the set of morphisms H'(U;) — H'(Us) is identified with the set of pairs (a,b),
where a is a homomorphism I'y ® Q — 'y ® Q and b is a morphism J; — Jo in LAV (s) ® Q
such that ¥y 0oa = bo 1.

Hence by (5) in 6.4.2, by the injectivity of the map (3) in 6.4.2, and by this (x), the
method of 4.3 proves (2) and (3). Similarly, by (6) in 6.4.2, by the injectivity of the map
(4) in 6.4.2, and by (x), the method of 4.3 proves (1). O
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