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Probing many-body localization on a noisy quantum computer
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A disordered quantum system of interacting particles exhibits localized behavior when the disorder is large
compared to the interaction strength. Studying this phenomenon on a quantum computer with no, or limited,
error correction is challenging because even weak coupling to a thermal environment destroys most signatures of
localization. Fortunately, spectral functions of local operators are known to contain features that can survive the
presence of noise. In these spectra, discrete peaks and a soft gap at low frequencies compared to the thermal phase
indicate localization. Here, we present the computation of spectral functions on a trapped-ion quantum computer
for a one-dimensional Heisenberg model with disorder. Further, we design an error-mitigation technique which
is effective at removing the noise from the measurement allowing clear signatures of localization to emerge as
the disorder increases. Thus, we show that spectral functions can serve as a robust and scalable diagnostic of
many-body localization on current and future generations of quantum computers.
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Many-body localization (MBL) is a phenomenon which
emerges in quantum systems with both interactions and disor-
der. At large values of disorder, a many-body system can fail
to thermalize even at high temperatures causing it to exhibit
properties like long-term memory retention, logarithmic en-
tanglement growth in time, and area-law entanglement scaling
[1,2]. The many-body localization-delocalization transition,
which occurs at a critical disorder strength, is a dynamical
phase transition. This necessitates the study of excited states,
rather than just the ground state of the system. The study
of this phenomenon in spin systems via full diagonalization
exhausts classical computational power for a system of about
20 spins [3]. Specialized approximate schemes such as tensor
network methods can in principle handle larger system sizes
but tend to only work well for short-range interacting sys-
tems in one dimension away from the phase transition [4,5].
Many open questions still abound regarding the effects of
symmetry, topology, dimensionality, long-range interactions,
thermal inclusions, and the universality class of the disorder,
especially near the phase transition. Better simulations of this
phenomenon would also lead to a deeper understanding of
fundamental concepts in quantum thermodynamics such as
the eigenstate thermalization hypothesis. Thus, the study of
a many-body localized system has been proposed as a bench-
mark for showing the utility of near-term quantum computers
that are capable of noisy but classically unapproachable com-
putations [6].
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Experimental efforts to probe MBL include quantum sim-
ulators consisting of thousands of cold atoms [7-12] and a
Hamiltonian whose disorder arises from the superposition of
lattice potentials with incommensurate wavelengths. Another
set of leading examples are experiments on trapped ions with
tens of spins, which investigate the role of disorder in long-
range Ising chains [13,14]. Finally, up to three interacting
photons in an array of transmons with random on-site ener-
gies have been studied [15,16]. A limitation of all of these
experiments is that they are specialized to a particular class
of Hamiltonians that are native to the system and therefore
cannot address many open questions about MBL. The only
simulation of MBL on a quantum computer operated in a
universal fashion was limited to a two-spin system realized
with transmon qubits [17]. Additionally, the energy statistics
and entanglement entropy studied in [15,16] take exponen-
tially longer to measure as the number of interacting particles
increases. Another problem arises from the noise in near-term
quantum computers, which manifests itself as a thermal bath
coupled to the system. Since diagnostics like level statistics
and entanglement growth have been shown to revert to thermal
behavior on even weak coupling to a thermal bath [18], they
are particularly unsuitable for the study of localization on such
near-term devices.

Here, we introduce a technique for studying MBL on uni-
versal quantum computers by measuring the spectral functions
of local operators. These carry signatures of localization that
are known to survive coupling to a thermal bath as long as it is
weaker than the characteristic energy scales of the model [18].
We measure spectra for the Heisenberg model with disordered
magnetic fields along two directions implemented by three
qubits on an ion trap quantum computer. In the many-body
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localized phase, the spectral functions exhibit a discrete na-
ture, and after averaging over disorder, display a suppression
of amplitude or “soft gap” at low frequencies, compared to
the thermalized phase. In addition to the natural robustness
to noise of our chosen observables, we also design an error
mitigation scheme specific to the study of disorder-averaged
spectral functions.

For a given Hamiltonian H with eigenstates |¢,,) and
corresponding eigenenergies E,,, the spectral function of an
operator a is defined as

A@) = 1{1laldi) 8.5, (1)
INS

where § is the Kronecker delta, and w is the frequency in units
of energy/h. We take /i = 1 throughout this study.

For our study, we choose the one-dimensional Heisenberg
model with random fields along two axes which for n spins
has the Hamiltonian,

n—1 n n
H=17Y 61611+ w(Zhj‘&f + th&;). )
i=1 i=1 i=1

S

Here, 3; = (67, 6iy , 67) are the Pauli operators. J determines
the nearest neighbor coupling strength. w is the a coefficient
that determines the global strength of the external fields. The
disorder in the model comes from the fields /} and A, which
are random variables chosen from a uniform probability dis-
tribution between —1 and 1. In the limit w/J — 0, the system
is in the thermalized phase and for w/J — 00, it is in the lo-
calized phase. This model is known to have a phase transition
atw/J ~6[19]. Wesetw = 1.

For a local operator a such as a single spin Pauli operator,
the spectral function A(w) for n spins at J = 0 will consist
of 2n § functions at 2w~/ hfz + hfz The average spacing
between the peaks is ~w/n. For 0 < J « w, each peak of the
noninteracting spectrum will split into a cluster of § functions
with a hierarchy of energy gaps [18,20]. The full width of
the cluster is J exp(—1/&), where £ is the localization length
which is an increasing function of J/w (see Appendix C).
When the system is coupled to a thermal bath, the spectral
lines broaden and the discrete structure gradually vanishes
as the coupling strength increases. It disappears only when
the coupling becomes comparable to J. In contrast, in the
thermal phase, A(w) is expected to become an increasingly
smooth function of energy as n increases. Here we construct
the probability distribution of the widths of these clusters from
the linewidths I" of the peaks in the spectrum.

After averaging over spin locations and disorder realiza-
tions, the ratio of the averaged spectrum of the localized
phase to that of the thermalized phase should go to zero as
w — 0 [20]. This implies that in the localized phase, local
operators are less likely to connect nearby energy eigenstates,
instead mixing them and giving rise to level repulsion. The
width of the resulting spectral soft gap is a function of w and
remains finite in the thermodynamic limit. In contrast, in the
thermalized phase, the spectral function decays as w increases
forw < J[1].

As we now show, the spectral functions can be approxi-
mated on a quantum computer by Hamiltonian time evolution,
followed by measurement of the expectation value of the local

operator and a Fourier transform of the resulting time series
data. Atz = 0, let the system be in the state,

W(t = 0) = cilgn). 3)

k

where |k) are the eigenstates of the system. The expectation
value of operator & at time ¢ is

(@) = exciaye B, )

k,l

where ay; = (¢;]a|¢r). The absolute value of the Fourier
transform of the above expression gives

Fl@)} = levciauldo.b—x,- )
k.l

Note the similarity to the spectrum of a from Eq. (1), es-
pecially when the initial state [Eq. (4)] is spread over the
eigenstates of the system. In the experiment we use a = 67,
and initialize the qubits in the |4) state, which is an equal
superposition of the two eigenstates of a. We measure in the z
basis at the end, in order to extract the spectral function corre-
sponding to 6 for qubit i. When discussing the experimental
measurement of A(w), we are referring to the expression in
Eq. (5) after disorder averaging.

The experiment is conducted on a re-configurable system
with up to nine qubits, where each qubit is realized by the
hyperfine-split ground states of a '7'Yb* ion. Here we use
n = 3 qubits. A universal set of quantum gates consisting of
arbitrary single-qubit rotations and XX(Ising) gates between
any pair of qubits can be applied (see the Appendix for
details). The study of disordered systems requires averaging
over many disorder realizations. We run the experiment for
different values of the coupling strength: J = 0.1, J = 0.3,
and J = 0.7, using 24 circuits each to sample instances of
disorder. The choice of sample size for each coupling strength
can, according to simulation, guarantee low enough statistical
uncertainty. The circuits are generated beforehand and fed to
the experiment control computer in batches. As long as the
ions stay trapped, the system automatically executes the cir-
cuits sequentially. The quantum circuit corresponding to the
time evolution under H is shown in Fig. 1. The Hamiltonian
evolution cannot be implemented exactly on digital quantum
computers (with finite number of gates). We use Trotterization
to decompose it into one- and two-qubit gates [Fig. 1(b)].
The two-qubit interaction is exactly captured by the unitary U
since XX, YY, and ZZ terms commute with each other. Each
Trotter step achieves the following unitary:

n
Oy = l—[ (efihzkﬁkzﬁefilu_k&ﬂ)
k=1
n—1
> l_[ (efijﬁgﬁk;,5671'/&{&3;,sefija;&g,B)_ (6)
k=1

The total evolution time is given by ¢ = m$4. It is straightfor-
ward to extend the circuit to an arbitrary number of qubits.
The time evolution is sampled at 10 different equally
spaced intervals between 0 < ¢ < 10. The expectation value
of 6, att = 0 is trivially known to be zero. We use a constant
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FIG. 1. The circuit used to simulate time evolution under the Heisenberg model Hamiltonian. (a) After the qubits are prepared into the
desired initial state, m = 6 Trotter steps are used to evolve the system to time 7. All qubits are then measured in the z basis. (b) Each Trotter step
consists of several one- and two-qubit gates, as described by Eq. (6). The single-body interactions are implemented as rotations about the X
or Z axis (R, and R, gates). (c) The two-body interactions U(J8) are implemented as three XX(Ising) gates sandwiched between single-qubit
rotations. This segment of the circuit is equivalent to a sequential application of XX, YY, ZZ gates, which describes evolution under the

Heisenberg interaction exactly.

number m = 6 Trotter steps for each sample time making
the Trotter angle § =¢/6. This is in contrast to the more
widely used method of Trotterization where § stays fixed and
the number of Trotter steps increases with time. Since the
number of Trotter steps is constant no matter the simulation
time, the magnitude of experimental error is the same in every
circuit [21]. We will see that this becomes critical to the error
mitigation technique we introduce below.

Each circuit is measured 2400 times to sufficiently reduce
the statistical error. We initialize all qubits into |+) states with
Hadamard gates. Because the |+)®” state is an eigenstate of
the U operator, we can skip the application of the first set of U
gates on all qubits. Each circuit thus consists of 30 two-qubit
gates and 116 single-qubit gates. We run a total of 792 circuits
to obtain the data in this paper.

A discrete Fourier transform is then applied to the time
series for each instance to obtain the spectrum. In the ther-
modynamic limit, J/ = 0.1 lies in the localized phase, J = 0.7
in the thermalized and J = 0.3 near the phase transition. For a
small system, there is no sharp phase transition but we expect
to see a change from thermalized to localized behavior as we
lower the value of J.

Figure 2 shows several instances of the measured spectrum
for 6}. The spectrum is symmetric about w = 0. We note that
the experimental data is significantly damped compared to the
simulation. The figure also shows the necessity of averaging
over several realizations in the study of disordered systems
since the behavior of the system in the thermodynamic limit
cannot be determined from the behavior of a finite-size indi-
vidual disorder realization.

We next average the spectral functions over lattice sites and
disorder configurations. The results are shown in Figs. 3(a)—
3(c). The value at w = 0 arises from the diagonal elements
and is related to the equilibrium value of the observable at
infinite temperature, whereas the behavior at w > 0 gives the
dynamical response of the system. The simulation curves

show that the value of the spectral function at low frequencies
drops as J decreases. Simulation results for a larger system
size show similar behavior (Appendix B). While the experi-
mental data follow the trend of the simulation for each value
of J, the error obscures the difference between the spectra at
different values of J. To address this, we now introduce an
error mitigation technique.

It has been shown that the error in the mean value of an
observable measured after the application of a set of random
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FIG. 2. The spectrum of 6; at different values of J (with w = 1)
for a three-site system for two sample disorder realizations (top and
bottom). Each panel shows both simulation (curves) and experi-
mental (symbols) results. The different colors are for the different
sites. The lack of distinguishing characteristics between the spectra
at different values of J for individual samples shows the necessity of
averaging over several disorder realizations. With 2400 repetitions,
the statistical error bars are smaller than the plot markers.
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FIG. 3. (a)-(c) The spectral function of §; averaged over position
and 24 disorder realizations for different values of J (with w = 1)
for a three-site system. Lines show simulation results and circles
show experimental results. (d)—(f) The spectral function normalized
by its value at w = 0. At J = 0.7, the spectral response increases
as o decreases while at J = 0.1, the spectrum is damped at low
frequencies. The bands on the simulation curves and error bars on
the experimental data signify the uncertainty after averaging over
different disorder realizations. The points at @ = 0 in the top row
are discontinuous with the rest of the curves since they arise from
the diagonal elements of the observable in the eigenstate basis which
have qualitatively different behavior than the off-diagonal ones.

circuits with the same structure can be well approximated by
a depolarizing error model, whatever the origin of the noise
[22]. Therefore, the mean density matrix after the application
of the unitaries {Uy} in Eq. (6) to an initial state |\Wy) is

_ B E—r 1
P = €xUn|Wo)(Wo|U}; + (1 — en) (7)

where [ is the identity matrix and D = 2"; €,, = p™, where
p is the disorder-averaged depolarization fidelity per Trotter
step. The expectation value of a at time ¢ is

(@) = Te(p())a) = p"Tr(Un ()| Wo) (Yol Ugy (1)a).  (8)

Since the same number of Trotter steps m is used for mea-
suring at all times, the corresponding spectrum obtained by
Fourier transform becomes

A(w) = p" f Tr(Uy ()1 %0) (Vo U, ()a)e ™ dr.  (9)

If we now divide by the zero-frequency component,

Z(G)) _ fTr(UH([)|‘~I’()) (\I/0|[7:I(t)a)efiwtdt
A0 S T ()] Wo) (Yo Uy ()a)dt

p" is canceled. We should thus essentially get a noiseless
signal after the normalization. Figs. 3(d)-3(f) shows the
normalized spectra. We see that the data match the normalized
curves within the statistical uncertainty, especially at J/ = 0.1

. (10)

and J = 0.7 which are deep in the localized and thermalized
phase, respectively. Note that the estimated fidelity of the
quantum computation obtained by multiplying the fidelities
of the individual gates is only 54%, making the experimental
reproduction of the theoretical curves in Fig. 3(b) remarkable.

From Eq. (7), it can be seen that the number of shots will
need to increase as p™ in order to get a good number of sam-
ples from the first term. Since a is a local operator, measuring
it only involves a reduced density matrix of finite size, and
therefore the error is independent of n when # is large enough.
Therefore the number of shots depends exponentially on the
number of Trotter steps but is independent of the number
of qubits. Further, the coefficient of the exponential increase
will be extremely small for the coming generation of trapped
ion quantum computers, making system sizes large enough
to show interesting dynamical effects accessible on quantum
computers with no, or limited, error correction.

In Appendix B, we show simulation results for a system
of seven spins. We see that the response at low frequencies
is suppressed as the disorder increases, though it may still
be larger than that at high frequencies. We thus believe that
“suppression of the low-frequency response with increasing
disorder” is a more accurate way of understanding the “zero-
energy gap” than has been presented in the literature so far.

We next test the discreteness of the distribution by studying
the linewidths I' of the peaks in the spectrum. We expect
the peaks in the localized phase to be narrower than in the
thermalized phase on average. As shown in the Appendix
of Ref. [18], the distribution should be skewed to larger
linewidths, indicating the presence of resonant clusters of
spins.

We use the following procedure to obtain the probability
distribution of the linewidths.

(1) Fit individual spectra (such as those in Fig. 2) with an
interpolating polynomial and find the peaks.

(2) For each peak, find the width corresponding to half the
prominence of the peak.

(3) Plot a normalized histogram corresponding to the prob-
ability distribution of the linewidths thus obtained.

The probability distributions P(I") are shown in Fig. 4 for
different values of J. As expected, they are skewed to the right.
In the inset of Fig. 4, we show that both the average linewidth
as well as the skewness, which measures the probability of
resonant clusters, are smaller at J/ = 0.1 than at larger values
of J. See Appendix C for a more detailed picture of how the
spectrum changes with J.

In conclusion, we have presented a study of spectral func-
tions of local operators that carry noise-resilient signatures
of localization on a quantum computer. Since spectral func-
tions determine transport properties, we anticipate that this
algorithm along with the corresponding error mitigation tech-
nique will be useful in materials design applications of
quantum computers.

Our error mitigation has worked so well that we foresee
that the circuits run here could be extended to many more
qubits and gates without a significant loss in the quality of the
results. We hope to show this in future work. In particular, it
is promising that the error mitigation used here did not require
any extra data from the quantum computer. We encourage
researchers to develop similarly scalable and noise-resistant
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FIG. 4. The distribution histogram of linewidths I" calculated
as described in the text at different values of J from data taken
on three qubits for 24 realizations. The bins are [0-1], [1-2],...,
etc. The number of peaks used to generate the distribution is ~200
for each value of J. We derive the errorbars shown in the plot by
assuming each bin approximately follows a binomial distribution.
The inset shows the Pearson’s first coefficient of skewness, Sk1, and
the average linewidth T'.

techniques for studying other unsolved problems in condensed
matter physics on quantum computers.
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APPENDIX A: EXPERIMENTAL DETAILS

The system is based on a chain of "'Yb™ ions held in
an RF Paul trap [23]. Each ion provides one physical qubit
in the form of a pair of states in the hyperfine-split S 2
ground level with an energy difference of 12.642821 GHz,
which is insensitive to magnetic field fluctuations to first order.
The qubits are initialized to |0) by optical pumping and read
out by state-dependent fluorescence detection [24]. Gates are
realized by a pair of Raman beams derived from a single
355-nm mode-locked laser. These optical controllers consist
of a global beam that illuminates the entire chain and an
array of individual addressing beams. Single-qubit rotations

around the z axis are achieved by phase advances on the
classical control signals. Single-qubit rotations around axes in
the XY plane are realized by driving resonant Rabi rotations
of defined phase, duration, and amplitude. Two-qubit gates
are achieved by illuminating two selected ions with beat-note
frequencies near the motional sidebands creating an effective
Ising spin-spin interaction via transient entanglement between
the two qubits and the motion in the trap [25-27]. Our scheme
involves multiple modes of motion, which are disentangled
from the qubits at the end of a two-qubit gate operation via an
amplitude modulation scheme [28]. The effect of this scheme
can be described by the unitary exp(i6;67 x ), where 6;" stands
for the Pauli X operator of qubit i, and x stands for the rotation
angle (gate angle). This type of gates are known as XX or
Ising gate. Typical single- and two-qubit gate fidelities are
99.5(2)% and 98%—99%, respectively. The latter is limited
by residual entanglement of the qubit states and the motional
state of the ions due to intensity noise, and motional heating.
The execution time of circuits implemented in this study is
several milliseconds, which is much shorter than the qubit
coherence time of our system (0.5 s).

4r —&—w=1 | |
—%— w=3
w=5
3t —#—w=10]| |
—F—w=15
£ w=20
It o | |

FIG. 5. (a) The simulated spectrum for n = 7 spins averaged
over 100 disorder configurations for fixed J = 1, while w is varied.
(b) The same plot with the frequency scaled by w.
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FIG. 6. A schematic example of the splitting of spectral lines
according to the theoretical model in [20] for a localized system in
the limit J < w.

Because of a slow drift in the laser alignment, the in-
dividual and two-qubit rotation angles change over time.
We compensate for this by running an automated re-
calibration routine approximately every 20 min, which is the
time needed to execute three circuits with 2400 repetitions
each.

APPENDIX B: SIMULATION FOR LARGER
SYSTEM SIZES

Figure 5(a) shows simulations for a seven-spin system for
which J =1 and w is varied using 500 Trotter steps for
each sample time and averaging over 100 disorder realiza-
tions. As w increases, the maximum of the spectrum shifts
right while its magnitude at low frequencies goes down. The
high-frequency regime represents one-body physics for which
the energy scale is set by w. Therefore, in Fig. 5(b) which
shows the same spectra on a plot where the frequency w has
been scaled by the disorder magnitude w, the curves now lie
on top of each other at high frequencies. Note that this plot
is equivalent to fixing w = 1 while varying J, and plotting
the spectrum versus o as is done for the data in Fig. 3 of
the paper. At low frequencies, there is a suppression of the
spectral function as the ratio w/J increases, consistent

2.5 T T T T T

151 1

051 ]

0 \ . . \ \
-3 -2 -1 0 1 2 3

w

FIG. 7. An example of how the linewidths are extracted. The
blue stars correspond to experimental data. The blue line consists
of a polynomial fit. The red diamonds mark the peaks and the red
horizontal lines mark the widths of the peaks.

with the results presented in the main text for a three-spin
system.

APPENDIX C: LINEWIDTHS

When J = 0, the spectrum consists of n delta functions at

w= j:2w,/h;‘2 + h;z When the interaction J is turned on,

each 6 function branches into a treelike structure. The splitting
at each branch of the tree is proportional to Jexp(—d/&),
where d is the depth of the branch and £ is the localization
length [20]. Figure 6 shows a schematic example of this.
When J is large enough, no discrete structure will remain
and the spectrum will be continuous, indicating a transition
to thermalization. In our experiment, we do not sample at
enough points in the time evolution to resolve the hierarchical
structure of the energy gaps but we can measure the total
broadening of the original spectral line. The results for this
are presented in Fig. 4 of the main text.

The linewidth extraction can be seen in Fig. 7. We use
a piecewise cubic polynomial interpolation in MATLAB to fit
the experimental data and then use the “findpeaks” function
in MATLAB to find local maxima and their width at half the
prominence of the peak.
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