Logarithmic structures of Fontaine-Illusie. I1.
— Logarithmic flat topology.

Kazuya Kato

Abstract

This is Part II of the author’s paper Logarithmic structures of Fontaine-Illusie.
We discuss log flat topology and log flat descent. We study the first log flat coho-
mology H 1(X10g’ﬂ, @) for various sheaves of groups G, for example, G = G L, finite
flat commutative group schemes, the log multiplicative group M#P, etc.
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Introduction.

This is a continuation of the paper [K;] on the foundation of log geometry in the sense
of Fontaine-Illusie. Here we discuss mainly log flat topologies, especially log flat descent
theory.

This paper was started around 1991, and was circulated as an incomplete preprint for a
long time. Since then, some contents of this paper have been reproduced by several authors
with proofs ([Ha|, [KS], [Ni], [Na2], [Ol], ...). A. Moriwaki [M] also studied flat descents
in the category of log schemes. In the parts which were incomplete in the circulated
preprint, we sometimes referred to these papers instead of completing the original proofs.
In particular, the author does not claim the results with * (i.e., two theorems 7.1, 7.2
and one proposition 6.5) are his results. Since the paper is already referred to in many
published works, in the other parts, we preferred to preserve the original, circulated form.
In both parts, we tried to preserve the original numberings of definitions and propositions.



The author wishes to express his special thanks to Chikara Nakayama who helped him
a lot in the completion of this paper. He is also thankful to Luc Illusie, Takeshi Saito,
Takeshi Kajiwara, and Takeshi Tsuji for helpful discussions.
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1 Basic facts.

In this section, we review basic facts about logarithmic schemes in [K;], and introduce “fs
log schemes” and “log flat morphisms.”

1.1. In this paper, a monoid is always assumed to be commutative and has a unit element.
A homomorphism of monoids is assumed to respect the unit elements. The semi-group
law of a monoid is usually written multiplicatively.

For a monoid P, we denote by P* the group of all invertible elements of P, and by
PeP the group hull P'P = {a~'0; a,b € P} of P.

1.2. Pre-logarithmic structures, logarithmic structures, logarithmic schemes. A pre-log
structure on a scheme X is a sheaf of monoids M on the étale site X¢ endowed with a
homomorphism of sheaves of monoids

a: M — Oy,

where Oy is regarded as a monoid for the multiplicative law.
A pre-log structure M is called a log structure if

a0 S 0F viaa

A log scheme is a scheme endowed with a log structure. A morphism of log schemes
is defined in a natural way. For a log scheme X, the log structure of X is usually denoted
by Mx.

1.3. The log structure associated to a pre-log structure. For a scheme X and a pre-log
structure M = Oy, the log structure M~ associated to M is defined to be the pushout
of the diagram

M+ a H0%) S 0%

in the category of sheaves of monoids, which is endowed with the homomorphism M~ —
Oy induced by a and by OF = Ox.

1.4. The inverse image of a log structure. Let f: X — Y be a morphism of schemes,
and let M be a log structure on Y. Then the inverse image f*M of M is defined to
be the log structure on X associated to the pre-log structure f~'(M) endowed with
fYM) — fYOy) = Ox. Here f~'(M) denotes the sheaf-theoretic inverse image of
M.



Definition 1.5. (1) We say a monoid P is integral if the canonical map P — PSP is
injective (that is, if ab = ac (a, b, c € P) implies b = ¢).

We regard an integral monoid P as a submonoid of P&P.

(2) We say a monoid P is saturated if P is integral and satisfies the following condition:
If a € P and a" € P for some n > 1, then a € P.

(3) We call a finitely generated integral monoid a fine monoid. We call a finitely
generated saturated monoid an fs monoid.

1.6. Fine log schemes and fs log schemes. We call a log scheme X a fine (resp. an fs)
log scheme if the following condition is satisfied: Etale locally on X, there exists a fine
(resp. an fs) monoid P and a homomorphism «: P — Ox such that My is isomorphic to
the log structure associated to the constant sheaf P on X regarded as a pre-log structure
with respect to a.

An fs log scheme is fine. A fine log scheme X is fs if and only if My is a sheaf of
saturated monoids.

For a fine (resp. fs) log scheme X, the stalk (Mx/O%)z is a fine monoid (resp. an fs
monoid) for any = € X.

1.7. Charts. (1) A chart of a fine (resp. an fs) log scheme X is a pair (P, h), where P is
a fine (resp. an fs) monoid and h is a homomorphism P — M satisfying the following
condition: Let P~ be the log structure associated to P — Ox induced by h. Then the
induced map P~ — My is an isomorphism.

A chart for X exists étale locally on X.

(2) Let f: X — Y be a morphism of fine (resp. fs) log schemes. A chart of f is a

diagram My & P — Q LN M such that « is a chart for Y, § is a chart for X, and the
diagram
P — Q

| |

[ (My) —— Mx

is commutative.

A chart of f exists étale locally on X and Y. This is proved in [Kj] in the fine case
and the fs case is proved similarly.

For a morphism f: X — Y and a fine (resp. an fs) log structure M on Y, the inverse
image f*M is also a fine (resp. an fs) log structure. A chart of M gives naturally a chart
of f*M.

1.8. Finite inverse limits. The category of fine (resp. fs) log schemes has finite inverse
limits. For a finite inverse system ¥, its inverse limit is a fine (resp. an fs) log scheme
whose underlying scheme is finite and of finite presentation over the inverse limit of the
underlying diagram of schemes of . To see this, it is enough to show it for fiber products.

The fiber product of ¥: X, f# Xy <f—2 X, is constructed étale locally on X;’s as follows.

Etale locally, take charts o;: P; — My, of X; and charts My, L p h4 P; X My,
of f; (j = 1,2) (this is possible by 1.7). Let X be the fiber product of the underlying

diagram of schemes of ¥ and let P be the pushout of the diagram P, i By iy P, in the
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category of monoids. Then we have a canonical homomorphism P — Ox. Let P™ be
the image of P — P#P (resp. P¥' = {x € P& ; z" € Image (P — P®P) for some n > 1}).
Then the fiber product of ¥ in the category of fine (resp. fs) log schemes is the scheme
T = X ®zp) Z[P™] (vesp. X ®gp) Z[P*']) endowed with the log structure associated to
P (resp. P¥) — Or.

1.9. Advantages of fs log schemes. In §2-8§10 of this paper, we consider fs log schemes
but do not consider fine log schemes, though we considered fine log schemes in [K;]. The
category of fs log schemes has, for example, the following advantages.

1.9.1. The category of fs log schemes has much more group objects than the category of
fine log schemes. This point is explained in the preprint [Ks].

1.9.2. The exactness of the sequence
0 — I'(X,Z/n(1)) = T(X, MP) 5 T(X, M)

(n € Z,n # 0), which plays important roles in log algebraic geometry (see §4), holds for
an fs log scheme X, but does not hold in general for a fine log scheme X.

1.9.3. “Log Galois theory” works well for fs log schemes (see §10) but not for fine log
schemes. For example, let A be a discrete valuation ring, n > 2 an integer which is
invertible in A, 7 a prime element of A, B = A[x!/"], and assume that A contains
a primitive n-th root of 1. Let G = Auta(B) = Z/n. Endow Y = Spec(A) (resp.
X = Spec(B)) with the standard log structure which is associated to N — A;1 +— 7
(resp. N = B; 1+ 7/"). Then,

Gx X5 X xy X;(g,2) = (z,92)

(an isomorphism as in the étale Galois theory in classical algebraic geometry) holds in the
category of fs log schemes, but does not hold in the category of fine log schemes. (Indeed,
the underlying scheme of the fiber product X xy X in the category of fine log schemes is
the same as the fiber product of the underlying schemes, and hence is connected (not the
disjoint union of §(G)-copies of X).)

1.10. Log flatness, log smoothness, log étaleness. Let f: X — Y be a morphism in either
the category of fine log schemes or the category of fs log schemes. We say f is log flat
(resp. log smooth, resp. log étale) if classical fppf (classical étale, classical étale) locally
on X and on Y, there exists a chart My < P — (Q — My of f satisfying the following
two conditions (i) and (ii).

(i) The induced map P — Q2P is injective (resp. is injective and the order of the
torsion part of its cokernel is invertible on X, resp. is injective and its cokernel is finite
with an order invertible on X).

(ii) The induced morphism of schemes X — Y xzp) Z[Q)] is flat (resp. smooth, resp.
étale) in the classical sense.

A morphism of fs log schemes is log flat (resp. log smooth, resp. log étale) if and only
if it is so as a morphism of fine log schemes.
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Log flat (resp. log smooth, resp. log étale) morphisms are stable under compositions
and base changes. The stability for base changes is seen easily, and the stability of
log smoothness and that of log étaleness for compositions are seen from the following
infinitesimal characterization of log smoothness and that of log étaleness, respectively.

A morphism f: X — Y of fine log schemes is log smooth (resp. log étale) if and only
if the following condition is satisfied:

(%) For any diagram of fine log schemes including f

T 14X

i |7

S sy

such that i*(Mg) — My and such that the underlying scheme of T is (via i) a closed
subscheme of the underlying scheme of S defined by a nilpotent quasi-coherent ideal of
Og, then there exists classical étale locally on S a morphism (resp. there exists a unique
morphism) g: S — X such that goi =t and fog=s.

See [K;] (3.5) for the proof.

A morphism f: X — Y of fs log schemes is log smooth (resp. log étale) if and only if
the condition
(%)’ the same as (%) except that we assume that 7" and S are fs log schemes,
is satisfied.

This is proved in the same way as the case of fine log schemes.

We prove the stability of log flatness for compositions. This stability is also proved
in [O]] Corollary 4.12 (ii) by another method. See also Ogus’ book [Og] Chapter IV,
Proposition 4.1.2 (4).

Lemma 1.11. Let f : X — Y be a log flat morphism of fine (resp. fs) log schemes and
let 6: P — My be a chart. Then fppf locally on X and on'Y in the classical sense, there
exists a chart (P LA My, Q — Mx, P — Q) of f including § satisfying the conditions (i)
and (i) in the definition of log flatness in 1.10.

Proof. Let (My < P' — Q" — Mx) be a chart of f satisfying these conditions (i) and
(ii) in the definition of log flatness.

Claim 1. We may assume that there is a homomorphism P — P’ such that §: P —
My factors as P — P’ — My and such that the homomorphism P& — (P')8P/(P')* is
surjective.

Proof of Claim 1. Fix x € X, y = f(x) € Y. By replacing P’ with the inverse image
P" of Myy under

P& x (P8 — M ;5 (a,b) v ab,

and by replacing " with the pushout of P” - P’ — @)’ in the category of fine (resp. fs)
monoids, we obtain the situation stated in Claim 1.
Assume we have P — P’ as in Claim 1.



Claim 2. We may assume that there are a finitely generated abelian group H which
contains P8P as a subgroup and a homomorphism H — ()% such that the diagram

pe 5 H

1 S
(P = @

is commutative and is co-cartesian in the category of abelian groups.
Proof of Claim 2. Let R = (Q")8/(P")® and let S be the inverse image of (P’)* in

PP, Then PeP/S 5 (P")gp /(P")*. Consider the commutative diagram of exact sequences

Ext'(R,S) — Ext'(R,P®) — Ext'(R, P#?/S) — 0

4 { {
Ext'(R, (P")*) — Ext'(R,(P)®*) — Ext'(R,(P)®/(P)*) — 0.

(Note that Ext® = 0 for Z-modules.) Let b € Ext'(R,(P')®?) be the class of (Q’)eP.
Since the right vertical arrow is an isomorphism, this diagram shows that there is a €
Ext'(R, P#?) such that a’ — b, where a’ denotes the image of a in Ext'(R, (P')®), comes
from an element ¢ of Ext' (R, (P')*). Since c dies in Ext'(R, I) for a divisible abelian group
I containing (P')* as a subgroup, c dies in Ext'(R, G) for some finitely generated abelian
group G containing (P’)* as a subgroup. Replace P’ by the pushout of P’ + (P')* — G,
@' by the pushout of Q' + (P’)X — G, X by Z[G] Qz[(P)x] X,and Y by Z[G] Qz[(P)x] Y.
Then ¢’ = b in Ext'(R, (P')#?). We have the desired abelian group H with an exact
sequence 0 — P# — H — R — 0 corresponding to a € Ext'(R, P#). This proves Claim
2.

Now let the situation be as in Claim 2, and let ) be the inverse image of ()" in H. Since

Q/S = Q'/(P")*, QQ — Mx is a chart of X. We have the chart My Zpo Q — Mx of
f having the desired property. O]

Now we complete the proof of the stability of the log flatness for composition. Let
f:X =Y and g:Y — Z be log flat morphisms of fine (resp. fs) log schemes. Let

My «+— P — Q % My be a chart of g which satisfies the conditions (i) and (ii) in the

definition of log flatness. By 1.11, we may assume that there is a chart My L QQ—R—
My of f including 8 which satisfies the conditions (i) and (ii) of log flatness. Then the
chart My < P — R — My of g o f satisfies the conditions (i) and (ii) of log flatness.

A morphism f: X — Y of fine log schemes such that the homomorphism f*My — My
is an isomorphism is log flat (resp. log smooth, resp. log étale) if and only if the underlying
morphism of schemes is flat (resp. smooth, resp. étale).

2 The logarithmic flat topology and the logarithmic
étale topology.

Definition 2.1. A homomorphism of fs monoids h: P — () is said to be of Kummer type
if the following condition is satisfied: It is injective, and for any a € @), there exists n > 1
such that a" € h(P).



Definition 2.2. We say a morphism f: X — Y of fs log schemes is of Kummer type if
for any € X, the homomorphism of fs monoids My5/ (’);@ — Mxz/ CQ)X(’E with y = f(x)
is of Kummer type in the sense of 2.1.

A standard example is the following. Let Y be an fs log scheme with a chart P — My,
and assume that we are given an fs monoid ) and a homomorphism P — ) of Kummer
type. Let X be any scheme over Y ®zp] Z[Q] endowed with the log structure associated
to @ — Ox. Then f: X — Y is of Kummer type.

If X =Y ®zp) Z]Q] here, f is log flat and surjective, and X is a standard example of
a covering of Y for the log flat topology introduced in the following 2.3.

In the log flat case of 1.10, if f is of Kummer type and locally of finite presentation,
we can take the chart satisfying the additional conditions that P — () is of Kummer type
and that X — Y ®gzp Z[Q)] is surjective. See [INT] Proposition 1.3.

Now we define the logarithmic flat topology and the logarithmic étale topology on an
fs log scheme. (In the sequel we neglect questions of universes, which can be treated as
in the non-log case.)

Definition 2.3. For an fs log scheme T, we say a family of morphisms {f;: U; — T'}; of
fs log schemes is a covering of T" for the log flat (resp. log étale) topology, if the following
conditions (i) (resp. (i)’) and (ii) are satisfied.

(i) fi are log flat and of Kummer type, and the underlying morphisms of schemes of
fi are locally of finite presentation.

(i)' fi are log étale and of Kummer type.

(ii) T'= U/fi(U;) (set theoretically).

Let X be an fs log scheme and let (fs/X) be the category of fs log schemes over X. We
define the Grothendieck topology called the log flat (resp. log étale) topology on (fs/X)
by taking coverings as above. We denote the site (fs/X) endowed with this topology by
X8 (resp. X.2%).

To see that these really give definitions of Grothendieck topologies, we need the follow-
ing lemma whose (2) is a case of [Nal] (2.2.2). (In there, it is proved that the assumption
that f is of Kummer type in 2.4 (2) can be replaced by the weaker assumption that f is
exact.)

Lemma 2.4. Let f: X =Y be a morphism of fs log schemes of Kummer type, let Y’ be
an fs log scheme over Y, and let f': X' := X Xy Y' = Y.

(1) The morphism f' is of Kummer type.

(2) Assume that f is surjective. Then f" is surjective. More strongly, for any x € X
and y € Y' having the same image in Y, there exists z € X' with image x in X and y in
Y’

Here and in the rest of this paper, when we are discussing fs log schemes, the notation
of the fiber product stands for the fiber product in the category of fs log schemes unless
the contrary is explicitly stated.

Proof. We may assume that X,Y and Y’ have the same underlying scheme which is
the spectrum of an algebraically closed field k. Take a submonoid P’ of My such that
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My = k* x P'. Let P be the inverse image of P’ in My under the homomorphism
My — My. Then My = k* x P. We have a chart My < P — P’ — My, of Y — Y.

Take a submonoid () of My such that My = k£* x ). Then the map My — My is
written as k* x P — k* x Q ; (s,t) — (sh(t),b(t)) for some homomorphism h : P — k*,
where b is the composition P = My /k* — Mx/k* = Q. Since k* is a divisible abelian
group and b is injective, h extends to a homomorphism () — k* which we still denote by
h. We have a commutative diagram

b

P = @
1 3
My — MX

where the left vertical arrow is the inclusion map and the right vertical arrow is y — h(y)y

which we denote by . We have a chart My < P LA Q> Myxof X =Y.

Let Q" be the pushout of P’ «+ P — () in the category of fs monoids. Then the
fiber product X’ is Spec(R) where R = k[Q'] ®y(pq k with the log structure associated to
@ — R. Let A be the torsion subgroup of (Q")#?. Then A C @ and the map P’ — Q'/A
is injective. For any a € @’ \. A, there is some n > 1 such that a™ comes from P’ \ {1}.
Hence there is a nilpotent ideal I of R and a nilpotent ideal J of k[A] such that the map
k[A] — R induces k[A]/J = R/I. Hence X' is not empty and Q'/A > (Mx:/O%/), for
any x € X'. This proves (1) and (2). O

We prove the following three propositions 2.5, 2.6, 2.7 concerning coverings for the
logarithmic flat topology. First, the following 2.5 says that the family {f;(U;)}; in 2.3 (ii)
is an open covering of 7.

Proposition 2.5. Let f: X — Y be a morphism of fs log schemes. Assume that f is log
flat and of Kummer type, and the underlying morphism of schemes of f is locally of finite
presentation. Then f is an open map.

Proposition 2.6. Let f: X — Y be a morphism of fs log schemes, and assume that f is
a covering for the logarithmic flat topology. Then, the underlying diagram of topological
spaces of

X Xy X=X-—-Y

1s exact, that is, Y is the coequalizer of the left two arrows in the category of topological
spaces. (Here X xy X is the fiber product in the category of fs log schemes.)

Proposition 2.7. Let f: X — Y be a morphism of fs log schemes.

(1) The following two conditions are equivalent.

(i) f is of Kummer type.

(ii) Etale locally on X, there exists a covering Y' — Y for the log flat topology such
that the log structure of X xy Y is the inverse image of the log structure of Y.

(2) Assume that f is of Kummer type, X is quasi-compact, and assume that we are
given a chart P — My . Then, globally on X, we can take as Y' in (ii) a log scheme over
Y of the type Y ®zp Z|Q)] endowed with the log structure associated to @ — Oy, for
some homomorphism of fs monoids P — () of Kummer type.
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Proof of 2.5. Since classical fppf morphisms are open maps, it suffices to prove 2.5 in the
following case: Y has a chart P — My, and there are an fs monoid () and a homomorphism
P — @ of Kummer type such that X =Y ®gp) Z[Q] with the log structure associated
to @ — Ox. Let G be the group scheme Spec(Z[Q®/P#]) over Z with the trivial log
structure. Then, G acts on X over Y by

Ox = Oy ®zp] Z[Q] = Oaxx = Oy ®zp] Z[Q & (Q*/P#P)]
l®ar1® (a,a mod P#P) (a € Q).

We have G x X — X Xy X; (g,x) — (z,gx). (Recall that the fiber products are taken in
the category of fs log schemes.)

Note that f is a closed map (for the underlying morphisms of schemes of f is finite) and
surjective (indeed, since Z[P] — Z[Q)] is injective and finite, Spec(Z[Q]) — Spec(Z[P]) is
surjective, and the surjectivity of a morphism of schemes is preserved by base changes).
Hence Y has the quotient topology of the topology of X.

Let U be an open set of X. By the above remark, to see that f(U) is open in Y, it
is enough to show that f~'(f(U)) is open in X. But this last fact follows from 2.8 below
and from the fact the action G x X — X is fppf (since G is fppf over Z).

Lemma 2.8. With the notation as above, f~1(f(U)) coincides with the image of G x U
under the action G x X — X.

Proof. This is reduced to the case where Y is the spectrum of a field. O]

Proof of 2.6. By 2.4 (2), the sequence of the underlying sets is exact. Hence, it is enough to
show that the topology of Y is the quotient topology of that of X. Taking local charts, we

may assume that there exists a chart My <« P KR Q — Mx of f with h being of Kummer
type such that the induced morphism of schemes u: X — Y xyzp) Z[Q)] is flat, surjective
and locally of finite presentation. Since Y xgz;p) Z[Q] — Y is closed and surjective, the
topology of Y is the quotient topology of that of Y xzp) Z[Q)]. Further, since v is open
and surjective, the topology of Y xzp) Z[Q)] is the quotient topology of that of X. Thus
we conclude that the topology of Y is the quotient topology of that of X.

Proof of 2.7. Assume that the condition (ii) in (1) is satisfied. Then, X xy Y" — X is of
Kummer type by 2.4 (1) and X Xy Y’ — Y is of Kummer type, and hence X — Y is of
Kummer type, that is, the condition (i) is satisfied.

Next, assume that the condition (i) is satisfied. Taking local charts for f, we see that,
after localizing X, there is a positive integer n such that the cokernel of (f*My )8 — M
is killed by n. We show that, under the assumption of the existence of such an n, globally
on X, there exists a covering Y’ — Y such that the log structure of X xy Y” is the inverse
image of the log structure of Y, which completes the proof of (1). To show this, by étale
localizing Y, we may and will assume that there is a chart P — My of Y. We show that,
under this further assumption of the existence of a chart of Y, there exists a covering of
the type Y ®zp Z[Q] as in (2). This completes not only the proof of (1) but also the
proof of (2) because there is an n which kills the cokernel of (f*My )8 — M3 under the
assumption of (2). Let h: P — @ be a homomorphism n: P — P of Kummer type, let
Y' =Y ®gp Z|Q], and let X' = X xy Y'. It is enough to show that f™*My+ — Mx is
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an isomorphism, where f’ is the projection X’ — Y’. Since f’ is of Kummer type, it is
sufficient to show that (f"* My )8 — MS is an isomorphism, which is easily checked at
stalks (cf. [Nal] 2.1.1).

3 Descent theory. I.

Concerning the descent theory for logarithmic flat topology, it seems a right philosophy is
that morphisms descent, properties of morphisms also descent, but objects do not descent.
We show in §3 (resp. §7) that morphisms (resp. properties of morphisms) descent for the
log flat topology (3.1) (resp. (7.1)) and in §8 that log objects descent for the classical flat
topology (8.1).

Theorem 3.1. Let X be an fs log scheme, and let Y be an fs log scheme over X. Then,

the functor
Morx( ,Y): T+ Morx(T,Y)

on (fs/X) is a sheaf for the log flat topology.

Theorem 3.2. Let G105 be the functor T — T(T, M) on (fs/X). Then Gy jog is a
sheaf for the log flat topology.

We remark that in the circulated version (cf. Introduction), G,,10s Was denoted by
Gept,
Since a sheaf for the log flat topology is also a sheaf for the log étale topology, the

above results show that the functors Mory( ,Y) in 3.1 and G, g are sheaves for the log
étale topology.

3.3. We prove Theorem 3.1. In this 3.3, we show that it is sufficient to prove that the
functors

(3.3.1) T—T(T,07) and T (T, My)

are sheaves for the log flat topology.
We may assume that X = Spec(Z) with the trivial log structure and Y is affine as a
scheme. Further, we may assume that Y has a chart P — My (for this, see [KKN] §5).
Let F,G, H be functors (fs/ Spec(Z)) — (Set) defined by

F(T) = {ring homomorphisms I'(Y, Oy) — I'(T, Or)}

G(T) = {homomorphisms P — I'(T, Mr)}

H(T) = {homomorphisms P — ['(T, O7)}.
Then, Morx( ,Y) is the fiber product of ' — H < G, where the first arrow is induced
by P — I'(Y, Oy) and the second arrow is induced by I'(T, M7) — I'(T, Or). Hence it is

sufficient to prove that F,G, H are sheaves.
Take a presentation

(Y. Oy) =Z[T;; i € 1)/(f;; € J),
N =N — P (exact).
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Then, F(T) is the kernel of I'(T, O7)" — T(T, Or)”’, and G(T') and H(T') are the equalizers
of (T, Mr)* = T(T, Mr)" and I'(T, Or)® = I'(T, Or)", respectively. Hence it is sufficient
to prove that the functors in 3.3.1 are sheaves.

3.4. We prove that T+ I'(T, Or) is a sheaf for the log flat topology. It is sufficient to
prove

Lemma 3.4.1. Let T be an fs log scheme which is affine as a scheme and which has a
chart P — Mry. Let Q) be an fs monoid, let P — Q) be a homomorphism of Kummer type,
let T" =T @yp) Z]Q] which we endow with the log structure associated to Q@ — Opr, and
let T" =T x7 T be the fiber product in the category of fs log schemes. Then

() T, Or) — F(T’, Or) = F(T”, Orn)
18 exact.

Proof. Let A =T(T,Or). Then, the diagram (x) is isomorphic to
. B
() A= A®gp Z[Q)] ﬁ:; A @zip Z[Q ® (Q%/ P*)],

where (1 (resp. fs) is the homomorphism of A-algebras which sends 1 ® a (a € Q) to
1® (a,1) (resp. 1 ® (a,a mod P#P)). Let s: A ®zp) Z|Q] — A be the homomorphism of
A-modules which sends 1®a (a € Q) toaifa € P,andto0ifa & P. Let 1: ARzp Z[Q®
(Q8P/P8P)] — A ®gp Z|Q)] be the homomorphism of A-modules which sends 1 ® (a,b)
(a € Q,b e Q%/P) to 1®aif b#0, and to 0 if b = 0. (Here we use the fact that
P — @ is of Kummer type to show that s is well-defined.) Then, s o « is the identity
map of A, and awo s+ 1o (B — 1) is the identity map of A ®zp) Z[Q]. This proves the
exactness of (). O

3.5. We prove that T+ ['(T, M7) is a sheaf for the log flat topology.

Let T" — T be a classical fppf covering (recall that this means that the log structure
of T" is the inverse image of that of T" and the underlying morphism of schemes of 7" — T’
is an fppf covering), and let 7" =T X7 T". Then

I(T,0F) - T(T,05) = T(1T",05)
is exact (a classical result). Further,
F(T, MT/O;) — F(T/, MT//OX/) = F(T”, MT///OX,,)

is exact. To see it, taking local charts, we may assume that Mp/OF is the inverse image
of a sheaf on the Zariski site, and use the fact that My /OF, and My /O7, are the inverse
images of the sheaf My /OF and the fact that the diagram of topological spaces

T""=T —T

is exact. We can deduce from these two exactness that 7" — I'(T, Mr) is a sheaf for the
classical flat topology.

Since T+ I'(T, My) commutes with the limit with respect to the inverse system of
the étale neighborhoods of a geometric point of the underlying scheme of T, it is sufficient
to prove the following.
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Lemma 3.5.1. Let T, 7", P — My and P — @Q be as in the hypothesis of Lemma

3.4.1, and assume T = Spec(A) for a local ring A, P = (M7 /OF);, where t is the closed
point of T', and @ has no torsion. Then,

F(T, MT) — F(T/, MT’) = F(TH, MT”)
18 exact.

Proof. Let A’ =T(T",Or) = AQgp Z[Q], A" =T(T", Orr) = A®zp) Z]|Q & (Q=P ) P#P)).
By 34.1, A - A = A” is exact. Let I (resp. I’, resp. I”) be the ideal of A (resp. A’,
resp. A”) generated by the image of P\ {1} (resp. @\ {1}, resp. @\ {1}), and let V' (resp.
V', resp. V") be the subgroup of A* (resp. (A")*, resp. (A”)*) consisting of elements
which are congruent to 1 modulo I (resp. I’, resp. I”). Since A/I = A'/I’, we see that
V — V' = V" is exact. It remains to show that

(*) F(T, MT>/V — F(T’,MT/)/V/ = F(T”,MTH)/V”

is exact. Consider the exact diagram
B1

() Pe(A/D) = Q& (A/1) = Qe {(A/1)Q*/ P&},
B2

where /31 (resp. fs) is the map (a,u) — (a,u) (resp. (a,au)). The exactness of this follows
from the exactness of P — @ = Q @ (Q%°/P*P). Now there is a natural homomorphism
of diagrams from (#x) to (*), which induces an isomorphism on the first terms, an iso-
morphism on the second terms, and an injection on the last terms. Since (¥x) is exact,
(%) is also exact. O

3.6. We prove that G, 1o, is a sheaf for the log flat topology. Let 7" — T be a log
flat morphism of Kummer type which is surjective and locally of finite presentation as a
morphism of schemes. Assume that 7" has a chart P — My and is quasi-compact. Let
T" = T"x¢T" (the fiber product in the category of fs log schemes). Then, I'(T, M3") (resp.
D(T", M), resp. T(T", M) is isomorphic to imI'(T,a™ Mr) (resp. imI'(T",a™" M),

resp. hgnF(T” ,a~*Mrpn)), where a ranges over all elements of P. (This follows from the

fact that 7" and 7" are of Kummer type over T.) Hence the exactness of I'(T, M3") —
DT, M%) = I(T", M%) is reduced to the exactness of I'(T, My) — I(T',Mp) =
(7", Mp»). This implies that G, 1o is a sheaf for the log flat topology.

4 Cohomology.

For an fs log scheme X, X&' denotes the category (fs/X) endowed with the classical fppf
topology. That is, (U; — T); is a covering in X§ means that T is an object of (fs/X),
the log structure of U; is the inverse image of My for any 4, the underlying scheme of U;
is flat and locally of finite presentation over that of 7', and the images of U; in T" cover T'
set theoretically.

The aim of this section is to prove
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Theorem 4.1. Let X be an fs log scheme and assume that X is locally Noetherian as a
scheme. Let e: X% — X' be the canonical morphism of sites. Let G be a commutative
group scheme over the underlying scheme of X satisfying either one of the following two
conditions.

(i) G is finite flat over the underlying scheme of X.

(ii) G is smooth and affine over the underlying scheme of X.

We endow G with the inverse image of the log structure of X. Then we have a
canonical isomorphism

R'e,G =lim Hom(Z/n(1), G) @z (Gin,tog/Gm),
n#0

where n ranges over all non-zero integers and the inductive limit is taken with respect to
the canonical projections Z/mn(1) — Z/n(1).

Here G, is the functor T — I'(T,OF) on (fs/X) and Z/n(1) = Ker (n: G,, — G,,)
(n #0). The quotient Gy, 105/ Gy here is taken in the categories of sheaves on X§.

The following Kummer sequence for G, 1o on XfllOg will be a starting point for the
proof of 4.1.

Proposition 4.2. Let X be an fs log scheme. Then the sequences of sheaves on Xéog
(resp. X1%)

0—Z/n(1) = G, = G, — 0

0— Z/?’L(l) — Gm,log AN Gm,log — 0
are exact for any non-zero integer n (resp. for any integer n which is invertible on X ).
Proof. Similarly as in [KN] 2.3. O

4.3. Let X be an fs log scheme and let G be a sheaf of abelian groups on X}fg. We define
a canonical homomorphism of sheaves on Xéog

(4.3.1) ligl’]-lom(Z/n(l), G) ® (Gyntog/Gm) — R'e.G
as follows. Let h be a local section of Hom(Z/n(1),G). By the Kummer sequence
0= Z/n(1) = Guiog — Gmiog — 0

on Xéog, we have
Gmitog = £:Gmiog =+ R'e.(Z/n(1)) & R'e.G,

where 0 is the connecting homomorphism. The map ¢ kills G,,, for n: G,, — G,, is
surjective on X§. Thus we obtain the map 4.3.1.

4.4. We show that the case (i) of Theorem 4.1 follows from the case (ii) of Theorem 4.1.
Let G be a finite flat commutative group over the underlying scheme of X. Let G* be
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the Cartier dual of G, and let L = Mor(G*,G,,), where Mor means the sheaf of the
morphisms of sheaves of sets. Then, we have an exact sequence

0-G—L—L =0, L'=L/G

and L, L’ are affine and smooth over the underlying scheme of X. By endowing L, L’
with the inverse images of the My, we have

0 — R'e.G — R'e,.L — R'e, I’ exact

(for L = e.L — L' = ¢, is surjective on X§!). Hence the bijectivity of 4.3.1 for G is
reduced to the bijectivities of 4.3.1 for L and L'.

4.5. Assume that we are given a chart P — My such that P is fs and torsion free (such
chart exists classical étale locally on X). We study R'e, by using Cech cohomology.
Forn > 1, let
Xo = X @zp Z[PV™]

with the log structure associated to Z[PY"] — Ox,, and let X,,; (i > 0) be the fiber
product of i +1 copies of X, over X in the category of fs log schemes. Note that X, — X
is a covering in X% For a sheaf G of abelian groups on X%, we have a Cech complex
CG,n

CGﬂZ F(Xm(), G) — F(Xn,la G) — F(Xmg, G) — .

Lemma 4.6. Assume X = Spec(A) as a scheme with A a strict local ring (i.e. a Henselian
local ring with separably closed residue field), and assume that G is represented by a smooth
commutative group scheme over the underlying scheme of X endowed with the inverse
image of the log structure of X. Then

limH" (Cep) = H (X%, G).

Proof. By the general theory of Cech cohomology, lim H YCan) — HY(XLE, G) is injective
and the cokernel is embedded in li_nng((Xn);Og, G). We show lingl((Xn)hog, G) =0. Let

a be an element of H'((X,)s®, G). Then there exists a quasi-compact fs log scheme T
and a surjective log flat morphism of Kummer type T' — X,, such that a vanishes in
Hl(Téog,G). By 2.7 (2), for some m # 0, T X x, Xmn — X is with the inverse image
log structure and flat in the classical sense. Hence a vanishes classical flat locally on X,,,,,
so the image of a in H'((Xpp)p%, G) comes from H'((X,n)§, G). Since G is smooth, we
have H'((X;n)g, G) = HY((Xpmn)$, G) ([G] 11.7). Since X, is the disjoint union of a
finite number of Spec of strict local rings, we have H'((X,,,)%,G) = 0. O
4.7. Forn > 1, let H, be the classical commutative group scheme Spec(Z[PsP/(P#)"]) =
Hom (P&, Z/n(1)) over Spec(Z). Then H, acts on X, over X, and Hy, X X, — X, X x X
(the fiber product is taken in the category of fs log schemes). Hence we have

Xni = Hy x -+ x Hy xX,,.
— ——
7 times
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4.8. Let GG be a sheaf of abelian groups on XfllOg , and let I’ be the sheaf of abelian groups
on X # defined by F(T) = T'(T'x x X, G). Then H, acts on F. By 4.7, Cq.,, is isomorphic
to the complex

(%) Mor({1}, F) 28 Mor(H,, F) 2 Mor(H, x Hy,, F) — -+ ,
where Mor means the set of morphisms as sheaves of sets on X;log,
do(x) = (00— oz — x), 0 (x) = ((o,7) = x(o7) — x(0) — o(x(7))), . ...

4.9. Let G and F be as in 4.8. Assume that X is strictly local as a scheme and P 5
(Mx/O%)., where z is the closed point of X.

Consider the trivial action of H, on G. Then, the natural homomorphism G — F
preserves the action of H,, and hence we get a homomorphism H'(H,,G) — H'(H,, F).
Note

H'(H,,G) = Hom(H,,G) = Hom(Z/n(1),G) @7 P*.

The composite map
Hom(Z/n(1),G) ®z P® = H'(H,,G) — H'(H,,F) = H'(Cq,) — H' (X%, G)
sends h ® a to the image of a under
P — HO(XYE, Gpiog) — H'(XKE, Z/n(1)) 2 HY(X{E, G),
where the second arrow is the connecting homomorphism of
0—Z/n(1) = Gpog = Griog = 0 (cf. (4.2)).

Together with 4.6, the next proposition 4.10 implies 4.1 under the assumption on X
in 4.10.

Proposition 4.10. Assume that as a scheme, X = Spec(A) for a Noetherian complete
local Ting A with separably closed residue field. Let G be a smooth commutative group
scheme over the underlying scheme of X and endow G with the inverse image of the log

structure of X. Assume P = (Mx/O% )z, where x is the closed point of X. Then,

Hom(Z/n(1),G) @z P* S HY(Cg.n) for any n > 1.

4.11. We prove 4.10 in the case where A is an Artinian local ring. Let I (resp. J) be the
ideal of A (resp. Oy, ) generated by the image of P\ {1} (resp. P*/"\ {1}). Then I (resp.
J) is a nilpotent ideal. We define a descending filtrations {fil'G};> on the H,-module G
and {fil'F'};>¢ on the H,-module F by

(fil'G)(T) = Ker (G(T) — G(T x x Spec(Ox/I")))
(fil' F)(T) = Ker (F(T) — G(T xx Spec(Ox, /J"))).
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By the nilpotence of I (resp. J), we have fil' = 0 for a sufficiently large i. Since G is
smooth, we have

(4.11.1) gr'(G)(T) =2 Lie(G) @4 T(T, I'O7 /I OF),

(4.11.2) g’ (F)(T) = Lie(G) @4 (T, J'Or/ J Or)
(gr' = fil'/fil""! i > 1). We have also
(4.11.3) ar’(G) S g®(F).
By 4.11.3 and by the following 4.12, we have
Hom(Z/n(1),G) ®z P = H'(H,,G)
= HY(H,, g1°(G)) = H'(H,,gi°(F)) & H'(H,, F) = H(Cq,5).
This proves 4.10 in the case A is Artinian.

Lemma 4.12. For anyi > 1 and any m > 1, H™(H,, gt (G)) and H™(H,, gr'(F)) are
zero.

Proof. Since gr'(G) and gri(F) are coherent, this follows from [SGA3] I, 5.3.3. O

4.13. We prove Proposition 4.10. We denote the maximal ideal of A by m 4. For ¢ > 0,
define the abelian groups D; and E; by the exact sequences

0 — G(A/my) = G(Xpp @4 Afm’y) = Di =0
0= Ei = G(Xn1 @4 AfmYy) = G(Xp2 @4 Afmly).

Then D; C E; and E;/D; is H' of the complex Cg,, for Spec(A/mY) which is endowed
with the inverse image of the log structure of X. Let EF = lglEz and D = lér_nDz

Since G(4) > I'&HG(A/mfA), G(Xnk) = l'&lG(Xn,k ®4 A/m), and since G(A/m'{*) —
G(A/mYy) and G(X,0®4 A/m'f) — G(X,0®4 A/m?y) are surjective by the smoothness
of GG, we have exact sequences

0— G(A) - G(Xn0) > D—0
0—E— G(X,1) > G(X,2)

and an isomorphism E/D = lim E;/D;. Hence E/D = H*(Cg,).
On the other hand, by [SGA3] XV 1.6, Hom(Z/n(1),G) does not change when X is
replaced by Spec(A/m’y). This and 4.11 show
Hom(Z/n(1),G) @z P® = E;/D;  for any i.
Hence Hom(Z/n(1), G) ®z PP 5 E/D = HY (Cg.,).
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4.14. We prove 4.1 in general. We may assume X = Spec(A) as a scheme for a Noetherian
strict local ring and let G be a smooth affine commutative group scheme over A endowed
with the inverse image of Mx.

Let X = Spec(fl), where A is the completion of A, and endow X with the inverse
image of the log structure of X. Since the problem is already solved for X, and since
Hom(Z/n(1),G) does not change when we replace X by X, it is sufficient to prove that
HY (X B G) — HY(X5, Q) is injective.

Let o be an element of H'(X %, G) which vanishes in H'(X®, Q). Since o vanishes
classical fpqc locally, by the fpqc descent (here we use the fact that G is affine), a is the
class of a representable smooth affine G-torsor Y over the underlying scheme of X which
is endowed with the inverse image of the log structure of X. Since X is strictly local, Y
has an X-rational point and hence Y is a trivial G-torsor. Hence o = 0.

5 Hilbert 90.

Theorem 5.1. Let X be an fs log scheme whose underlying scheme is locally Noetherian.
Then the canonical map from HY (XS, Guiog) to H (X8, Gpniog) (resp. to HY(XE, Goniog),

étr ét

resp. H' (X8, Goiog)) is bijective.

Since Gy, 105 o1 the classical étale site is the direct image of G,y 10, On the other sites,
this theorem is equivalent to its local form

Corollary 5.2. Let X be an fs log scheme whose underlying scheme is Spec of a Noethe-
rian strict local ring. Then H'(XS, G log), Hl(Xé(t)g, Gmtog); HY (X[, Ginlog) are zero.

We prove 5.2. Since the natural projections from X}fg to X§' and to X, é‘t)g send Gy, 1og
t0 G log, 1t is enough to show HY(X)2, Gmog) = 0.

Consider the exact sequence 0 — G,, = Gi10e = Giilog/Gm — 0 on Xflfg. First, we
show that the connecting map H(X %, Gpiog/Gm) — H (X%, G,,) is surjective by us-
ing the result 4.1 as follows. Since H (X§!,G,,) = 0 for i > 0 by [G] 11.7, HY(X%,G,,) =
H°(X§, R'e,G,,) and the latter is isomorphic to H*(X§!, (Q/Z)® (G, 10¢/Gm)) by 4.1. On
the other hand, H (X%, Gpiog/Gum) = HY(XE, €4(Cutog/Gim)) = HY(XE, QR (G iog/Gom))-
Hence, the cokernel of the above connecting map injects into H'(Xg!, G, 10¢/ Gy ), which
is isomorphic to H' (X!, Gy10g/Gm) = 0 by [G] 11.9.

Hence it is sufficient to prove H 1(X{lfg,Gm,1og/Gm) = 0. To show this, we apply
the same argument in the proof of 4.6. Take a chart by P = (Mx/O%),. In the
notation there, since H'((Xun)§sx(Gmiog/Gm)) = HY(Xomn)d, Q @ (Ginog/Gm)) =
H'((Xmn)&> QR(Grmog/Grm)) = 0 by [G] 11.9 again, it is enough to show H(Cg,, . /G,n) =
0 for each fixed n > 1. But the complex OGm,log /Gm.m 18 €asy to be described. In fact, let
n’ be the greatest divisor of n which is invertible on X. Let R := ['(X,,, Gy 10g/Gr) =
Q® (PY™)#P and S := {1,...,n'}. Then, X,,; is a disjoint union of (n’)’ strict local fs log
schemes, and the complex Cg,, .. /G, is isomorphic to R K Map(S, R) LU Map(S?, R) —

-+, where (dg(a))(7) = a for any a € R,i € S, and (01(b))(¢,75) = b(i) — b(j) for any
b€ Map(S, R),i,j € S. Hence H'(Cg,, ., /G,n) = 0 as desired.
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6 Locally free modules.

6.1. In this section, for an fs log scheme X, we denote the sheaf T — T'(T, Or) on Xéog
by Ox.
Consider the map

(6.1.1) [TH (XY, G,) — H'(X 5, GL,(Ox))

(T] denotes the product of n copies) induced by the embedding [[G,, < GL,(Ox) as diag-
onal matrices. If X = Spec(A) as a scheme for a Noetherian strict local ring, H! (Xlllog, Gm)
is isomorphic to (M§/0%), ® (Q/Z), where x denotes the closed point of X (4.1).

Theorem 6.2. Let X be an fs log scheme and assume X = Spec(A) as a scheme for a
Noetherian strict local ring A. Then the map 6.1.1 induces an isomorphism of pointed
sets

HY (XY, GL,(Ox)) = &, \([[(MP/0%), © (Q/Z)).

Here Ox denotes the sheaf T — T'(T,Or) on Xéog, and S, \ means the quotient by
the natural action of the symmetric group of degree n on the product of n-copies.

Remark 6.3. For an fs log scheme X, H' (X%, GL,(Ox)) is identified with the set of
isomorphism classes of Ox-modules on XfliOg which are locally free of finite rank.

A way to obtain such modules is the following. Let X be an fs log scheme having a chart
P — My, and take an fs monoid @) and an integral homomorphism P — ) of Kummer
type. Let Y be the scheme X ®zp) Z[Q] endowed with the log structure associated to
@ — Oy. Then if f denotes the canonical morphism Yﬂlog — Xéog, the Ox-module f,Oy
on X is locally free of finite rank. We have the following direct decomposition of f,Oy
into invertible modules. Let H be the group scheme Spec(Z[Q2P/P#P]) over Z. Then H
acts on Y over X, and hence on f,Oy. For a € Q#/P®° let L, be the part of f,Oy on
which H acts via the character H — G,,, corresponding to a. Then

f*OY = @Laa

where a ranges over all elements of Q8 /P#P (this can be checked log flat locally). Let
a € Q%P and let m be a non-zero integer such that a™ € P%P. Then the element of
H 1(Xflfg , G,,) corresponding to the invertible module Lg 04 per coincides with the image
of a™ under HO(X%, Gpniog) — HY(XPE, Z/m(1)) = H' (X2, G,,), where the first arrow
is the connecting map of the Kummer sequence 0 — Z/m(1) = G108 — Grngog — 0. If
X is as in 6.2 and z is its closed point, this element of H' (X%, G,,,) = H (X, GL1(Ox))
corresponds to a™ @ m~! of (MF/0O%), ® (Q/Z) in the isomorphism of 6.2.

Corollary 6.4. Let X be as in 6.2, and let F be an Ox-module on X ® which is locally
free of finite rank. Then F is a direct sum of invertible Ox-modules on X;log.
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The method of proving of 6.2 is as follows. Let x be the closed point of X. By the similar
method to the proof of Theorem 4.1, we find

H'(Xy®, GLy(Ox)) = lig Hom(H,y,, GLy)/ ~,

where H,, is the group scheme Hom((M§/O%).,Z/m(1)) and / ~ means the quotient
set by the inner conjugation by elements of GL,(A). Theorem 6.2 can be deduced from
this.

This Theorem 6.2 is quoted in [Ni] and a proof with details is given there. See [Ni]
Theorem 3.22.

We prove some propositions concerning Ox-modules on log flat sites. Some results
concerning G'L,-torsors and vector bundles on log flat sites are given in §9.

Proposition* 6.5. Let X be an fs log scheme whose underlying scheme is affine, and
let F' be an Ox-module satisfying the following condition: There is a covering Y — X
in X5 8 such that the pullback of F on Y38 is isomorphic to the module theoretic inverse
immage on thog of some quasi-coherent module on the small Zariski site of Y. Then,

H™( X2 F)=0  for anym > 1.

The proof of 6.5 is by the computation of Cech cohomology.
This Proposition 6.5 is quoted in [Ni] and a proof with details is given there. See [Ni]
Proposition 3.27.

Proposition 6.6. Let X be an fs log scheme and let 0 — F' — F — F” — 0 be an ezact
sequence of Ox-modules on X}fg which are locally free and of finite rank.

(1) If the underlying scheme of X is affine, this exact sequence splits.

(2) F is classical if and only if F' and F" are classical.

Here we say an Ox-module F' on XfllOg which is locally free of finite rank is classical if
the restriction F of F to the small Zariski site of X is locally free and F is the module
theoretic inverse image of F on X 8.

Proof of (1). Consider the exact sequence of cohomology groups associated to the exact
sequence

0 — Home, (F", F') = Homo, (F", F) = Homo, (F", F") = 0

of sheaves on X, By 6.5, H' (X%, Homo, (F”, F')) = 0. Hence the identity map of F”
comes from Home, (F”, F'), and hence we obtain the splitting.

Proof of (2). We may assume that the underlying scheme of X is affine. Then, we are
reduced to (1).

7 Descent theory. II. Logarithmic flat descent.

In the circulated version (cf. Introduction), we have announced the following results (under
some finiteness conditions). The original proofs are so long and complicated, but for the
first three cases of 7.1 and for 7.2, Illusie-Nakayama—Tsuji ([INT]) gave considerable short
proofs based on a result of Olsson in [Ol]. So we do not include here the original proofs.
The last two cases of 7.1 were also proved in Tani’s [T].
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Theorem* 7.1. Let f: X — Y be a morphism of fs log schemes, and let g: Y' —'Y be
a covering in Yﬂlog. Let X' = X xy Y’ (the fiber product in the category of fs log schemes)
and let f': X' =Y’ be a morphism induced by f.

Then f is log étale (resp. log smooth, resp. log flat, resp. of Kummer type, resp. with
finite underlying morphism of schemes) if and only if so is f'.

Theorem* 7.2. Let X' % X L Y be morphisms of fs log schemes, and assume that g
15 surjective and of Kummer type.

If g and f o g are log étale (resp. log smooth, resp. log flat), then f is log étale (resp.
log smooth, resp. log flat).

8 Descent theory. III.

In the theory of fs log schemes, the descent theory for objects works for the classical fppf
topology.

Theorem 8.1. Let X be an fs log scheme and let F' be a sheaf on X§'. Assume that there
is a covering Y — X in XS such that the inverse image of F' on (fs/Y') is represented by
an fs log scheme T over' Y which is of Kummer type over'Y and whose underlying scheme
15 affine over that of Y.

Then, F' is represented by an fs log scheme S over X which is of Kummer type over
X and whose underlying scheme is affine over that of X.

We remark that this theorem also follows from [Ol] Appendix Corollary A.5.

Proof. Let X, F,Y,T be as in the hypothesis of the theorem. By the classical fppf descent,
there exists a scheme S over the scheme X which is affine over the scheme X and which
is endowed with an isomorphism 7' = S X x Y of schemes over the scheme Y. Our task
is to descend the log structure of 7' to S. Let T” be the fiber product 7' xy (Y xx Y)
in the category of fs log schemes, which represents the pullback of F'on Y xx Y. (As a
scheme, 7" is the fiber product 7" xg T in the category of schemes.) Let f: T — S and
g: T" — S be the canonical morphisms of schemes. Note f is faithfully flat and locally
of finite presentation. Define the sheaf Mg on Sg to be the equalizer of f,Mr = g, My
where the two arrows are induced by the first and the second projections 77 — T'. Then
Mg — Og is induced from the exactness of Og — Or = O, and it is easy to see that
My is a log structure. Now 8.1 is reduced to

Lemma 8.2. Let the notation be as above. Then, Mg is an fs log structure and My is
the inverse image of Mg.

We deduce 8.2 from
Lemma 8.3. With the notation as above, f~'(Ms/O%) 5 Mr/O7.

Proof of 8.2 assuming 8.3. Let t € T and s = f(t) € S, and let P = (Mg/Of )s. Since P is
isomorphic to (M /OF )z, it is an fs monoid (1.5) (3). Take a homomorphism h: P — Mgs

such that the composite P LN Mgs — P is the identity. Since P is of finite presentation
as a monoid, we can extend h to a homomorphism P — Mg|y for an étale neighbourhood
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U of 5. Since P = (Mp/Of);, P — Mgy is a chart for an étale neighbourhood V of 7 in
f7HU). Let W be the image of V in U. Since f is flat and locally of finite presentation,
it is an open map ([EGAIV] Théoreme 2.4.6), and hence W is an open set of U. Since
the inverse image of My, /Oy, on V coincides with My /Oy, we have that My, coincides
with the log structure associated to P — Og.

We prove 8.3 by dividing it into the two parts (1) (2) of

Lemma 8.4. Define the sheaf N on Sg to be the equalizer of f.(Mr/OF) = g.(Mqp/OF)).
Then:

(1) f7HN) = Mp/OF.

(2) Ms/O5 S N.

Proofof (1). First note that all sheaves are for the classical étale topology here. Let t € T,
a € (My/OFf); and let s (resp. x) be the image of ¢ in S (resp. X). We prove a comes
from N3. Since T is of Kummer type over X, there exists n > 1 such that a™ comes from
b€ (Mx/O%)z Working classical étale locally on S and on X, we may assume that a
comes from an element a of T'(U, M7 /OF) for some étale neighbourhood U — T of t — T'
such that U — S is surjective, b comes from an element b of I'(X, My /O%), and @" comes
from b. (Here we used the fact f is an open map.)

Lemma 8.5. For any y € T, the image of b in (M7 /OF)y is the n-th power of some
element.

Proof. Take y' € T which is in the image of U in T such that f(y) = f(v/), and take
z € T" such that pi(z) = y and ps(z) = ¢’ (here p; is the i-th projection 7" — T'). We
have isomorphisms

(Mr/OR)y 5 (Mp /O3): & (Mr/OF);  over (M /O})x.

Now 8.5 follows from the fact that the image of b in (My/ Or )y is an n-th power of
the image of a. O]

By 8.5, the image of b in Mp/O3 is locally an n-th power. Since Mp/O3 is torsion
free, the n-th root of b in My /OF exists globally on 7', and it should coincide on U with
a. This n-th root of b on T is a global section of N on S by the uniqueness of n-th root in
My /O3, of the image of b. This shows that a comes from Ns. This completes the proof
of (1) of 8.4.

Proof of 8.4 (2). The problem is the surjectivity of Mg — N. Let h € T'(S,N). It is
sufficient to prove that A comes from Mg étale locally on S. The inverse image of h in
My under My — Myp/OF is an G,-torsor on T" which is endowed with descent data on
T'. By the descent theory of line bundles, this G,,-torsor descends to a G,,-torsor L on
S. Etale locally on S, L has a section which is regarded as a section of Mg with image h
in N. Hence Mg — N is surjective. [

21



9 Torsors.
The aim of this section is to prove

Theorem 9.1. Let X be an fs log scheme which is locally Noetherian as a scheme. Let
G be a finite flat commutative group scheme over the underlying scheme of X, which we
endow with the inverse image of Mx, and let F' be a G-principal homogeneous space in
the category of sheaves on X}fg. Then, F' is representable by an fs log scheme over X
which 1s log flat of Kummer type and whose underlying scheme s finite over that of X.

9.2. Let X and G be as in the hypothesis of 9.1. We denote by H}(X®, G) the subset of
H! (Xfllog, () consisting of elements whose corresponding G-principal homogeneous space
on X}fg is represented by an fs log scheme over X, which is log flat and of Kummer type
and whose underlying scheme is finite over that of X. Theorem 9.1 states that H} (X;log, G)
coincides with H'(X}*®, G). Note that

HYX{,G) c H(X®,G)  in H{(X®, Q)
by the classical fppf descent theory.

Lemma 9.3. Let X and G be as in the hypothesis of 9.1.
(1) If x1 € HX(Xy®, G) and x2 € H (XS, G), then x1 + x2 € HN(Xy®, G).
(2) Let G’ be a finite flat commutative group scheme over the underlying scheme of

X, which we endow with the inverse image of the log structure of X, and let h: G' — G
be an injective homomorphism. Then h sends HX (X8 G') into HN( X2, G).

Proof of (1). By §8, we may work classical fppf locally on X. Since y» vanishes classical
fppf locally, we may assume y, = 0.

Proof of (2). Let F’ be the G'-principal homogeneous space on X}fg whose class belongs
to H} (X%, G’). Then the image of the class of F” in H'(X*, @) is represented by the
induced G-principal homogeneous space F' = G'\(G x F'), where G’ acts on G x I’ by
(071, 0) (0 € G'). We have a cartesian diagram

GxF —— F

|

G —— G'\G.

Since G — G'\ G is fppf, the diagram implies that F' over G’ \ G is represented classical
fppf locally on G'\ G, by a log flat fs log scheme of Kummer type whose underlying
scheme is finite over the base. Hence by §8, F — G’\ G is represented by an fs log
scheme over G'\ G which is log flat and of Kummer type whose underlying scheme is

finite over G"\ G. O

Lemma 9.4. Let X be an fs log scheme and let n > 1. Then the image of the con-
necting map HO(X, M%) — H'(X[®,7Z/n(1)) of the Kummer sequence is contained in
HY(X®, Z/n(1)).
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Proof. Let a € H*(X, M%), and let F, be the Z/n(1)-principal homogeneous space corre-
sponding to the image of a in H'(X®, Z/n(1)). That is, F,(T) = {b € T(T, M&) ; b* =
a} for any fs log scheme T over X. By working classical étale locally on X, we may assume
that there are a chart P — My and an element a of P whose image in H°(X, M) is
a. Let L be the abelian group generated by P®P and a letter b which is subject to the
relation 0" = a. Let Q@ = {x € L ; 2" € P} and let Y = X ®yp) Z[Q] which is endowed
with the log structure associated to @ — Oy. Then, b € F(Y') defines an isomorphism
Morx( ,Y) = F,. Furthermore by the construction, Y is log flat of Kummer type over
X and the underlying scheme of Y is finite over that of X. m
9.5. Now we prove 9.1. By §8 and by a limit argument, we may assume that as a scheme,
X = Spec(A) for some Noetherian strict local ring A. Take a chart P — My which
induces P = My ,/ Ox., where  is the closed point of x. Let

(9.5.1) lim Hom(Z/n(1), G) @z P — HY (X2, Q)

be the homomorphism which sends h ® a (h € Hom(Z/n(1),G), a € P*®P) to the image
of a under P& — HO(X, M%) — H'(X\®,Z/n(1)) & H'(X\®,G). By §4, we have an
isomorphism

H'(X{,G) & (lim Hom(Z/n(1), G) @z PF) = H'(Xi*,G).

By 9.3 (1), it is enough to show that the image of lim Hom(Z/n(1), G)®zP* — HY (X2 Q)

is contained in H! (X;log, G). Let G™! be the multiplicative part of G. Then, any homo-
morphism Z/n(1) — G factors through G™. By 9.3 (2), we may assume G is multiplica-
tive. Then, G = ®(Z/m;Z)(1) for some finite family of non-zero integers (m;);. Since a

G-principal homogeneous space is the product of Z/m;(1)-principal homogeneous spaces,
we may assume G = Z/m(1) for some m # 0. Then,

lig Hom(Z/n(1), G) @z P = P# /(P&2)™,

and the map 9.5.1 is identified with the map P /(Pe)™ — H'(X\%,Z/m(1)) of the
Kummer sequence. Hence we are reduced to 9.4.

9.6. We add some remarks on G'L,-torsors and vector bundles on X;log. We have seen in
86 that O x-modules on XfllOg which are locally free of finite rank need not be classical ones.
The following 9.7 (resp. 9.8) says that representable G L,-torsors (resp. vector bundles)
on X}fg need not be (resp. need be) classical ones.

(Recall that the sheaf Ox on X is defined by T — I'(T, Or).)

Proposition 9.7. Let F' be a GL,(Ox)-torsor in the category of sheaves on Xéog. Then
F' is representable.

Proposition 9.8. Let F' be an Ox-module on Xflfg which is locally free of finite rank.
Then F' is representable if and only if F' is a classical one.
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Proof of 9.7. By a limit argument we may assume that X = Spec(A) for a Noetherian
strict local ring A. Let o € H'(X{®,GL,(Ox)) and let F be the GL,(Ox)-torsor on
X}fg corresponding to aw. We show that F' is representable. Let P — Mx be a chart

such that P = (My/ O% ). where x is the closed point of X. By §6, o comes from an
element (ay,...,q,) of (P® ® (Q/Z))". Take m; > 1 such that m;a; = 0, and write
a; =a; ®m; -, a; € P and let F; be the Z/m;(1)-torsor corresponding to the image in
H'(X{®,Z/m;(1)) of a; under the connecting map of 0 = Z/m;(1) = Gpiog = Grnlog —
0. Let H = [] Z/m;(1). Then the GL,(Ox)-torsor F is induced from the H-torsor

1<i<n
[I F; by the diagonal embedding H — G'L,,(Ox). Since the quotient H \ GL,(Ox) is
1<i<n

representable and GL,(Ox) — H \ GL,(Ox) is fppf covering, the cartesian diagram

GL.(Ox) x ] F; —— F

1<i<n

l |

GL,(Ox) — H\GL,(Ox)

shows (§8) that F'is representable.
Proof of 9.8. The “if” part is clear and so we consider the “only if” part. We may assume
X = Spec A as a scheme for a Noetherian strict local ring. Assume F is representable but
not classical. Then F comes from an element (a; ® m; ')i<i<n of (MY /0%). @ (Q/Z))™
(n = rank (F), z is the closed point, a; € (M5 /O%)z, m; € Z,m; > 1) such that a; is not
an my-th power in (M5 /O0%)..

Let Y be the GL, (Oy)-torsor defined to be the subsheaf of [[F consisting of bases of

F. Then Y is representable (9.7). We denote by the same letter I (resp. V) the fs log
scheme over X which represents F' (resp. Y'). We prove the following (%) and ().

(¥) There is an open set U of [[F which contains the image of the zero section

X — J[F such that My coincides with the inverse image of M.

(xx) For any y € Y lying over x, (M5 /O%)z — (M /O5 )y is not bijective.

These (%) and (x*) imply (U NY) xx {z} = @. But if X’ — X is a covering in
Xlllog such that the pullback of F' on X' is classical and if 2’ is a point of X’ lying over z,
(UNY) xx {z'} # & because a classical vector bundle over a field is irreducible (so any
two non-empty open sets intersect).

Proof of (x). [[F is of Kummer type over X since log flat locally on X, F' becomes a
classical vector bundle with the inverse image of M. Let y € [[F be a point in the image

of the zero section X — [[F, and let s be the image of y in X. Then, the zero section
defines g: (M¥ /05 )y — (M%/O%)s and the composite g o h with the canonical map
h: (M%/0%)s — (My?/Os )y is the identity map of (M5 /O%)s. Since h is of Kummer
type, this means that h is bijective. This proves (x).

Proof of (xx). Since the pullback of F' on Y is isomorphic to [[Oy, the image of «; in
(M /05 )y ® Q/Z vanishes for any y € Y. Hence a; is an my-th power in (M$P/O5);
for any y € Y.
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10 Logarithmic fundamental groups.

10.1. As is said in §3, the log flat descent for objects does not work well. An exception
is the descent for log étale finite objects of Kummer type.

For an fs log scheme X, let Etlog(X ) be the category of fs log schemes over X which
are log étale and of Kummer type over X and whose underlying scheme is finite over that
of X. Let lcf(X.%8) (resp. lef(X[ ) be the category of sheaves on X8 (resp. X *8) which
are locally constant and finite.

Theorem 10.2. Let X be an fs log scheme whose underlying scheme is locally Noetherian.
(1) For an object Y of Etlog(X), the sheaf Morx( ,Y) on X8 (resp. X ¢) belongs to
lef (X 28) (resp. 1ef(X[%)).
(2) We have equivalences of categories

¢ log

Et - (X) 5 1ef(X08) 5 1ef(X%).

(3) If X is connected, there exists a profinite group ﬂog(X ), which is unique up to
isomorphism, such that the equivalent categories in (2) are equivalent to the category of
finite T8 (X)-sets.

(4) If X = Spec(A) as a scheme for a strict local ring A, we have an isomorphism

7 (X) 2 lim Hom((M /0%, Z/n(1))

where n ranges over all integers which are invertible in A, x is the closed point, and
Z/n(1) denotes I'(Spec(A),Z/n(1)).

Here in (3), for a profinite group G, a G-set means a discrete set endowed with a
continuous action of G.

The log fundamental group is first treated in [FK]. A large part of 10.2 is taken from
[FK]. See also [1], [S], [V], [Ho].

Remark 10.3. Let X be a regular locally Noetherian scheme and let D be a divisor
on X with normal crossings. Endow X with the log structure defined by D (that is,
My = {f € Ox ; f is invertible outside D}. Then 7%(X) coincides with the tame
fundamental group of Grothendieck-Murre 71 (X, D) which controls finite étale schemes
over X \ D which are at worst tamely ramified at generic points of D.

In the rest of this section, we prove 10.2.

10.4. We prove 10.2 (1). Note that Morx( ,Y’) is indeed a sheaf by 3.1. Since a finite
kummer log étale fs log scheme over an fs log scheme is kummer log étale locally a finite
étale scheme in the classical sense endowed with the pullback log structure from the base,
(1) is reduced to the nonlog corresponding result.

Proposition 10.5. Let X and x be as in the assumption of 10.2 (4) and let G be a finite
group. For an integer n > 1, let H,, be the group scheme Hom((MS/O%)z, Z/n(1)).
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(1) Take a chart P — My such that P = (Mx/O%),. For each integer n > 1, let
X, = X beasin 4.5. Let T be a G-torsor on Xfliog. Then there is an integer n > 1 which
is invertible on X such that the pullback of T on (X, )%Og s a triwial G-torsor.

(2) For Let x = ét orfl, H(X°%, G) is canonically isomorphic to li lgl Hom(H,(k),G)/ ~,
where n ranges over all integers > 1 which are invertible on X, k is the residue field of
x, and ~ is the G-conjugacy.

Proof. By 2.7 (2), if T is a G-torsor on Xflfg, there is an integer n > 1 such that the
pullback of T" on (Xn)llﬁf ® is a G-torsor over X,, in the classical sense with the inverse
image of the log structure of X,,. Since this G-torsor over X, is finite étale over X,, and
X, is strict local, it is a trivial G-torsor. Thus we have proved a weaker version of (1)
without the condition n is invertible on X.

Hence H 1(Xillog, G) is isomorphic to the inductive limit of the H'- Cech cohomology
{9 € G(Xn xx Xu) | pis(9) = Pia(9)p3s(9)}/ ~ of (Xin/X,G), where pj; is the pullback
by the (7,7)-th projection p;; : X,, xx X, xx X;, = X, xx X,, and ~ is the following
equivalence relation. ¢’ ~ g if and only if ¢’ = p%(u)gps(u)~! for some u € G(X,,) where
i+ Xn Xx X, — X, is the i-th projection.

For any Noetherian scheme S, G(5) is identified with the set of all maps my(S) = G
where 7o(S) denotes the set of connected components of S. If n’ > 1 denotes the largest
divisor of n which is invertible on X, we have m(X, xx X,,) = mo(H, x X,,) = Hy (k) and
To( Xy X x Xp xx X)) 2 mo(H, x Hy x X)) = Hy(k) x Hy(k), and hence the H'- Cech
cohomology of (X,,/X, G) is identified with Hom(H,,(k), G)/ ~ where ~ is the conjugacy
by G. Hence we obtain the isomorphism in (2) for H'(X®,G). This isomorphism is
canonical (independent of the choice of the above chart P — Mx) because the element of
H! (Xlllog, H,/(k)) corresponding to the identity map of H, (k) comes from the canonical
isomorphism in 4.1.

This argument shows that the H'-Cech cohomology of (X, /X, G) is the same as that
of (X,//X,G). This completes the proof of (1).

Since H(X 22 G) C Hl(X10g G) and X, is log étale over X if n is invertible on X,
we have H'(X %8 G) = H' (X ®,G). This completes the proof of (2). O

ét

10.6. Let X be as in the assumption of 10. 2 (3). Let * = ét or fl and let C = lef(X°8). We
prove that there exists a profinite group 7r1 8(X) such that C is equivalent to the category

of finite wlog(X )-sets.

Let k£ be an algebraically closed field with divisible integral log, let n > 1, and let
a : Spec(k) — X be a morphism (we call this morphism a base point). Let C be the
category of sheaves on X'°¢ which are locally constant and finite. We prove that with the
pullback functor by a, C is a Galois category in the sense of [SGA1] Section V 5, which
implies the above.

It is clear that C satisfies the condition (G1)—(G5) of Galois category in Section V 5
of [SGA1]. We prove that C satisfies the remaining condition (G6) of the Galois category,
that is, a morphism S — T of C is an isomorphism if the induced map S, — T, is bijective.
Let I be the image of S — T'. Let C be the complement of I in 7', so T is the disjoint
union of [ and C'. Let D be the complement of the diagonal image of S in S x; S. Since
S, — T, is bijective, C, and D, are empty. It is sufficient to prove that these C' and D are
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empty. We have the vector bundles O¢ and Op on the site X'°¢. Since X is connected,
O¢ and Op are of constant rank. Since they are 0 at a, they are 0. Hence C' and D are
empty.

10.7. We prove the equivalence lef(X1%) 5 1ef(X}¥) in 10.2 (2). We may assume that
as a scheme, X = Spec(A) for a strict local ring A (and hence is connected). Then by
10.6, the first (resp. second) category is equivalent to the category of finite ﬂllfft(X ) (resp.
wll‘?g(X))—sets. By 10.5, we have

(1) A5(X) = 75(X) = Jim_Hom((ME/05),,Z/n(1))
where n ranges over all integers which are invertible on X and x denotes the closed point
of X. This proves the part lcf(X.2¢) = lcf(X®) of 10.2 (2).

Hence for any connected X, w8 (X) = ﬂi‘?g(X ) and we denote this group by m%(X).

1,ét
We prove Etlog(X) S lef(X2%) in 10.2 (2). We may assume that as a scheme, X =
Spec(A) for a strict local ring A. By the above (1), it is sufficient to prove that for any

.1
commutative finite group G, any G-torsor over X is represented by an object of Et Og(X ).
But this follows from Theorem 9.1.

This completes the proof of 10.2.

Correction to [K;]. There are two corrections to [K;]. The first is about Section 4
of [K;], which was pointed by A. Ogus. The definition of a morphism of weakly purely
inseparable in [K;] (4.9) is strange and [K;] PROPOSITION (4.10) (2) and [K;] LEMMA
(4.11) are false as they stand. PROPOSITION (4.10) (1) is correct. We modify the paper
as follows. We delete [K;] (4.9), (4.10)(2), (4.11). In [K;] THEOREM (4.12), we add the
assumption that f is of Cartier type, and (X", M") = (X', M’). Note that in the rest of
[Ki], PROPOSITION (4.12) is not used. In most applications, only morphisms of Cartier
type are important.

The next is about PROPOSITION (3.14) (4) of [K;], which was pointed by Y. Nakka-
jima. For this statement, it is necessary to assume that f is integral. Further, /O3 there
(which is not defined) should be replaced by I ®o, Ox.
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