
Articles
https://doi.org/10.1038/s41567-021-01194-3

1Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, University of Maryland and NIST, College Park, MD, USA. 
2Present address: Department of Physics and Astronomy, Rice University, Houston, TX, USA. 3These authors contributed equally: W. L. Tan, P. Becker. 
✉e-mail: wltan93@terpmail.umd.edu; pbecker1@terpmail.umd.edu

Fundamental constituents of matter, such as quarks, cannot 
be observed in isolation, because they are permanently con-
fined into bound states of mesons or baryons. Although the 

existence of confinement in particle physics is well established, 
quantitative understanding of the connection between theoretical 
prediction and experimental observation remains an active area of 
research1,2. Similar phenomena can occur in low-energy quantum 
many-body systems, which can provide insight into confinement 
from a microscopic perspective. The static and equilibrium proper-
ties of such confined systems have been well characterized in previ-
ous theoretical3–5 as well as experimental works6,7. However, recent 
theoretical studies have demonstrated that confinement can also 
have dramatic consequences for the out-of-equilibrium dynamics 
of quantum many-body systems, such as suppression of informa-
tion spreading and slow thermalization8–15.

Quantum simulators allow the study of out-of-equilibrium 
physics of quantum many-body systems in a well-controlled envi-
ronment16,17. An emerging application of these simulators is the 
study of problems motivated by high-energy physics and gauge 
theories18–24. Here, we use trapped-ion quantum simulators25–28 to 
directly observe real-time domain-wall confinement dynamics in a 
spin chain following a quantum quench, or sudden change in the 
Hamiltonian (Fig. 1). We show that confinement can suppress the 
spreading of correlations even in the absence of disorder, and that 
quench dynamics can be used to characterize the excitation energies 
of confined bound states. We also measure the number of domain 
walls generated by a global quench, in and out of the confinement 
regime. Finally, we demonstrate that the number of domain walls 
can be an effective probe of the transition between two distinct 
dynamical regimes29,30.

Confinement in many-body systems occurs in one of the clas-
sic models of statistical mechanics: the Ising spin chain with 
both transverse and longitudinal magnetic fields. A non-zero 
longitudinal field confines pairs of originally freely propagating 
domain-wall quasiparticles into meson-like bound states in a sys-
tem of short-range interactions8,10,12. However, recent theoretical 

efforts9,11 have demonstrated that long-range Ising interactions, 
instead of an additional longitudinal field, can naturally induce a 
confining potential between pairs of domain walls (Fig. 1a). As a 
consequence of confinement, the low-energy spectrum of such an 
Ising system can feature meson-like bound domain-wall quasiparti-
cles (Fig. 1a)8,11, similar to confinement in quantum chromodynam-
ics (QCD), where quarks and antiquarks are confined into hadrons 
owing to strong interactions. In both cases, confining potentials 
increase asymptotically with particle separation, although with dif-
fering power-law forms. Similarly to QCD, domain-wall confine-
ment in the long-range Ising model studied here includes a discrete 
spectrum of bound states, string breaking14 (or particle/antiparticle 
creation) and a confinement–deconfinement crossover as a func-
tion of energy density2,31. Although this model does not include 
other aspects of QCD, such as gauge fields or chiral symmetry 
breaking, the similarity of the confinement mechanisms allows us 
to draw broadly applicable conclusions about this effect.

We used a trapped-ion quantum simulator to investigate con-
finement in a many-body spin system governed by the Hamiltonian 
(ℏ = 1)

H ¼ �
XL

i< j
J i;jσ

x
i σ

x
j � B

XL

i
σzi : ð1Þ

Here, σγi
I

 (γ = x, y, z) is the Pauli operator acting on the ith spin, 
Ji,j ≈ J0/∣i − j∣α is the power-law decaying Ising coupling between spins 
i and j with tunable exponent α, J0 > 0, B is the effective transverse 
field and L is the number of spins32,33 (Methods). We encoded each 
spin in the ground-state hyperfine levels "j iz  F ¼ 1;mF ¼ 0j i

I
 

and #j iz  F ¼ 0;mF ¼ 0j i
I

 of the 2S1/2 manifold of a 171Yb+ ion. 
The Ising couplings are produced via spin-dependent optical 
dipole forces, with α ranging from 0.8 to 1.1 and J0/2π ranging from 
0.23 kHz to 0.66 kHz (Methods).

To study the real-time dynamics of the spin chain, we used a 
quantum quench to bring the system out of equilibrium (Fig. 1b). 
We first initialized the spins in a product state, polarized either along 
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the x or z directions of the Bloch sphere. Using a tightly focused 
individual addressing laser34, we prepared domain walls in various 
initial state configurations (Fig. 2c,f,i). After preparing the desired 
initial state, we performed a sudden quench of the Hamiltonian (1). 
For B/J0 ≈ 0.75, the quench optimally drives the system out of equi-
librium while remaining in the confinement regime. Following the 
evolution of the system through time (t), we used spin-dependent 
fluorescence to measure the state of each spin. From this data, we 
calculated the time evolution of magnetizations, σxi ðtÞ

� �

I
 or σzi ðtÞ

� �

I
, 

and connected correlations

Cx
i;jðtÞ ¼ σxi ðtÞσxj ðtÞ

D E
� σxi ðtÞ
 

σxj ðtÞ
D E

: ð2Þ

No post-processing or state preparation and measurement correc-
tion have been applied to any of the data reported below.

To understand the effect of confinement on information spread-
ing, we measured the absolute value of connected correlations 
along x, the Ising direction (Fig. 2). When the initial state con-
tains a small number of domain walls, correlations spread with a 
considerably smaller velocity than the velocity in a corresponding 
nearest-neighbour interacting system8 (v0 = 4B, Fig. 2). Correlation 
functions typically exhibit a light-cone behaviour following a 
quantum quench35–37, whereas we observed strongly suppressed 
spreading and localized correlations throughout the evolution10,15. 
This indicates that confinement, induced by long-range interac-
tions, localizes pairs of domain walls at their initial conditions 
(Supplementary Information).

In stark contrast, we found that correlations exhibit 
faster-than-linear spreading, despite quenching under the same 
Hamiltonian, in the case of the initial state polarized in the trans-
verse direction z (Fig. 2g–i). In this case, the initial state was a linear 
superposition of all possible spin configurations in the x direction, 
and thus contained a large number of domain walls. Unlike the pre-
vious initial states, this initial state had an energy density relatively 
far from the bottom of the many-body spectrum. The long-range 
interactions among these domain walls led to fast relaxation and 
quantum information spreading. These results imply that this con-
finement effect has a substantial impact only on the low-energy 
excitations of the system, which is consistent with recent theoretical 
studies8–12.

To observe the effect of confinement on the thermalization of 
local observables, we measured the relaxation of magnetizations 
for the above initial states38 (third row of Fig. 2). We see that, for 
the low-energy states, local magnetizations retain long memo-
ries of their initial configuration and exhibit slow relaxation (Fig. 
2c,f). Conversely, for the high-energy initial state, local magnetiza-
tions quickly relax to their thermal expectation values (Fig. 2i and 
Supplementary Information). This is consistent with the observa-
tion that correlations quickly distribute across the entire system 
(Fig. 2h). We emphasize that the observed slow thermalization is a 
consequence of confinement, distinct from many-body localization 
with quenched disorder39–41.

To quantitatively probe excitation energies of bound domain-wall 
states, we prepared initial states polarized along the x direction 
and varied the number of spins separating the two initial domain 
walls (insets of Fig. 3a–c). Then, we quenched the system under 
Hamiltonian (1) and measured the time evolution of local magne-
tizations along the transverse direction σzi ðtÞ

� �

I
. In the confinement 

regime, the prepared initial states predominantly overlapped with 
low-energy eigenstates of the confinement Hamiltonian11. All local 
observables should exhibit oscillations with frequencies propor-
tional to the energy gap between these bound states before thermal-
izing8,11. Here, we chose a single-body spin observable, σzi ðtÞ

� �

I
, at 

the centre of the chain (for zero initial domain walls) or at the outer 
boundaries of the initial domain (for two initial domain walls). We 
made this particular choice to minimize edge effects from the finite 
spin chain and maximize the matrix elements of this observable 
between the prepared state i and the adjacent higher-energy bound 
state i + 1 (Fig. 1a), allowing us to extract the energy gap between 
these two states (Methods).

Following this prescription, we extracted oscillation frequencies 
using single-frequency sinusoidal fits of hσzi ðtÞi

I
 to obtain the energy 

gap between each initialized state and the neighbouring excited 
state (Fig. 3a–c). We compared these extracted energies to values 
predicted by numerical simulations (Methods). We found excellent 
agreement between the measured energies and the energies pre-
dicted numerically (Fig. 3d). Using these experimentally measured 
energy gaps, we could systematically construct the low-energy exci-
tation spectrum of the many-body system for quasimomentum k ≈ 0 
(Fig. 3e). In general, quasiparticles with arbitrary quasimomenta 
can be excited by a quantum quench. However, as the confining  
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Fig. 1 | Effective confining potential and experiment sequence. a, Magnetic 
domain walls in Ising spin chains can experience an effective confining 
potential that increases with distance analogously to the strong nuclear 
force. This potential results in meson-like domain-wall bound states 
(labelled E1 to E3, with initial state E0) that can dramatically influence the 
dynamics of the system11,12. The grey arrows indicate long-range interactions 
between spins, where the opacity reflects interaction strengths that weaken 
with distance (interaction arrows are not shown for all spins). The shaded 
regions indicate interacting domain-wall quasiparticles. The dotted lines 
represent the extension of this model to larger systems. b, This experiment 
begins by initializing a chain of trapped-ion spins in a product state. We 
introduce pairs of domain walls by flipping the initial states of chosen spins. 
The spins evolve according to the quenched Hamiltonian through time, 
after which we measure various observables, such as the magnetization 
of each individual spin along a desired axis. The grey double-ended 
arrows represent energy differences between two adjacent energy levels 
corresponding to a particular initial state.
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Fig. 2 | Confinement dynamics at B/J0 ≈ 0.75, L = 11. a,d,g, jCx
i;6ðtÞj

I
 averaged over 2,000 experiments. b,e,h, jCx

i;6ðtÞj
I

 calculated by solving the Schrödinger 
equation. Dashed white lines show correlation propagation bounds (light cones) in the limit α → ∞ (nearest-neighbour interactions). c,f,i, Measured 
σx;zi ðtÞ
� �

I
 averaged over 2,000 experiments for c and f and 400 experiments for i. Symbols represent magnetization data and solid coloured curves 

represent theoretical magnetizations calculated by solving the Schrödinger equation. All magnetization error bars (±1 s.d.) are smaller than the symbols 
and are not shown. Purple (green) dashed lines represent thermal expectation values calculated from a canonical (microcanonical) ensemble averaged 
over the three displayed spins (Supplementary Information). The spin diagrams above c, f and i depict the initial states prepared along the axes of the 
Bloch sphere shown by the inset diagrams. c and f are prepared along x (sharing the same inset) and i is prepared along z. The boxed spins represent 
selected magnetization dynamics. a–c, A low-energy initial state containing zero domain walls. Individual magnetizations are σxi ðtÞ

� �

I
. d–f, A low-energy 

initial state containing two domain walls, with a centre domain of two spins. Individual magnetizations are σxi ðtÞ
� �

I
. We attribute the discrepancy between 

the experimental magnetization data and numerical predictions to imperfect state initialization. g–i, A high-energy initial state containing many domain 
walls. Individual magnetizations are σzi ðtÞ

� �

I
. a–c, d–f and g–i share their respective x axes.
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Fig. 3 | Low-energy excited states. a–c, Magnetizations of the boxed spins on the edges of the centre domain at B/J0 ≈ 0.75. These magnetization 
oscillation frequencies correspond to the normalized energy gap ΔEi,i+1/J0. Solid coloured lines represent theoretical calculations of dynamics by solving 
the Schrödinger equation. a, Zero initial domain size: ΔE0,1/J0 is given by the frequency of the sixth spin. b, Initial domain size of one: ΔE1,2/J0 is given by 
the frequency of the fifth and seventh spins. c, Initial domain size of two: ΔE2,3/J0 is given by the frequency of the fourth and seventh spins. d, ΔEi,i+1/J0 
for i ≤ 2 measured with three different initial domain-size spin configurations at B/J0 ≈ 0.75. The first three energy gaps (i ≤ 2) were extracted from 
the magnetization oscillation frequencies shown in a–c. e, Bound-state energy levels (labelled Energy/J0) at k ≈ 0 constructed using experimental data 
shown in d, where E0/J0 is set to zero. Theoretical bound-state energy bands with different k within the two-domain-wall model11 are shown in the inset 
(Methods). f, Scaling of ΔE0,1/J0 with system size L at B/J0 ≈ 1. The blue shaded region shows the two-domain-wall model11 (Methods) numerical prediction 
of ΔE0,1/J0, with a confidence band considering ±10% fluctuations in J0. The error bars represent ±1 s.d. and are smaller than the symbols in a–c.
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potential is steep, excited quasiparticles remained localized and 
their quasimomenta were close to zero. Furthermore, leveraging 
the scalability of trapped-ion systems, we performed this experi-
ment with up to 38 spins. To numerically investigate these large sys-
tem sizes, we used a phenomenological two-domain-wall model11 
(Methods). With this model, by restricting the full Hilbert space 
to a subspace of states containing only zero or two domain walls, 
we calculated the bound quasiparticle spectrum of Hamiltonian (1) 
for system sizes that would be challenging to exactly simulate with 

classical resources (Fig. 3f). We found reasonable agreement in the 
first excitation energy gap, ΔE0,1, between the experimental data 
and numerical predictions for all system sizes (Fig. 3f). We attrib-
uted the systematic discrepancy in larger systems to variations in J0 
during the time evolution (Methods). These results, taken together, 
suggest that quench dynamics are dominated by the confinement 
effect between two-domain-wall quasiparticles.

We next went beyond the confinement regime to study the num-
ber of domain walls generated by the quantum quench for a wide 
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Solid curves represent numerical results predicted by solving the Schrödinger equation. Vertical dashed lines indicate the experimental maxima of hN i
I

. 
Theoretical lines for system sizes L = 31 (d) and L = 38 (e) are absent because we cannot compute the predicted evolution numerically for the experimental 
parameters. f, Theoretical prediction of domain-wall density at B ≫ J0, hniBJ0

I
 (dashed blue line). The blue dots indicate experimental data for the 

domain-wall density at B ≈ 10J0, hniB10J0
I

. The dashed red line at 〈n〉T = 0.5 shows the density of domain walls using the canonical ensemble at infinite 
temperature. All of the experimental data are integrated within the time interval J0t1 ≈ 0.34 and J0t2 ≈ 0.73. g, Reconstructed images based on the binary 
detection of spin states. The leftmost image is a reference image of a 38 ion chain in a bright state ( "j ix

I
). At the beginning of the experiment, the spins 

are initialized in the dark state ( #j ix
I

). The three right images show experimental data for a combination of bright and dark states (blue and white circles, 
respectively) for three different B/J0 values within the integrated time frame. The occurrences of domain walls are highlighted with orange horizontal 
dashed lines. Error bars show ±1 s.d. for >150 experiments, all are smaller than the symbols.
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range of transverse B field strengths. Although we still prepared an 
initial state polarized along #j ix

I
, for large B the strong quench can 

excite a large number of domain walls that are no longer bounded. 
We thus expected that the out-of-equilibrium dynamics would no 
longer be captured by the confinement picture for these parameters. 
To explore this regime, we measured the cumulative time average of 
the total number of domain walls

hN i ¼ 1
t2 � t1

Z t2

t1

XL�1

i¼1

h1� σxi ðtÞσxiþ1ðtÞi
2

; ð3Þ

where t1 and t2 enclose a window where hN i
I

 converges to a stable 
value (Methods and Extended Data Fig.1). The expectation value 
was normalized by 1/2 to correctly count the number of domain 
walls between neighbouring spins42. We measured Nh i

I
 as a func-

tion of B for different system sizes (Fig. 4a–e). We observed that, for 
small B fields, Ising interactions dominated the dynamics and the 
global quench could only excite a small number of domain walls. 
However, for a large enough transverse field, the number of gener-
ated domain walls saturated to a value that scaled nearly linearly 
with system size (Fig. 4f). Here, we observed a transition between 
these two dynamical regimes at intermediate values of B for differ-
ent system sizes. This behaviour is analogous to the confinement–
deconfinement crossover conjectured in QCD, in which increasing 
energy density (controlled by B in this experiment) causes hadronic 
matter to form a quark–gluon plasma or other exotic phase2. In both 
models, beyond a critical energy density, weaker interactions allow 
particles to freely move with a negligible energy penalty.

To illustrate the population of domain walls in different regimes, 
we show typical single-shot images of the quenched state of 38 ions 
for different transverse B fields in Fig. 4g. We saw that a small (large) 
number of domain walls was generated by the quench with small 
(large) B field. Although we were unable to compute the dynamics 
for system size L = 31 and beyond with general-purpose computers, 
we can intuitively understand the distinguishing behaviours. When 
we increased B to values much larger than J0, all spins underwent 
Larmor precession around the z axis of the Bloch sphere, which 
allows us to predict that Nh i

I
 saturates to 0.25(L − 1) when B → ∞ 

(ref. 43) (Methods). We note that, for B ≫ J0, the experiment oper-
ated in the prethermal region in which a transient Hamiltonian 
is approximately conserved for an exponentially long time44–47. 
Therefore, we expected the number of domain walls to approach 
the thermal value nh iT ¼ 0:5

I
 only after an exponentially long time, 

beyond the reach of this experiment. The experimental results agree 
with the numerical prediction for system sizes within the reach of 
numerical simulations. We attribute the discrepancies at large sys-
tem sizes to bit-flip events due to detection errors and off-resonant 
coupling to motional degrees of freedom (Methods and Extended 
Data Fig. 2), and to finite effective magnetic fields B compared with 
the total interaction energy48, which increases with system size due 
to its long-range character.

In summary, we have presented a real-time observation of 
domain-wall confinement caused by long-range interactions in 
trapped-ion spin systems. By measuring oscillating magnetizations, 
we were able to construct the spectrum of low-energy domain-wall 
bound states. Furthermore, we observed a transition between dis-
tinct dynamical behaviours using the number of domain walls 
generated by the global quench. This work demonstrates that con-
finement, naturally induced by long-range interactions, may provide 
a novel mechanism for protecting quantum information without 
engineering disorder. Such a feature may be applied in future studies 
to use long-range interactions to stabilize non-equilibrium phases 
of matter. This work establishes the utility of trapped-ion quantum 
simulators for precisely studying real-time dynamics of many-body 
systems, potentially extending to exotic phenomena such as quark 
collision and string breaking14.

Note added in proof: While finalizing this manuscript, we became 
aware of a complementary work on quasiparticle confinement with 
nearest-neighbour interactions49.
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Methods
Trapped-ion quantum simulators. In this work, we used two quantum simulators 
that we refer to as System 132 and System 233. System 1 is a room temperature 
trapped-ion apparatus. It employs a three-layer linear Paul trap with transverse 
centre-of-mass (COM) motional mode frequency νCOM = 4.7 MHz and axial COM 
frequency νz ≈ 0.5 MHz (ref. 32). The main limitation of this apparatus is the rate 
of collisions with the residual background gas in ultra-high vacuum, limiting 
the practical size of the chain. During such collision events, the ion crystal melts 
and ions are ejected from the trap due to radiofrequency heating. However, 
this apparatus has individual addressing capabilities, allowing for initialization 
of arbitrary spin flips, which is crucial in this work. Therefore, we used it to 
investigate low-energy domain-wall bound states in smaller system sizes.

System 2 is a linear blade Paul trap in a cryogenic environment with only 
global qubit control33. The trap is held at ~8 K in a closed cycle cryostat, 
where the background pressure is below 1.33 × 10−10 Pa owing to differential 
cryopumping. This allows for longer storage lifetimes of large ion chains compared 
with System 1. For this reason, System 2 can support larger chains to measure 
the lowest-bound-state energy and investigate the two distinct dynamical 
regimes by increasing the transverse B field. To take the anharmonicity of the 
trap into account, we measured all the transverse motional modes of the ion 
chain. The transverse motional frequencies were set to νxCOM ¼ 4:4MHz

I
 and 

ν
y
COM ¼ 4:3MHz
I

, the x tilt frequency νxtilt
I

 ranged from 4.37 MHz to 4.38 MHz 
and the y tilt frequency νytilt

I
 ranged from 4.24 MHz to 4.25 MHz depending on the 

number of trapped ions.

Initial state preparation. In both systems, every experiment began by Doppler 
cooling a chain of trapped 171Yb+ ions using 369.5 nm light red-detuned from the 
2S1/2 to 2P1/2 transition. The ions were initialized to the #j iz

I
 qubit state, defined 

as the 2S1=2 F ¼ 0;mF ¼ 0j i
I

 hyperfine level, by an incoherent optical pumping 
process. Optical pumping lasted approximately 20 μs and initialized all ions to #j iz

I
 

with at least 99% fidelity. Next, the ions were cooled to their motional ground state 
(≤0.1 average motional quanta for the COM mode) with Raman sideband cooling.

Once the spins were cooled and initialized, we could prepare them in product 
states along any axis of the Bloch sphere by applying global rotation pulses. System 
1 has the ability to manipulate spins with an individual addressing beam focused to 
a waist of 500 nm, 3–4 times smaller than the typical inter-ion spacing in System 1. 
This beam applied a fourth-order a.c. Stark shift to the qubit splitting34, causing an 
effective σzi

I
 rotation on a single spin i. This rotation could be mapped to a rotation 

about any axis with global π/2-pulses, which allowed the preparation of product 
states with arbitrary spin flips.

State detection. Following the experiment, we measured each spin’s magnetization 
using spin-dependent fluorescence imaged onto an Andor iXon Ultra 897 
EMCCD camera. A 369.5 nm laser resonant with the 2S1=2 F ¼ 1j i

I
 to 2P1=2 F ¼ 0j i

I
 

transition (linewidth γ/2 ≈ 19.6 MHz) caused photons to scatter off each ion if the 
qubit was projected to the "j iz

I
 state. Conversely, ions projected to the #j iz

I
 qubit 

state scattered a negligible number of photons because the laser was detuned 
from resonance by the 2S1/2 hyperfine splitting. By applying global π/2-pulses, we 
rotated the x and y bases into the z basis. This allowed us to measure all individual 
magnetizations and many-body correlators along any single axis.

Both systems collected scattered 369.5 nm photons using a finite conjugate 
0.4 numerical aperture objective lens system with total magnification of ×70 
for System 1 and ×90 for System 2. Before taking data, high-contrast calibration 
images of the ion chain illuminated by Doppler cooling light were used to identify 
a region of interest on the camera sensor for each ion. System 2 can take multiple 
calibration images between experiments to account for slow drift of the ions’ 
positions. During data collection, System 1 (2) integrated collected fluorescence 
for 0.65 ms (1.0 ms), after which a pre-calibrated binary threshold was applied to 
discriminate the qubit state of each ion with approximately 97% accuracy per ion. 
The dominant detection error sources were: off-resonant mixing of qubit states 
during the detection period, cross-talk between ion regions of interest due to 
small inter-ion spacings near the centre of the chain, electronic camera noise and 
laser power fluctuations. We did not perform any post-processing, including state 
preparation and measurement correction, on the data presented in this work.

Generating the Ising Hamiltonian. We generated spin–spin interactions by 
applying spin-dependent dipole forces with a pair of non-copropagating 355 nm 
Raman beams for which the beatnote wavevector, Δk, was aligned along the 
transverse motional modes of the ion chain. These two beams were controlled with 
acousto-optic modulators that generated a pair of beatnote frequencies ν0 ± μ for 
the Mølmer–Sørensen scheme50, where μ is the frequency detuning from the COM 
motional mode. In the Lamb–Dicke regime51, the laser–ion interaction gives rise to 
an effective spin–spin Hamiltonian where the coupling between spins i and j is:

Ji;j ¼ Ω2νR
X

m

bi;mbj;m
μ2 � ν2m

 J0
ji� jjα ð4Þ

where Ω is the resonant Rabi frequency coupling the two qubit states, νR = ℏΔk2/(2M)  
is the recoil frequency, νm is the frequency of the mth motional mode, bim is the 

eigenvector matrix element of the ith ion’s participation in the mth motional mode 
(∑i∣bim∣2 = ∑m∣bim∣2 = 1) and M is the mass of a single ion.

Unlike System 1, where Δk was aligned along one set of transverse motional 
modes, System 2 coupled to both sets of transverse motional modes as the Raman 
beams projected onto the two radial principal axes of the trap. Although coupling 
to these additional modes created the same Hamiltonian (equation (1)) as System 
1, the coupling strengths between ions differed. To account for this, equation (4) 
can be generalized to:

Ji;j ¼ Jxi;j þ Jyi;j ð5Þ

Jβi;j ¼ Ω2
βν

β
R

X
m

bβi;mb
β
j;m

μ2 � ðνβmÞ
2 ; β ¼ x; y ð6Þ

where νβR
I

 is the recoil frequency given by the β projection of Δk (Δkx and Δky). 
Both experiments work in the Mølmer–Sørensen regime where the beatnote 
frequencies are detuned by μ far from all the motional sidebands, ∣μ − νm∣ ≫ ηΩ, 
where η is the Lamb–Dicke parameter, to suppress phonon production via virtually 
coupling spins to motion.

The approximate power law exponent α in equation (4) can theoretically 
be tuned within the range 0 < α < 3. However, in practice, we were restricted to 
0.5 < α < 1.8 to avoid motional decoherence and to maintain sufficiently large 
interaction strengths. Therefore, in this work, we were in the regime where all 
excitations within the two-domain-wall model were bounded, where α < 2 (see 
the next section for details). In the reported experiments, the power-law exponent 
was α = 1.1 with J0/2π ranging from 0.45 kHz to 0.66 kHz for System 1. System 2 
operated in the regime with α between 0.8 and 1 with J0/2π ranging from 0.23 kHz 
to 0.42 kHz.

We applied a global offset to the two Raman lasers by 2Bz, creating a rotating 
frame shift between the qubit and the Raman beatnote to generate an effective 
transverse magnetic field Bz. We limited the effective transverse B field to 
B ≪ ηΩCOM ≪ δCOM, where ηΩCOM is the COM sideband Rabi frequency and δCOM is 
the beatnote’s detuning from the transverse COM mode.

These trapped-ion quantum simulators natively realized an antiferromagnetic 
Ising model. All measured observables O(t) of the evolution were real and 
symmetric under time reversal. This implies that the measured observables of 
Hamiltonians H and −H are the same. Therefore, the expectation values we 
obtained from Ji,j > 0 and B > 0 are identical to Ji,j < 0 and B < 0. For this reason, we 
could simulate the dynamics of a ferromagnetic system52.

Two-domain-wall model. Previous experimental and theoretical studies7,11 found 
that the low-energy excitations of confinement Hamiltonians, such as equation 
(1), largely consist of states containing zero or two domain walls. By restricting 
the Hilbert space to include only these states, we could build a relatively simple 
phenomenological model that mimicked the low-energy behaviour of the system. 
Liu et al. described such a ‘two-kink model’ for a ferromagnetic long-range 
transverse field Ising chain with closed boundary conditions and B < J0 in ref. 11, 
which we will summarize here.

The Hilbert space of this model contained states with two down-aligned 
domains surrounding an up-aligned domain of length l. These domains are 
separated by two domain walls: one between spin positions j − 1 and j and another 
between positions j + l − 1 and j + l. Such a state j; lj i

I
 has the form

j; lj i ¼ #1::: # #j�1"j " ::: " "jþl�1#jþl # ::: #


E
: ð7Þ

The Hamiltonian for this set of basis states is given by equation (2) in 
ref. 11. For a translational invariant system, it is useful to transform to a set of 
quasimomentum basis states k; lj i ¼ ð1=LÞ

PL
j¼1 expð�ikj� ikl=2Þ j; lj i

I
. We write 

the Hamiltonian as

H ¼
P

k;l VðlÞ k; lj i k; lh j � 2B cos k
2

� 
k; lj i k; lþ 1h j

�2B cos k
2

� 
k; lj i k; l� 1h j:

ð8Þ

Both terms involving the transverse field B describe the effective kinetic energy 
of the domain walls with quasimomentum k. The potential V(l) depends on the 
interaction strengths Ji,j in the system

VðlÞ ¼ �
XL

i < j
J i;jsiðSÞsjðSÞ ð9Þ

where siðSÞ ¼ ± 1
I

 is the value of the spin at site i corresponding to the 
configuration S with domain of length l. This Hamiltonian can be diagonalized to 
reveal the presence of energy bands in the low-energy spectrum (inset of Fig. 3e).  
These bands represent domain-wall states bounded by the potential V(l). For α < 2 
this potential is unbounded and all domain-wall pairs would be confined into 
quasiparticles.

The linear trapped-ion spin system is finite with open boundary conditions. 
Boundary effects53 were minimized in this experiment because the centre-to-centre 
spin interaction strength is much stronger than the centre-to-edge interaction 
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strength. To minimize deviations from this model due to finite-size effects, we 
considered only those states with short, up-aligned domains (l ≪ L) centred in 
the spin chain. With this constraint, we found good agreement between exact 
diagonalization (L ≤ 21), the two-domain-wall model and experimental results. 
The two-domain-wall model numerical predictions for this experiment were 
implemented by taking the experimental Ji,j matrix to calculate the energy gaps 
for each experiment. We first extracted a vector of interaction parameters from 
the experimental interaction matrix, Jk,j, by fixing site k as the centre ion for each 
ion chain length. Then, we virtually placed the ions on a ring and imposed a 
periodic boundary condition by requiring the Ising interaction to be translationally 
invariant, that is Jl,m = Jk,k+m−l. Using this method, we obtained the spectrum 
of energy bands and energy gaps for the trapped-ion system by diagonalizing 
equation (8) (Fig. 3e).

The two-domain-wall model focused on the potential due to the separation 
between domain walls, which was largely independent of the centre position of 
the bound domain-wall pair. We expected some dispersion in the domain-wall 
pair position due to hopping throughout the spin chain. However, the strength of 
this hopping was much smaller than the strength of the confining potential. For 
example, the hopping strength for the initial state with one domain size was on the 
order of B2/ΔE1,2 = 0.11J0, which corresponded to ~65 Hz in the lab. We expected 
that this effect would be observed at a timescale (>15 ms) beyond the coherence 
time of these experiments. Therefore, the domain-wall pairs were expected to be 
effectively pinned at their original positions over the experimental time, and we 
did not observe any effects of moving domain-wall pairs in the data. Instead, we 
observed local coherent oscillations between different bands of bound states.

Energy levels of bound states. The initial state nj i
I

 can be written as a 
superposition of post-quench eigenstates sj i

I
nj i ¼

X
s
cns sj i ð10Þ

where cns is the overlap of sj i
I

 with the initial state nj i
I

. Thus, any observable M as a 
function of time is

MðtÞh i ¼
X

ss0
cnsc


ns0 e

�iðEs�E0 Þ s0h jM sj i ð11Þ

where Es is the energy of state sj i
I

. Therefore, MðtÞh i
I

 exhibited oscillation 
frequencies corresponding to multiple bound-state energy differences, 
ΔEs;s0 ¼ Es � Es0

I
 with different amplitudes, depending on the initial state. In the 

experiment, we prepared initial states that overlapped closely with low-energy 
eigenstates of the confinement Hamiltonian in equation (1) and chose to observe 
spins on the outer boundaries of the domain walls. This allowed us to maximize 
the matrix elements ( s0h jM sj i

I
), which couple the lower-energy bound state i to the 

adjacent higher-energy bound state i + 1. Therefore, the oscillation frequencies 
that we observed in Fig. 3 represent ΔEi,i+1. Owing to the limited coherence time of 
the system, we could not resolve the Fourier spectrum of the dynamics, especially 
for ΔE2,3, to extract the bound-state energy differences. Instead, we fitted these 
frequencies to an exponentially decaying sine function. The error bars were the 
standard errors of these fits (Fig. 3d–f). This fitting choice worked well because 
we maximized the signal for ΔEi,i+1. ΔEi,i+1 also decreased as the energy level i 
increased (inset of Fig. 3e). Using this knowledge, we could measure ΔEi,i+1 starting 
from the lowest-energy initial state (all x polarized) to the higher-energy initial 
state (two domain walls with a domain size of two). Then, we took a suitable single 
frequency as a guess value for fitting the quench dynamics. The guess value was 
chosen such that it was the next lowest frequency from the oscillation frequency 
measured in the lower-energy initial state (Supplementary Section 2.3). In the end, 
this method yielded results that matched closely with the two-domain-wall model 
and numerical predictions calculated by solving the Schrödinger equation. For a 
complete picture, the Fourier-transformed experimental data are also shown in the 
Supplementary Information.

Domain-wall convergence at high transverse B field. In this 
domain-wall investigation, we used the following Bloch sphere mapping: 
z ↔ x. The orientation of the ith spin in the Bloch sphere is defined as 
ψ iðtÞj i ¼ cos θðtÞ=2 0j i þ eiϕ sin θðtÞ=2 1j i
I

. Let ψj i ¼ ψ iðtÞj i  ψ iþ1ðtÞ
�� �

I
 since 

we were interested in a two-body correlator for hN i
I

. At high transverse B field, 
global Larmor precession about the transverse direction dominated over the Ising 
interaction term in equation (1). The expectation value of the two-body correlator 
along z was hσzi ðtÞσziþ1ðtÞi ¼ 1� sin2ðθðtÞÞ

I
. Inserting hσzi ðtÞσziþ1ðtÞi

I
 into equation 

(3) gives

Nh i ¼ 1
t2 � t1

Z t2

t1

XL�1

i

sin2ðθðtÞÞ
2

dt: ð12Þ

Therefore, Nh i ¼ 0:25ðL� 1Þ
I

 when B ≫ J0. Values of t1 and t2 were chosen to include 
the plateaus of Nh i

I
 while excluding dephasing of the spins. We fixed the scaled 

integration time J0(t2 − t1), as J0 differed with system size (Extended Data Fig. 1).
We note that the last experiment, data from which are presented in Fig. 4, 

bears resemblance to a previous experiment published by Zhang et al.28. Both 

experiments involved measuring an observable related to a two-spin magnetization 
correlator and its dependence on the transverse field strength of a quenched 
Ising Hamiltonian. The two-spin correlator defined in ref. 28 was expected to be 
qualitatively similar to the average number of domain walls (equation (3)).

Several notable aspects distinguish the experiment shown in Fig. 4 from those in 
ref. 28. Each experiment was performed with different scopes and goals. The goal of 
ref. 28, performed in System 1, was to identify the precise critical point of a dynamical 
phase transition, whereas this experiment, performed in System 2, was designed to 
contrast the behaviour of a spin system deep in the confinement regime (B ≪ J0) with 
behaviour deep in the deconfinement regime (B ≪ J0) using an observable derived 
from the confined-quasiparticle picture. The confinement picture provides valuable 
context for understanding the dynamics observed in each regime.

Error sources. Experimental noise decreases the fidelity of any quantum 
simulation. All the possible sources of error described here were consistently 
present in the experiment. However, the effects of certain noise sources are 
different depending on the observable.

One substantial error is bit-flip error, which we attributed to two main sources. 
One source was spin-motion entanglement due to off-resonant excitation of the ion 
chain’s motional modes54 in the Mølmer–Sørensen regime, where both quantum 
simulators operate. Unwanted bit-flip errors occur when spin-entangled motional 
degrees of freedom are traced out at the end of an experiment. The probability of 
this error occurring on the ith ion is proportional to 

PN
m¼1 ðηimΩ=δmÞ2

I
, where 

ηim ¼ bim
ffiffiffiffiffiffiffiffiffiffiffiffiffi
νR=νm

p

I
 and δm = μ − νm is the beatnote detuning from the mth motional 

mode55. To minimize this error, we chose δCOM such that ðηCOMΩ=δCOMÞ2≲1=9
I

. 
Another source of bit-flip error was imperfect state detection. These two sources 
of bit-flip error were independent, and therefore add in quadrature. This error 
affected the observable Nh i

I
 because it induced errors in counting the number 

of domain walls. We found that, by including the bit-flip error in the L = 11 
spins numerical calculation for Nh i

I
, the experimental data agreed well with the 

error-included numerical calculation at B/J0 = 0, as shown in Extended Data Fig. 2.  
At present, we are limited to computing this error for L < 15 spins. Regarding 
individual spin magnetization and connected-correlation observables, this bit-flip 
error will decrease the contrast of the spin magnetization. The qualitative features, 
as well as oscillation frequencies, will remain unchanged.

Besides that, slow experimental drifts, involving laser intensity noise at the ions 
and drifts of the trap frequency (which determines transverse motional modes 
for generating the Ising interaction), influenced the experiment over the course 
of a few hours during data taking. These fluctuations would cause the system to 
average over different effective Hamiltonians that can be approximated as ±10% 
fluctuations in J0 for numerical predictions. For longer spin chains, this effect 
was more prominent as 1/J0 is on the order of the experiment sequence duration 
(Supplementary Information).

Furthermore, this system had a residual effective linear magnetic field 
gradient across the ion chains due to the fourth-order a.c. Stark shift gradient 
from imperfect overlap of the two Raman laser beams at the ions. This effective 
magnetic gradient noise was more prominent for small B fields and was typically 
<15 Hz μm−1 across the ion chain. As a result, there was an effective depolarization 
of the initial states, which is depicted clearly in the data in Fig. 4. However, we 
found that errors caused by this effective magnetic field gradient were much 
smaller than those caused by bit-flip errors.

Another source of noise is off-resonant Raman scattering during the quantum 
quench. This error rate was estimated to be 7 × 10−5 Hz per ion, given typical 
experimental parameters. Small errors due to radiofrequency heating of the 
transverse COM motional mode were present in System 1. Although System 2 
was in a cryogenic set-up that is less susceptible to radiofrequency heating, it had 
mechanical vibrations at 41 Hz and 39 Hz due to residual mechanical coupling to 
the cryostat33. This mechanical vibration noise is equivalent to phase noise on the 
Raman beams, which led to qubit dephasing. Therefore, we integrated the number 
of domain walls before the dephasing occurred (Fig. 4).

Data availability
The data presented in the figures of this Article are available from the 
corresponding authors upon reasonable request.

Code availability
All custom code used to support claims and analyse data presented in this Article is 
available from the corresponding authors upon reasonable request.
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Extended Data Fig. 1 | Evolution of domain wall population. Experimental data of evolution of the number of domain walls Nh i
I

 during a quench of 
Hamiltonian (1) with B/J0 ≈ 10 for multiple system sizes. The shaded area indicates when Nh i

I
 converges to a steady state and before qubit dephasing 

occurs.
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Extended Data Fig. 2 | Bit-flip error numerical study in L = 11 chain for dynamical regimes investigation. Red dots show the L = 11 data displayed in Fig. 4a. 
The blue line illustrates the numerical value of hN i

I
 with increasing B-field, taking bit-flip error into account. We found that a bit-flip error per ion of 2.47% 

in the numerical calculation matches the experimental data well. The most notable effect of bit-flip errors is an increase in the number of domain walls at 
B/J0 = 0 (see Fig. 4a for comparison with the zero bit-flip error numerical predictions).
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