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Abstract. Pre-trained deep language models (LM) have advanced the
state-of-the-art of text retrieval. Rerankers fine-tuned from deep LM esti-
mates candidate relevance based on rich contextualized matching signals.
Meanwhile, deep LMs can also be leveraged to improve search index,
building retrievers with better recall. One would expect a straightfor-
ward combination of both in a pipeline to have additive performance
gain. In this paper, we discover otherwise and that popular reranker
cannot fully exploit the improved retrieval result. We, therefore, propose
a Localized Contrastive Estimation (LCE) for training rerankers and
demonstrate it significantly improves deep two-stage models (Our codes
are open sourced at https://github.com/luyug/Reranker.).

1 Introduction

Recent state-of-the-art retrieval systems are pipelined, consisting of a first-stage
heuristic retriever such as BM25 that efficiently produces an initial set of can-
didate results followed by one or more heavy rerankers that rerank the most
promising candidates [11]. Neural language models (LM) such as BERT [7]
have had a major impact on this architecture by providing more effective index
terms [12] and term weights [5] for heuristic retriever and providing rich contex-
tualized matching signals between query and document for rerankers [4,10].
Intuitively, a better initial ranking provides later stage neural rerankers with
more relevant documents to pull up to the top of the final ranking. In a perfect
world, a neural reranker recognizes the relevant documents in its candidate pool,
inheriting all of the successes of previous retriever. However, simply forming the
pipeline by appending a BERT reranker to an effective first-stage retriever does
not guarantee an effective final ranking. An improved candidate list sometimes
causes inferior reranking. When the candidate list improves, false positives can
become harder to recognize as they tend to share confounding characteristics
with the true positives. A discriminative reranker should be able to handle the
top portion of retriever results and avoid relying on those confounding features.
In this paper, we introduce Localized Contrastive Estimation (LCE) learning,.
We localize negative sample distribution by sampling from the target retriever
top results. Meanwhile, we use a contrastive form loss which penalizes signals
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generated from confounding characteristics, preventing the reranker from col-
lapsing.

Experiments on the MSMARCO document ranking dataset show that LCE
can better exploit the LMs capability. With the same BERT model, LCE achieves
significantly higher accuracy without incurring training or inference overhead.

2 Background

Separation of retrieval into stages was introduced naturally due to efficiency-
effectiveness trade-off among different ranking models: fast but less accurate
model (e.g. BM25) retrieves from the entire corpus while slower but more accu-
rate ones (e.g. BERT) refines ranking in the top candidate list.

Heuristic retrievers like BM25 use matching signals exclusively from exact
match and therefore can use inverted list data structure for low latency full
corpus retrieval. They are limited by document statistics for scoring. As a fix,
deep language models can be leveraged to re-estimate term weights in search
index [5,6]. An alternative is adding probable query terms to document [12].

Pre-trained deep LMs [7,14] have demonstrated strong supervised transfer
performance on reranking tasks. Popular recent works [4,10] fine-tune BERT [7]
with binary classification objective and show it significantly outperforms earlier
models. In this paper, we however question if this simple paradigm is sufficient
to realize BERT’s full potential, especially for high performance deep retrievers
that generate candidates consisting of harder negatives.

Alternatives to binary classification objective are the contrastive learning
objectives that directly take negatives into account [8]. The popular NCE loss
computes scores of a positive instance and several negatives instances, normalize
them into probabilities and train the model to give higher probability to the
positive instance [16]. The incorporation of negatives in loss prevents the model
from collapsing. While contrastive loss has been widely studied in representation
learning [2,16], there are few prior works adopting it to train deep LM rerankers.

3 Methodologies

Preliminaries. We aim to train a BERT reranker to score a query document
pair,
s = score(q, d) = v] cls(BERT(concat(q,d))) (1)

where cls extracts BERT’s [CLS] vector and vy, is a projection vector. We refer to
the training technique popularly adopted [4,10] as the Vanilla method. It samples
query document pairs independently and compute on each individual query-
document pair using binary cross entropy (BCE) based on query ¢ document d
and corresponding label (+/—),
) BCE(score(q,d),+) d is positive @)
Y | BCE(score(q,d), —) d is negative
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Vanilla method treats reranker training as a general binary classification prob-
lem. However, reranker is unique in nature; it deals with the very top portion of
retriever results, each of which may contain many confounding signatures. The
reranker is expected to,

— Exile at handling top portion of retriever results.
— Avoid collapsing onto matching with confounding features.

To this end, in this section, we introduce Localized Contrastive Estima-
tion (LCE) loss. The contrastive loss prevents collapsing and localized negative
samples focus the reranker on top retriever results.

Localized Negatives from Target Retriever. Given a target initial stage
retriever and a set of training queries, we use the retriever to retrieve from the
entire corpus, generating a set of document rankings for the queries. For each
query ¢ then sample from the set Ry of top ranked m documents, n non-relevant
documents as negatives examples. All sampled documents together form the
negative training set. As will be shown in Sect. 6, re-building training set based
on the specific target retriever is critical to ensure robust training.

Contrastive Loss. After aggregating all negatives sampled from target
retriever, we form for each query ¢ a group G, with a single relevant positive
d,j and sampled non-relevant negative documents from Rj". We treat the BERT
scoring function as a deep distance function,

dist(q,d) = score(q,d) = v cls(BERT(concat(q, d))) (3)
with which we define the contrastive loss for one query ¢ as,

exp(dist(q,d;))
ZdeGq 650p(di8t(q7 d))

Ly = —log 4)

Importantly, here loss and gradient condition not only on the relevant pair but
also the retrieved negatives. This effectively helps prevent collapsing onto simple
confounding matchings.

LCE Batch Update. Putting it all together, we can define the Localized Con-

trastive Estimation (LCE) loss on a training batch of a set of query @ as,

1 exp(dist(q,d}))
L = — -l 2
FET Q) 2 7 Y uea, ep(dist(g, d)) (5)

Compared to a standard noise contrastive estimation (NCE) loss, LCE uses the
target retriever to localize negative samples and focus learning on top portion
instead of randomly sampled noisy negatives.
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Table 1. Document ranking performance measured on MSMARCO dev (left table)
and eval set (right table). t indicates statistical significance over Vanilla using a t-test
with p < 0.05. As the leaderboard eval set only reports aggregated metrics, we cannot
report statistical significance.

MSMARCO Dev MSMARCO Eval
Method Method
MRR@100 MRR@100
Indri BM25 BM25* HDCT  PROP (ensemble)® 40.1
6

Vanilla | 38.34 36.97 39.28  40.84 BERT-m1 (ensemble) 39.8
LCE 39.557 39.6617 42237 43.38f Indri 4 Vanilla 33.8
HDCT + LCE (single) 38.2

HDCT + LCE (ensemble) | 40.5 (1st place)

2 PROP _step400K base (ensemble v0.1)
b BERT-m1 base + classic IR + doc2query (ensemble)

4 Experiment Methodologies

Dataset and Tasks. We use the MSMARCO [1] document ranking dataset.
The dataset contains 3 million documents. A document consists of 3 fields (title,
URL, and body) with around 900 words. Models are trained on the train set of
0.37M training pairs. As recommended by MSMARCO organizers, we use the
dev set for analysis.

Initial Stage Retriever. We experimented with four initial retrievers: Indri,
un-tuned BM25, tuned BM25 (denoted as BM25*), and HDCT [5]. The Indri
search results come from MSMARCO organizers'. We build BM25 indices with
the Anserini toolkit [17], from which we produce two sets of search results with
the toolkit’s default BM25 parameters and a set of tuned parameters suggested
by the toolkit authors?. HDCT is the SOTA method for augmenting document
search indices with term weights re-estimated with BERT; we use the rankings
provided by the authors 3. We input top 100 candidate lists to rerankers.

Implementation. Following [4]’s BERT-FirstP setup, we input the concatenated
document title, url and body’s first 512 queries to the rerankers. Our rerankers
are built and trained in mixed precision with PyTorch [13] and based on Hug-
gingface’s BERT implementation [15]. We sample negatives from the target
retriever’s top ranked m = 100 documents similar to reranking depth. We train
on 4 RTX 2080 ti GPUs, each with a batch of 8 documents. We train for 2
epochs, with a 1le—5 learning rate and a warmup portion 0.1.

5 Document Ranking Performance

In Table 1, we summarize ranking performance on MSMARCO document rank-
ing Dev and Eval (leaderboard) queries. Here, both vanilla and LCE use nega-
tives from target retriever. On the dev set, we test rerankers trained with vanilla

! https://microsoft.github.io/msmarco//.
2 https://github.com/castorini/anserini.
3 http://boston.lti.cs.cmu.edu/appendices/ TheWebConf2020- Zhuyun-Dai/ .
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and LCE loss on each type of the first-stage retriever. We see LCE significantly
improves performance with all retrievers. Meanwhile, we see that gain using LCE
enlarges as the retriever grows stronger, suggesting it can capture more compli-
cated matching in the improved candidate list, while not being confused by the
harder negatives.

The leader board results confirmed the effectiveness of LCE. HDCT+LCE
pipeline outperformed the vanilla basline by a large margin. Following other
recent leaderboard submissions, we further incorporate model ensemble. Our
ensemble entry uses an LCE trained ensemble of BERT, RoBERTa [9] and
ELECTRA [3] to rerank HDCT top 100. This submission got first place, achiev-

ing the state-of-the-art performance?.

6 Analysis

In this section, we first analyze the effect of number of sampled documents per
query in LCE, then the influence of the negative sample localization.

0.44

0.43
0.42
0.41

0.40

Fig. 1. Effect of LCE sample size We plot MRR@100 against sizes.

Effect of LCE Sample Size. In Fig. 1, we study the effect of varying the
number of sampled documents per query in the LCE loss. We observe a big
improvement from size 2 (1 positive, 1 negative) that compute loss scale with
a single negative, to size 4 where loss weights are computed with 3 negatives.
Further increase in sample size can generate some additional improvements.

Influence of Negative Localization. LCE samples negatives from top ranked
documents retrieved by target retriever. Here we quantitatively evaluate its
importance. Denote retriever used in training for negative sampling train
retriever and in testing for candidate generation test retriever. We use all
rerankers from Sect.5 to rank candidate lists generated by all retrievers and
plot results in a heat map Fig. 2. We plot rerankers using different train retriev-
ers on the horizontal axis and test retrievers on the vertical axis. Each 4 x 4
sub-grid corresponds to a training strategy, and sub-grid diagonals correspond to
Sect. 5 results. We observe localization benefits both LCE and vanilla methods.
The performance of the Vanilla trained reranker drops severely when negatives
are not localized by test retriever but from a weaker train retriever. Similarly,

4 On the camera ready date (January 20th, 2021).
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LOW MRR HIGH
Vanilla LCE

BM25 Indri BM25* HDCT BM25 Indri BM25* HDCT
n
g 36.97 37.30 36.09 35.80 39.66 38.41 39.49 38.10
)
"é 37.39 38.34 37.46 37.17 40.42 39.55 40.86 39.95
in
g 34.21 34.60 39.28 39.47 40.73 39.78 42.29 41.81
m
[
8 28.98 30.27 37.69 40.84 40.78 39.83 41.92 43.38
T

Fig. 2. Effects of Train Retriever. The horizontal axis is the retriever that generates
negatives for training (train retriever); the vertical axis is the retriever that generates
candidates for testing (test retriever).

rerankers trained with LCE loss also perform better with localization. Interest-
ingly, we do find that the LCE loss can bring some degrees of adaptability to
the reranker, making it robust when the test retriever is different from the train
retriever.

7 Conclusion

Recent research shows promising results on using deep LMs to improve initial
retrievers. However, we discovered that previous BERT rerankers could not fully
exploit the improved initial rankings. We propose Localized Contrastive Estima-
tion (LCE) learning, to localize training negatives with target retriever, and to
use a contrastive loss to penalize matching with confounding characteristics.

Experimental results demonstrate that reranker trained with LCE signifi-
cantly outperforms its vanilla method trained counterpart using the same LM.
Our analysis shows that localizing negatives and having an expressive loss with
multiple contrastive negatives are both critical for the success of LCE.

The positive results show that, instead of adopting more advanced LM, it is
also possible to improve the performance of existing deep LMs with better learn-
ing methods. Meanwhile, before this work, there are few existing work study-
ing the interaction between different deep retrievers and reranker in pipelined
retrieval systems. We believe this paper will encourage the community to con-
duct more systematic research on pipelined IR systems.
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