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Abstract

Classical information retrieval systems such as
BM25 rely on exact lexical match and carry
out search efficiently with inverted list index.
Recent neural IR models shifts towards soft
semantic matching all query document terms,
but they lose the computation efficiency of
exact match systems. This paper presents
COIL, a contextualized exact match retrieval
architecture that brings semantic lexical match-
ing. COIL scoring is based on overlapping
query document tokens’ contextualized repre-
sentations. The new architecture stores con-
textualized token representations in inverted
lists, bringing together the efficiency of exact
match and the representation power of deep
language models. Our experimental results
show COIL outperforms classical lexical re-
trievers and state-of-the-art deep LM retrievers
with similar or smaller latency.’

1 Introduction

Widely used, bag-of-words (BOW) information re-
trieval (IR) systems such as BM25 rely on exact
lexical match 2 between query and document terms.
Recent study in neural IR takes a different approach
and compute soft matching between all query and
document terms to model complex matching.

The shift to soft matching in neural IR models
attempts to address vocabulary mismatch problems,
that query and the relevant documents use differ-
ent terms, e.g. cat v.s. Kkitty, for the same con-
cept (Huang et al., 2013; Guo et al., 2016; Xiong
et al., 2017). Later introduction of contextualized
representations (Peters et al., 2018) from deep lan-
guage models (LM) further address semantic mis-
match, that the same term can refer to different
concepts, e.g., bank of river vs. bank in finance.
Fine-tuned deep LM rerankers produce token rep-
resentations based on context and achieve state-of-

'Our code is available at https://github.com/

luyug/COIL.
Exact match up to morphological changes.
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the-art in text ranking with huge performance leap
(Nogueira and Cho, 2019; Dai and Callan, 2019b).

Though the idea of soft matching all tokens is
carried through the development of neural IR mod-
els, seeing the success brought by deep LMs, we
take a step back and ask: how much gain can we get
if we introduce contextualized representations back
to lexical exact match systems? In other words, can
we build a system that still performs exact query-
document token matching but compute matching
signals with contextualized token representations
instead of heuristics? This may seem a constraint
on the model, but exact lexical match produce more
explainable and controlled patterns than soft match-
ing. It also allows search to focus on only the
subset of documents that have overlapping terms
with query, which can be done efficiently with in-
verted list index. Meanwhile, using dense contex-
tualized token representations enables the model
to handle semantic mismatch, which has been a
long-standing problem in classic lexical systems.

To answer the question, we propose a new lexi-
cal matching scheme that uses vector similarities
between query-document overlapping term contex-
tualized representations to replace heuristic scor-
ing used in classical systems. We present COn-
textualized Inverted List (COIL), a new exact lex-
ical match retrieval architecture armed with deep
LM representations. COIL processes documents
with deep LM offline and produces representations
for each document token. The representations are
grouped by their surface tokens into inverted lists.
At search time, we build representation vectors
for query tokens and perform contextualized ex-
act match: use each query token to look up its
own inverted list and compute vector similarity
with document vectors stored in the inverted list
as matching scores. COIL enables efficient search
with rich-in-semantic matching between query and
document.

Our contributions include 1) introduce a novel

3030

Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 3030-3042
June 6-11, 2021. ©2021 Association for Computational Linguistics


https://github.com/luyug/COIL
https://github.com/luyug/COIL

retrieval architecture, contextualized inverted
lists (COIL) that brings semantic matching into
lexical IR systems, 2) show matching signals in-
duced from exact lexical match can capture com-
plicated matching patterns, 3) demonstrate COIL
significantly outperform classical and deep LM
augmented lexical retrievers as well as state-of-the-
art dense retrievers on two retrieval tasks.

2 Related Work

Lexical Retriever Classical IR systems rely on
exact lexical match retrievers such as Boolean
Retrieval, BM25 (Robertson and Walker, 1994)
and statistical language models (Lafferty and Zhai,
2001). This type of retrieval model can process
queries very quickly by organizing the documents
into inverted index, where each distinct term has
an inverted list that stores information about docu-
ments it appears in. Nowadays, they are still widely
used in production systems. However, these re-
trieval models fall short of matching related terms
(vocabulary mismatch) or modeling context of the
terms (semantic mismatch). Much early effort
was put into improving exact lexical match retriev-
ers, such as matching n-grams (Metzler and Croft,
2005) or expanding queries with terms from related
documents (Lavrenko and Croft, 2001). However,
these methods still use BOW framework and have
limited capability of modeling human languages.

Neural Ranker In order to deal with vocab-
ulary mismatch, neural retrievers that rely on
soft matching between numerical text represen-
tations are introduced. Early attempts compute
similarity between pre-trained word embedding
such as word2vec (Mikolov et al., 2013) and
GLoVe (Pennington et al., 2014) to produce match-
ing score (Ganguly et al., 2015; Diaz et al., 2016).
One more recent approach encodes query and doc-
ument each into a vector and computes vector sim-
ilarity (Huang et al., 2013). Later researches real-
ized the limited capacity of a single vector to en-
code fine-grained information and introduced full
interaction models to perform soft matching be-
tween all term vectors (Guo et al., 2016; Xiong
et al.,, 2017). In these approaches, scoring is
based on learned neural networks and the hugely
increased computation cost limited their use to
reranking a top candidate list generated by a lexical
retriever.

Deep LM Based Ranker and Retriever Deep
LM made a huge impact on neural IR. Fine-
tuned Transformer (Vaswani et al., 2017) LM
BERT (Devlin et al., 2019) achieved state-of-the-
art reranking performance for passages and docu-
ments (Nogueira and Cho, 2019; Dai and Callan,
2019b). As illustrated in Figure 1a, the common
approach is to feed the concatenated query docu-
ment text through BERT and use BERT’s [CLS]
output token to produce a relevance score. The
deep LM rerankers addressed both vocabulary and
semantic mismatch by computing full cross atten-
tion between contextualized token representations.
Lighter deep LM rankers are developed (MacA-
vaney et al., 2020; Gao et al., 2020), but their cross
attention operations are still too expensive for full-
collection retrieval.

Later research therefore resorted to augment-
ing lexical retrieval with deep LMs by expanding
the document surface form to narrow the vocab-
ulary gap, e.g., DocT5Query (Nogueira and Lin,
2019), or altering term weights to emphasize impor-
tant terms, e.g., DeepCT (Dai and Callan, 2019a).
Smartly combining deep LM retriever and reranker
can offer additive gain for end performance (Gao
et al., 2021a). These retrievers however still suffer
from vocabulary and semantic mismatch as tradi-
tional lexical retrievers.

Another line of research continues the work on
single vector representation and build dense retriev-
ers, as illustrated in Figure 1b. They store docu-
ment vectors in a dense index and retrieve them
through Nearest Neighbours search. Using deep
LMs, dense retrievers have achieved promising re-
sults on several retrieval tasks (Karpukhin et al.,
2020). Later researches show that dense retrieval
systems can be further improved by better train-
ing (Xiong et al., 2020; Gao et al., 2021b).

Single vector systems have also been extended
to multi-vector representation systems. Poly-
encoder (Humeau et al., 2020) encodes queries
into a set of vectors. Similarly, Me-BERT (Luan
et al., 2020) represents documents with a set of vec-
tors. A concurrent work ColBERT (Figure 1¢) use
multiple vectors to encode both queries and docu-
ments (Khattab and Zaharia, 2020). In particular, it
represents a documents with all its terms’ vectors
and a query with an expanded set of term vectors.
It then computes all-to-all (Cartesian) soft match
between the tokens. ColBERT performs interaction
as dot product followed pooling operations, which
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CLS bank | | account| | SEP bank river bank
CLS bank | | account| | SEP bank river bank
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(a) Cross-Attention Model (e.g., BERT reranker)
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CLS bank | account EXP EXP CLS bank river bank
CLS bank = account EXP EXP CLS bank river bank
CLS bank | account| EXP EXP CLS bank river bank

(c) ColBERT: All-to-All Match

CLS bank = account CLS bank river bank
CLS bank = account CLS bank river bank
CLS bank = account CLS bank river bank

(b) Dense Retrievers (e.g., DPR)

/_sum \
/TSI om0\
CLS bank | account CLS bank river bank
CLS bank | account CLS bank river bank
CLS bank | account CLS bank river bank

(d) COIL: Contextualized Exact Match

Figure 1: An illustration of reranking/retrieval mechanisms with deep LM, including our proposed model, COIL.

BM25
Bank [docid: 1}-[docid: 8}-/docid: 6] ...  scoring
an | 1 tf: 1 tf: 1
\ | | | | | “——  Bank
. [docid: 1]+/docid: 2}+/docid: 4 {docid: 5]~
River =1 || th1 || th1 || the | =
/ Account
BM25
scoring
Traditional Inverted Lists Query

Figure 2: An illustration of traditional inverted lists.
The inverted list maps a term to the list of documents
where the term occurs. Retriever looks up query terms’
inverted lists and scores those documents with stored
statistics such as term frequency (tf).

allows it to also leverage a dense index to do full
corpus retrieval. However, since ColBERT encodes
a document with all tokens, it adds another order
of magnitude of index complexity to all aforemen-
tioned methods: document tokens in the collection
need to be stored in a single huge index and con-
sidered at query time. Consequently, ColBERT is
engineering and hardware demanding.

3 Methodologies

In this section, we first provide some preliminaries
on exact lexical match systems. Then we discuss
COIL’s contextualized exact match design and how
its search index is organized. We also give a com-
parison between COIL and other popular retrievers.

docid [1234 ... Cl

matrix
product
CLS  — vectors — CLs
docid [1367]
matrix
Bank — vectors product
Bank
docid [1245509]
River —
vectors Account
docid [3 3 9]
Account— yectors matrix
product
Contextualized Inverted Lists Query

Figure 3: COIL’s index and retrieval architecture.
COIL-tok relies on the exact token matching (lower).
COIL-full includes in addition CLS matching (upper).

3.1 Preliminaries

Classic lexical retrieval system relies on overlap-
ping query document terms under morphological
generalization like stemming, in other words, exact
lexical match, to score query document pair. A
scoring function is defined as a sum of matched
term scores. The scores are usually based on statis-
tics like term frequency (#f). Generally, we can
write,

s= Y oulhg(q.t), ha(d,t) (1)

teqgnd

where for each overlapping term ¢ between query ¢
and document d, functions h, and hg extract term
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information and a term scoring function o, com-
bines them. A popular example is BM25, which
computes,

sevos = O idf (D)hg™ (g, 0)hg™ (d, t)
teqnd

tfi,q(1+ ko)
pBM25 gy _ Lt

tfta(1+ k1)

tfra+ ka(1— b+ bodl)

PEMS (d,1) =

where t f; 4 refers to term frequency of term ¢ in
document d, t f; , refers to the term frequency in
query, idf (t) is inverse document frequency, and b,
k1, ko are hyper-parameters.

One key advantage of exact lexical match sys-
tems lies in efficiency. With summation over exact
matches, scoring of each query term only goes to
documents that contain matching terms. This can
be done efficiently using inverted list indexing (Fig-
ure 2). The inverted list maps back from a term
to a list of documents where the term occurs. To
compute Equation 1, the retriever only needs to
traverse the subset of documents in query terms’
inverted lists instead of going over the entire docu-
ment collection.

While recent neural IR research mainly focuses
on breaking the exact match bottleneck with soft
matching of text, we hypothesize that exact match
itself can be improved by replacing semantic in-
dependent frequency-based scoring with semantic
rich scoring. In the rest of this section, we show
how to modify the exact lexical match framework
with contextualized term representations to build
effective and efficient retrieval systems.

3.2 Contextualized Exact Lexical Match

Instead of term frequency, we desire to encode
the semantics of terms to facilitate more effective
matching. Inspired by recent advancements in deep
LM, we encode both query and document tokens
into contextualized vector representations and carry
out matching between exact lexical matched tokens.
Figure 1d illustrates the scoring model of COIL.

In this work, we use a Transformer language
model® as the contextualization function. We en-
code a query g with the language model (LM) and
represent its ¢-th token by projecting the corre-
sponding output:

’U;} = WtokLM(Qa 7’) + btok (3)

3We used the base, uncased variant of BERT.

where W, "™ is a matrix that maps the LM’s
ny, dimension output into a vector of lower di-
mension n;. We down project the vectors as we
hypothesize that it suffices to use lower dimension
token vectors. We confirm this in section 5. Simi-
larly, we encode a document d’s j-th token d; with:

v = Wik LM(d, §) + byok 4)

We then define the contextualized exact lexical
match scoring function between query document
based on vector similarities between exact matched
query document token pairs:

max (v{Tv?) 5)

Stok(CIa d) = rpaiiy j
qi€qnd I

Note that, importantly, the summation goes through
only overlapping terms, ¢; € g N d. For each query
token g;, we finds all same tokens d; in the docu-
ment, computes their similarity with g; using the
contextualized token vectors. The maximum sim-
ilarities are picked for query token g;. Max op-
erator is adopted to capture the most important
signal (Kim, 2014). This fits in the general lexical
match formulation, with A, giving representation
for g;, hy giving representations for all d; = ¢;, and
o compute dot similarities between query vector
with document vectors and max pool the scores.

As with classic lexical systems, s;.;, defined in
Equation 5 does not take into account similarities
between lexical-different terms, thus faces vocabu-
lary mismatch. Many popular LMs (Devlin et al.,
2019; Yang et al., 2019; Liu et al., 2019) use a
special CLS token to aggregate sequence represen-
tation. We project the CLS vectos with W ;<™"m
to represent the entire query or document,

’U(c]ls = WCZSLM(q, CLS) + b

i ©6)
v, = WesLM(d, CLS) + by
The similarity between 'vgl , and 'vcdl < provides high-

level semantic matching and mitigates the issue of
vocabulary mismatch. The full form of COIL is:

st (g, d) = swk(q, d) + UZlSTUgls (7N

In the rest of the paper, we refer to systems with
CLS matching COIL-full and without COIL-tok.

COIL’s scoring model (Figure 1d) is fully differ-
entiable. Following earlier work (Karpukhin et al.,
2020), we train COIL with negative log likelihood
defined over query ¢, a positive document d* and a
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set of negative documents {d; ,d; ,..d; ..} as loss.

exp(s(q,d"))
exp(s(q, dt)) + ; exp(s(q, d;’))
®)
Following Karpukhin et al. (2020), we use in batch

negatives and hard negatives generated by BM25.
Details are discussed in implementation, section 4.

L =—log

3.3 Index and Retrieval with COIL

COIL pre-computes the document representations
and builds up a search index, which is illustrated in
Figure 3. Documents in the collection are encoded
offline into token and CLS vectors. Formally, for
a unique token ¢ in the vocabulary V', we collect
its contextualized vectors from all of its mentions
from documents in collection C, building token ¢’s
contextualized inverted list:

I'={v}|d;j=t,deC}, ©)

where 'v;j is the BERT-based token encoding de-
fined in Equation 4. We define search index to
store inverted lists for all tokens in vocabulary,
I={I'|t € V}. For COIL-full, we also build an
index for the CLS token I<* = {v%_|d € C} .
As shown in Figure 3, in this work we im-
plement COIL’s by stacking vectors in each in-
verted list I' into a matrix M™*I’*| so that sim-
ilarity computation that traverses an inverted list
and computes vector dot product can be done ef-
ficiently as one matrix-vector product with opti-
mized BLAS (Blackford et al., 2002) routines on
CPU or GPU. All vfl , vectors can also be organized
in a similar fashion into matrix M;; and queried
with matrix product. The matrix implementation
here is an exhaustive approach that involves all vec-
tors in an inverted list. As a collection of dense
vectors, it is also possible to organize each inverted
list as an approximate search index (Johnson et al.,
2017; Guo et al., 2019) to further speed up search.
When a query g comes in, we encode every of
its token into vectors 'vf. The vectors are sent to
the subset of COIL inverted lists that corresponds
query tokens J = {I' | t € ¢}. where the matrix
product described above is carried out. This is
efficient as |J| << |I], having only a small subset
of all inverted lists to be involved in search. For
COIL-full, we also use encoded CLS vectors 'vgl s
to query the CLS index to get the CLS matching
scores. The scoring over different inverted lists can

serve in parallel. The scores are then combined by
Equation 5 to rank the documents.

Readers can find detailed illustration figures in
the Appendix A, for index building and querying,
Figure 4 and Figure 5, respectively.

3.4 Connection to Other Retrievers

Deep LM based Lexical Index Models like
DeepCT (Dai and Callan, 2019a, 2020) and
DocT5Query (Nogueira and Lin, 2019) alter ¢ f; 4
in documents with deep LM BERT or T5. This is
similar to a COIL-tok with token dimension n; = 1.
A single degree of freedom however measures more
of a term importance than semantic agreement.

Dense Retriever Dense retrievers (Figure 1b)
are equivalent to COIL-full’s CLS matching. COIL
makes up for the lost token-level interactions in
dense retriever with exact matching signals.

ColBERT ColBERT (Figure 1c) computes rel-
evance by soft matching all query and document
term’s contextualized vectors.

s(gd) = Y

gi €[cls;q;exp)

max (v{Tv?)

d;€[cls;d] J (10)
where interactions happen among query ¢, docu-
ment d, cls and set of query expansion tokens exp.
The all-to-all match contrasts COIL that only uses
exact match. It requires a dense retrieval over all
document tokens’ representations as opposed to
COIL which only considers query’s overlapping to-
kens, and are therefore much more computationally
expensive than COIL.

4 Experiment Methodologies

Datasets We experiment with two large scale ad
hoc retrieval benchmarks from the TREC 2019
Deep Learning (DL) shared task: MSMARCO
passage (8M English passages of average length
around 60 tokens) and MSMARCO document (3M
English documents of average length around 900
tokens)*. For each, we train models with the
MSMARCO Train queries, and record results on
MSMARCO Dev queries and TREC DL 2019
test queries. We report mainly full-corpus re-
trieval results but also include the rerank task on
MSMARCO Dev queries where we use neural
scores to reorder BM25 retrieval results provided
by MSMARO organizers. Official metrics include

“Both datasets can be downloaded from https://
microsoft.github.io/msmarco/
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MRR@1K and NDCG@10 on test and MRR@10
on MSMARCO Dev. We also report recall for the
dev queries following prior work (Dai and Callan,
2019a; Nogueira and Lin, 2019).

Compared Systems Baselines include 1) tradi-
tional exact match system BM25, 2) deep LM aug-
mented BM25 systems DeepCT (Dai and Callan,
2019a) and DocT5Query (Nogueira and Lin, 2019),
3) dense retrievers, and 4) soft all-to-all retriever
ColBERT. For DeepCT and DocT5Query, we use
the rankings provided by the authors. For dense
retrievers, we report two dense retrievers trained
with BM25 negatives or with mixed BM25 and
random negatives, published in Xiong et al. (2020).
However since these systems use a robust version
of BERT, RoBERTa (Liu et al., 2019) as the LM
and train document retriever also on MSMARCO
passage set, we in addition reproduce a third dense
retriever, that uses the exact same training setup as
COIL. All dense retrievers use 768 dimension em-
bedding. For ColBERT, we report its published re-
sults (available only on passage collection). BERT
reranker is added in the rerank task.

We include 2 COIL systems: 1) COIL-tok, the
exact token match only system, and 2) COLL-full,
the model with both token match and CLS match.

Implementation We build our models with Py-
torch (Paszke et al., 2019) based on huggingface
transformers (Wolf et al., 2019). COIL’s LM is
based on BERT’s base variant. COIL systems use
token dimension n; = 32 and COIL-full use CLS
dimension n. = 768 as default, leading to 110M
parameters. We add a Layer Normalization to CLS
vector when useful. All models are trained for 5
epochs with AdamW optimizer, a learning rate of
3e-6, 0.1 warm-up ratio, and linear learning rate
decay, which takes around 12 hours. Hard neg-
atives are sampled from top 1000 BM25 results.
Each query uses 1 positive and 7 hard negatives;
each batch uses 8 queries on MSMARCO passage
and 4 on MSMARCO document. Documents are
truncated to the first 512 tokens to fit in BERT.
We conduct validation on randomly selected 512
queries from corresponding train set. Latency num-
bers are measured on dual Xeon E5-2630 v3 for
CPU and RTX 2080 ti for GPU. We implement
COIL’s inverted lists as matrices as described in
subsection 3.3, using NumPy (Harris et al., 2020)
on CPU and Pytorch on GPU. We perform a) a set
of matrix products to compute token similarities

over contextualized inverted lists, b) scatter to map
token scores back to documents, and ¢) sort to rank
the documents. Illustration can be found in the
appendix, Figure 5.

5 Results

This section studies the effectiveness of COIL
and how vector dimension in COIL affects the
effectiveness-efficiency tradeoff. We also provide
qualitative analysis on contextualized exact match.

5.1 Main Results

Table 1 reports various systems’ performance on
the MARCO passage collection. COIL-tok ex-
act lexical match only system significantly out-
performs all previous lexical retrieval systems.
With contextualized term similarities, COIL-tok
achieves a MRR of 0.34 compared to BM25’s MRR
0.18. DeepCT and DocT5Query, which also use
deep LMs like BERT and T3, are able to break the
limit of heuristic term frequencies but are still lim-
ited by semantic mismatch issues. We see COIL-
tok outperforms both systems by a large margin.

COIL-tok also ranks top of the candidate list bet-
ter than dense retrieves. It prevails in MRR and
NDCG while performs on par in recall with the
best dense system, indicating that COIL’s token
level interaction can improve precision. With the
CLS matching added, COIL-full gains the ability
to handle mismatched vocabulary and enjoys an-
other performance leap, outperforming all dense
retrievers.

COIL-full achieves a very narrow performance
gap to ColBERT. Recall that CoIBERT computes
all-to-all soft matches between all token pairs. For
retrieval, it needs to consider for each query token
all mentions of all tokens in the collection (MS-
MARCO passage collection has around 500M to-
ken mentions). COIL-full is able to capture match-
ing patterns as effectively with exact match signals
from only query tokens’ mentions and a single CLS
matching to bridge the vocabulary gap.

We observe a similar pattern in the rerank task.
COIL-tok is already able to outperform dense re-
triever and COIL-full further adds up to perfor-
mance with CLS matching, being on-par with Col-
BERT. Meanwhile, previous BERT rerankers have
little performance advantage over COIL . In prac-
tice, we found BERT rerankers to be much more

SClose performance between COIL and BERT rerankers
is partially due to the bottleneck of BM25 candidates.
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Table 1: MSMARCO passage collection results. Results not applicable are denoted ‘-’ and no available ‘n.a.’.

MS MARCO Passage Ranking

Dev Rerank Dev Retrieval DL2019 Retrieval
Model MRR@10 | MRR@10 Recall@lK | NDCG@10 MRR@IK
Lexical Retriever
BM25 - 0.184 0.853 0.506 0.825
DeepCT - 0.243 0.909 0.572 0.883
DocT5Query - 0.278 0.945 0.642 0.888
BM25+BERT reranker 0.347 - - - -
Dense Retriever
Dense (BM25 neg) n.a. 0.299 0.928 0.600 n.a.
Dense (rand + BM25 neg) n.a. 0.311 0.952 0.576 n.a.
Dense (our train) 0.312 0.304 0.932 0.635 0.898
ColBERT 0.349 0.360 0.968 n.a. n.a.
COIL-tok 0.336 0.341 0.949 0.660 0915
COIL-full 0.348 0.355 0.963 0.704 0.924

Table 2: MSMARCO document collection results. Results not applicable are denoted ‘-’ and no available ‘n.a.’.

MS MARCO Document Ranking

Dev Rerank Dev Retrieval DL2019 Retrieval
Model MRR@10 | MRR@10 Recall@lK | NDCG@10 MRR@I1K
Lexical Retriever
BM25 - 0.230 0.886 0.519 0.805
DeepCT - 0.320 0.942 0.544 0.891
DocT5Query - 0.288 0.926 0.597 0.837
BM25+BERT reranker 0.383 - - - -
Dense Retriever
Dense (BM25 neg) n.a. 0.299 0.928 0.600 n.a.
Dense (rand + BM25 neg) n.a. 0.311 0.952 0.576 n.a.
Dense (our train) 0.358 0.340 0.883 0.546 0.785
COIL-tok 0.381 0.385 0.952 0.626 0.921
COIL-full 0.388 0.397 0.962 0.636 0913

expensive, requiring over 2700 ms for reranking
compared to around 10ms in the case of COIL.

Table 2 reports the results on MSMARCO docu-
ment collection. In general, we observe a similar
pattern as with the passage case. COIL systems
significantly outperform both lexical and dense sys-
tems in MRR and NDCG and retain a small advan-
tage measured in recall. The results suggest that
COIL can be applicable to longer documents with
a consistent advantage in effectiveness.

The results indicate exact lexical match mecha-
nism can be greatly improved with the introduction
of contextualized representation in COIL. COIL’s
token-level match also yields better fine-grained
signals than dense retriever’s global match signal.
COIL-full further combines the lexical signals with
dense CLS match, forming a system that can deal
with both vocabulary and semantic mismatch, be-
ing as effective as all-to-all system.

5.2 Analysis of Dimensionality

The second experiment tests how varying COIL’s
token dimension n; and CLS dimension n,. affect
model effectiveness and efficiency. We record re-
trieval performance and latency on MARCO pas-
sage collection in Table 3.

In COIL-full systems, reducing CLS dimension
from 768 to 128 leads to a small drop in perfor-
mance on the Dev set, indicating that a full 768
dimension may not be necessary for COIL. Keep-
ing CLS dimension at 128, systems with token
dimension 32 and 8 have very small performance
difference, suggesting that token-specific semantic
consumes much fewer dimensions. Similar pattern
in ny is also observed in COIL-tok (n. = 0).

On the DL2019 queries, we observe that reduc-
ing dimension actually achieves better MRR. We
believe this is due to a regulatory effect, as the

3036



Table 3: Performance and latency of COIL systems with different representation dimensions. Results not applica-
ble are denoted ‘—’ and no available ‘n.a.’. Here n. denotes COIL CLS dimension and 7n; token vector dimension.
*: ColBERT use approximate search and quantization. We exclude I/O time from measurements.

Dev Retrieval DL2019 Retrieval | Latency/ms

Model MRR@10 Recall@1K | NDCG@10 MRR | CPU GPU
BM25 0.184 0.853 0.506 0.825 | 36 n.a.
Dense 0.304 0.932 0.635 0.898 | 293 32
ColBERT 0.360 0.968 n.a. n.a. | 458%* -
COIL

Ne ¢
768 32 0.355 0.963 0.704 0.924 | 380 41
128 32 0.350 0.953 0.692 0.956 | 125 23
128 8 0.347 0.956 0.694 0977 | 113 21

0 32 0.341 0.949 0.660 0915 | 67 18

0 8 0.336 0.940 0.678 0953 | 55 16

Table 4: Sample query document pairs with similarity scores produced by COIL. Tokens in examination are colored
blue. Numbers in brackets are query-document vector similarities computed with vectors generated by COIL.

Query Token

COIL Contextualized Exact Match Score

Relevance

what is a cabinet in govt

Cabinet [16.28] (government) A cabinet [16.75] is a body of high-
ranking state officials, typically consisting of the top leaders of the ....

+

Cabinet [7.23] is 20x60 and top is 28x72. .... I had a 2cm granite counter-
top installed with a 10 inch overhang on one side and a 14 inch....

what is priority pass

Priority Pass [11.61] is an independent airport lounge access program. A
membership provides you with access to their network of over 700 ....

Snoqualmie Pass [7.98] is a mountain pass [6.83] that carries Interstate
90 through the Cascade Range in the U.S. State of Washington....

what is njstart

NIJSTART is [1.25] a self-service online platform that allows vendors to
manage forms, certifications, submit proposals, access training ....

Contract awardees will receive their Blanket P.O. once it is [-0.10] con-
verted, and details regarding that process will also be sent...

test queries were labeled differently from the MS-
MARCO train/dev queries (Craswell et al., 2020).

We also record CPU and GPU search latency
in Table 3. Lowering COIL-full’s CLS dimen-
sion from 768 to 128 gives a big speedup, making
COIL faster than DPR system. Further dropping
token dimensions provide some extra speedup. The
COIL-tok systems run faster than COIL-full, with a
latency of the same order of magnitude as the tradi-
tional BM25 system. Importantly, lower dimension
COIL systems still retain a performance advantage
over dense systems while being much faster. We
include ColBERT’s latency reported in the original
paper, which was optimized by approximate search
and quantization. All COIL systems have lower
latency than ColBERT even though our current im-
plementation does not use those optimization tech-
niques. We however note that approximate search
and quantization are applicable to COIL, and leave
the study of speeding up COIL to future work.

5.3 Case Study

COIL differs from all previous embedding-based
models in that it does not use a single unified em-
bedding space. Instead, for a specific token, COIL
learns an embedding space to encode and measure
the semantic similarity of the token in different
contexts. In this section, we show examples where
COIL differentiates different senses of a word un-
der different contexts. In Table 4, we show how
the token similarity scores differ across contexts in
relevant and irrelevant query document pairs.

The first query looks for “cabinet” in the context
of “govt” (abbreviation for “government”). The
two documents both include query token "cabinet"
but of a different concept. The first one refers to
the government cabinet and the second to a case
or cupboard. COIL manages to match “cabinet” in
the query to “cabinet” in the first document with
a much higher score. In the second query, "pass”
in both documents refer to the concept of permis-
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sion. However, through contextualization, COIL
captures the variation of the same concept and as-
signs a higher score to “pass” in the first document.

Stop words like “it”, “a”, and “the” are com-
monly removed in classic exact match IR systems
as they are not informative on their own. In the
third query, on the other hand, we observe that
COIL is able to differentiate “is” in an explanatory
sentence and “is” in a passive form, assigning the
first higher score to match query context.

All examples here show that COIL can go be-
yond matching token surface form and introduce
rich context information to estimate matching. Dif-
ferences in similarity scores across mentions under
different contexts demonstrate how COIL systems
gain strength over lexical systems.

6 Conclusion and Future Work

Exact lexical match systems have been widely used
for decades in classical IR systems and prove to be
effective and efficient. In this paper, we point out
a critical problem, semantic mismatch, that gener-
ally limits all IR systems based on surface token
for matching. To fix semantic mismatch, we in-
troduce contextualized exact match to differentiate
the same token in different contexts, providing ef-
fective semantic-aware token match signals. We
further propose contextualized inverted list (COIL)
search index which swaps token statistics in in-
verted lists with contextualized vector representa-
tions to perform effective search.

On two large-scale ad hoc retrieval benchmarks,
we find COIL substantially improves lexical re-
trieval and outperforms state-of-the-art dense re-
trieval systems. These results indicate large head-
room of the simple-but-efficient exact lexical match
scheme. When the introduction of contextualiza-
tion handles the issue of semantic mismatch, exact
match system gains the capability of modeling com-
plicated matching patterns that were not captured
by classical systems.

Vocabulary mismatch in COIL can also be
largely mitigated with a high-level CLS vector
matching. The full system performs on par with
more expensive and complex all-to-all match re-
trievers. The success of the full system also shows
that dense retrieval and COIL’s exact token match-
ing give complementary effects, with COIL making
up dense system’s lost token level matching signals
and dense solving the vocabulary mismatch proba-
bly for COIL.

With our COIL systems showing viable search
latency, we believe this paper makes a solid step
towards building next-generation index that stores
semantics. At the intersection of lexical and neural
systems, efficient algorithms proposed for both can
push COIL towards real-world systems.
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A Appendix

A.1 Index Building Illustration

The following figure demonstrates how the document "apple pie baked ..." is indexed by COIL. The
document is first processed by a fine-tuned deep LM to produce for each token a contextualized vector.
The vectors of each term "apple" and "juice" are collected to the corresponding inverted list index along

with the document id for lookup.

Document #10 - apple pie baked ...

m .........

LM
apple ﬁ pie w| baked
10
v
1
u
10
apple | *
vi€«——
10
pie v

we<—

baked

Figure 4: COIL Index Building of document "apple pie baked..."
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A.2 Search Illustration

The following figure demonstrates how the query "apple juice" is processed by COIL. Contextualized
vectors of each term "apple" and "juice" go to the corresponding inverted list index consisting of a lookup
id array and a matrix stacked from document term vectors. For each index, a matrix vector product is run
to produce an array of scores. Afterwards a max-scatter of scores followed by a sort produces the final
ranking. Note for each index, we show only operations for a subset of vectors (3 vectors) in the index
matrix.

Query: apple juice

Index;pple Indexjyice

— ol | — ol |

----------- ) Matrix Vector Product

(—{ xyz | score (—{ | score

| 1ax

| Score

Max Scatter

Sort

Sorting

Figure 5: COIL Search of query "apple juice".
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