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Abstract

A common workflow in data exploration is to
learn a low-dimensional representation of the data,
identify groups of points in that representation,
and examine the differences between the groups
to determine what they represent. We treat this
workflow as an interpretable machine learning
problem by leveraging the model that learned the
low-dimensional representation to help identify
the key differences between the groups. To solve
this problem, we introduce a new type of explana-
tion, a Global Counterfactual Explanation (GCE),
and our algorithm, Transitive Global Translations
(TGT), for computing GCEs. TGT identifies
the differences between each pair of groups us-
ing compressed sensing but constrains those pair-
wise differences to be consistent among all of the
groups. Empirically, we demonstrate that TGT is
able to identify explanations that accurately ex-
plain the model while being relatively sparse, and
that these explanations match real patterns in the
data.

1. Introduction

A common workflow in data exploration is to: 1) learn a low-
dimensional representation of the data, 2) identify groups
of points (i.e., clusters) that are similar to each other in that
representation, and 3) examine the differences between the
groups to determine what they represent. We focus on the
third step of this process: answering the question “What are
the key differences between the groups?”

For data exploration, this is an interesting question because
the groups often correspond to an unobserved concept of
interest and, by identifying which features differentiate the
groups, we can learn something about that concept of inter-
est. For example, consider single-cell RNA analysis. These
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Figure 1: A representation learned for a single-cell RNA sequence
dataset using the model from (Ding et al., 2018). Previous work
on this dataset showed that these groups of cells correspond to
different cell-types (Shekhar et al., 2016). The goal of a GCE is to
use this representation to identify the changes in gene expression
that are associated with a change of cell type.

datasets measure the expression levels of many genes for
sampled cells. Usually the cell-type of each of those cells
is unknown. Because gene expression and cell-type are
closely related, the groups of points that can be seen in a
low-dimensional representation of the dataset often corre-
spond to different cell-types (Figure 1). By determining
which gene expressions differentiate the groups, we can
learn something about the connection between gene expres-
sion and cell-type.

One common approach for answering this question is man-
ual interpretation. One simple way to do this, that we will
use as a naive baseline, is to calculate the Difference Be-
tween the Mean (DBM) value of each feature in the original
input space between a pair of groups. For example, consider
using DBM to explain the differences between the cells in
Group 3 and Group 17 from Figure 1. In this case, DBM’s
explanation contains many hundreds of non-zero elements,
which is far too many to be understood by a person (Figure
2). If we make DBM’s explanation sparse by threshold-
ing it to include only the & largest changes, it is no longer
an effective explanation because it no longer reliably maps
points from Group 3 to Group 17 (Figure 3). More generally,
manual interpretation can be time-consuming and typically
ad-hoc, requiring the analyst to make arbitrary decisions
that may not be supported by the data.

Another, more principled, method is statistical hypothesis
testing for the differences between features across groups
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(Shaffer, 1995). However, the trade-off between the power
of these tests and their false positive rate becomes problem-
atic in high-dimensional settings.

Both manual interpretation and statistical testing have an
additional key shortcoming: they do not make use of the
model that learned the low dimensional representation that
was used to define the groups in the first place. Intuitively,
we would expect that, by inspecting this model directly, we
should be able to gain additional insight into the patterns
that define the groups. With this perspective, answering our
question of interest becomes an interpretable machine learn-
ing problem. Although there are a wide variety of methods
developed in this area (Ribeiro et al., 2016; Lundberg & Lee,
2017; Wang & Rudin, 2015; Caruana et al., 2015; Ribeiro
et al., 2018; Zhang et al., 2018), none of them are designed
to answer our question of interest. See Section 2 for further
discussion.

To answer our question of interest, we want a counterfac-
tual explanation because our goal is to identify the key
differences between Group A and Group B using the low-
dimensional representation and the most natural way to do
this is to find a transformation that causes the model to
assign transformed points from Group A to Group B. Addi-
tionally, we want a global explanation because we want to
find a explanation that works for all of the points in Group
A and because we want the complete set of explanations to
be consistent (i.e., symmetrical and transitive) among all the
groups. See Section 3.2 for further discussion of our defini-
tion of consistency in this context. Hence, our goal is to find
a Global Counterfactual Explanation (GCE). Although the
space of possible transformations is very large, we consider
translations in this work because their interpretability can
be easily measured using sparsity.

Contributions: To the best of our knowledge, this is the
first work that explores GCEs. Motivated by the desire to
generate a simple (i.e., sparse) explanation between each
pair of groups, we derive an algorithm to find these expla-
nations that is motivated by compressed sensing (Tsaig &
Donoho, 2006; Candes et al., 2006). However, the solutions
from compressed sensing are only able to explain the differ-
ences between one pair of groups. As a result, we generalize
the compressed sensing solution to find a set of consistent
explanations among all groups simultaneously. We call this
algorithm Transitive Global Translations (TGT).

We demonstrate the usefulness of TGT with a series of ex-
periments on synthetic, UCI, and single-cell RNA datasets.
In our experiments, we measure the effectiveness of ex-
planations using correctness and coverage, with sparsity
as a proxy metric for interpretability, and we compare the
patterns the explanations find to those we expect to be in
the data. We find the TGT clearly outperforms DBM at
producing sparse explanations of the model and that its
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Figure 2: DBM’s explanation for the difference in gene expression
between the cells in Group 3 and Group 17. The x-axis shows
which feature index (gene expression) is being changed and the
y-axis shows by how much. Because it is very high dimensional
and not sparse, it is difficult to use DBM to determine what the key
differences actually are between this pair of groups (i.e., which
genes differentiate these cell-types).

Mapping from Group 3 to Group 17
Correctness - 0.424, Coverage - 0.732
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Figure 3: By thresholding DBM’s explanation for the differences
between Group 3 and Group 17 to include only the &k largest
changes (250 in this case), we can make it sparse enough to be
human interpretable. However, this simplified explanation is no
longer an effective explanation. We show this visually: the ma-
genta points are the representations of points sampled randomly
from Group 3 and the red points are the representations of those
points after the explanation was applied to them. We can see that
the red points are usually not in Group 17 (poor correctness) and
that they do not cover much of Group 17 (poor coverage). These
metrics will be defined in Section 3.

explanations match domain knowledge. !

2. Related Work

Most of the literature on cluster analysis focuses on defining
the clusters; the interpretation methods discussed in that
literature are primarily manual inspection/visualization or
statistical testing (Jiang et al., 2004). Consequently, the
focus of our related work will be on interpretable machine
learning. Although interpretability is often loosely defined
and context specific (Lipton, 2016), we categorize existing
methods along two axes in order to demonstrate how a GCE
differs from them. Those axes are the explanation’s level
and its form.

!Code for all algorithms and experiments is available at
https://github.com/GDPlumb/ELDR
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The first axis used to categorize explanations is their level:
local or global. A local explanation explains a single pre-
diction made by the model (Ribeiro et al., 2016; Lundberg
& Lee, 2017; Plumb et al., 2018). Kauffmann et al. (2019)
studies a problem closely related to ours of explaining why
a point was assigned to its cluster/group. A global explana-
tion will explain multiple predictions or the entire model at
once (Wang & Rudin, 2015; Caruana et al., 2015; Ribeiro
et al., 2018).

The second axis we use to categorize explanations is their
form: feature attribution, approximation, or counterfactual.
A feature attribution explanation assigns a value measuring
how each feature contributed to the model’s prediction(s)
(Lundberg & Lee, 2017; Sundararajan et al., 2017). Im-
portantly, it is necessary to define a baseline value for the
features in order to compute these explanations. An approxi-
mation explanation approximates the model being explained
using a function that is simple enough to be considered di-
rectly interpretable (e.g., a sparse linear model or a small
decision tree) across some neighborhood, which could be
centered around a point or could be the entire input space
(Ribeiro et al., 2016; Plumb et al., 2018; Wang & Rudin,
2015; Caruana et al., 2015; Ribeiro et al., 2018). A coun-
terfactual explanation finds a transformation of the input(s)
such that the transformed version of the input is treated in a
specific way by the model (Zhang et al., 2018; Dhurandhar
et al., 2018; Goyal et al., 2019; Dhurandhar et al., 2019).

For various reasons, it would be challenging to use other
types of explanations to construct a GCE. Local explana-
tions would have to be aggregated in order to produce an
explanation that applies to a group of points and it would be
nontrivial to ensure that the resulting “aggregated group ex-
planations” are consistent (i.e., symmetrical and transitive).
For feature attribution and local approximation explanations,
it is difficult to guarantee that the baseline value or neigh-
borhood they consider is defined broadly enough to find the
transformation we want. For global approximation expla-
nations, we might not be able to approximate a complex
model well enough to find the transformation we want be-
cause of the accuracy-interpretability trade-off that stems
from the complexity constraint on the explanation model
(Lipton, 2016). For a concrete example of these difficulties,
see the Appendix A.l. This example uses Integrated Gra-
dients (Sundararajan et al., 2017) which is a local feature
attribution method that produces symmetrical and transitive
explanations with respect to a single class.

3. Global Counterfactual Explanations

We will start by introducing our notation, more formally
stating the goal of a GCE, and defining the metrics that we
will use to measure the quality of GCEs. We do this under
the simplifying assumption that we have only two groups

of points that we are interested in. Then, in Section 3.1,
we will demonstrate the connection between finding a GCE
and compressed sensing. We use that connection to derive
a loss function we can minimize to find a GCE between a
single pair of groups of points. Finally, in Section 3.2, we
will remove our simplifying assumption and introduce our
algorithm, TGT, for finding a set of consistent GCEs among
multiple groups of points.

Notation: Let » : R¢ — R™ denote the function that maps
the points in the feature space into a lower-dimensional rep-
resentation space. The only restriction that we place on r is
that it is differentiable (see the Appendix A.2 for more dis-
cussion on ). Suppose that we have two regions of interest
in this representation: Rinitial, Riarger € R™. Let Xinstial
and X;4,4¢¢ denote their pre-images. Then, our goal is to
find the key differences between X,;1iq; and Xyqpger in R¢
and, unlike manual interpretation or statistical testing, we
will treat this as an interpretable machine learning problem
by using r to help find those key differences.

Defining the Goal of GCEs: At a high level, the goal of
a GCE is to find a transformation that takes the points in
Xinitiar and transforms them so that they are mapped to
Riarget by 75 in other words,  treats the transformed points
from Xp;¢5a1 as if they were points from X;q,.ge¢. Formally,
the goal is to find a transformation function ¢ : R¢ — R?
such that:

T(t(SE)) € Rf,arget V‘T S Xinitial (1)

Because we are using ¢ as an explanation, it should be as
simple as possible. Since they are very simple and their
complexity can be readily measured by their sparsity, we
limit ¢ to a translation:

tx)=z+46 2)

Measuring the Quality of GCEs: To measure the quality
of a GCE we use two metrics: correctness and coverage.
Correctness measures the fraction of points mapped from
Xinitial INt0 Ryqrger. Coverage measures the fraction of
points in R;4;ge¢ that transformed points from X, ;454 are
similar to. Mathematically, we define correctness as:

or(t) = e 1B’ € Xarger | [Ir(t(2)) = r(@)l3 <] (3)

2€Xinitial

And coverage as:

wlt) =zt ¥ 13 € X | [Ir@) —r(t@)IB < (4)

z€Xtarget

Clearly, correctness is a necessary property because an ex-
planation with poor correctness has failed to map points
from Xiy5¢5q1 into Ryqrger (Equation 1). However, coverage
is also a desirable property because, intuitively, an explana-
tion with good coverage has captured all of the differences
between the groups.
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Defining these metrics requires that we pick a value of €.
Observe that, if X;pnitiar = Xiarget and t(z) = z, then
cr(t) = cv(t) and we have a measure of how similar a
group of points is to itself. After r has been learned, we
increase € until this self-similarity metric for each group of
points in the learned representation is between 0.95 and 1.

A Simple Illustration: We will now conclude our intro-
duction to GCEs with a simple example to visualize the
transformation function and the metrics. In Figures 4, 5,
and 6, the data is generated from two Gaussian distributions
with different means and r(x) = x. We use DBM between
Group 1 and Group 0 to define the translation/explanation.
In Figure 4, the two distributions have an equal variance and,
as a result, the translation is an effective explanation with
good correctness and coverage. In Figures 5 and 6, Group
0 has a smaller variance than Group 1. Because a simple
translation cannot capture that information?, the translation
has poor coverage from Group O to Group 1 while its neg-
ative has poor correctness from Group 1 to Group 0. This
illustrates the connection between correctness and coverage
that we will discuss more in Section 3.2.

3.1. Relating GCEs and Compressed Sensing

We will now demonstrate how the problem of finding a
GCE between a pair of groups is connected to compressed
sensing. We start with an “ideal” loss function that is too
difficult to optimize and then make several relaxations to it.

In principle, Equations 1, 3, or 4 define objective func-
tions that we could optimize, but they are discontinuous and
hence difficult to optimize. To progress towards a tractable
objective, first consider a continuous approximation of cor-
rectness (Equation 3):

lossmin(®) = iy 2, in lr(t(z) = r@)lE - )
This loss could be optimized by gradient descent using auto-
differentiation software, although doing so might be difficult
because of the min operation. Consequently, we consider a
simplified version of it:

08 mean() = iy 5 [1r(t@) — Frargel 3 (6)

€ Xinitial

where 7; = |)éi‘ > o). ?
reEX;

2We use an indicator based on I> distance and the points them-
selves for two reasons. First, it is necessary for the definition of
coverage. Second, it makes it easier to define Riqrget for repre-
sentations that are more than two-dimensional.

3This is true regardless of how the translation is found (e.g.,
TGT or DBM). So this example also motivates the usefulness of
more complex transformation functions.

“Note that 05Smin clearly optimizes for correctness and it
does not directly penalize coverage. However, because l0SSmecan

e Group 0
e Group 1° .
11 v Transtormet Group 0 ,'v", M
. e Y
v %a,0

LR LR v 87 W e

~ . « Ve
. v

v

v

Figure 4: Two groups of points and the transformed version of
Group 0. The red circles indicate the balls of radius € used to
calculated the metrics. Observe that the translation has both good
correctness and coverage.
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Figure 5: The same idea as Figure 4, but now Group 0 has a
smaller variance than Group 1. Observe that the translation has
good correctness but poor coverage.
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Figure 6: The same setup as in Figure 5, but showing what hap-
pens when the negative of the translation is applied to Group 1.
Observe that it has good coverage but poor correctness.

Next, we are going to make use of our restriction of ¢ to a
translation, §, and assume, for now, that r is a linear map-
ping: r(z) = Az for A € R™*4, Although this assumption
about r will not be true in general, it allows us to connect a
GCE to the classical compressed sensing formulation. Un-
der these constraints, we have that:

1
lOSSmeanJrlz‘near (5) = Kinitiat] Z
z€X;

initia

[[A(z +0) — FtametH% )

By setting its derivative to zero, we find that solving A0 =
Ttarget — Tinitial Yi€lds an optimal solution to Equation 7.
Observe that this is an undetermined linear system, because
m < d, and so we can always find such a §.

Recall that, in general, we want to find a sparse J. This
is partially because we need the explanation to be simple
enough to be understood by a person, but also because
the explanation is hopefully modeling real world phenom-
ena and these phenomena often have nice structure (e.g.,

encourages 7(t(x)) to be close to Fiarget, it is optimizing for
correctness at the expense of coverage. In Section 3.2, we will
discuss why this is not as harmful as it seems in our setting where
t is a symmetrical translation.



Explaining Low-Dimensional Representations

sparsity). Then, because we are finding a GCE by solving
Ab = Fta'r’get - 'Finitials , we can see that Ftarget — Tinitial
is the model’s low-dimensional measurement that we are
trying to reconstruct using the high-dimensional but sparse
underlying signal, §. This is exactly the classical com-
pressed sensing problem formulation. As a result, we will
add [, regularization to § as an additional component to
the loss function as is done in both linear and non-linear
compressed sensing (Blumensath, 2013).

Consequently, we could consider finding a GCE by mini-
mizing the linear compressed sensing loss:

108865(5) = ||A(i'initial + 6) - fta’r’get”% + )‘||6||1 (8)

where Z; = ﬁ S~ . Or, by removing the assumption
Yrex i
that r(x) = Ax, minimizing the more general version that

we use for our experiments:

1055(8) = |[r(Zinitial + 6) = Frarget|[5 + AllS[[1 (9)

3.2. Computing GCEs

We have thus far limited ourselves to explaining the dif-
ferences between [ = 2 groups of points labeled as X
(“initial”) and X; (“target”), and focused on learning an
explanation tg_,; from Xg to X;. However, this is not
a realistic setting because this labeling was arbitrary and
because we usually have [ > 2.

Unfortunately, the naive solution of using compressed sens-
ing to independently produce explanations for all O(I?) pairs
of groups will fail to satisfy two desirable properties related
to the internal consistency of the explanations. For instance,
we would like ¢y, to agree with ¢;_,(, a property we call
symmetry. Additionally, we would like ¢(_, to agree with
the combined explanations £y_,1 and t1_,o; we call this tran-
sitivity. Formally, symmetry requires that ¢;_, ; = tj_il and
transitivity requires that ¢;_,, = t;_, o t;,_,; for any j.
Our approach to finding a consistent (i.e., symmetrical and
transitive) set of explanations is to enforce the consistency
constraints by-design. We do this by computing a set of
explanations relative to a reference group. We assume that
X is the reference group and find a set of basis explanations
t1,...,t;_1, where t; = to_,;. We then use this set of basis
explanations to construct the explanation between any pair
of the groups of points.® Algorithm 2 describes how Lisj

can be constructed from ¢4, ...,¢t_1.

>Note that DBM solves this but does not consider sparsity.

SImportantly, the transitivity constraint also ensures that our
choice of how we label the groups or which group is the reference
group does not influence the optimal solution of our algorithm.

Algorithm 1 TGT: Calculating GCEs with a Reference Group.
Note that, because A is applied to all of the explanations, we cannot
tune it to guarantee that each explanation is exactly k-sparse.

Input: Model: »
Group Means: Z; (feature space) and
7; (representation space)
fort =0,...,0—1
11 Regularization Weight: A
Learning Rate: «
Initialize: 41, ..., d;—1 to vectors of 0
while not converged do
Sample i # j from {0,...,l — 1}
Construct t;—; (d;—;) using Algorithm 2
Calculate objective: v = loss(d;—;) using Equation 9
Update the components of §;_.; using Algorithm 3
end while

Return: 61,...,d0,1

Algorithm 2 How to construct any explanation between an ar-
bitrary pair of groups, ¢;—;, using the set of basis explanations

relative to the reference group, ¢1,...,t—1

Input: ¢, 5
if i == 1 then
Return: ¢;
else if ; == 1 then
Return: ¢!
else
Return: t; o t; "
end if

Algorithm 3 How to update the basis explanations, d1, . .., 51,
based on the performance of d;—, ;. This splits the signal from the
gradient between the basis explanations used to construct d;—, ;.
Note that it does not maintain any fixed level of sparsity.

Input: ¢, j, o (learning rate), Vv (gradient of the loss function)
if i == 1 then

(Sj = 6]' — CMV”U
else if ; == 1 then
52‘ = 51 + aVv

else

(Sj = 5]' — 0.5aVv
0; = 0; +0.5aVv
end if

Overview of TGT. We now have all of the pieces necessary
to actually compute a GCE: a differentiable loss function
to measure the quality of ¢;_,;, [; regularization to help
us find the simplest possible explanation between X; and
X, and a problem setup to ensure that our explanations
are consistent across Xy, ..., X;_1. At a high level, TGT
will proceed to sample random “initial” and “target” groups
from the set of all groups, construct that explanation from
the set of basis explanations (Algorithm 2), and then use
Equation 9 as a loss function to use to update the explanation
using gradient descent (Algorithm 3). Pseudo-code for this
process is in Algorithm 1.7 The main hyper-parameter that
requires tuning is the strength of the [; regularization, \.

"The pseudo-code leaves out some of the details of the opti-
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Why can we prioritize correctness in Equation 9? In the
previous subsection, we noted that the Equation 9 prioritizes
correctness over coverage. Because Algorithm 1 randomly
chooses the “initial” and “target” groups many times, it up-
dates the basis explanations based on both ¢r(d;_,;) and
cr(6;—:). When t is a translation and the explanations are
symmetrical, we can see that cr(d;_;) is closely related
to cv(d;—;). This is because they only differ in whether
they add d,_,; to a point in X; or subtract J;_,; from a
point in X; in their respective indicator functions. Further,
if we consider r(x) = Az, then they are identical metrics
(this is consistent with the example from Figure 5). Collec-
tively, this means that Algorithm 1 implicitly considers both
cr(di—;) and cv(d;,;) while computing the explanations.

3.3. Controlling the Level of Sparsity

Because neither TGT nor DBM is guaranteed to produce
a k-sparse explanation, we will threshold each of the ex-
planations to include only the & most important features
(i.e., the k features with the largest absolute value) for our
experiments. This is done after they have been calculated
but before their quality has been evaluated. Importantly,
TGT has a hyper-parameter, A, which roughly controls the
sparsity of its explanations; as a result, we will tune \ to
maximize correctness for each value of k.

The fact that ) is tuned for each value of k raises an interest-
ing question: “Does TGT use a subset of the features from
its ko-sparse explanation for its k1 -sparse explanation when
k1 < ko?”. Naturally, we would like for the answer to be
“yes” because, for example, it does not seem like a desirable
outcome if a 2-sparse explanation uses Features A and B
but a 1-sparse explanation uses Feature C.

Suppose we have two explanations between Group ¢ and
Group j: e; which is kj-sparse and e which is ke-sparse
with k1 < ko. To address this question, we define the
similarity of e; and es as:

2 lea[il[es[i] # O]

(10)
llex 1

similarity(ey, es) =

This metric captures how much of e;’s explanation uses
features that were also chosen by e>.® So a score of
1 indicates that e; uses a subset of the features of es
and a score of O indicates that it uses entirely differ-
ent features. Because DBM does not solve a different
optimization problem to achieve each level of sparsity,
its similarity measure is always 1. When we run ex-
periments with a list of sparsity levels kq, ..., k,, we

mization process such as how often we sample new “initial” and
“target” groups and how convergence is defined. For those details,
see the code on GitHub.

8Note that this metric also includes the run to run variance of
TGT.

will plot similarity(er,es), ..., similarity(em—1,€m)
to measure how similar TGT’s explanations are as the level
of sparsity increases.

4. Experimental Results

Our experimental results are divided into two sections. In
the first section, we demonstrate that TGT is better at ex-
plaining the model than DBM is when we restrict the expla-
nations to varying degrees of sparsity. In the second section,
we move beyond assessing whether or not TGT explains the
model and demonstrate that it also appears to capture real
signals in the data.

4.1. TGT’s Efficacy at Explaining the Model

From an interpretable machine learning perspective, our
goal is help practitioners understand the dimensionality-
reduction models they use in the data exploration process.
We measure the quality of GCEs using correctness (Equa-
tion 3) and coverage (Equation 4) at varying degrees of
sparsity (Figure 7).

We use the model from (Ding et al., 201 8)°on the UCI Iris,
Boston Housing, and Heart Disease datasets (Dua & Graff,
2017) and a single-cell RNA dataset (Shekhar et al., 2016)
and use its a visualization of its two-dimensional represen-
tation to define the groups of points. Figure 1 shows this
representation and grouping for the single-cell RNA dataset;
similar plots for all of the datasets are in the Appendix A.3.
This model learns a non-linear embedding using a neural
network architecture which is trained to be a parametric ver-
sion of t-SNE (Maaten & Hinton, 2008) that also preserves
the global structure in the data (Kobak & Berens, 2018).

Next, because the acceptable level of complexity depends
on both the application and the person using the explanation,
we measure the effectiveness of the explanations produced
by TGT and DBM at explaining the model across a range
of sparsity levels.

Explanation effectiveness at different levels of sparsity.
Figure 7 shows the results of this comparison. We can see
that TGT performed at least as well as DBM and usually did
better. Further, we can see that TGT’s explanations are quite
similar to each other as we ask for sparser explanations.
Note that all of these metrics are defined for a single pair of
groups and so these plots report the average across all pairs
of groups.

Exploring a Specific Level of Sparsity. Figure 7 shows
that TGT’s performance: is almost as good when k = 1 as
when k& = 4 on Iris, drops off sharply for £ < 5 on Boston

“We use this model because previous analysis showed that its
representation identifies meaningful groups on the single-cell RNA
dataset (Ding et al., 2018).
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Figure 7: A comparison of the effectiveness of TGT to DBM at
explaining the model (measured by correctness and coverage) at a
range of sparsity levels. Note that TGT performs at least as well as
DBM and usually does better. Looking at the similarity metric, we
see that TGT is fairly consistent at picking a subset of the current
features when asked to find an even sparser solution.

Housing, and drops off sharply for k£ < 3 on Heart Disease.
Further, on the single-cell RNA dataset, it shows that TGT
significantly outperforms DBM when £ = 250 (Appendix
A.4 Figure 16) and that this comparison becomes more
favorable for TGT for smaller k. The level of sparsity where
the metrics drop off indicates the minimum explanation
complexity required for these methods to explain the model.
See Figure 8 for an example of the pairwise correctness and
coverage metrics for these levels of sparsity.

Figure 3 shows that DBM does not produce a good 250-
sparse explanation for the difference between Group 3 and
Group 17 from Figure 1. For the sake of an easy comparison,
Figure 9 shows a similar plot that uses TGT’s 250-sparse
explanation; it is clearly a much better explanation.

4.2. TGT’s Efficacy at Capturing Real Signals in the
Data

In the previous section, we demonstrated that TGT pro-
vides accurate explanations of the model that learned the
low-dimensional representation. However, in practice, there
could be a mismatch between what the model itself learns
and the true underlying structure in the data. In this sec-
tion, we evaluate empirically whether or not TGT provides
explanations that match underlying patterns in the data.

We begin with an experiment on a synthetic dataset with a
known causal structure and demonstrate that TGT correctly
identifies this structure. This also serves as an intuitive
example of why a sparser explanation can be as effective as
a less-sparse explanation. Next, we leverage the labels that
come with the UCI datasets to compare TGT’s explanations
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Figure 8: The pairwise explanation metrics for TGT with: Top
Left) 1-sparse explanations on Iris, Top Right) 5-sparse expla-
nations on Boston Housing, Bottom Left) 3-sparse explanations
on Heart Disease, and Bottom Right) 250-sparse explanations on
single-cell RNA.

Mapping from Group 3 to Group 17
Correctness - 0.996, Coverage - 0.662

Figure 9: Unlike DBM, TGT is able to produce an effective 250-
sparse explanation for the difference between Group 3 and Group
17 on the single-cell RNA dataset. This can be seen both visually
and with the correctness and coverage metrics.

to some basic domain knowledge. Finally, we modify the
UCI datasets and demonstrate that TGT is able to identify
those modifications. Together, these results indicate that
TGT is identifying real patterns in the data.

Synthetic Data with a Known Causal Structure. By
specifying the causal structure of the data, we can know
which differences are necessary in the explanation, since
they are the casual differences, and which differences are un-
necessary, since they are explained by the causal differences.
We find that TGT correctly identifies the causal structure of
this dataset and that DBM does not.

We use the following procedure to generate each point in
our synthetic dataset: x1,79 ~ Bern(0.5) + N(0,0.2),
xg ~ N(0,0.5), and 24 ~ 21 + N(0,0.05). The causal
structure of this dataset is simple. x1 and x5 jointly cause
4 different groups of points. The explanation for the differ-
ences between these groups must include these variables.
x3 is a noise variable that is unrelated to these groups and,
as a result, should not be included in any explanation. x4 is
a variable that is correlated with those groups, since it is
caused by x1, but does not cause those groups. As a result,
it is not necessary to include it in any explanation.

We generate a dataset consisting of 400 points created using
this process and train an autoencoder (Kramer, 1991) to
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Table 1: A comparison of the explanations from TGT and from
DBM. Note that they are similar except that TGT does not use x4,
which is the variable that is not causaly related to the groups.

Explanation Method 23 To T3 T4
0—1 TGT -1.09 0.01 0.03 0.00
DBM -1.02 0.04 0.01 -1.03
0—2 TGT 0.00 0.88 0.00 0.00
DBM -0.01 097 0.06 -0.03
0—3 TGT -0.99 0.71 0.00 0.00
DBM -1.02 1.03 -0.01 -1.03

learn a two dimensional representation of the dataset. A vi-
sualization of this learned representation is in the Appendix
A.3 Figure 14; as expected, there are four distinct groups
of points in it. Then, we use TGT and DBM to calculate
the GCEs between these groups. The pairwise and average
correctness and coverage metrics for these solutions are in
the Appendix A.4 Figures 17 and 18; observe that the two
methods are equally effective at explaining the model.

When we inspect the explanations ()Table 1), we see that
both TGT and DBM use x; and x5, neither use x3, and that
DBM uses x4 while TGT does not. This shows that, even
in a very simple setting, there is good reason to believe that
an explanation that is simpler (i.e., sparser) than the DBM
explanation exists and that TGT might be able to find it.

Qualitative Analysis of the UCI Datasets using the La-
bels. Qualitatively, we find that TGT’s explanations agree
with domain knowledge about these datasets. Specifically:
On the Iris dataset, its explanations agree with a simple de-
cision tree because they both rely mostly on the Petal Width
to separate the groups. On the Boston Housing dataset, it
identifies the differences between a set of inexpensive urban
houses vs expensive suburban houses as well as equally
priced groups of houses that differ mainly in whether or not
they are on the Charles River. Finally on the Heart Disease
dataset, it finds that the difference between a moderate and
a low risk group of subjects was that the low-risk group’s
symptoms are explained by something other than heart dis-
ease and the difference between the moderate and high risk
group of subjects is that the former is made up of men and
the later of women. For full details, see the Appendix A.S.

Quantitative Analysis of Modified Versions of the UCI
Datasets. In order to perform a more quantitative analysis,
we artificially add a known signal to the dataset by choosing
one of the groups of points, creating a modified copy of
it by translating it, and adding those new points back into
the dataset. We then ask two important questions about
TGT’s behavior. First, does TGT correctly identify the
modifications we made to the original dataset? Second,
do TGT’s explanations between the original groups change

when the modified group is added to the dataset? Details of
how we setup these experiments and their results are in the
Appendix A.6.

We find that TGT does identify the modifications we made
and that, in doing so, it does not significantly change the
explanations between the original groups. Importantly, this
result remains true even if we retrain the learned representa-
tion on the modified dataset.

These results are a strong indicator that TGT finds real
patterns in the data because it recovers both the original
signal and the artificial signal even when the algorithm is
rerun or the representation is retrained.

5. Conclusion

In this work, we introduced a new type of explanation, a
GCE, which is a counterfactual explanation that applies to
an entire group of points rather than a single point. Next, we
defined reasonable metrics to measure the quality of GCEs
(i.e., correctness and coverage) and introduced the concept
of consistency (i.e., symmetry and transitivity), which is an
important additional criteria that GCEs must satisfy. Given
that, we defined an algorithm for finding consistent GCEs,
TGT, that treats each pairwise explanation as a compressed
sensing problem. Our first experiments empirically demon-
strated that TGT is better able to explain the model than
DBM across a range of levels of sparsity. Our next experi-
ments showed that TGT captures real patterns in the data.
This was done using a synthetic dataset with a known causal
structure and by comparing TGT’s explanations to back-
ground knowledge about the UCI datasets. As an additional
test, we then added a synthetic signal to the UCI datasets
and demonstrated that TGT can recover that signal without
changing its explanations between the real groups. Impor-
tantly, this result remains true even when the representation
is retrained.

Although we focused on data exploration in this work, simi-
lar groups arise naturally whenever the model being trained
uses an encoder-decoder structure. This technique is ubig-
uitous in most areas where deep learning is common (e.g.,
semi-supervised learning, image classification, natural lan-
guage processing, reinforcement learning). In these settings,
identifying the key differences between the groups is an in-
teresting question because we can observe that “The model
treats points in Group A the same/differently as points in
Group B”, determine that “The key differences between
Group A and Group B are X”, and then conclude that “The
model does not/does use pattern X to make its decisions”.
We believe that exploring these applications is an important
direction of future work that will require more sophisticated
transformation functions, optimization procedures, and defi-
nitions of the groups of points of interest.
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