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Abstract

This is Part II of the author’s paper Logarithmic structures of Fontaine-Illusie.
We discuss log flat topology and log flat descent. We study the first log flat coho-
mology H1(Xlog,fl, G) for various sheaves of groups G, for example, G = GLn, finite
flat commutative group schemes, the log multiplicative group Mgp, etc.
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Introduction.

This is a continuation of the paper [K1] on the foundation of log geometry in the sense
of Fontaine-Illusie. Here we discuss mainly log flat topologies, especially log flat descent
theory.

This paper was started around 1991, and was circulated as an incomplete preprint for a
long time. Since then, some contents of this paper have been reproduced by several authors
with proofs ([Ha], [KS], [Ni], [Na2], [Ol], ...). A. Moriwaki [M] also studied flat descents
in the category of log schemes. In the parts which were incomplete in the circulated
preprint, we sometimes referred to these papers instead of completing the original proofs.
In particular, the author does not claim the results with ∗ (i.e., two theorems 7.1, 7.2
and one proposition 6.5) are his results. Since the paper is already referred to in many
published works, in the other parts, we preferred to preserve the original, circulated form.
In both parts, we tried to preserve the original numberings of definitions and propositions.
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1 Basic facts.

In this section, we review basic facts about logarithmic schemes in [K1], and introduce “fs
log schemes” and “log flat morphisms.”

1.1. In this paper, a monoid is always assumed to be commutative and has a unit element.
A homomorphism of monoids is assumed to respect the unit elements. The semi-group
law of a monoid is usually written multiplicatively.

For a monoid P , we denote by P× the group of all invertible elements of P , and by
P gp the group hull P−1P = {a−1b ; a, b ∈ P} of P .

1.2. Pre-logarithmic structures, logarithmic structures, logarithmic schemes. A pre-log
structure on a scheme X is a sheaf of monoids M on the étale site Xét endowed with a
homomorphism of sheaves of monoids

α : M → OX ,

where OX is regarded as a monoid for the multiplicative law.

A pre-log structure M is called a log structure if

α−1(O×
X)

∼=→ O×
X via α.

A log scheme is a scheme endowed with a log structure. A morphism of log schemes
is defined in a natural way. For a log scheme X, the log structure of X is usually denoted
by MX .

1.3. The log structure associated to a pre-log structure. For a scheme X and a pre-log
structure M

α→ OX , the log structure M∼ associated to M is defined to be the pushout
of the diagram

M ← α−1(O×
X)

α→ O×
X

in the category of sheaves of monoids, which is endowed with the homomorphism M∼ →
OX induced by α and by O×

X

⊂→ OX .

1.4. The inverse image of a log structure. Let f : X → Y be a morphism of schemes,
and let M be a log structure on Y . Then the inverse image f ∗M of M is defined to
be the log structure on X associated to the pre-log structure f−1(M) endowed with
f−1(M) → f−1(OY ) → OX . Here f−1(M) denotes the sheaf-theoretic inverse image of
M .
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Definition 1.5. (1) We say a monoid P is integral if the canonical map P → P gp is
injective (that is, if ab = ac (a, b, c ∈ P ) implies b = c).

We regard an integral monoid P as a submonoid of P gp.
(2) We say a monoid P is saturated if P is integral and satisfies the following condition:

If a ∈ P gp and an ∈ P for some n ≥ 1, then a ∈ P .
(3) We call a finitely generated integral monoid a fine monoid. We call a finitely

generated saturated monoid an fs monoid.

1.6. Fine log schemes and fs log schemes. We call a log scheme X a fine (resp. an fs)
log scheme if the following condition is satisfied: Étale locally on X, there exists a fine
(resp. an fs) monoid P and a homomorphism α : P → OX such that MX is isomorphic to
the log structure associated to the constant sheaf P on X regarded as a pre-log structure
with respect to α.

An fs log scheme is fine. A fine log scheme X is fs if and only if MX is a sheaf of
saturated monoids.

For a fine (resp. fs) log scheme X, the stalk (MX/O×
X)x is a fine monoid (resp. an fs

monoid) for any x ∈ X.

1.7. Charts. (1) A chart of a fine (resp. an fs) log scheme X is a pair (P, h), where P is
a fine (resp. an fs) monoid and h is a homomorphism P → MX satisfying the following
condition: Let P∼ be the log structure associated to P → OX induced by h. Then the
induced map P∼ →MX is an isomorphism.

A chart for X exists étale locally on X.
(2) Let f : X → Y be a morphism of fine (resp. fs) log schemes. A chart of f is a

diagram MY
α← P → Q

β→ MX such that α is a chart for Y , β is a chart for X, and the
diagram

P −−−→ Qy y
f−1(MY ) −−−→ MX

is commutative.
A chart of f exists étale locally on X and Y . This is proved in [K1] in the fine case

and the fs case is proved similarly.
For a morphism f : X → Y and a fine (resp. an fs) log structure M on Y , the inverse

image f ∗M is also a fine (resp. an fs) log structure. A chart of M gives naturally a chart
of f ∗M .

1.8. Finite inverse limits. The category of fine (resp. fs) log schemes has finite inverse
limits. For a finite inverse system Σ, its inverse limit is a fine (resp. an fs) log scheme
whose underlying scheme is finite and of finite presentation over the inverse limit of the
underlying diagram of schemes of Σ. To see this, it is enough to show it for fiber products.

The fiber product of Σ: X1
f1→ X0

f2← X2 is constructed étale locally on Xi’s as follows.

Étale locally, take charts αi : Pi → MXi
of Xi and charts MX0

α0← P0
hj→ Pj

αj→ MXj

of fj (j = 1, 2) (this is possible by 1.7). Let X be the fiber product of the underlying

diagram of schemes of Σ and let P be the pushout of the diagram P1
h1← P0

h0→ P2 in the
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category of monoids. Then we have a canonical homomorphism P → OX . Let P int be
the image of P → P gp (resp. P sat = {x ∈ P gp ; xn ∈ Image (P → P gp) for some n ≥ 1}).
Then the fiber product of Σ in the category of fine (resp. fs) log schemes is the scheme
T = X ⊗Z[P ] Z[P int] (resp. X ⊗Z[P ] Z[P sat]) endowed with the log structure associated to
P int (resp. P sat) → OT .

1.9. Advantages of fs log schemes. In §2–§10 of this paper, we consider fs log schemes
but do not consider fine log schemes, though we considered fine log schemes in [K1]. The
category of fs log schemes has, for example, the following advantages.

1.9.1. The category of fs log schemes has much more group objects than the category of
fine log schemes. This point is explained in the preprint [K2].

1.9.2. The exactness of the sequence

0→ Γ(X,Z/n(1))→ Γ(X,Mgp
X )

n→ Γ(X,Mgp
X )

(n ∈ Z, n ̸= 0), which plays important roles in log algebraic geometry (see §4), holds for
an fs log scheme X, but does not hold in general for a fine log scheme X.

1.9.3. “Log Galois theory” works well for fs log schemes (see §10) but not for fine log
schemes. For example, let A be a discrete valuation ring, n ≥ 2 an integer which is
invertible in A, π a prime element of A, B = A[π1/n], and assume that A contains
a primitive n-th root of 1. Let G = AutA(B) ∼= Z/n. Endow Y = Spec(A) (resp.
X = Spec(B)) with the standard log structure which is associated to N → A; 1 7→ π
(resp. N→ B; 1 7→ π1/n). Then,

G×X
∼=→ X ×Y X; (g, x) 7→ (x, gx)

(an isomorphism as in the étale Galois theory in classical algebraic geometry) holds in the
category of fs log schemes, but does not hold in the category of fine log schemes. (Indeed,
the underlying scheme of the fiber product X ×Y X in the category of fine log schemes is
the same as the fiber product of the underlying schemes, and hence is connected (not the
disjoint union of ♯(G)-copies of X).)

1.10. Log flatness, log smoothness, log étaleness. Let f : X → Y be a morphism in either
the category of fine log schemes or the category of fs log schemes. We say f is log flat
(resp. log smooth, resp. log étale) if classical fppf (classical étale, classical étale) locally
on X and on Y , there exists a chart MY ← P → Q → MX of f satisfying the following
two conditions (i) and (ii).

(i) The induced map P gp → Qgp is injective (resp. is injective and the order of the
torsion part of its cokernel is invertible on X, resp. is injective and its cokernel is finite
with an order invertible on X).

(ii) The induced morphism of schemes X → Y ×Z[P ] Z[Q] is flat (resp. smooth, resp.
étale) in the classical sense.

A morphism of fs log schemes is log flat (resp. log smooth, resp. log étale) if and only
if it is so as a morphism of fine log schemes.
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Log flat (resp. log smooth, resp. log étale) morphisms are stable under compositions
and base changes. The stability for base changes is seen easily, and the stability of
log smoothness and that of log étaleness for compositions are seen from the following
infinitesimal characterization of log smoothness and that of log étaleness, respectively.

A morphism f : X → Y of fine log schemes is log smooth (resp. log étale) if and only
if the following condition is satisfied:

(∗) For any diagram of fine log schemes including f

T
t−−−→ X

i

y yf

S
s−−−→ Y

such that i∗(MS)
∼=→ MT and such that the underlying scheme of T is (via i) a closed

subscheme of the underlying scheme of S defined by a nilpotent quasi-coherent ideal of
OS, then there exists classical étale locally on S a morphism (resp. there exists a unique
morphism) g : S → X such that g ◦ i = t and f ◦ g = s.

See [K1] (3.5) for the proof.

A morphism f : X → Y of fs log schemes is log smooth (resp. log étale) if and only if
the condition
(∗)′ the same as (∗) except that we assume that T and S are fs log schemes,
is satisfied.

This is proved in the same way as the case of fine log schemes.

We prove the stability of log flatness for compositions. This stability is also proved
in [Ol] Corollary 4.12 (ii) by another method. See also Ogus’ book [Og] Chapter IV,
Proposition 4.1.2 (4).

Lemma 1.11. Let f : X → Y be a log flat morphism of fine (resp. fs) log schemes and
let β : P →MY be a chart. Then fppf locally on X and on Y in the classical sense, there

exists a chart (P
β→MY , Q→MX , P → Q) of f including β satisfying the conditions (i)

and (ii) in the definition of log flatness in 1.10.

Proof. Let (MY ← P ′ → Q′ → MX) be a chart of f satisfying these conditions (i) and
(ii) in the definition of log flatness.

Claim 1. We may assume that there is a homomorphism P → P ′ such that β : P →
MY factors as P → P ′ → MY and such that the homomorphism P gp → (P ′)gp/(P ′)× is
surjective.

Proof of Claim 1. Fix x ∈ X, y = f(x) ∈ Y . By replacing P ′ with the inverse image
P ′′ of MY,y under

P gp × (P ′)gp →Mgp
Y,y ; (a, b) 7→ ab,

and by replacing Q′ with the pushout of P ′′ ← P ′ → Q′ in the category of fine (resp. fs)
monoids, we obtain the situation stated in Claim 1.

Assume we have P → P ′ as in Claim 1.
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Claim 2. We may assume that there are a finitely generated abelian group H which
contains P gp as a subgroup and a homomorphism H → (Q′)gp such that the diagram

P gp → H
↓ ↓

(P ′)gp → (Q′)gp

is commutative and is co-cartesian in the category of abelian groups.
Proof of Claim 2. Let R = (Q′)gp/(P ′)gp and let S be the inverse image of (P ′)× in

P gp. Then P gp/S
∼=→ (P ′)gp/(P ′)×. Consider the commutative diagram of exact sequences

Ext1(R,S) → Ext1(R,P gp) → Ext1(R,P gp/S) → 0
↓ ↓ ↓

Ext1(R, (P ′)×) → Ext1(R, (P ′)gp) → Ext1(R, (P ′)gp/(P ′)×) → 0.

(Note that Ext2 = 0 for Z-modules.) Let b ∈ Ext1(R, (P ′)gp) be the class of (Q′)gp.
Since the right vertical arrow is an isomorphism, this diagram shows that there is a ∈
Ext1(R,P gp) such that a′ − b, where a′ denotes the image of a in Ext1(R, (P ′)gp), comes
from an element c of Ext1(R, (P ′)×). Since c dies in Ext1(R, I) for a divisible abelian group
I containing (P ′)× as a subgroup, c dies in Ext1(R,G) for some finitely generated abelian
group G containing (P ′)× as a subgroup. Replace P ′ by the pushout of P ′ ← (P ′)× → G,
Q′ by the pushout of Q′ ← (P ′)× → G, X by Z[G]⊗Z[(P ′)×] X, and Y by Z[G]⊗Z[(P ′)×] Y .
Then a′ = b in Ext1(R, (P ′)gp). We have the desired abelian group H with an exact
sequence 0→ P gp → H → R→ 0 corresponding to a ∈ Ext1(R,P gp). This proves Claim
2.

Now let the situation be as in Claim 2, and let Q be the inverse image of Q′ in H. Since

Q/S
∼=→ Q′/(P ′)×, Q→MX is a chart of X. We have the chart MY

β← P → Q→MX of
f having the desired property.

Now we complete the proof of the stability of the log flatness for composition. Let
f : X → Y and g : Y → Z be log flat morphisms of fine (resp. fs) log schemes. Let

MZ ← P → Q
β→ MY be a chart of g which satisfies the conditions (i) and (ii) in the

definition of log flatness. By 1.11, we may assume that there is a chart MY
β← Q→ R→

MX of f including β which satisfies the conditions (i) and (ii) of log flatness. Then the
chart MZ ← P → R→MX of g ◦ f satisfies the conditions (i) and (ii) of log flatness.

A morphism f : X → Y of fine log schemes such that the homomorphism f ∗MX →MY

is an isomorphism is log flat (resp. log smooth, resp. log étale) if and only if the underlying
morphism of schemes is flat (resp. smooth, resp. étale).

2 The logarithmic flat topology and the logarithmic

étale topology.

Definition 2.1. A homomorphism of fs monoids h : P → Q is said to be of Kummer type
if the following condition is satisfied: It is injective, and for any a ∈ Q, there exists n ≥ 1
such that an ∈ h(P ).
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Definition 2.2. We say a morphism f : X → Y of fs log schemes is of Kummer type if
for any x ∈ X, the homomorphism of fs monoids MY,y/O×

Y,y →MX,x/O×
X,x with y = f(x)

is of Kummer type in the sense of 2.1.

A standard example is the following. Let Y be an fs log scheme with a chart P →MY ,
and assume that we are given an fs monoid Q and a homomorphism P → Q of Kummer
type. Let X be any scheme over Y ⊗Z[P ] Z[Q] endowed with the log structure associated
to Q→ OX . Then f : X → Y is of Kummer type.

If X = Y ⊗Z[P ] Z[Q] here, f is log flat and surjective, and X is a standard example of
a covering of Y for the log flat topology introduced in the following 2.3.

In the log flat case of 1.10, if f is of Kummer type and locally of finite presentation,
we can take the chart satisfying the additional conditions that P → Q is of Kummer type
and that X → Y ⊗Z[P ] Z[Q] is surjective. See [INT] Proposition 1.3.

Now we define the logarithmic flat topology and the logarithmic étale topology on an
fs log scheme. (In the sequel we neglect questions of universes, which can be treated as
in the non-log case.)

Definition 2.3. For an fs log scheme T , we say a family of morphisms {fi : Ui → T}i of
fs log schemes is a covering of T for the log flat (resp. log étale) topology, if the following
conditions (i) (resp. (i)′) and (ii) are satisfied.

(i) fi are log flat and of Kummer type, and the underlying morphisms of schemes of
fi are locally of finite presentation.

(i)′ fi are log étale and of Kummer type.
(ii) T =

∪
i

fi(Ui) (set theoretically).

Let X be an fs log scheme and let (fs/X) be the category of fs log schemes over X. We
define the Grothendieck topology called the log flat (resp. log étale) topology on (fs/X)
by taking coverings as above. We denote the site (fs/X) endowed with this topology by
X log

fl (resp. X log
ét ).

To see that these really give definitions of Grothendieck topologies, we need the follow-
ing lemma whose (2) is a case of [Na1] (2.2.2). (In there, it is proved that the assumption
that f is of Kummer type in 2.4 (2) can be replaced by the weaker assumption that f is
exact.)

Lemma 2.4. Let f : X → Y be a morphism of fs log schemes of Kummer type, let Y ′ be
an fs log scheme over Y , and let f ′ : X ′ := X ×Y Y ′ → Y ′.

(1) The morphism f ′ is of Kummer type.
(2) Assume that f is surjective. Then f ′ is surjective. More strongly, for any x ∈ X

and y ∈ Y ′ having the same image in Y , there exists z ∈ X ′ with image x in X and y in
Y ′.

Here and in the rest of this paper, when we are discussing fs log schemes, the notation
of the fiber product stands for the fiber product in the category of fs log schemes unless
the contrary is explicitly stated.

Proof. We may assume that X,Y and Y ′ have the same underlying scheme which is
the spectrum of an algebraically closed field k. Take a submonoid P ′ of MY ′ such that
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MY ′ = k× × P ′. Let P be the inverse image of P ′ in MY under the homomorphism
MY →MY ′ . Then MY = k× × P . We have a chart MY ← P → P ′ →MY ′ of Y ′ → Y .

Take a submonoid Q of MX such that MX = k× × Q. Then the map MY → MX is
written as k××P → k××Q ; (s, t) 7→ (sh(t), b(t)) for some homomorphism h : P → k×,
where b is the composition P ∼= MY /k

× → MX/k
× ∼= Q. Since k× is a divisible abelian

group and b is injective, h extends to a homomorphism Q→ k× which we still denote by
h. We have a commutative diagram

P
b→ Q

↓ ↓
MY → MX

where the left vertical arrow is the inclusion map and the right vertical arrow is y 7→ h(y)y

which we denote by γ. We have a chart MY ← P
b→ Q

γ→MX of X → Y .
Let Q′ be the pushout of P ′ ← P → Q in the category of fs monoids. Then the

fiber product X ′ is Spec(R) where R = k[Q′]⊗k[P ′] k with the log structure associated to
Q′ → R. Let ∆ be the torsion subgroup of (Q′)gp. Then ∆ ⊂ Q′ and the map P ′ → Q′/∆
is injective. For any a ∈ Q′ ∖∆, there is some n ≥ 1 such that an comes from P ′ ∖ {1}.
Hence there is a nilpotent ideal I of R and a nilpotent ideal J of k[∆] such that the map

k[∆]→ R induces k[∆]/J
∼=→ R/I. Hence X ′ is not empty and Q′/∆

∼=→ (MX′/O×
X′)x for

any x ∈ X ′. This proves (1) and (2).

We prove the following three propositions 2.5, 2.6, 2.7 concerning coverings for the
logarithmic flat topology. First, the following 2.5 says that the family {fi(Ui)}i in 2.3 (ii)
is an open covering of T .

Proposition 2.5. Let f : X → Y be a morphism of fs log schemes. Assume that f is log
flat and of Kummer type, and the underlying morphism of schemes of f is locally of finite
presentation. Then f is an open map.

Proposition 2.6. Let f : X → Y be a morphism of fs log schemes, and assume that f is
a covering for the logarithmic flat topology. Then, the underlying diagram of topological
spaces of

X ×Y X ⇒ X → Y

is exact, that is, Y is the coequalizer of the left two arrows in the category of topological
spaces. (Here X ×Y X is the fiber product in the category of fs log schemes.)

Proposition 2.7. Let f : X → Y be a morphism of fs log schemes.
(1) The following two conditions are equivalent.
(i) f is of Kummer type.
(ii) Étale locally on X, there exists a covering Y ′ → Y for the log flat topology such

that the log structure of X ×Y Y ′ is the inverse image of the log structure of Y ′.
(2) Assume that f is of Kummer type, X is quasi-compact, and assume that we are

given a chart P →MY . Then, globally on X, we can take as Y ′ in (ii) a log scheme over
Y of the type Y ⊗Z[P ] Z[Q] endowed with the log structure associated to Q → OY ′, for
some homomorphism of fs monoids P → Q of Kummer type.
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Proof of 2.5. Since classical fppf morphisms are open maps, it suffices to prove 2.5 in the
following case: Y has a chart P →MY , and there are an fs monoidQ and a homomorphism
P → Q of Kummer type such that X = Y ⊗Z[P ] Z[Q] with the log structure associated
to Q → OX . Let G be the group scheme Spec(Z[Qgp/P gp]) over Z with the trivial log
structure. Then, G acts on X over Y by

OX = OY ⊗Z[P ] Z[Q]→ OG×X = OY ⊗Z[P ] Z[Q⊕ (Qgp/P gp)]
1⊗ a 7→ 1⊗ (a, a mod P gp) (a ∈ Q).

We have G×X
∼=→ X ×Y X; (g, x) 7→ (x, gx). (Recall that the fiber products are taken in

the category of fs log schemes.)
Note that f is a closed map (for the underlying morphisms of schemes of f is finite) and

surjective (indeed, since Z[P ]→ Z[Q] is injective and finite, Spec(Z[Q])→ Spec(Z[P ]) is
surjective, and the surjectivity of a morphism of schemes is preserved by base changes).
Hence Y has the quotient topology of the topology of X.

Let U be an open set of X. By the above remark, to see that f(U) is open in Y , it
is enough to show that f−1(f(U)) is open in X. But this last fact follows from 2.8 below
and from the fact the action G×X → X is fppf (since G is fppf over Z).

Lemma 2.8. With the notation as above, f−1(f(U)) coincides with the image of G× U
under the action G×X → X.

Proof. This is reduced to the case where Y is the spectrum of a field.

Proof of 2.6. By 2.4 (2), the sequence of the underlying sets is exact. Hence, it is enough to
show that the topology of Y is the quotient topology of that of X. Taking local charts, we

may assume that there exists a chart MY ← P
h→ Q→MX of f with h being of Kummer

type such that the induced morphism of schemes u : X → Y ×Z[P ] Z[Q] is flat, surjective
and locally of finite presentation. Since Y ×Z[P ] Z[Q] → Y is closed and surjective, the
topology of Y is the quotient topology of that of Y ×Z[P ] Z[Q]. Further, since u is open
and surjective, the topology of Y ×Z[P ] Z[Q] is the quotient topology of that of X. Thus
we conclude that the topology of Y is the quotient topology of that of X.

Proof of 2.7. Assume that the condition (ii) in (1) is satisfied. Then, X ×Y Y ′ → X is of
Kummer type by 2.4 (1) and X ×Y Y ′ → Y is of Kummer type, and hence X → Y is of
Kummer type, that is, the condition (i) is satisfied.

Next, assume that the condition (i) is satisfied. Taking local charts for f , we see that,
after localizing X, there is a positive integer n such that the cokernel of (f ∗MY )

gp →Mgp
X

is killed by n. We show that, under the assumption of the existence of such an n, globally
on X, there exists a covering Y ′ → Y such that the log structure of X×Y Y ′ is the inverse
image of the log structure of Y ′, which completes the proof of (1). To show this, by étale
localizing Y , we may and will assume that there is a chart P →MY of Y . We show that,
under this further assumption of the existence of a chart of Y , there exists a covering of
the type Y ⊗Z[P ] Z[Q] as in (2). This completes not only the proof of (1) but also the
proof of (2) because there is an n which kills the cokernel of (f ∗MY )

gp →Mgp
X under the

assumption of (2). Let h : P → Q be a homomorphism n : P → P of Kummer type, let
Y ′ = Y ⊗Z[P ] Z[Q], and let X ′ = X ×Y Y ′. It is enough to show that f ′∗MY ′ → MX′ is
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an isomorphism, where f ′ is the projection X ′ → Y ′. Since f ′ is of Kummer type, it is
sufficient to show that (f ′∗MY ′)gp → Mgp

X′ is an isomorphism, which is easily checked at
stalks (cf. [Na1] 2.1.1).

3 Descent theory. I.

Concerning the descent theory for logarithmic flat topology, it seems a right philosophy is
that morphisms descent, properties of morphisms also descent, but objects do not descent.
We show in §3 (resp. §7) that morphisms (resp. properties of morphisms) descent for the
log flat topology (3.1) (resp. (7.1)) and in §8 that log objects descent for the classical flat
topology (8.1).

Theorem 3.1. Let X be an fs log scheme, and let Y be an fs log scheme over X. Then,
the functor

MorX( , Y ) : T 7→ MorX(T, Y )

on (fs/X) is a sheaf for the log flat topology.

Theorem 3.2. Let Gm,log be the functor T 7→ Γ(T,Mgp
T ) on (fs/X). Then Gm,log is a

sheaf for the log flat topology.

We remark that in the circulated version (cf. Introduction), Gm,log was denoted by
Gcpt

m .
Since a sheaf for the log flat topology is also a sheaf for the log étale topology, the

above results show that the functors MorX( , Y ) in 3.1 and Gm,log are sheaves for the log
étale topology.

3.3. We prove Theorem 3.1. In this 3.3, we show that it is sufficient to prove that the
functors

(3.3.1) T 7→ Γ(T,OT ) and T 7→ Γ(T,MT )

are sheaves for the log flat topology.
We may assume that X = Spec(Z) with the trivial log structure and Y is affine as a

scheme. Further, we may assume that Y has a chart P →MY (for this, see [KKN] §5).
Let F,G,H be functors (fs/ Spec(Z))→ (Set) defined by

F (T ) = {ring homomorphisms Γ(Y,OY )→ Γ(T,OT )}
G(T ) = {homomorphisms P → Γ(T,MT )}
H(T ) = {homomorphisms P → Γ(T,OT )}.

Then, MorX( , Y ) is the fiber product of F → H ← G, where the first arrow is induced
by P → Γ(Y,OY ) and the second arrow is induced by Γ(T,MT )→ Γ(T,OT ). Hence it is
sufficient to prove that F,G,H are sheaves.

Take a presentation

Γ(Y,OY ) = Z[Ti ; i ∈ I]/(fj ; j ∈ J),

Nr ⇒ Ns → P (exact).
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Then, F (T ) is the kernel of Γ(T,OT )
I → Γ(T,OT )

J , andG(T ) andH(T ) are the equalizers
of Γ(T,MT )

s ⇒ Γ(T,MT )
r and Γ(T,OT )

s ⇒ Γ(T,OT )
r, respectively. Hence it is sufficient

to prove that the functors in 3.3.1 are sheaves.

3.4. We prove that T 7→ Γ(T,OT ) is a sheaf for the log flat topology. It is sufficient to
prove

Lemma 3.4.1. Let T be an fs log scheme which is affine as a scheme and which has a
chart P →MT . Let Q be an fs monoid, let P → Q be a homomorphism of Kummer type,
let T ′ = T ⊗Z[P ] Z[Q] which we endow with the log structure associated to Q→ OT ′, and
let T ′′ = T ′ ×T T ′ be the fiber product in the category of fs log schemes. Then

(∗) Γ(T,OT )→ Γ(T ′,OT ′) ⇒ Γ(T ′′,OT ′′)

is exact.

Proof. Let A = Γ(T,OT ). Then, the diagram (∗) is isomorphic to

(∗∗) A
α→ A⊗Z[P ] Z[Q]

β1

⇒
β2

A⊗Z[P ] Z[Q⊕ (Qgp/P gp)],

where β1 (resp. β2) is the homomorphism of A-algebras which sends 1 ⊗ a (a ∈ Q) to
1 ⊗ (a, 1) (resp. 1 ⊗ (a, a mod P gp)). Let s : A ⊗Z[P ] Z[Q] → A be the homomorphism of
A-modules which sends 1⊗a (a ∈ Q) to a if a ∈ P , and to 0 if a ̸∈ P . Let ι : A⊗Z[P ]Z[Q⊕
(Qgp/P gp)] → A ⊗Z[P ] Z[Q] be the homomorphism of A-modules which sends 1 ⊗ (a, b)
(a ∈ Q, b ∈ Qgp/P gp) to 1 ⊗ a if b ̸= 0, and to 0 if b = 0. (Here we use the fact that
P → Q is of Kummer type to show that s is well-defined.) Then, s ◦ α is the identity
map of A, and α ◦ s + ι ◦ (β2 − β1) is the identity map of A ⊗Z[P ] Z[Q]. This proves the
exactness of (∗∗).

3.5. We prove that T 7→ Γ(T,MT ) is a sheaf for the log flat topology.
Let T ′ → T be a classical fppf covering (recall that this means that the log structure

of T ′ is the inverse image of that of T and the underlying morphism of schemes of T ′ → T
is an fppf covering), and let T ′′ = T ′ ×T T ′. Then

Γ(T,O×
T )→ Γ(T ′,O×

T ′) ⇒ Γ(T ′′,O×
T ′′)

is exact (a classical result). Further,

Γ(T,MT/O×
T )→ Γ(T ′,MT ′/O×

T ′) ⇒ Γ(T ′′,MT ′′/O×
T ′′)

is exact. To see it, taking local charts, we may assume that MT/O×
T is the inverse image

of a sheaf on the Zariski site, and use the fact that MT ′/O×
T ′ and MT ′′/O×

T ′′ are the inverse
images of the sheaf MT/O×

T and the fact that the diagram of topological spaces

T ′′ ⇒ T ′ → T

is exact. We can deduce from these two exactness that T 7→ Γ(T,MT ) is a sheaf for the
classical flat topology.

Since T 7→ Γ(T,MT ) commutes with the limit with respect to the inverse system of
the étale neighborhoods of a geometric point of the underlying scheme of T , it is sufficient
to prove the following.
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Lemma 3.5.1. Let T, T ′, T ′′, P → MT and P → Q be as in the hypothesis of Lemma

3.4.1, and assume T = Spec(A) for a local ring A, P
∼=→ (MT/O×

T )t, where t is the closed
point of T , and Q has no torsion. Then,

Γ(T,MT )→ Γ(T ′,MT ′) ⇒ Γ(T ′′,MT ′′)

is exact.

Proof. Let A′ = Γ(T ′,OT ′) = A⊗Z[P ]Z[Q], A′′ = Γ(T ′′,OT ′′) = A⊗Z[P ]Z[Q⊕ (Qgp/P gp)].
By 3.4.1, A → A′ ⇒ A′′ is exact. Let I (resp. I ′, resp. I ′′) be the ideal of A (resp. A′,
resp. A′′) generated by the image of P \{1} (resp. Q\{1}, resp. Q\{1}), and let V (resp.
V ′, resp. V ′′) be the subgroup of A× (resp. (A′)×, resp. (A′′)×) consisting of elements

which are congruent to 1 modulo I (resp. I ′, resp. I ′′). Since A/I
∼=→ A′/I ′, we see that

V → V ′ ⇒ V ′′ is exact. It remains to show that

(∗) Γ(T,MT )/V → Γ(T ′,MT ′)/V ′ ⇒ Γ(T ′′,MT ′′)/V ′′

is exact. Consider the exact diagram

(∗∗) P ⊕ (A/I)× → Q⊕ (A/I)×
β1

⇒
β2

Q⊕ {(A/I)[Qgp/P gp]}×,

where β1 (resp. β2) is the map (a, u) 7→ (a, u) (resp. (a, au)). The exactness of this follows
from the exactness of P → Q ⇒ Q⊕ (Qgp/P gp). Now there is a natural homomorphism
of diagrams from (∗∗) to (∗), which induces an isomorphism on the first terms, an iso-
morphism on the second terms, and an injection on the last terms. Since (∗∗) is exact,
(∗) is also exact.

3.6. We prove that Gm,log is a sheaf for the log flat topology. Let T ′ → T be a log
flat morphism of Kummer type which is surjective and locally of finite presentation as a
morphism of schemes. Assume that T has a chart P → MT and is quasi-compact. Let
T ′′ = T ′×T T

′ (the fiber product in the category of fs log schemes). Then, Γ(T,Mgp
T ) (resp.

Γ(T ′,Mgp
T ′ ), resp. Γ(T ′′,Mgp

T ′′)) is isomorphic to lim−→
a

Γ(T, a−1MT ) (resp. lim−→
a

Γ(T ′, a−1MT ′),

resp. lim−→
a

Γ(T ′′, a−1MT ′′)), where a ranges over all elements of P . (This follows from the

fact that T ′ and T ′′ are of Kummer type over T .) Hence the exactness of Γ(T,Mgp
T ) →

Γ(T ′,Mgp
T ′ ) ⇒ Γ(T ′′,Mgp

T ′′) is reduced to the exactness of Γ(T,MT ) → Γ(T ′,MT ′) ⇒
Γ(T ′′,MT ′′). This implies that Gm,log is a sheaf for the log flat topology.

4 Cohomology.

For an fs log scheme X, Xcl
fl denotes the category (fs/X) endowed with the classical fppf

topology. That is, (Ui → T )i is a covering in Xcl
fl means that T is an object of (fs/X),

the log structure of Ui is the inverse image of MT for any i, the underlying scheme of Ui

is flat and locally of finite presentation over that of T , and the images of Ui in T cover T
set theoretically.

The aim of this section is to prove
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Theorem 4.1. Let X be an fs log scheme and assume that X is locally Noetherian as a
scheme. Let ε : X log

fl → Xcl
fl be the canonical morphism of sites. Let G be a commutative

group scheme over the underlying scheme of X satisfying either one of the following two
conditions.

(i) G is finite flat over the underlying scheme of X.
(ii) G is smooth and affine over the underlying scheme of X.
We endow G with the inverse image of the log structure of X. Then we have a

canonical isomorphism

R1ε∗G ∼= lim−→
n ̸=0

Hom(Z/n(1), G)⊗Z (Gm,log/Gm),

where n ranges over all non-zero integers and the inductive limit is taken with respect to
the canonical projections Z/mn(1)→ Z/n(1).

Here Gm is the functor T → Γ(T,O×
T ) on (fs/X) and Z/n(1) = Ker (n : Gm → Gm)

(n ̸= 0). The quotient Gm,log/Gm here is taken in the categories of sheaves on Xcl
fl .

The following Kummer sequence for Gm,log on X log
fl will be a starting point for the

proof of 4.1.

Proposition 4.2. Let X be an fs log scheme. Then the sequences of sheaves on X log
fl

(resp. X log
ét )

0→ Z/n(1)→ Gm
n→ Gm → 0

0→ Z/n(1)→ Gm,log
n→ Gm,log → 0

are exact for any non-zero integer n (resp. for any integer n which is invertible on X).

Proof. Similarly as in [KN] 2.3.

4.3. Let X be an fs log scheme and let G be a sheaf of abelian groups on X log
fl . We define

a canonical homomorphism of sheaves on X log
fl

(4.3.1) lim−→Hom(Z/n(1), G)⊗ (Gm,log/Gm)→ R1ε∗G

as follows. Let h be a local section of Hom(Z/n(1), G). By the Kummer sequence

0→ Z/n(1)→ Gm,log
n→ Gm,log → 0

on X log
fl , we have

Gm,log = ε∗Gm,log
δ→ R1ε∗(Z/n(1))

h→ R1ε∗G,

where δ is the connecting homomorphism. The map δ kills Gm, for n : Gm → Gm is
surjective on Xcl

fl . Thus we obtain the map 4.3.1.

4.4. We show that the case (i) of Theorem 4.1 follows from the case (ii) of Theorem 4.1.
Let G be a finite flat commutative group over the underlying scheme of X. Let G∗ be
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the Cartier dual of G, and let L = Mor(G∗,Gm), where Mor means the sheaf of the
morphisms of sheaves of sets. Then, we have an exact sequence

0→ G→ L→ L′ → 0, L′ = L/G

and L,L′ are affine and smooth over the underlying scheme of X. By endowing L, L′

with the inverse images of the MX , we have

0→ R1ε∗G→ R1ε∗L→ R1ε∗L
′ exact

(for L = ε∗L → L′ = ε∗L
′ is surjective on Xcl

fl ). Hence the bijectivity of 4.3.1 for G is
reduced to the bijectivities of 4.3.1 for L and L′.

4.5. Assume that we are given a chart P →MX such that P is fs and torsion free (such
chart exists classical étale locally on X). We study R1ε∗ by using Čech cohomology.

For n ≥ 1, let
Xn = X ⊗Z[P ] Z[P 1/n]

with the log structure associated to Z[P 1/n] → OXn , and let Xn,i (i ≥ 0) be the fiber
product of i+1 copies of Xn over X in the category of fs log schemes. Note that Xn → X
is a covering in X log

fl . For a sheaf G of abelian groups on X log
fl , we have a Čech complex

CG,n

CG,n : Γ(Xn,0, G)→ Γ(Xn,1, G)→ Γ(Xn,2, G)→ · · · .

Lemma 4.6. Assume X = Spec(A) as a scheme with A a strict local ring (i.e. a Henselian
local ring with separably closed residue field), and assume that G is represented by a smooth
commutative group scheme over the underlying scheme of X endowed with the inverse
image of the log structure of X. Then

lim−→
n

H1(CG,n)
∼=→ H1(X log

fl , G).

Proof. By the general theory of Čech cohomology, lim−→
n

H1(CG,n)→ H1(X log
fl , G) is injective

and the cokernel is embedded in lim−→
n

H1((Xn)
log
fl , G). We show lim−→

n

H1((Xn)
log
fl , G) = 0. Let

a be an element of H1((Xn)
log
fl , G). Then there exists a quasi-compact fs log scheme T

and a surjective log flat morphism of Kummer type T → Xn such that a vanishes in
H1(T log

fl , G). By 2.7 (2), for some m ̸= 0, T ×Xn Xmn → Xmn is with the inverse image
log structure and flat in the classical sense. Hence a vanishes classical flat locally on Xmn,
so the image of a in H1((Xmn)

log
fl , G) comes from H1((Xmn)

cl
fl , G). Since G is smooth, we

have H1((Xmn)
cl
fl , G) = H1((Xmn)

cl
ét, G) ([G] 11.7). Since Xmn is the disjoint union of a

finite number of Spec of strict local rings, we have H1((Xmn)
cl
ét, G) = 0.

4.7. For n ≥ 1, let Hn be the classical commutative group scheme Spec(Z[P gp/(P gp)n]) =

Hom(P gp,Z/n(1)) over Spec(Z). Then Hn acts on Xn over X, and Hn×Xn

∼=→ Xn×XXn

(the fiber product is taken in the category of fs log schemes). Hence we have

Xn,i
∼= Hn × · · · ×Hn︸ ︷︷ ︸

i times

×Xn.
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4.8. Let G be a sheaf of abelian groups on X log
fl , and let F be the sheaf of abelian groups

on X log
fl defined by F (T ) = Γ(T×XXn, G). Then Hn acts on F . By 4.7, CG,n is isomorphic

to the complex

Mor({1}, F )
δ0→ Mor(Hn, F )

δ1→ Mor(Hn ×Hn, F )→ · · · ,(∗)

where Mor means the set of morphisms as sheaves of sets on X log
fl ,

δ0(x) = (σ 7→ σx− x), δ1(x) = ((σ, τ) 7→ x(στ)− x(σ)− σ(x(τ))), . . . .

4.9. Let G and F be as in 4.8. Assume that X is strictly local as a scheme and P
∼=→

(MX/O×
X)x, where x is the closed point of X.

Consider the trivial action of Hn on G. Then, the natural homomorphism G → F
preserves the action of Hn and hence we get a homomorphism H1(Hn, G)→ H1(Hn, F ).
Note

H1(Hn, G) = Hom(Hn, G) = Hom(Z/n(1), G)⊗Z P gp.

The composite map

Hom(Z/n(1), G)⊗Z P
gp ∼= H1(Hn, G)→ H1(Hn, F ) ∼= H1(CG,n)→ H1(X log

fl , G)

sends h⊗ a to the image of a under

P gp → H0(X log
fl ,Gm,log)→ H1(X log

fl ,Z/n(1)) h→ H1(X log
fl , G),

where the second arrow is the connecting homomorphism of

0→ Z/n(1)→ Gm,log
n→ Gm,log → 0 (cf. (4.2)).

Together with 4.6, the next proposition 4.10 implies 4.1 under the assumption on X
in 4.10.

Proposition 4.10. Assume that as a scheme, X = Spec(A) for a Noetherian complete
local ring A with separably closed residue field. Let G be a smooth commutative group
scheme over the underlying scheme of X and endow G with the inverse image of the log

structure of X. Assume P
∼=→ (MX/O×

X)x, where x is the closed point of X. Then,

Hom(Z/n(1), G)⊗Z P
gp ∼=→ H1(CG,n) for any n ≥ 1.

4.11. We prove 4.10 in the case where A is an Artinian local ring. Let I (resp. J) be the
ideal of A (resp. OXn) generated by the image of P \{1} (resp. P 1/n \{1}). Then I (resp.
J) is a nilpotent ideal. We define a descending filtrations {filiG}i≥0 on the Hn-module G
and {filiF}i≥0 on the Hn-module F by

(filiG)(T ) = Ker (G(T )→ G(T ×X Spec(OX/I
i)))

(filiF )(T ) = Ker (F (T )→ G(T ×X Spec(OXn/J
i))).
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By the nilpotence of I (resp. J), we have fili = 0 for a sufficiently large i. Since G is
smooth, we have

(4.11.1) gri(G)(T ) ∼= Lie(G)⊗A Γ(T, I iOT/I
i+1OT ),

(4.11.2) gri(F )(T ) ∼= Lie(G)⊗A Γ(T, J iOT/J
i+1OT )

(gri = fili/fili+1, i ≥ 1). We have also

(4.11.3) gr0(G)
∼=→ gr0(F ).

By 4.11.3 and by the following 4.12, we have

Hom(Z/n(1), G)⊗Z P gp = H1(Hn, G)
∼=→ H1(Hn, gr

0(G))
∼=→ H1(Hn, gr

0(F ))
∼=← H1(Hn, F ) = H1(CG,n).

This proves 4.10 in the case A is Artinian.

Lemma 4.12. For any i ≥ 1 and any m ≥ 1, Hm(Hn, gr
i(G)) and Hm(Hn, gr

i(F )) are
zero.

Proof. Since gri(G) and gri(F ) are coherent, this follows from [SGA3] I, 5.3.3.

4.13. We prove Proposition 4.10. We denote the maximal ideal of A by mA. For i ≥ 0,
define the abelian groups Di and Ei by the exact sequences

0→ G(A/mi
A)→ G(Xn,0 ⊗A A/mi

A)→ Di → 0

0→ Ei → G(Xn,1 ⊗A A/mi
A)→ G(Xn,2 ⊗A A/mi

A).

Then Di ⊂ Ei and Ei/Di is H1 of the complex CG,n for Spec(A/mi
A) which is endowed

with the inverse image of the log structure of X. Let E = lim←−
i

Ei and D = lim←−
i

Di.

Since G(A)
∼=→ lim←−G(A/mi

A), G(Xn,k) = lim←−G(Xn,k ⊗A A/mi
A), and since G(A/mi+1

A )→
G(A/mi

A) and G(Xn,0⊗AA/mi+1
A )→ G(Xn,0⊗AA/mi

A) are surjective by the smoothness
of G, we have exact sequences

0→ G(A)→ G(Xn,0)→ D → 0

0→ E → G(Xn,1)→ G(Xn,2)

and an isomorphism E/D ∼= lim←−Ei/Di. Hence E/D ∼= H1(CG,n).
On the other hand, by [SGA3] XV 1.6, Hom(Z/n(1), G) does not change when X is

replaced by Spec(A/mi
A). This and 4.11 show

Hom(Z/n(1), G)⊗Z P
gp ∼=→ Ei/Di for any i.

Hence Hom(Z/n(1), G)⊗Z P
gp

∼=→ E/D ∼= H1(CG,n).
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4.14. We prove 4.1 in general. We may assumeX = Spec(A) as a scheme for a Noetherian
strict local ring and let G be a smooth affine commutative group scheme over A endowed
with the inverse image of MX .

Let X̂ = Spec(Â), where Â is the completion of A, and endow X with the inverse
image of the log structure of X. Since the problem is already solved for X̂, and since
Hom(Z/n(1), G) does not change when we replace X by X̂, it is sufficient to prove that
H1(X log

fl , G)→ H1(X̂ log
fl , G) is injective.

Let α be an element of H1(X log
fl , G) which vanishes in H1(X̂ log

fl , G). Since α vanishes
classical fpqc locally, by the fpqc descent (here we use the fact that G is affine), α is the
class of a representable smooth affine G-torsor Y over the underlying scheme of X which
is endowed with the inverse image of the log structure of X. Since X is strictly local, Y
has an X-rational point and hence Y is a trivial G-torsor. Hence α = 0.

5 Hilbert 90.

Theorem 5.1. Let X be an fs log scheme whose underlying scheme is locally Noetherian.
Then the canonical map from H1(Xcl

ét,Gm,log) to H1(X log
ét ,Gm,log) (resp. to H1(Xcl

fl ,Gm,log),

resp. H1(X log
fl ,Gm,log)) is bijective.

Since Gm,log on the classical étale site is the direct image of Gm,log on the other sites,
this theorem is equivalent to its local form

Corollary 5.2. Let X be an fs log scheme whose underlying scheme is Spec of a Noethe-
rian strict local ring. Then H1(Xcl

fl ,Gm,log), H
1(X log

ét ,Gm,log), H
1(X log

fl ,Gm,log) are zero.

We prove 5.2. Since the natural projections from X log
fl to Xcl

fl and to X log
ét send Gm,log

to Gm,log, it is enough to show H1(X log
fl ,Gm,log) = 0.

Consider the exact sequence 0 → Gm → Gm,log → Gm,log/Gm → 0 on X log
fl . First, we

show that the connecting map H0(X log
fl ,Gm,log/Gm)→ H1(X log

fl ,Gm) is surjective by us-

ing the result 4.1 as follows. Since H i(Xcl
fl ,Gm) = 0 for i > 0 by [G] 11.7, H1(X log

fl ,Gm) =
H0(Xcl

fl , R
1ε∗Gm) and the latter is isomorphic toH0(Xcl

fl , (Q/Z)⊗(Gm,log/Gm)) by 4.1. On

the other hand,H0(X log
fl ,Gm,log/Gm) = H0(Xcl

fl , ε∗(Gm,log/Gm)) = H0(Xcl
fl ,Q⊗(Gm,log/Gm)).

Hence, the cokernel of the above connecting map injects into H1(Xcl
fl ,Gm,log/Gm), which

is isomorphic to H1(Xcl
ét,Gm,log/Gm) = 0 by [G] 11.9.

Hence it is sufficient to prove H1(X log
fl ,Gm,log/Gm) = 0. To show this, we apply

the same argument in the proof of 4.6. Take a chart by P := (MX/O×
X)x. In the

notation there, since H1((Xmn)
cl
fl , ε∗(Gm,log/Gm)) = H1((Xmn)

cl
fl ,Q ⊗ (Gm,log/Gm)) =

H1((Xmn)
cl
ét,Q⊗(Gm,log/Gm)) = 0 by [G] 11.9 again, it is enough to showH1(CGm,log/Gm,n) =

0 for each fixed n ≥ 1. But the complex CGm,log/Gm,n is easy to be described. In fact, let
n′ be the greatest divisor of n which is invertible on X. Let R := Γ(Xn,Gm,log/Gm) =
Q⊗ (P 1/n)gp and S := {1, . . . , n′}. Then, Xn,i is a disjoint union of (n′)i strict local fs log

schemes, and the complex CGm,log/Gm,n is isomorphic to R
δ0→ Map(S,R)

δ1→ Map(S2, R)→
· · · , where (δ0(a))(i) = a for any a ∈ R, i ∈ S, and (δ1(b))(i, j) = b(i) − b(j) for any
b ∈ Map(S,R), i, j ∈ S. Hence H1(CGm,log/Gm,n) = 0 as desired.
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6 Locally free modules.

6.1. In this section, for an fs log scheme X, we denote the sheaf T 7→ Γ(T,OT ) on X log
fl

by OX .

Consider the map

(6.1.1)
n∏
H1(X log

fl ,Gm)→ H1(X log
fl , GLn(OX))

(
n∏
denotes the product of n copies) induced by the embedding

n∏
Gm

⊂→ GLn(OX) as diag-
onal matrices. IfX = Spec(A) as a scheme for a Noetherian strict local ring, H1(X log

fl ,Gm)
is isomorphic to (Mgp

X /O×
X)x ⊗ (Q/Z), where x denotes the closed point of X (4.1).

Theorem 6.2. Let X be an fs log scheme and assume X = Spec(A) as a scheme for a
Noetherian strict local ring A. Then the map 6.1.1 induces an isomorphism of pointed
sets

H1(X log
fl , GLn(OX)) ∼= Sn \(

n∏
((Mgp

X /O×
X)x ⊗ (Q/Z))).

Here OX denotes the sheaf T → Γ(T,OT ) on X log
fl , and Sn \ means the quotient by

the natural action of the symmetric group of degree n on the product of n-copies.

Remark 6.3. For an fs log scheme X, H1(X log
fl , GLn(OX)) is identified with the set of

isomorphism classes of OX-modules on X log
fl which are locally free of finite rank.

A way to obtain such modules is the following. LetX be an fs log scheme having a chart
P → MX , and take an fs monoid Q and an integral homomorphism P → Q of Kummer
type. Let Y be the scheme X ⊗Z[P ] Z[Q] endowed with the log structure associated to

Q→ OY . Then if f denotes the canonical morphism Y log
fl → X log

fl , the OX-module f∗OY

on X log
fl is locally free of finite rank. We have the following direct decomposition of f∗OY

into invertible modules. Let H be the group scheme Spec(Z[Qgp/P gp]) over Z. Then H
acts on Y over X, and hence on f∗OY . For a ∈ Qgp/P gp, let La be the part of f∗OY on
which H acts via the character H → Gm corresponding to a. Then

f∗OY =
⊕
a

La,

where a ranges over all elements of Qgp/P gp (this can be checked log flat locally). Let
a ∈ Qgp and let m be a non-zero integer such that am ∈ P gp. Then the element of
H1(X log

fl ,Gm) corresponding to the invertible module La mod P gp coincides with the image

of am under H0(X log
fl ,Gm,log)→ H1(X log

fl ,Z/m(1))→ H1(X log
fl ,Gm), where the first arrow

is the connecting map of the Kummer sequence 0→ Z/m(1)→ Gm,log
m→ Gm,log → 0. If

X is as in 6.2 and x is its closed point, this element ofH1(X log
fl ,Gm) = H1(X log

fl , GL1(OX))
corresponds to am ⊗m−1 of (Mgp

X /O×
X)x ⊗ (Q/Z) in the isomorphism of 6.2.

Corollary 6.4. Let X be as in 6.2, and let F be an OX-module on X log
fl which is locally

free of finite rank. Then F is a direct sum of invertible OX-modules on X log
fl .
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The method of proving of 6.2 is as follows. Let x be the closed point of X. By the similar
method to the proof of Theorem 4.1, we find

H1(X log
fl , GLn(OX)) ∼= lim−→

m

Hom(Hm, GLn)/ ∼,

where Hm is the group scheme Hom((Mgp
X /O×

X)x,Z/m(1)) and / ∼ means the quotient
set by the inner conjugation by elements of GLn(A). Theorem 6.2 can be deduced from
this.

This Theorem 6.2 is quoted in [Ni] and a proof with details is given there. See [Ni]
Theorem 3.22.

We prove some propositions concerning OX-modules on log flat sites. Some results
concerning GLn-torsors and vector bundles on log flat sites are given in §9.
Proposition* 6.5. Let X be an fs log scheme whose underlying scheme is affine, and
let F be an OX-module satisfying the following condition: There is a covering Y → X
in X log

fl such that the pullback of F on Y log
fl is isomorphic to the module theoretic inverse

image on Y log
fl of some quasi-coherent module on the small Zariski site of Y . Then,

Hm(X log
fl , F ) = 0 for any m ≥ 1.

The proof of 6.5 is by the computation of Čech cohomology.
This Proposition 6.5 is quoted in [Ni] and a proof with details is given there. See [Ni]

Proposition 3.27.

Proposition 6.6. Let X be an fs log scheme and let 0→ F ′ → F → F ′′ → 0 be an exact
sequence of OX-modules on X log

fl which are locally free and of finite rank.
(1) If the underlying scheme of X is affine, this exact sequence splits.
(2) F is classical if and only if F ′ and F ′′ are classical.
Here we say an OX-module F on X log

fl which is locally free of finite rank is classical if
the restriction F of F to the small Zariski site of X is locally free and F is the module
theoretic inverse image of F on X log

fl .

Proof of (1). Consider the exact sequence of cohomology groups associated to the exact
sequence

0→ HomOX
(F ′′, F ′)→ HomOX

(F ′′, F )→ HomOX
(F ′′, F ′′)→ 0

of sheaves on X log
fl . By 6.5, H1(X log

fl ,HomOX
(F ′′, F ′)) = 0. Hence the identity map of F ′′

comes from HomOX
(F ′′, F ), and hence we obtain the splitting.

Proof of (2). We may assume that the underlying scheme of X is affine. Then, we are
reduced to (1).

7 Descent theory. II. Logarithmic flat descent.

In the circulated version (cf. Introduction), we have announced the following results (under
some finiteness conditions). The original proofs are so long and complicated, but for the
first three cases of 7.1 and for 7.2, Illusie–Nakayama–Tsuji ([INT]) gave considerable short
proofs based on a result of Olsson in [Ol]. So we do not include here the original proofs.
The last two cases of 7.1 were also proved in Tani’s [T].
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Theorem* 7.1. Let f : X → Y be a morphism of fs log schemes, and let g : Y ′ → Y be
a covering in Y log

fl . Let X ′ = X ×Y Y ′ (the fiber product in the category of fs log schemes)
and let f ′ : X ′ → Y ′ be a morphism induced by f .

Then f is log étale (resp. log smooth, resp. log flat, resp. of Kummer type, resp. with
finite underlying morphism of schemes) if and only if so is f ′.

Theorem* 7.2. Let X ′ g→ X
f→ Y be morphisms of fs log schemes, and assume that g

is surjective and of Kummer type.
If g and f ◦ g are log étale (resp. log smooth, resp. log flat), then f is log étale (resp.

log smooth, resp. log flat).

8 Descent theory. III.

In the theory of fs log schemes, the descent theory for objects works for the classical fppf
topology.

Theorem 8.1. Let X be an fs log scheme and let F be a sheaf on Xcl
fl . Assume that there

is a covering Y → X in Xcl
fl such that the inverse image of F on (fs/Y ) is represented by

an fs log scheme T over Y which is of Kummer type over Y and whose underlying scheme
is affine over that of Y .

Then, F is represented by an fs log scheme S over X which is of Kummer type over
X and whose underlying scheme is affine over that of X.

We remark that this theorem also follows from [Ol] Appendix Corollary A.5.

Proof. Let X,F, Y, T be as in the hypothesis of the theorem. By the classical fppf descent,
there exists a scheme S over the scheme X which is affine over the scheme X and which
is endowed with an isomorphism T ∼= S ×X Y of schemes over the scheme Y . Our task
is to descend the log structure of T to S. Let T ′ be the fiber product T ×Y (Y ×X Y )
in the category of fs log schemes, which represents the pullback of F on Y ×X Y . (As a
scheme, T ′ is the fiber product T ×S T in the category of schemes.) Let f : T → S and
g : T ′ → S be the canonical morphisms of schemes. Note f is faithfully flat and locally
of finite presentation. Define the sheaf MS on Sét to be the equalizer of f∗MT ⇒ g∗MT ′

where the two arrows are induced by the first and the second projections T ′ → T . Then
MS → OS is induced from the exactness of OS → OT ⇒ OT ′ , and it is easy to see that
MS is a log structure. Now 8.1 is reduced to

Lemma 8.2. Let the notation be as above. Then, MS is an fs log structure and MT is
the inverse image of MS.

We deduce 8.2 from

Lemma 8.3. With the notation as above, f−1(MS/O×
S )

∼=→MT/O×
T .

Proof of 8.2 assuming 8.3. Let t ∈ T and s = f(t) ∈ S, and let P = (MS/O×
S )s. Since P is

isomorphic to (MT/O×
T )t, it is an fs monoid (1.5) (3). Take a homomorphism h : P →MS,s

such that the composite P
h→ MS,s → P is the identity. Since P is of finite presentation

as a monoid, we can extend h to a homomorphism P →MS|U for an étale neighbourhood
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U of s. Since P
∼=→ (MT/O×

T )t, P →MT |V is a chart for an étale neighbourhood V of t in
f−1(U). Let W be the image of V in U . Since f is flat and locally of finite presentation,
it is an open map ([EGAIV] Théorème 2.4.6), and hence W is an open set of U . Since
the inverse image of MW/O×

W on V coincides with MV /O×
V , we have that MW coincides

with the log structure associated to P → OS.

We prove 8.3 by dividing it into the two parts (1) (2) of

Lemma 8.4. Define the sheaf N on Sét to be the equalizer of f∗(MT/O×
T ) ⇒ g∗(MT ′/O×

T ′).
Then:

(1) f−1(N)
∼=→MT/O×

T .

(2) MS/O×
S

∼=→ N .

Proof of (1). First note that all sheaves are for the classical étale topology here. Let t ∈ T ,
a ∈ (MT/O×

T )t and let s (resp. x) be the image of t in S (resp. X). We prove a comes
from Ns. Since T is of Kummer type over X, there exists n ≥ 1 such that an comes from
b ∈ (MX/O×

X)x. Working classical étale locally on S and on X, we may assume that a
comes from an element ã of Γ(U,MT/O×

T ) for some étale neighbourhood U → T of t→ T
such that U → S is surjective, b comes from an element b̃ of Γ(X,MX/O×

X), and ãn comes
from b̃. (Here we used the fact f is an open map.)

Lemma 8.5. For any y ∈ T , the image of b̃ in (MT/O×
T )y is the n-th power of some

element.

Proof. Take y′ ∈ T which is in the image of U in T such that f(y) = f(y′), and take
z ∈ T ′ such that p1(z) = y and p2(z) = y′ (here pi is the i-th projection T ′ → T ). We
have isomorphisms

(MT/O×
T )y

∼=→ (MT ′/O×
T ′)z

∼=← (MT/O×
T )y′ over (MX/O×

X)x.

Now 8.5 follows from the fact that the image of b̃ in (MT/O×
T )y′ is an n-th power of

the image of ã.

By 8.5, the image of b̃ in MT/O×
T is locally an n-th power. Since MT/O×

T is torsion
free, the n-th root of b̃ in MT/O×

T exists globally on T , and it should coincide on U with
ã. This n-th root of b̃ on T is a global section of N on S by the uniqueness of n-th root in
MT ′/O×

T ′ of the image of b̃. This shows that a comes from Ns. This completes the proof
of (1) of 8.4.

Proof of 8.4 (2). The problem is the surjectivity of MS → N . Let h ∈ Γ(S,N). It is
sufficient to prove that h comes from MS étale locally on S. The inverse image of h in
MT under MT → MT/O×

T is an Gm-torsor on T which is endowed with descent data on
T ′. By the descent theory of line bundles, this Gm-torsor descends to a Gm-torsor L on
S. Étale locally on S, L has a section which is regarded as a section of MS with image h
in N . Hence MS → N is surjective.
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9 Torsors.

The aim of this section is to prove

Theorem 9.1. Let X be an fs log scheme which is locally Noetherian as a scheme. Let
G be a finite flat commutative group scheme over the underlying scheme of X, which we
endow with the inverse image of MX , and let F be a G-principal homogeneous space in
the category of sheaves on X log

fl . Then, F is representable by an fs log scheme over X
which is log flat of Kummer type and whose underlying scheme is finite over that of X.

9.2. Let X and G be as in the hypothesis of 9.1. We denote by H1
r (X

log
fl , G) the subset of

H1(X log
fl , G) consisting of elements whose corresponding G-principal homogeneous space

on X log
fl is represented by an fs log scheme over X, which is log flat and of Kummer type

and whose underlying scheme is finite over that ofX. Theorem 9.1 states thatH1
r (X

log
fl , G)

coincides with H1(X log
fl , G). Note that

H1(Xcl
fl , G) ⊂ H1

r (X
log
fl , G) in H1(X log

fl , G)

by the classical fppf descent theory.

Lemma 9.3. Let X and G be as in the hypothesis of 9.1.
(1) If χ1 ∈ H1

r (X
log
fl , G) and χ2 ∈ H1(Xcl

fl , G), then χ1 + χ2 ∈ H1
r (X

log
fl , G).

(2) Let G′ be a finite flat commutative group scheme over the underlying scheme of
X, which we endow with the inverse image of the log structure of X, and let h : G′ → G
be an injective homomorphism. Then h sends H1

r (X
log
fl , G′) into H1

r (X
log
fl , G).

Proof of (1). By §8, we may work classical fppf locally on X. Since χ2 vanishes classical
fppf locally, we may assume χ2 = 0.
Proof of (2). Let F ′ be the G′-principal homogeneous space on X log

fl whose class belongs

to H1
r (X

log
fl , G′). Then the image of the class of F ′ in H1(X log

fl , G) is represented by the
induced G-principal homogeneous space F = G′ \(G × F ′), where G′ acts on G × F ′ by
(σ−1, σ) (σ ∈ G′). We have a cartesian diagram

G× F ′ −−−→ F

pr1

y y
G −−−→ G′ \G.

Since G→ G′ \G is fppf, the diagram implies that F over G′ \G is represented classical
fppf locally on G′ \G, by a log flat fs log scheme of Kummer type whose underlying
scheme is finite over the base. Hence by §8, F → G′ \G is represented by an fs log
scheme over G′ \G which is log flat and of Kummer type whose underlying scheme is
finite over G′ \G.

Lemma 9.4. Let X be an fs log scheme and let n ≥ 1. Then the image of the con-
necting map H0(X,Mgp

X ) → H1(X log
fl ,Z/n(1)) of the Kummer sequence is contained in

H1
r (X

log
fl ,Z/n(1)).
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Proof. Let a ∈ H0(X,Mgp
X ), and let Fa be the Z/n(1)-principal homogeneous space corre-

sponding to the image of a in H1(X log
fl ,Z/n(1)). That is, Fa(T ) = {b ∈ Γ(T,Mgp

T ) ; bn =
a} for any fs log scheme T over X. By working classical étale locally on X, we may assume
that there are a chart P → MX and an element ã of P whose image in H0(X,Mgp

X ) is
a. Let L be the abelian group generated by P gp and a letter b which is subject to the
relation bn = ã. Let Q = {x ∈ L ; xn ∈ P} and let Y = X ⊗Z[P ] Z[Q] which is endowed
with the log structure associated to Q → OY . Then, b ∈ F (Y ) defines an isomorphism

MorX( , Y )
∼=→ Fa. Furthermore by the construction, Y is log flat of Kummer type over

X and the underlying scheme of Y is finite over that of X.

9.5. Now we prove 9.1. By §8 and by a limit argument, we may assume that as a scheme,
X = Spec(A) for some Noetherian strict local ring A. Take a chart P → MX which

induces P
∼=→MX,x/O×

X,x where x is the closed point of x. Let

(9.5.1) lim−→
n

Hom(Z/n(1), G)⊗Z P
gp → H1(X log

fl , G)

be the homomorphism which sends h ⊗ a (h ∈ Hom(Z/n(1), G), a ∈ P gp) to the image

of a under P gp → H0(X,Mgp
X ) → H1(X log

fl ,Z/n(1)) h→ H1(X log
fl , G). By §4, we have an

isomorphism

H1(Xcl
fl , G)⊕ (lim−→

n

Hom(Z/n(1), G)⊗Z P
gp)

∼=→ H1(X log
fl , G).

By 9.3 (1), it is enough to show that the image of lim−→
n

Hom(Z/n(1), G)⊗ZP
gp → H1(X log

fl , G)

is contained in H1
r (X

log
fl , G). Let Gmult be the multiplicative part of G. Then, any homo-

morphism Z/n(1)→ G factors through Gmult. By 9.3 (2), we may assume G is multiplica-
tive. Then, G ∼= ⊕

i
(Z/miZ)(1) for some finite family of non-zero integers (mi)i. Since a

G-principal homogeneous space is the product of Z/mi(1)-principal homogeneous spaces,
we may assume G = Z/m(1) for some m ̸= 0. Then,

lim−→
n

Hom(Z/n(1), G)⊗Z P
gp ∼= P gp/(P gp)m,

and the map 9.5.1 is identified with the map P gp/(P gp)m → H1(X log
fl ,Z/m(1)) of the

Kummer sequence. Hence we are reduced to 9.4.

9.6. We add some remarks on GLn-torsors and vector bundles on X log
fl . We have seen in

§6 that OX-modules on X log
fl which are locally free of finite rank need not be classical ones.

The following 9.7 (resp. 9.8) says that representable GLn-torsors (resp. vector bundles)
on X log

fl need not be (resp. need be) classical ones.

(Recall that the sheaf OX on X log
fl is defined by T → Γ(T,OT ).)

Proposition 9.7. Let F be a GLn(OX)-torsor in the category of sheaves on X log
fl . Then

F is representable.

Proposition 9.8. Let F be an OX-module on X log
fl which is locally free of finite rank.

Then F is representable if and only if F is a classical one.
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Proof of 9.7. By a limit argument we may assume that X = Spec(A) for a Noetherian
strict local ring A. Let α ∈ H1(X log

fl , GLn(OX)) and let F be the GLn(OX)-torsor on

X log
fl corresponding to α. We show that F is representable. Let P → MX be a chart

such that P
∼=→ (MX/O×

X)x where x is the closed point of X. By §6, α comes from an
element (α1, . . . , αn) of (P gp ⊗ (Q/Z))n. Take mi ≥ 1 such that miαi = 0, and write
αi = ai ⊗m−1

i , ai ∈ P gp and let Fi be the Z/mi(1)-torsor corresponding to the image in

H1(X log
fl ,Z/mi(1)) of ai under the connecting map of 0→ Z/mi(1)→ Gm,log

mi→ Gm,log →
0. Let H =

∏
1≤i≤n

Z/mi(1). Then the GLn(OX)-torsor F is induced from the H-torsor∏
1≤i≤n

Fi by the diagonal embedding H → GLn(OX). Since the quotient H \GLn(OX) is

representable and GLn(OX)→ H \GLn(OX) is fppf covering, the cartesian diagram

GLn(OX)×
∏

1≤i≤n

Fi −−−→ Fy y
GLn(OX) −−−→ H \GLn(OX)

shows (§8) that F is representable.
Proof of 9.8. The “if” part is clear and so we consider the “only if” part. We may assume
X = SpecA as a scheme for a Noetherian strict local ring. Assume F is representable but
not classical. Then F comes from an element (ai ⊗m−1

i )1≤i≤n of ((Mgp
X /O×

X)x ⊗ (Q/Z))n
(n = rank (F ), x is the closed point, ai ∈ (Mgp

X /O×
X)x,mi ∈ Z,mi ≥ 1) such that a1 is not

an m1-th power in (Mgp
X /O×

X)x.

Let Y be the GLn(OY )-torsor defined to be the subsheaf of
n∏
F consisting of bases of

F . Then Y is representable (9.7). We denote by the same letter F (resp. Y ) the fs log
scheme over X which represents F (resp. Y ). We prove the following (∗) and (∗∗).

(∗) There is an open set U of
n∏
F which contains the image of the zero section

X →
n∏
F such that MU coincides with the inverse image of MX .

(∗∗) For any y ∈ Y lying over x, (Mgp
X /O×

X)x → (Mgp
Y /O×

Y )y is not bijective.
These (∗) and (∗∗) imply (U ∩ Y ) ×X {x} = ∅. But if X ′ → X is a covering in

X log
fl such that the pullback of F on X ′ is classical and if x′ is a point of X ′ lying over x,

(U ∩ Y )×X {x′} ̸= ∅ because a classical vector bundle over a field is irreducible (so any
two non-empty open sets intersect).

Proof of (∗).
n∏
F is of Kummer type over X since log flat locally on X, F becomes a

classical vector bundle with the inverse image of MX . Let y ∈
n∏
F be a point in the image

of the zero section X →
n∏
F , and let s be the image of y in X. Then, the zero section

defines g : (Mgp
Y /O×

Y )y → (Mgp
X /O×

X)s and the composite g ◦ h with the canonical map
h : (Mgp

X /O×
X)s → (Mgp

Y /O×
Y )y is the identity map of (Mgp

X /O×
X)s. Since h is of Kummer

type, this means that h is bijective. This proves (∗).
Proof of (∗∗). Since the pullback of F on Y is isomorphic to

n∏
OY , the image of αi in

(Mgp
Y /O×

Y )y ⊗ Q/Z vanishes for any y ∈ Y . Hence a1 is an m1-th power in (Mgp
Y /O×

Y )y
for any y ∈ Y .
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10 Logarithmic fundamental groups.

10.1. As is said in §3, the log flat descent for objects does not work well. An exception
is the descent for log étale finite objects of Kummer type.

For an fs log scheme X, let Ét
log
(X) be the category of fs log schemes over X which

are log étale and of Kummer type over X and whose underlying scheme is finite over that
of X. Let lcf(X log

ét ) (resp. lcf(X log
fl )) be the category of sheaves on X log

ét (resp. X log
fl ) which

are locally constant and finite.

Theorem 10.2. Let X be an fs log scheme whose underlying scheme is locally Noetherian.

(1) For an object Y of Ét
log
(X), the sheaf MorX( , Y ) on X log

ét (resp. X log
fl ) belongs to

lcf(X log
ét ) (resp. lcf(X log

fl )).
(2) We have equivalences of categories

Ét
log
(X)

≃→ lcf(X log
ét )

≃→ lcf(X log
fl ).

(3) If X is connected, there exists a profinite group πlog
1 (X), which is unique up to

isomorphism, such that the equivalent categories in (2) are equivalent to the category of
finite πlog

1 (X)-sets.
(4) If X = Spec(A) as a scheme for a strict local ring A, we have an isomorphism

πlog
1 (X) ∼= lim←−

n

Hom((Mgp
X /O×

X)x,Z/n(1))

where n ranges over all integers which are invertible in A, x is the closed point, and
Z/n(1) denotes Γ(Spec(A),Z/n(1)).

Here in (3), for a profinite group G, a G-set means a discrete set endowed with a
continuous action of G.

The log fundamental group is first treated in [FK]. A large part of 10.2 is taken from
[FK]. See also [I], [S], [V], [Ho].

Remark 10.3. Let X be a regular locally Noetherian scheme and let D be a divisor
on X with normal crossings. Endow X with the log structure defined by D (that is,
MX = {f ∈ OX ; f is invertible outside D}. Then πlog

1 (X) coincides with the tame
fundamental group of Grothendieck-Murre π1(X,D) which controls finite étale schemes
over X \D which are at worst tamely ramified at generic points of D.

In the rest of this section, we prove 10.2.

10.4. We prove 10.2 (1). Note that MorX( , Y ) is indeed a sheaf by 3.1. Since a finite
kummer log étale fs log scheme over an fs log scheme is kummer log étale locally a finite
étale scheme in the classical sense endowed with the pullback log structure from the base,
(1) is reduced to the nonlog corresponding result.

Proposition 10.5. Let X and x be as in the assumption of 10.2 (4) and let G be a finite
group. For an integer n ≥ 1, let Hn be the group scheme Hom((Mgp

X /O×
X)x,Z/n(1)).
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(1) Take a chart P → MX such that P
∼=→ (MX/O×

X)x. For each integer n ≥ 1, let
Xn → X be as in 4.5. Let T be a G-torsor on X log

fl . Then there is an integer n ≥ 1 which

is invertible on X such that the pullback of T on (Xn)
log
fl is a trivial G-torsor.

(2) For Let ∗ = ét or fl, H1(X log
∗ , G) is canonically isomorphic to lim−→n

Hom(Hn(k), G)/ ∼,
where n ranges over all integers ≥ 1 which are invertible on X, k is the residue field of
x, and ∼ is the G-conjugacy.

Proof. By 2.7 (2), if T is a G-torsor on X log
fl , there is an integer n ≥ 1 such that the

pullback of T on (Xn)
log
fl is a G-torsor over Xn in the classical sense with the inverse

image of the log structure of Xn. Since this G-torsor over Xn is finite étale over Xn and
Xn is strict local, it is a trivial G-torsor. Thus we have proved a weaker version of (1)
without the condition n is invertible on X.

Hence H1(X log
fl , G) is isomorphic to the inductive limit of the H1- Čech cohomology

{g ∈ G(Xn ×X Xn) | p∗13(g) = p∗12(g)p
∗
23(g)}/ ∼ of (Xn/X,G), where p∗ij is the pullback

by the (i, j)-th projection pij : Xn ×X Xn ×X Xn → Xn ×X Xn and ∼ is the following
equivalence relation. g′ ∼ g if and only if g′ = p∗1(u)gp

∗
2(u)

−1 for some u ∈ G(Xn) where
pi : Xn ×X Xn → Xn is the i-th projection.

For any Noetherian scheme S, G(S) is identified with the set of all maps π0(S) → G
where π0(S) denotes the set of connected components of S. If n′ ≥ 1 denotes the largest
divisor of n which is invertible on X, we have π0(Xn×X Xn) ∼= π0(Hn×Xn) = Hn′(k) and
π0(Xn ×X Xn ×X Xn) ∼= π0(Hn ×Hn ×Xn) = Hn′(k)×Hn′(k), and hence the H1- Čech
cohomology of (Xn/X,G) is identified with Hom(Hn′(k), G)/ ∼ where ∼ is the conjugacy
by G. Hence we obtain the isomorphism in (2) for H1(X log

fl , G). This isomorphism is
canonical (independent of the choice of the above chart P →MX) because the element of
H1(X log

fl , Hn′(k)) corresponding to the identity map of Hn′(k) comes from the canonical
isomorphism in 4.1.

This argument shows that the H1-Čech cohomology of (Xn/X,G) is the same as that
of (Xn′/X,G). This completes the proof of (1).

Since H1(X log
ét , G) ⊂ H1(X log

fl , G) and Xn is log étale over X if n is invertible on X,

we have H1(X log
ét , G) = H1(X log

fl , G). This completes the proof of (2).

10.6. Let X be as in the assumption of 10.2 (3). Let ∗ = ét or fl and let C = lcf(X log
∗ ). We

prove that there exists a profinite group πlog
1,∗(X) such that C is equivalent to the category

of finite πlog
1,∗(X)-sets.

Let k be an algebraically closed field with divisible integral log, let n ≥ 1, and let
a : Spec(k) → X be a morphism (we call this morphism a base point). Let C be the
category of sheaves on X log

∗ which are locally constant and finite. We prove that with the
pullback functor by a, C is a Galois category in the sense of [SGA1] Section V 5, which
implies the above.

It is clear that C satisfies the condition (G1)–(G5) of Galois category in Section V 5
of [SGA1]. We prove that C satisfies the remaining condition (G6) of the Galois category,
that is, a morphism S → T of C is an isomorphism if the induced map Sa → Ta is bijective.
Let I be the image of S → T . Let C be the complement of I in T , so T is the disjoint
union of I and C. Let D be the complement of the diagonal image of S in S ×I S. Since
Sa → Ta is bijective, Ca and Da are empty. It is sufficient to prove that these C and D are
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empty. We have the vector bundles OC and OD on the site X log
∗ . Since X is connected,

OC and OD are of constant rank. Since they are 0 at a, they are 0. Hence C and D are
empty.

10.7. We prove the equivalence lcf(X log
ét )

≃→ lcf(X log
fl ) in 10.2 (2). We may assume that

as a scheme, X = Spec(A) for a strict local ring A (and hence is connected). Then by
10.6, the first (resp. second) category is equivalent to the category of finite πlog

1,ét(X) (resp.

πlog
1,fl(X))-sets. By 10.5, we have

(1) πlog
1,ét(X) = πlog

1,fl(X) ∼= lim←−n
Hom((Mgp

X /O×
X)x,Z/n(1))

where n ranges over all integers which are invertible on X and x denotes the closed point
of X. This proves the part lcf(X log

ét )
≃→ lcf(X log

fl ) of 10.2 (2).

Hence for any connected X, πlog
1,ét(X) = πlog

1,fl(X) and we denote this group by πlog
1 (X).

We prove Ét
log
(X)

≃→ lcf(X log
ét ) in 10.2 (2). We may assume that as a scheme, X =

Spec(A) for a strict local ring A. By the above (1), it is sufficient to prove that for any

commutative finite group G, any G-torsor over X is represented by an object of Ét
log
(X).

But this follows from Theorem 9.1.
This completes the proof of 10.2.

Correction to [K1]. There are two corrections to [K1]. The first is about Section 4
of [K1], which was pointed by A. Ogus. The definition of a morphism of weakly purely
inseparable in [K1] (4.9) is strange and [K1] Proposition (4.10) (2) and [K1] Lemma
(4.11) are false as they stand. Proposition (4.10) (1) is correct. We modify the paper
as follows. We delete [K1] (4.9), (4.10)(2), (4.11). In [K1] Theorem (4.12), we add the
assumption that f is of Cartier type, and (X ′′,M ′′) = (X ′,M ′). Note that in the rest of
[K1], Proposition (4.12) is not used. In most applications, only morphisms of Cartier
type are important.

The next is about Proposition (3.14) (4) of [K1], which was pointed by Y. Nakka-
jima. For this statement, it is necessary to assume that f is integral. Further, IOX̃ there
(which is not defined) should be replaced by I ⊗OY

OX .
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