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Real-time dynamics of string breaking in quantum spin chains
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String breaking is a central dynamical process in theories featuring confinement, where a string connecting
two charges decays at the expense of the creation of new particle-antiparticle pairs. Here, we show that this
process can also be observed in quantum Ising chains where domain walls get confined either by a symmetry-
breaking field or by long-range interactions. We find that string breaking occurs, in general, as a two-stage
process. First, the initial charges remain essentially static and stable. The connecting string, however, can become
a dynamical object. We develop an effective description of this motion, which we find is strongly constrained.
In the second stage, which can be severely delayed due to these dynamical constraints, the string finally breaks.
We observe that the associated timescale can depend crucially on the initial separation between domain walls
and can grow by orders of magnitude by changing the distance by just a few lattice sites. We discuss how our
results generalize to one-dimensional confining gauge theories and how they can be made accessible in quantum
simulator experiments such as Rydberg atoms or trapped ions.
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I. INTRODUCTION

Confining theories such as quantum chromodynamics have
the defining property that two static charges, e.g., a heavy
quark-antiquark pair, are connected by a flux tube or string,
whose energy increases linearly with the separation [1]. Be-
yond some critical distance, however, the string can break as
the creation of new, light particle-antiparticle pairs becomes
more favourable [2–5]. This mechanism is known as string
breaking and has been investigated extensively from a static
point of view [4–11] while recently also its dynamics has
gained increased attention [12–25]. Importantly, many aspects
of confinement cannot only be realized in gauge theories,
but also in conventional quantum spin chains [26–45]. Yet, it
has remained an open question whether quantum spin models
can inherit also the fundamental dynamical process of string
breaking.

In this work, we address this question and show that string
breaking can occur in paradigmatic quantum Ising chains.
Here, the elementary excitations are domain walls which
can exhibit confining potentials induced either by symmetry-
breaking fields [26,28,38] or long-range interactions [40,42].
As a particular consequence, the phenomenology of string
breaking not only obtains a significantly broadened scope
towards the realm of quantum many-body theory but also
brings it within reach of experiments in quantum simulators
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such as systems of Rydberg atoms or trapped ions. We find
that string breaking takes place as a two-stage process (see
Fig. 1). In the first stage, the two initial charges remain
essentially static and stable on a timescale which can depend
crucially on the initial domain wall separation. In this regime,
we observe, however, that the connecting string can become
a dynamical object. We develop an effective description for
this string motion, which turns out to exhibit strong kinetic
constraints. The resulting reduced models allow us to obtain
analytical access for instance on timescales of string breaking
or on bounding the maximum number of particle-antiparticle
pairs created during string motion. We further observe that
the string motion also leads to a heterogeneous spatiotemporal
profile of quantum correlations. While the regions outside of
the string essentially remain uncorrelated, the string itself can
develop strong quantum correlations. In the second stage, the
string eventually breaks at a timescale, which can grow by
orders of magnitude upon increasing the separation of the
initial domain walls. While we present our findings for two
particular quantum Ising chains, we argue that our observa-
tions also generalize to other systems such as one-dimensional
confining gauge theories. We further discuss how our results
on string breaking can be realized in systems of Rydberg
atoms and trapped ions.

The structure of this paper is as follows. In Sec. II, we start
by introducing the model Hamiltonians that we consider, and
by defining the quench protocols and measured observables.
We present a summary of our main results in Sec. III. We then
further elaborate on these results in Secs. IV and V. In partic-
ular, in Sec. IV, we analyze the first stage of string breaking,
presenting some effective descriptions for the string motion
during this stage (Secs. IVA and IVC), and a bound on the
maximum charge density that can be created (Sec. IVB).
The second stage is discussed in Sec. V. Some concluding
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remarks, including possible experimental implementations of
the phenomenology studied in this work, are given in the last
section.

II. MODELS AND QUENCH DYNAMICS

A. Quantum Ising chains

We study the real-time dynamics of string breaking in two
quantum spin models with distinct features. In the first place,
we consider a quantum Ising chain with nearest-neighbor in-
teractions in both transverse and longitudinal magnetic fields,
with strength hx and hz, respectively,

Hshort = −J
L−1∑
i=1

σ z
i σ

z
i+1 − hx

L∑
i=1

σ x
i − hz

L∑
i=1

σ z
i . (1)

The second model is a quantum spin chain with long-range
interactions,

Hlong = −J
L∑
i< j

1

rα
i j

σ z
i σ

z
j − hx

L∑
i=1

σ x
i , (2)

where σ
μ
i (μ = x, y, z) denotes the Pauli matrices acting on

site i, ri j is the distance between sites i and j, α > 1 de-
termines the power-law decay of the long-range interactions
(the case α ∈ [0, 1] is avoided so as to ensure a well-defined
thermodynamic limit [40,46]), L is the size of the system,
and the ferromagnetic coupling J > 0 sets the overall energy
scale. For the short-range model in Eq. (1), we use open
boundary conditions, since this choice resembles the con-
ditions in relevant experimental platforms, which are dis-
cussed subsequently. We have, however, checked that our
results do not rely on this particular choice. On the other
hand, we consider periodic boundary conditions for the long-
range model in Eq. (2), where ri j = min (|i − j|,L − |i − j|),
as this model is more sensitive to finite-size effects. Also,
throughout this work, we use units such that the reduced
Planck’s constant h̄ and the lattice spacing a are both set to 1.

In their respective ground states, both models feature a
ferromagnetic phase for sufficiently weak transverse fields
hx, with domain walls as the elementary excitations. In the
short-range model, this is the case in the limit of vanishing
longitudinal field hz, whereas for the system in Eq. (2) when
the power-law decay α > 2 of the interactions is sufficiently
rapid. Upon adding hz [26,28,38] or upon decreasing α into
the range α < 2 [40], the domain walls develop a confining
potential with the interaction energy between two domain
walls increasing as a function of their distance similar in
phenomenology to confinement in gauge theories.

In spite of their similarities, we also note important con-
ceptual differences between the two models. The short-range
model has a twofold degenerate ground state at hz = 0, which
is split by the addition of the longitudinal field. Then, the
domain wall excitations are points along the chain where
the spin tunnels between the two ground states. Since one
of the ground states is now higher in energy, two domain
walls separated by a string of length � � 1 have an energy
cost E proportional to �. In contrast, the ground state of
Hlong is always exactly twofold degenerate in its ferromag-
netic phase, but confinement between domain walls is driven

FIG. 1. Real-time dynamics of string breaking in the short-range
Ising chain with L = 24, hx/J = 0.2, hz/J = 1, and an initial dis-
tance � = 4 between two domain walls. (a) Dynamics of the domain
wall density νi(t ) displaying two stages of string breaking. First, the
initial domain walls remain static for a long time with dynamics
occurring in the connecting string. Second, the string breaks on
longer timescales by forming bound pairs of domain walls. The
initial string state is schematically depicted in (b).

by frustration between segments of the chain with opposite
magnetization and long-range ferromagnetic couplings. For
the Hamiltonian in Eq. (2), the energy cost of separating two
domain walls a distance � � 1 scales as E ∝ �2−α (log � for
α = 2) [40]. Therefore the long-range model can interpolate
between logarithmic and linear confinement, which are both
realized in lattice gauge theories [47]; yet we will see that
string breaking proceeds in most of the aspects similarly in
both models, suggesting that the developed picture is general
for theories featuring confinement.

Finally, let us also notice that previous works have explored
connections between Ising models and confining field theo-
ries. In particular, duality transformations have been estab-
lished [47–50] between short-range Ising models and some
lattice gauge theories. Similar dualities are expected to hold
for the long-range case. Moreover, in Ref. [51], it is discussed
how the short-range model in Eq. (1), could be mapped into a
gauge theory and be used to describe the low-energy physics
of the one-dimensional massive Schwinger model. Addition-
ally, there is a recent concrete theoretical proposal [52] to
realize certain lattice gauge theories using the system (1), in
the context of quantum simulators. Thereupon, quantum Ising
chains do constitute reasonable lattice theories to study the
dynamics of confinement and string breaking.

B. Quantum quench and measured observables

We study the dynamics of string breaking by initializing
the spin chains in a product state with a specific magnetization
profile, as shown in Fig. 1(b). All spins are pointing ↑ except
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FIG. 2. (Left) String motion in the short-range model with L = 24, hx/J = 0.2, hz/J = 1, and an initial separation of the domain walls
� = 6. Dynamics of (a) the domain wall density νi(t ), and (b) the nearest-neighbor connected correlator Ci(t ). (Right) Suppression of string
motion and string breaking in the short-range model with L = 24, hx/J = 0.2, and � = 4. Dynamics of (c) the domain wall density νi(t ) with
hz/J = 1.1 and (d) the half-chain entanglement entropy S(t ) with hz/J = 1 (resonant) and hz/J = 1.1 (off-resonant). Similar off-resonant
behavior is also observed with values of hz/J smaller than 1. The resonant curve in (d) corresponds to the quench displayed in Fig. 1.

within a central region of variable length � where the spins are
taken to be ↓. This generates a state with exactly two domain
walls connected by a string. This setup not only represents a
direct realization of the desired particle-antiparticle pair but
is also motivated by the classes of initial conditions that can
be prepared experimentally in quantum simulators such as
Rydberg atoms or trapped ions; see, for instance [53–55]. Let
us note that this type of stringlike states, as well as excitations
with a larger number of strings, have been found to also
play an important role in quantum spin dynamics beyond
confinement, in other models of quantum magnetism such as
the one-dimensional spin-1/2 Heisenberg model [56,57].

Next, the system is evolved with one of the Hamiltonians
in Eq. (1) or (2). In either case, the transverse field is chosen
sufficiently weak so that the elementary domain wall excita-
tions are still almost pointlike particles. This setup represents
a quantum quench from an excited eigenstate beyond the
ground state manifold in the limit of hx = 0 to the respective
quantum Ising models. In general, we solve this dynamical
problem by means of exact diagonalization (ED) techniques
supported by effective analytical descriptions that will be
presented in more detail below. Note that, in the regime of
stronger transverse fields, domain walls cannot simply be
treated as pointlike particles; instead, they become extended
objects. We provide a brief discussion on the dynamics of
kinks with a finite width in Appendix E.

We characterize the resulting dynamics through different
observables. On the one hand, we study the dynamics and
creation of the elementary excitations by computing the local
density of kinks

νi(t ) = 1
2

〈
1 − σ z

i (t )σ
z
i+1(t )

〉
, (3)

measuring the presence or absence of a domain wall at the
given bond (i, i + 1).

Further, we aim to explore the spatiotemporal structure
of quantum correlations during string breaking dynamics.
For that purpose, we study the nearest-neighbor connected
correlation function:

Ci(t ) = 〈
σ z
i (t )σ

z
i+1(t )

〉 − 〈
σ z
i (t )

〉〈
σ z
i+1(t )

〉
. (4)

Lastly, we also quantify quantum correlations by looking
at the half-chain entanglement entropy. To compute this quan-
tity, we partition the system across its center, such that the
two resulting subsystems A and B, are the left and right halves
of the chain, respectively. Then, the half-chain entanglement
entropy is given by the von Neumann entropy of one of the
two parts [58], say A, that is,

S(t ) ≡ S(ρA(t )) = −TrA(ρA(t ) ln ρA(t )), (5)

where ρA(t ) = TrB(|�(t )〉〈�(t )|) is the reduced density ma-
trix of the left half of the chain, and |�(t )〉 describes the (pure)
quantum state of the entire system at time t . This entangle-
ment entropy measures the amount of quantum correlations
established between the two halves of the chain.

III. SUMMARY OF MAIN RESULTS

We start by outlining our main results, which will be
analyzed in more detail in the following sections. We show the
characteristic patterns of string breaking for the short-range
and long-range quantum Ising chains in Figs. 1, 2 and Fig. 3,
respectively. As a central observation, the phenomenon of
string breaking takes place as a two-stage process. In the
first stage, the two kinks remain essentially static, while the
connecting string can become a dynamical object, see, in
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FIG. 3. Real-time dynamics of string breaking in the long-range Ising model. (a) String breaking as a two-stage process when the exponent
α = 1.435 is such that a resonance condition is satisfied. (b) String breaking also takes place with an nonresonant exponent α = 1.1. Note the
lack of transient string oscillations, as opposed to the resonant case. Both instances show the domain-wall dynamics νi(t ), for a system of size
L = 17 and � = 3, hx/J = 0.25. (c) Graphical solution of the resonance condition for the example in (a). �E2,4 is the energy difference (in
units of J) between the initial state with two kinks and a four-kink state, in which the central spin is flipped.

particular, Figs. 2(a) and 3(a). We find that in the short-range
Ising chain the stability of the initial kinks crucially depends
on their initial distance �. Upon changing separation from
� = 4, Fig. 1, to � = 6, Figs. 2(a) and 2(b), the time range
of their stability jumps from a time Jt ≈ 40 to a value which
is not anymore visible on the accessed timescales. It is one
of the main goals of this work to provide a physical picture
for this stability and to describe the string motion in this
regime.

While the two initial kinks can remain stable for a long
time, we observe that the connecting string can undergo
complex dynamics, see Figs. 2(a) and 2(b), in particular,
which we explain in more detail via an effective description
in Sec. IVA. Especially for the case of long-lived initial
kinks, particle-antiparticle pairs are created and annihilated
in a complex oscillatory pattern without being able to induce
a breaking of the string. Conversely, outside of the initial
string, the system remains almost inert with only some slight
dynamics induced by the quench such as the ballistic motion
of a bound pair of two domain walls, an analog of a meson,
in Fig. 2(a). Finally, we find that there are also parameter
regimes where the string does not display dynamics during
the initial stage, see Fig. 2(c) and the short-time behavior
in Fig. 3(b). This latter feature will also be captured in
our effective model, which shows that the dynamics of the
string is too constrained in this case to induce oscillatory
behavior.

A further important finding of this work is representatively
shown in Fig. 2(b). During the first stage, the dynamics
in the string not only generates particles but also signifi-
cant quantum correlations, while these are absent outside of
the central region, yielding a characteristic spatiotemporal
correlation pattern. Consequently, the recently observed en-
tanglement growth during string breaking in gauge theories
[15,17,22,23,25] can be understood to be initially caused
by the generation of these strong correlations inside of the
string, while the outside remains effectively decoupled. No-
tice that this implies that the mesons traveling ballistically
in Fig. 2(a), which are merely produced by the quench
dynamics, are essentially decoupled from the inside of the
string.

IV. FIRST STAGE: STRING MOTION

Let us now focus on the first stage of string breaking. As
a central observation, the two initial kinks can remain static
for long times, which allows us to develop simplified effective
descriptions in this regime.

Importantly, for the short-range Ising chain the system ef-
fectively decomposes into three disconnected spatial regions,
in particular, because no quantum correlations are generated
between them, see Fig. 2(b). Since the outside essentially
remains static, we will now focus on the dynamics of the
string itself, which in this decomposition, is now an object
with a fixed spatial extent determined by the initial spin
configuration and therefore the initial spatial separation � of
the kinks. Specifically, we will describe the string dynamics
in the following by the Hamiltonians in Eqs. (1), (2) on a
chain of � sites and initial condition |�0〉 = ⊗�

m=1 |↓〉m. Let
us point out that we have to impose a magnetic boundary
condition at the ends, since the first and last spin of the string
have to remain inert due to the requirement that the two initial
domain walls are static. This can be achieved by skipping the
transverse-field term or by adding a strong longitudinal field
to those lattice sites.

For the long-range model, an analogous decomposition is
not possible. However, we still observe that the spatial region
outside of the initial string remains almost inert. Therefore,
one can develop an effective description which keeps the spins
outside of the string frozen and the spins inside the string as
dynamical objects.

A. Effective description of the string dynamics

As argued in Sec. II A, the considered quantum Ising
chains exhibit confinement dynamics whenever hx � J and
therefore whenever quantum fluctuations are weak. We take
this as a starting point to organize the Hilbert space for the
string dynamics. Specifically, we will decompose the state
space into sectors with different numbers of domain walls. For
that purpose, we introduce operators Pk projecting onto the
subspace of k kinks. This allows us to represent the effective
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FIG. 4. Effective description of the string motion in the short-
range model during the first stage. (a) Decomposition of the effective
Hamiltonian Heff into different kink sectors. The arrows indicate
allowed transitions induced by single-spin flips via the transverse
field. Paths yielding virtual transitions between resonant states are
shown in green. Orange arrows indicate transitions towards a nonres-
onant sector. Two spin configurations within the two-kink sector are
shown, as an example, as well as their location in the energy ladder.
(b) Comparison of the exact magnetization dynamics σ z

i (t ) (left) to
the effective description including all kink sectors up to k∗ (right),
with � = 10, hx/J = 0.075, and hz/J = 2/3.

Hamiltonian Heff for the string as

Heff =
∑
k∈I

Hk +
∑
k =k′

Vk,k′ , (6)

whereHk = PkHPk denotes the projection of the full Hamil-
tonians in Eqs. (1) and (2) onto the subspace with k kinks.
Accordingly, Vk,k′ = PkHPk′ + Pk′HPk , stands for the cou-
pling between such subspaces and I = {2, 4, . . . , kmax} is the
index set labeling the allowed kink sectors up to the number of
kinks kmax, that maximally fit into the string upon respecting
the boundary condition, which is kmax = � − 2 when � is even
and kmax = � − 1 when � is odd.

By decomposing the Hamiltonian into these kink sectors
one obtains a representation as depicted in Fig. 4(a) for the
short-range model in Eq. (1). The overall picture, however,
does not change for the long-range case. The general structure
of Hk can be divided into a diagonal part Ek in the spin
configurations and an off-diagonal one, which is proportional
to hx and acts as a hopping term for the kinks. The transitions
between different kink sectors contained in Vk,k′ are driven
by single-spin flips induced by the transverse field, which
can only connect spin configurations that differ by exactly
two domain walls. In Appendix A, we show explicitly how
to construct all the different terms in Eq. (6).

Let us now more specifically analyze the structure of the
diagonal part of Hk . For the short-range model, it reads

Ek (S ) = −J (� − 1) + 2Jk − hz(� − 2lS ), (7)

where k and lS denote the number of kinks and the number
of ↓ spins in the given spin configuration S, respectively.
The sector of k = 0 kinks only contains one configuration
S =|↓ . . . ↓〉, i.e., the initial condition. Since kinks can only
be generated in pairs, the next higher sector is the k = 2
one. The respective two domain walls can reside on various
different bonds with an energy that depends linearly on their
distance, which is the defining feature of confinement and
which leads to a tower of states as depicted in Fig. 4(a),
similarly also for the higher kink sectors.

For the long-range system, the energy of a particular spin
configuration is not a simple explicit function of the param-
eters �, k, and lS [40]. Instead, we numerically obtain the
energy for a given kink sector using the formula

Ek (S ) = −J
L∑
i< j

si(S )s j (S )
rα
i j

, (8)

where si(S ) = ±1 is the value of the spin on site i corre-
sponding to the configuration S. Unlike the short-range case,
this will depend on �, k, and lS nonlinearly, and notably the
influence of boundary effects can be significant, as a general
feature of long-range systems.

Transitions induced by the transverse field across config-
urations that live in a given sector (and therefore leave the
number of domain walls invariant) have the only consequence
that they move domain walls between neighboring lattice
sites. As the domain walls are confined, such a motion always
costs energy so that the respective process is off-resonant and
therefore only yields perturbative corrections. For the short-
range model, this can be alternatively seen by recognizing
that the diagonal part Ek resembles a Wannier-Stark ladder
of charged particles in an electric field [59] as a function
of both k and lS . Here, the role of the field is taken over
either by the coupling J or the longitudinal field hz. The
off-diagonal part ofHk induces motion on this Wannier-Stark
ladder for a fixed k via hx by flipping individual spins. As
known from the Wannier-Stark problem, however, this motion
is always off-resonant and therefore only slightly perturbs the
eigenstates of Ek . This holds, in particular, in the limit of weak
kinetic energy, which is guaranteed in our problem as hx � J ,
see the discussion in Sec. II. It will therefore be sufficient for
the moment to ignore this motion within sectors of a given
number of kinks k.

Similar representations of Hamiltonians in kink sectors
have been introduced and used for the effective description
of systems with confinement [30,40,41,60]. Here, however,
we not only restrict to low-kink sectors as in previous works
but rather consider the full decomposition. As we will show,
this turns out to be important for the description of the string
dynamics because many resonant spin configurations S can
appear across different kink sectors, which become crucial to
describe the string motion.

At this point, it becomes important to distinguish two
different classes of parameter sets. Depending on the
choice of Hamiltonian parameters, spin configurations in the

014308-5



ROBERTO VERDEL et al. PHYSICAL REVIEW B 102, 014308 (2020)

higher-kink sectors can either be off-resonant or degenerate
with the initial string. This distinction, which determines
whether higher-kink sectors contribute perturbatively or non-
perturbatively to the string dynamics, will become crucial
to identify situations where string motion is suppressed or
induced, as explained below. For the short-range model, reso-
nances can occur whenever

hz
J

= k

� − lS
, (9)

where 1 + k/2 � lS � � − k/2. In the case of the long-range
interacting model, the resonance condition corresponds to
matching the energy for two different configurations Ek (S1) =
Ek′ (S2). The location of the resonance can be easily de-
termined by numerically comparing the energy difference
between kink sectors; see Fig. 3(c) for a particular example
of tuning α to obtain a degeneracy. Notice that by taking into
account the off-diagonal transverse-field contributions within
fixed kink sectors, the energy levels in Eq. (7) get broadened
so that the resonance condition does not require fine-tuning.

When the parameters are such that there are no resonances,
the string becomes inert and only acquires perturbative correc-
tions from higher-kink sectors. An example of such a scenario
is shown in Fig. 3(b) for the long-range model, where not
only the initial charges remain static but also the string is
almost inactive. Note, however, that in this example the string
eventually breaks. The situation changes drastically in the
short-range model where only a slight departure away from
the resonance condition yields a suppression of both string
motion and string breaking, at least, up to the accessible
timescales, see Fig. 2(c) in comparison to Fig. 1(a). While the
suppression of transport and particle production in the non-
resonant short-range model were recently reported [41,61],
here we also find that the spreading of quantum information
is drastically reduced in the off-resonant case as compared
to the resonant one, see Fig. 2(d) where the dynamics of the
half-chain entanglement entropy is shown.

Regarding the resonant case, which is illustrated in Figs. 1,
2(a), 2(b), and 3(a), the situation is again completely different,
since the string can develop complex motion. Importantly, this
dynamics is dominantly driven by all those spin configurations
across all kink sectors which are resonant with the initial
string configuration, as we will show in Sec. IVC.

It might appear as a fine-tuning problem to achieve res-
onant configurations. However, let us now argue that the
resonant case is at least as generic as the off-resonant one.
First of all, the absence of a resonance we attribute to a lattice
effect. Due to a nonzero lattice spacing, the energy in the
string develops a granular structure allowing only discrete
values. This changes when going towards a continuum limit
where this granularity is gradually washed out. Therefore, for
small lattice spacings resonances become much more likely.
Furthermore, notice that taking into account the broadening
of the energy levels due to quantum fluctuations in Hk makes
the resonance conditions more generic.

In the following, we will analyze the implications of the
effective model in more detail by first deriving a bound on
particle creation in the string and second by analyzing the
dynamics in the resonant subspace.

B. Bound on particle production

As emphasized before, the string dynamics is dominated
by the resonant subspaces across the different kink sectors.
This immediately has an important consequence: there always
exists a maximum kink sector k∗ that is resonantly coupled
to the initial string. This imposes a constraint on the number
of domain walls K that can be generated during real-time
evolution.

For the short-range model, we find that K is bounded by

K � k∗ =
⌊

2(� − 1)

1 + 2J/hz

⌋
even

, (10)

where 2J/hz is one of the rational numbers allowed by Eq. (9)
and is also such that k∗ is at least equal to 2. Here, the notation
�x�even stands for the largest even integer smaller than or equal
to x. Importantly, k∗ � kmax can be much smaller than the
maximum number of kinks kmax that fit in a string of given
length � ignoring the resonance condition, especially upon
decreasing the value of the longitudinal field hz where k∗ ∝
hz/J implying a small kink density. As anticipated before,
kmax = � − 2 if � is even and kmax = � − 1 when � is odd.

We derive the bound of Eq. (10) in Appendix B. The origin
of this bound can, however, be directly understood from Fig. 4
where we depict the structure of the energy levels for the
short-range model. The creation of two new kinks costs at
least an energy 4J . As a consequence, the minimum energy
at a given kink sector has to increase for higher k up to
the point where the tower is shifted out of resonance, which
marks the maximum number of domain walls which can be
potentially generated. Of course, these considerations neglect
the influence of off-diagonal spin flips inHk so that the bound
only holds in the limit of weak transverse fields and might
yield corrections for larger hx. The derived bound represents
a constraint on the generation of new kinks, which restricts
the formation of composite mesonic objects of bound domain
wall pairs and hence might significantly slow down string
breaking.

One particular implication of this bound is a controlled
criterion for truncating the sums in Eq. (6) incorporating all
nonperturbative effects, i.e., what is the maximum kink sector
that has to be taken into account for the description of the
string dynamics. In order to assess and illustrate the approach
presented here, in Fig. 4(b) we show the dynamics of the mean
on-site magnetization 〈σ z

i (t )〉, of a string of length � = 10 in a
longitudinal field hz/J = 2/3, a value for which the resonance
condition is met. As implied by the bound (10) and shown
in Fig. 4(a), here k∗ = 4, so that the corresponding reduced
model simply reads Heff = H0 + H2 + H4 + V0,2 + V2,4. As
can be observed, the reduced model captures the main features
of the exact dynamics.

For the long-range model, it is, in principle, possible to get
more than two states with resonant energies after we impose
Ek (S1) = Ek′ (S2) and choose α accordingly. However, due to
the nonlinear nature of the energy function of the long-range
model, given by Eq. (8), it becomes more challenging to
get a strict bound on the number of resonantly accessible
domain walls. Let us point out that, it is, however, still
possible to determine numerically the maximum kink sector
simply by scanning the energy in Eq. (8) in all relevant
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kink sectors to identify degeneracies with the initial string
state.

C. Dynamics in resonant subspace

The full solution of the Hamiltonian in Eq. (6) may still
require exponential resources in the string length �. Here, we
aim to show that a further reduction is possible beyond the re-
striction onto the maximum kink sector k∗ that has been taken
into account already in the previous Section. Specifically, it
is possible to obtain an effective description of the resonant
subspace alone, which as we show provides further insights
during the first stage of the string dynamics.

The central property that we will use in the following is that
all spin configurations outside of the resonant subspace can be
treated perturbatively in hx/J , by recalling that the transitions
between spin configurations are driven by the transverse field,
which has to be chosen to satisfy hx � J . However, in gen-
eral, the challenge is that, in principle, exponentially many
paths exist in the energy level diagram such as in Fig. 4(a)
that can connect different resonant configurations by virtual
transitions. It is clear, nonetheless, that those paths that require
overcoming large energy differences are less relevant than
the others. It turns out that the identification of the “shortest
paths” that are contributing dominantly depends on the details
of the chosen parameters.

For the short-range model, we indicate in Fig. 4(a) with
arrows the shortest paths in the energy diagram for one
particular case of a string of length � = 10 with hz/J = 2/3
connecting dominantly the different resonant sectors in terms
of single-spin flips. We can then ignore all states not contained
in this shortest paths selection, since they will only contribute
subdominantly yielding only further perturbative corrections.
The remaining off-resonant spin configurations can then be
eliminated perturbatively by means of a Schrieffer-Wolff
transformation [62,63], as explained in Appendix C. This
yields an effective theory for the resonant subspace alone.
We applied this approach to the string of the example shown
in Fig. 1. One can show (see Appendix C) that the effective
model for the resonant states, in this case, maps onto a two-
level system. Hence, one can predict analytically the timescale
at which the new kinks are generated in the string. This
happens when the spin configuration with two kinks in the
interior of the string is maximally populated for the first time.
According to our model, this occurs at Jt∗ = π/(2(hx/J )2) ≈
39.3, which is in excellent agreement with the results shown
in Fig. 1. In Appendix D, we investigate the accuracy of
this prediction at increasing transverse-field strength. Let us
already note at this point that the present analysis also has
central implications for the second stage of string breaking,
that will be discussed in the following Section.

In the long-range model, the resonant dynamics are es-
pecially simple because the resonant subspace only contains
two states. For the particular case chosen in Fig. 3(a), the
transition between the two states requires flipping only one
spin in the center of the string. In such a case, the oscillation
period between these two states can be directly calculated. As
shown in Appendix C, the time at which the higher-kink state
inside the string is maximally populated is Jt∗ = π/(hx/J ) ≈

12.57 for the parameters used in Fig. 3(a), which is in perfect
agreement with ED results of the many-body Hamiltonian.

Let us emphasize that the analytical estimates of the typical
timescales for the onset of string breaking, which are obtained
with our effective description, go beyond the estimates for the
nonresonant scenario as reported in Ref. [61].

V. SECOND STAGE: STRING BREAKING

While the final string breaking can be prolonged to long
times, see Fig. 2, it is known especially for the short-range
model that the system is ergodic and thermalizing [64], al-
though long-lived nonequilibrium states have been recently
discussed in this system [65–67] and delayed thermalization
observed in the long-range model [68]. However, in general,
we expect that the considered models will eventually restore
a homogeneous state where the string has to be broken. For
the case displayed in Fig. 1, we indeed observe that at long
times the system becomes homogeneous with some remaining
spatiotemporal fluctuations expected for systems of finite
size [69].

Eventually, the string breaks by the formation of mesons,
i.e., bound pairs of domain walls involving, in particular,
the two initial kinks. Strings can, in principle, break both
for the case of resonant motion, see Figs. 1(a) and 3(a),
as well as when the parameters are chosen such that the
resonance condition for the string motion is not satisfied, see
Fig. 3(b). The latter case seems to be especially applicable
to the long-range model, since when the resonance condition
is not met in the short-range model, string breaking may
only occur after an exponentially long time, see Fig. 2(c) and
Refs. [41,61]. Furthermore, we also observe another signif-
icant difference between the long- and short-range models.
While the timescale of string breaking does not seem to
depend crucially on varying the parameters for the long-range
interacting case, see Fig. 3, for the short-range Ising chain
string breaking can be delayed by orders of magnitude in
Fig. 2(a) by only changing the initial string length from � = 4
to � = 6.

As we aim to argue in the following, the delayed string
breaking and meson formation for large string lengths � in
the short-range model is not only caused by the energy costs
for particle creation due to the large kink mass as in the
Schwinger mechanism [70,71]. We rather observe that there
are, in particular, strong kinetic constraints imposed by the
dynamics in the resonant subspace. First of all, the consid-
erations from Sec. IVC imply that only a limited subset of
spin and therefore domain wall configurations is kinetically
accessible. In this context, we find that there are mainly two
different scenarios.

On the one hand, the resonant subspace might be such
that a configuration with newly generated domain walls close
to the initial kinks can be reached. This makes the meson
formation very efficient. Such a case is displayed in Fig. 1,
where we find that the timescale for string breaking coincides
with the timescale of reaching the respective resonant domain
wall configuration. In Sec. IVC, we have discussed that
from the effective description the latter timescale is Jt∗ =
π/(2(hx/J )2) ≈ 39.3 matching the data in Fig. 1 obtained
using exact diagonalization.
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On the other hand, the resonant subspace can induce kinetic
constraints so that only domain walls at larger distances from
the initial kinks can be generated. In this context, the general
bound on domain wall production derived in Eq. (10) provides
some general implications. In particular, for weak symmetry-
breaking fields hz the maximally accessible kink density in the
string becomes proportional to hz/J implying that the typical
distance between the generated domain walls is large. This
makes it difficult for the system to efficiently form mesons of
two kinks at a short separation.

For the long-range case, only a single higher-kink con-
figuration can be resonant with the initial string, unless we
fine-tune multiple parameters. As a consequence, we have not
identified a case where the timescales associated with kink
dynamics and string breaking have been related to each other.
For the resonant case displayed in Fig. 3(a), this explains why
there are a large number of oscillations before string breaking,
which is analogous to what is seen for the short-range case
displayed in Fig. 2(a). In addition, for generic parameters,
the long-range model has no resonances and string break-
ing occurs with no transient string oscillations, as shown in
Fig. 3(b). For the short-range model, the minimal energy gap
between two spin configurations is always a constant value,
see Fig. 4(a). However, for the long-range Hamiltonian, due
to the nonlinear nature of the energy expression Eq. (8), the
spacing between higher energy states can be extremely small.
Due to this nature, the string can still break relatively fast,
even without satisfying a resonant condition, see Fig. 3(b).

VI. CONCLUDING DISCUSSION

In this work, we have shown that string breaking can occur
dynamically in quantum Ising chains where domain walls
develop a confining potential induced either by a symmetry-
breaking longitudinal field [26,28,38] or by long-range in-
teractions [40,42]. Our main observation is that this phe-
nomenon can be described as a two-stage process. During
the first stage, a pair of initial kinks effectively acts as
static external charges. The connecting string, however, can
become a dynamical object and develops complex dynamics.
To approximate this dynamics, we have derived an effective
kinetically constrained model in the resonant subspace. In
particular, we have obtained a bound on the maximal number
of kinks that can be dynamically generated, and, for some
cases, obtained a quantitative estimate for the timescale of
final string breaking. We have argued that the large timescales
for eventual string breaking are not only caused by the energy
costs for pair creation due to the large mass of particles as
in the Schwinger mechanism [70,71]. We rather find that
the effective model in the resonant subspace also imposes
strong kinetic constraints. In this context, a natural question
is to what extent the observed slow string breaking dynamics
can be related to the slow relaxation observed previously in
kinetically constrained models [22,72–85]. In this respect, the
nonresonant local dynamics in the short-range model seems to
be even more constrained, with both particle production and
spreading of quantum information being strongly suppressed.

While all of our analysis has been carried out for quan-
tum Ising models, it can be equally well applied also to
lattice gauge theories. For instance, it might be particularly

interesting to explore the constrained dynamics in the resonant
subspaces for such systems, as well as the string stability after
a quench, as a function of the separation. A further interesting
route might be the extension of our analysis to string breaking
dynamics in higher-dimensional systems, which is certainly
much more challenging. Importantly, long strings or flux
tubes connecting far distant static background charges can
still behave as effectively one-dimensional [86], which might
make our analysis also applicable in this case and therefore
relevant for high-energy physics.

Our finding, that the phenomenology of string breaking
dynamics cannot only be realized in gauge theories but also
in systems with less complexity such as spin chains, im-
plies that this phenomenon might be more directly acces-
sible experimentally. The dynamics in spin chains has al-
ready been successfully studied in various quantum simulator
experiments [53–55,83,87–92], while lattice gauge theories
are much more challenging to realize, as gauge invariance
is difficult to enforce, with, however, some notable recent
efforts [88,93–95]. More specifically, we now outline how our
results might be observable in Rydberg atom and trapped ion
quantum simulators within the current scope of technology.
Both platforms support, in principle, the initial preparation
of any targeted product state [53–55] such as those with two
domain walls, as depicted in Fig. 1(b). Since the strength of
next-nearest-neighbor interactions in Rydberg atoms is just
about 1.6% of the nearest-neighbor value [89], it is safe to
neglect interactions beyond nearest neighbors up to timescales
Jt ∼ 100. Therefore, this type of platform can be used to
probe short-range Ising chains [53,83,89–92] as in Eq. (1),
up to the mentioned timescales. On the other hand, long-
range interacting Ising models find a natural implementation
in systems of trapped ions with a tunable power-law expo-
nent [54,55,87]. However, the timescales necessary for the
observation of string breaking in the numerical data we show
in this work are rather large compared to what has been
achieved experimentally. Importantly, these timescales can be
significantly tuned by increasing the transverse-field strength
hx, as long as hx does not exceed a critical value beyond
which domain walls cease to be elementary excitations of
the Ising model; see Appendix D. We emphasize that, even
in the regime of strong transverse-field, where domain walls
can no longer be regarded as pointlike particles, one can use
a field-theoretical approach to take into account the finite
width of kinks. As shown in Appendix E, this yields a similar
description to the one at weak fields. On the other hand,
what might be certainly experimentally observable is the
constrained dynamics during the first stage where interesting
and complex dynamical patterns are realized, see Fig. 2.
Moreover, both considered experimental platforms allow for
local readouts which make all the quantities discussed in this
work measurable.

Finally, let us remark that, although our effective models
allow us to elucidate various interesting aspects of the first
stage of string breaking, and even to predict typical timescales
for the final breaking of the string, a complete understanding
of the second stage remains a challenge for techniques relying
on classical resources. In this sense, the experimental perspec-
tives with quantum simulators discussed above are crucial, as
it is this approach that stands as the most promising route for
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deepening our understanding of hard problems such as string
breaking dynamics, in a foreseeable future.

Note added. Recently, we became aware of a related com-
plementary work on confinement-induced quasilocalized dy-
namics [96]. Also, two experimental works appeared [97,98],
constituting the first experimental realization of the real-
time dynamics of confinement in Ising chains with quantum
simulators. These works clearly demonstrate the feasibility
to implement experimentally both the models and the initial
condition herein considered. Yet, the observation of string
breaking dynamics in Ising chains remains an interesting goal
for future experiments.
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APPENDIX A: CONSTRUCTION OF THE EFFECTIVE
HAMILTONIAN Heff

In this Appendix, we explicitly show how to construct the
different terms that appear in Eq. (6) of the main text. Here
we regard the short-range model, although a derivation for the
long-range one can, in principle, be done analogously. Let
us recall that here we consider a chain of length �, with a
magnetic boundary condition imposed at the ends, and that the
reference state is the initial string, that is, |�0〉 = ⊗�

m=1 |↓〉m.
The projected model in the 0-kink sector reads

H0 = P0HP0 = E0|�0〉〈�0|, (A1)

where P0 = |�0〉〈�0| is the projector onto the 0-kink sector,
and E0 = −J (� − 1) + �hz is the energy of the initial string.

Let us now look at the two- and four-kink sectors. Elements
of the two-kink subspace are labeled by two quantum numbers
j1 and j2, such that | j1, j2〉 = |↓ · · · ↓ j1↑ · · · ↑↓ j2 · · · ↓〉,
with j1 = 1, . . . , � − 2 and j2 = j1 + 2, . . . , �. The two-kink

projected Hamiltonian acts on | j1, j2〉 as
H2| j1, j2〉 = E2( j1, j2)| j1, j2〉 − hx[| j1 + 1, j2〉

+ | j1 − 1, j2〉 + | j1, j2 + 1〉 + | j1, j2 − 1〉],
(A2)

where the diagonal term is E2 = −J (� − 5) − hz[� − 2(l1 +
l2)], and l1 = j1, l2 = � − j2 + 1 are the lengths of the two
resulting strings.

The four-kink model requires four quantum numbers:
| j1, j2, l2, j3〉 = |↓ · · · ↓ j1↑ · · · ↑↓ j2 · · · ↓( j2+l2−1)↑ · · · ↑↓ j3
· · · ↓〉, with indices taking the possible values j1 =
1, . . . , � − 4, j2 = j1 + 2, . . . , � − 2, j3 = j2 + 2, . . . , �,
l2 = 1, . . . , j3 − j2 − 1. The action of the four-kink projected
Hamiltonian on | j1, j2, l2, j3〉 is given by

H4| j1, j2, l2, j3〉
= E4( j1, j2, l2, j3)| j1, j2, l2, j3〉

− hx[| j1 + 1, j2, l2, j3〉 + | j1 − 1, j2, l2, j3〉
× | j1, j2 + 1, l2 − 1, j3〉 + | j1, j2 − 1, l2 + 1, j3〉
× | j1, j2, l2 + 1, j3〉 + | j1, j2, l2 − 1, j3〉
× | j1, j2, l2, j3 + 1〉 + | j1, j2, l2, j3 − 1〉], (A3)

where E4( j1, j2, l2, j3) = −J (� − 9) − hz[� − 2(l1 + l2 +
l3)], and l1 = j1, l3 = � − j3 + 1.

The off-diagonal elements of these projected Hamiltonians
act as effective hopping terms for the kinks. Yet, in order to
fully account for string breaking, we need to take into account
the couplings between sectors. Such transitions are induced
by the transverse field and are given by

V0→2 = P2HP0 = −hx

�−2∑
j1=1

| j1, j1 + 2〉〈�0|, (A4)

and likewise for V2→0, so that V0,2 = V0→2 + V2→0. Anal-
ogously, the coupling between the two- and four-kink sub-
spaces is given by

V2→4

= P4HP2

= −hx

⎡
⎣ �−4∑

j1=1

�−2∑
j2= j1+2

�∑
j3= j2+2

| j1, j2, 1, j3〉〈 j1, j3|

+
�−4∑
j1=1

�∑
j3= j1+4

j3− j1−3∑
l2=1

| j1, j1 + 2, l2, j3〉〈 j1 + l2 + 1, j3|

+
�−4∑
j1=1

�−2∑
j2= j1+2

�∑
j3= j2+2

| j1, j2, j3 − j2 − 1, j3〉〈 j1, j2|
⎤
⎦,

(A5)

and likewise for V4→2. Terms involving a higher number of
kinks can be derived in a similar manner.

APPENDIX B: DERIVATION OF EQ. (10)

Here we derive a bound on the maximum number of kinks
that can be resonantly produced in a string of length �, when
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considering the short-range model. In this case the leading-
order energy of a spin configuration is given by Eq. (7),
whereas the energy of the initial string is E0 = −J (� − 1) +
�hz. Imposing the resonance condition E0 ≡ E (S ) and solving
for k, yields

k = hz
J
(� − lS ). (B1)

On the other hand, k and lS are not independent. Indeed,
one can readily show that

lS � lmin
S (k) = 1 + k

2
. (B2)

Combining (B1) and (B2) gives a bound, in terms of �

and hz, on the number of kinks K that is possible to produce
inside the string, provided that the resonance condition is met,
namely

K � k∗ =
⌊

2(� − 1)

1 + 2J/hz

⌋
even

, (B3)

where �x�even gives the largest even integer smaller than or
equal to x. Note that the value of hz/J must also be consistent
with the resonance condition.

APPENDIX C: EFFECTIVE MODEL FOR THE RESONANT
SUBSPACE VIA A SCHRIEFFER-WOLFF

TRANSFORMATION

Here we show how to construct an effective description for
the resonant states of the reduced model via a Schrieffer-Wolff
(SW) transformation [62,63]. As explained in the main text,
one starts by identifying the shortest paths connecting the res-
onant states in adjacent kink sectors, as illustrated in Fig. 4(a).
Then we neglect those states that do not form part of such
paths. Next we apply the SW transformation to eliminate the
remaining off-resonant states and generate effective couplings
between resonant configurations in neighboring sectors.

This approach works as follows. Let us consider a Hamil-
tonian of the form

H = H0 + λV, (C1)

where the eigenvalues {εμ} and eigenstates {|μ〉} of H0 are
known, that is,

H0 =
∑

μ

εμ|μ〉〈μ|. (C2)

Our task is to carry out a unitary transformation, with
generator S, such that the rotated Hamiltonian

H̃ = eS (H0 + λV )e−S

= H0 + λV + [S,H0] + λ[S,V ] + 1
2 [S, [S,H0]] + · · ·

(C3)

has no off-diagonal terms to first order. This is accomplished
by choosing S such that

[S,H0] = −λV, (C4)

that is,

Sμν = λ
Vμν

εμ − εν

, (C5)

FIG. 5. Dynamics of mean local magnetization at site 12
〈σ z

12(t )〉, in a chain of size L = 24, with a central string of length � =
4, for the short-range model (1) with hx/J = 0.2 and hz/J = 1. The
black curve shows the complete solution obtained by ED, whereas
the gray dotted curve is the perturbative solution where we only
consider the string alone with fixed kinks at the boundaries (also
computed via ED). The difference between the orange dashed lines
gives the period as predicted by the effective model for the resonant
states.

in the H0 eigenbasis, and provided that the right-hand side is
finite. Thus Eq. (C3) becomes

H̃ = H0 + 1

2
λ[S,V ] + O(λ3). (C6)

Now let us apply this technique to the problem at hand.
The starting point is the effective HamiltonianHeff as given in
Eq. (6), including contributions from the k sector with k as big
as needed. The projected HamiltoniansHk contain a diagonal
part, given essentially by Eq. (7), and an off-diagonal part.
Here we collect the diagonal terms in H0 and put all of the
off-diagonal contributions (all having to do with the transverse
field hx) in the perturbation λV , with hx/J playing the role
of the small parameter λ. Note that, after performing the SW
transformation, the second-order term, 1

2λ[S,V ], will contain
effective couplings between resonant states in adjacent kink
subspaces, which are then used to build the effective theory.

Applying this method to the string of the example in Fig. 1,
we get that the effective Hamiltonian for the two resonant
states | �0〉 =|↓↓↓↓〉 and | �1〉 =|↓↑↑↓〉, is akin to the one
of a two-level system, that is,

heff =
(
a b
b c

)
(C7)

with a/J = −2 (hx/J )2

4−2hz/J
, b/J = − (hx/J )2

2hz/J
− (hx/J )2

4−2hz/J
, and c/J =

−2 (hx/J )2

2hz/J
. Then it becomes a simple matter to determine the

period of the oscillations between the two resonant states,
namely, JT = π/(hx/J )2 (see Fig. 5).

A effective theory for the resonant sector can also be con-
structed for long-range interacting systems, as illustrated in
Fig. 6, where we show the example of a string of length � = 3
embedded in a overall chain of size L = 17, corresponding to
the case discussed in Fig. 3(a). Here, our effective description
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FIG. 6. Dynamics of mean local magnetization at site 9 〈σ z
9 (t )〉,

within a string of length � = 3, embedded in the center of a
chain with L = 17 spins, for the long-range model (2) with hx/J =
0.25 and α = 1.435. The black curve is the complete solution ob-
tained by ED. The difference between two consecutive orange dashed
lines gives the period as predicted by the effective model for the
resonant states.

predicts a period of JT = π/(hx/J )) ≈ 12.57, which is in
perfect agreement with the exact results.

APPENDIX D: TIMESCALES FOR THE OBSERVATION
OF STRING BREAKING

As stated in the concluding remarks, the timescales nec-
essary for the observation of string breaking can be tuned
upon increasing the strength of the transverse field. In this
Appendix, we illustrate this point concretely for the short-
range model. Moreover, we employ the effective model in
the resonant subspace discussed above to obtain an analytical
prediction for the relevant timescale. Thus, let us consider
a similar setting as in Fig. 1, namely, we study the quench
dynamics to hx/J = 0.2, hz/J = 1, in the short-range model,
starting from a string state with a central string of length
� = 4, embedded in a chain of L = 12 spins with open

boundary conditions. As shown in the Appendix C, for this
particular setting, our effective description maps the problem
onto a two-level system. The breaking of the string is thus
expected when the “broken-string” configuration, |↓↑↑↓〉, is
maximally populated for the first time, for that represents the
moment when two new kinks are created right next to the
original ones. According to our effective model, this occurs
at a time Jt∗ = π

2(hx/J )2
.

In Fig. 7, we show the domain-wall dynamics obtained via
ED at three different values of the transverse-field strength,
namely, hx/J = 0.3, 0.4, and 0.5, with the predicted typical
timescales being Jt∗ ≈ 17.45, 9.82, and 6.28, respectively.
We observe that these predicted values give a remarkably good
estimate of the onset of string breaking, even at relatively
large transverse fields. Overall, these results show that by
increasing the strength of the transverse field, it could be,
in principle, possible to bring the whole phenomenology of
string breaking within the reach of current technologies in
quantum simulators.

APPENDIX E: EXTENDED KINKS IN THE
SHORT-RANGE ISING CHAIN

In the majority of this paper, we have worked close to the
limit hx ≈ 0 for the short-range model, Eq. (1). Directly at
hx = 0, the kinks are given by product states, σ z

i = ±1, but
at hx > 0 single local kinks are generally complicated states
which are not easily constructed, even with the exact analytic
solutions to this Hamiltonian in the deconfined (hz = 0) limit.

In this Appendix, we construct approximate kinks which
are still product states, but better approximate the actual kinks
of the model. A simple ansatz is to take

|K〉 =
⊗
j

[cos θ j |+〉 + sin θ j |−〉], (E1)

where σ z|±〉 = ±|±〉, and we choose the expectation value
on each site to be the position-space profile of the kinks:

〈K|σ z
j |K〉 = cos 2θ j = F (x j ). (E2)

Here, we take F (x) to vanish at the position of the kink
(which should be at the half-way point between two lattice

FIG. 7. Timescales for the onset of string breaking in the short-range Ising model with L = 12, hz/J = 1 and an initial distance � = 4
between two domain walls, at increasing transverse-field strength hx/J = 0.3, 0.4, and 0.5. The black dashed lines indicate the predicted
typical timescale from the effective model in the resonant subspace.
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sites). This equation only determines sin θ j up to a sign; if we
are working with hx, J > 0, we should choose the sign which
makes 〈σ x

j 〉 = sin 2θ j positive. We furthermore want the state
to approach the exact magnetization of the Ising chain far
away from the position of any kinks:

lim
x→±∞F (x) = ±N0. (E3)

We can determine N0 directly from the exact solution [99],
namely,

N0 = [1 − (hx/J )
2]1/8. (E4)

In addition, we would like the profile F (x) to have a finite
width around the position of the kink. This width should be
on the order of

W ∼ v

EK
, (E5)

where v is a characteristic velocity in the system and EK is the
energy of the kink. Here, we can take some intuition from the
exact dispersion of the model,

εκ = 2
√
J2 + h2x − 2hxJ cos κ, (E6)

where κ ∈ [−π, π ].
So one sees that the energy gap of the system is � =

2(J − hx ), and that the low-momentum dispersion takes the
form

√
� + v2κ2 ≈ � + v2κ2/2�, identifying v = 2

√
hxJ .

So in principle we could build any function F (x) which
approaches ±N0 away from positions of kinks and vanishes
along a width of orderW ∼ √

hx/J/(1 − hx/J ) in units of the
lattice spacing.

We propose the following single-kink ansatz:

F (x) = ±N0 tanh

[
3EK
4N2

0 v
(x − x0)

]
. (E7)

This functional form was inspired by the semiclassical static
solution for kinks in scalar φ4 quantum field theory (QFT).
This QFT describes the short-range Ising chain at couplings
hx/J such that the correlation length is large compared with

FIG. 8. Evolution of the mean on-site magnetization 〈σ z
i (t )〉

in the short-range model (1) with hx/J = 0.45, hz/J = 0.6, taking
into account the approximate expression for the extended kinks
[Eq. (E7)].

the lattice spacing, and furthermore we can treat this theory
perturbatively in its interactions if we are not too close to
the phase transition (hx = J). In these limits, the kinks are
given by the field configurations of Eq. (E7) [100]. This
expression also reduces to a step function in the limit hx → 0,
as expected. The expression EK is the exact energy of the kink,
but at our level of approximation we simply take EK = �.
Numerical results using these approximate kinks are shown in
Fig. 8, where we take hx/J = 0.45 and hz/J = 0.6. We find
similar behavior to that seen in the small hx limit, where the
string undergoes dynamical oscillations, but the location of
the initial kinks remains approximately static. In principle,
one may perform similar experiments for higher transverse
fields in the long-range model after numerically obtaining
reasonable values for N0, v, and EK and a similar ansatz to
the above, although we have not done so here. This provides
some evidence that the dynamics described in the main text
of this paper survives into the many-body regime, where hx is
not small.
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[53] M. Marcuzzi, J. Minář, D. Barredo, S. de Léséleuc, H. Labuhn,
T. Lahaye, A. Browaeys, E. Levi, and I. Lesanovsky, Facil-
itation Dynamics and Localization Phenomena in Rydberg
Lattice Gases with Position Disorder, Phys. Rev. Lett. 118,
063606 (2017).

[54] P. Jurcevic, H. Shen, P. Hauke, C. Maier, T. Brydges, C.
Hempel, B. P. Lanyon, M. Heyl, R. Blatt, and C. F. Roos,
Direct Observation of Dynamical Quantum Phase Transitions
in an Interacting Many-Body System, Phys. Rev. Lett. 119,
080501 (2017).

[55] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker,
H. Kaplan, A. V. Gorshkov, Z. X. Gong, and C. Monroe,
Observation of a many-body dynamical phase transition with
a 53-qubit quantum simulator, Nature (London) 551, 601
(2017).

[56] Z. Wang, J. Wu, W. Yang, A. K. Bera, D. Kamenskyi,
A. T. M. N. Islam, S. Xu, J. M. Law, B. Lake, C. Wu, and A.
Loidl, Experimental observation of bethe strings, Nature 554,
219 (2018).

[57] W. Yang, J. Wu, S. Xu, Z. Wang, and C. Wu, One-dimensional
quantum spin dynamics of bethe string states, Phys. Rev. B
100, 184406 (2019).

[58] L. Tagliacozzo, T. R. de Oliveira, S. Iblisdir, and J. I. Latorre,
Scaling of entanglement support for matrix product states,
Phys. Rev. B 78, 024410 (2008).

[59] G. H. Wannier, Wave functions and effective hamiltonian
for bloch electrons in an electric field, Phys. Rev. 117, 432
(1960).

[60] S. B. Rutkevich, On the weak confinement of kinks in the one-
dimensional quantum ferromagnet CoNb2o6, J. Stat. Mech.
(2010) P07015.

[61] W. De. Roeck and V. Verreet, Very slow heating for weakly
driven quantum many-body systems, arXiv:1911.01998
[cond-mat.stat-mech].

[62] J. R. Schrieffer and P. A. Wolff, Relation between the anderson
and kondo hamiltonians, Phys. Rev. 149, 491 (1966).

[63] B. Mühlschlegel, Relation between the anderson and kondo
hamiltonians for the case of degenerate impurity orbitals, Z.
Phys. A 208, 94 (1968).

[64] H. Kim and D. A. Huse, Ballistic Spreading of Entanglement
in a Diffusive Nonintegrable System, Phys. Rev. Lett. 111,
127205 (2013).

[65] M. C. Bañuls, J. I. Cirac, and M. B. Hastings, Strong andWeak
Thermalization of Infinite Nonintegrable Quantum Systems,
Phys. Rev. Lett. 106, 050405 (2011).

[66] A. J. A. James, R. M. Konik, and N. J. Robinson, Nonthermal
States Arising from Confinement in One and Two Dimensions,
Phys. Rev. Lett. 122, 130603 (2019).

[67] N. J. Robinson, A. J. A. James, and R. M. Konik, Signatures
of rare states and thermalization in a theory with confinement,
Phys. Rev. B 99, 195108 (2019).

[68] B. Neyenhuis, J. Zhang, P. W. Hess, J. Smith, A. C. Lee,
P. Richerme, Z.-X. Gong, A. V. Gorshkov, and C. Monroe,
Observation of prethermalization in long-range interacting
spin chains, Sci. Adv. 3, e1700672 (2017).

[69] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, From
quantum chaos and eigenstate thermalization to statistical
mechanics and thermodynamics, Adv. Phys. 65, 239 (2016).

[70] F. Sauter, Über das verhalten eines elektrons im homogenen
elektrischen feld nach der relativistischen theorie diracs, Z.
Phys. 69, 742 (1931).

[71] J. Schwinger, On gauge invariance and vacuum polarization,
Phys. Rev. 82, 664 (1951).

[72] M. van Horssen, E. Levi, and J. P. Garrahan, Dynamics
of many-body localization in a translation-invariant quantum
glass model, Phys. Rev. B 92, 100305(R) (2015).

[73] A. Prem, J. Haah, and R. Nandkishore, Glassy quantum dy-
namics in translation invariant fracton models, Phys. Rev. B
95, 155133 (2017).

[74] Z. Lan, M. van Horssen, S. Powell, and J. P. Garrahan, Quan-
tum Slow Relaxation and Metastability Due to Dynamical
Constraints, Phys. Rev. Lett. 121, 040603 (2018).

[75] M. Brenes, M. Dalmonte, M. Heyl, and A. Scardicchio, Many-
Body Localization Dynamics from Gauge Invariance, Phys.
Rev. Lett. 120, 030601 (2018).

[76] D. Bulmash and M. Barkeshli, Generalized u(1) gauge
field theories and fractal dynamics, arXiv:1806.01855 [cond-
mat.str-el] .

[77] A. Russomanno, S. Notarnicola, F. M. Surace, R. Fazio, M.
Dalmonte, and M. Heyl, Homogeneous floquet time crystal
protected by gauge invariance, Phys. Rev. Res. 2, 012003
(2020).

[78] P. Sala, T. Rakovszky, R. Verresen, M. Knap, and F. Pollmann,
Ergodicity-Breaking Arising from Hilbert Space Fragmenta-
tion in Dipole-Conserving Hamiltonians, Phys. Rev. X 10,
011047 (2020).

[79] S. Pai, M. Pretko, and R. M. Nandkishore, Localization
in Fractonic Random Circuits, Phys. Rev. X 9, 021003
(2019).

[80] V. Khemani and R. Nandkishore, Local constraints can glob-
ally shatter hilbert space: a new route to quantum information
protection, Phys. Rev. B 101, 174204 (2020).

[81] G. De. Tomasi, D. Hetterich, P. Sala, and F. Pollmann, Dynam-
ics of strongly interacting systems: From fock-space fragmen-
tation to many-body localization, Phys. Rev. B 100, 214313
(2019).

[82] T. Rakovszky, P. Sala, R. Verresen, M. Knap, and F. Pollmann,
Statistical localization: from strong fragmentation to strong
edge modes, Phys. Rev. B 101, 125126 (2020).

[83] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran,
H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner,
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Z. Papić, Weak ergodicity breaking from quantum many-body
scars, Nat. Phys. 14, 745 (2018).

[85] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn,
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