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ABSTRACT

Multimodal word discovery (MWD) is often treated as a byproduct
of the speech-to-image retrieval problem. However, our theoretical
analysis shows that some kind of alignment/attention mechanism is
crucial for a MWD system to learn meaningful word-level repre-
sentation. We verify our theory by conducting retrieval and word
discovery experiments on MSCOCO and Flickr8k, and empirically
demonstrate that both neural MT with self-attention and statistical
MT achieve word discovery scores that are superior to those of a
state-of-the-art neural retrieval system, outperforming it by 2% and
5% alignment F1 scores respectively.

Index Terms— Multimodal learning, spoken term discovery,
language acquisition, low-resource speech technology

1. INTRODUCTION

Multimodal word discovery (MWD) is a form of distant supervi-
sion in which a learner, provided with nothing except a set of im-
ages and their spoken descriptions, tries to learn the words corre-
sponding to each visible object. Early MWD systems modeled each
word using sequential replay memory [1] or hidden Markov mod-
els (HMM, [2]), but the most successful recent systems have treated
MWD as a by-product of the speech-to-image retrieval problem [3].
A speech-to-image retrieval model is trained to retrieve images from
a large database in response to a spoken query; the pretrained re-
trieval system can then discover word-like units by searching for
visible regions of interest (ROI) and spoken segments with the high-
est similarity scores. The retrieval-based approach pioneered in [3]
has been used in a number of recent systems for multimodal word
discovery, e.g., based on similarity between audio and visual ROI
embeddings [4, 5, 6, 7]. Three more recent papers seek to cluster
the audio embeddings in order to recognize repeated words across
multiple utterances [4, 8, 9]. In [4], dot-product similarity profiles
between the two modalities are clustered through a combination of
Bayesian and spectral clustering. More recently [9] employed a
vector-quantized variational autoencoder [10] to learn the discrete
representation of speech directly during training of the retrieval sys-
tem. Retrieval-based word discovery systems are able to learn words
from a much larger vocabulary than earlier HMM-based systems
with reasonably high precision, but with low recall: retrieval-based
systems are trained to represent the meaning of a sentence globally,
but do not necessarily therefore learn the alignment of meaning to
particular words [6].

Inspired by statistical machine translation (SMT) [11] and neural
machine translation (NMT) [12], Wang and Hasegawa-Johnson [13]

Fig. 1: Model architectures of the speech-to-image retrieval and
word discovery systems

proposed a DNN-HMM-DNN multimodal alignment system that ex-
ploits the repetition of similar concepts in multiple images in order
to learn an ROI-to-word alignment matrix (in analogy to SMT) or
attention matrix (in analogy to NMT) that is complementary to the
retrieval-based approach. Indeed, to the extent that performance can
be compared, the retrieval-based and translation-based approaches
have complementary characteristics; retrieval-based word discovery
has high precision but low recall [4], while translation-based word
discovery systems have higher recall but lower precision [13].

In this paper, we analyze and visualize the tradeoff between
speech-to-image retrieval performance and word discovery perfor-
mance. With a better understanding of the relation between the two
tasks, more efficient and accurate MWD systems are proposed as a
step toward the eventual goal of joint word discovery and retrieval
learning. Further, we propose to use alignment F1 used in evaluating
MT systems to better assess the quality of word-level representation
learned by the discovery system.



2. PROBLEM FORMULATION

In the problem of multimodal word discovery, a learner is given a
set of N (image,utterance) pairs. Each utterance has frame-level
features x = (x1, · · · , xT ), and each image has ROI-level feature
vectors y = (y1, · · · , yL) that depict the visual content in x. The
learner tries to find the most likely alignment of speech frames to
each image region, denoted as A ∈ [0, 1]T×L, where ati = 1
if frame t is part of the description of image region i. Here we
define visual concepts to be the discrete class labels of each ROI,
z = (z1, · · · , zL), chosen from a predefined set of class labels
z` ∈ {1, . . . ,K} with a stochastic relationship to the spoken lan-
guage. Since both A and z are latent, one learning strategy is to
maximize the likelihood of the observations (x,y):

max
θ
p(x,y|θ) = max

θ

∑
z

∑
A∈{0,1}T×L

p(x,y,A, z|θ) (1)

Alternatively, the learner may instead reformulate the unsuper-
vised learning problem as a binary classification problem, which
can be learned more easily using a classical supervised learn-
ing approach. Suppose we label the n-th utterance-image pair
as (x(n), y(n)), n = 1, · · · , N , the model then tries to maximize
the likelihood that x(n) and y(n) form a pair. The model then
maximizes the speech-to-image retrieval probability:

max
θ
p(Y|X, θ) = max

θ

N∏
n=1

p(x(n), y(n)|θ)∑N
m=1 p(x

(n), y(m)|θ)
, (2)

or the image-to-speech retrieval probability, defined similarly but
with a different denominator. A typical approach for speech-to-
image retrieval is to assume the joint distribution p(x(n), y(n)|θ) to
be of the form p(x, y|θ) ∝ exp (s(x,y)), where s(x,y) is an aver-
age similarity score, computed as

s(x,y) = γ

L∑
i=1

T∑
t=1

αti(xt, yi)φa(xt)
>φv(yi)+

(1− γ)

T∑
t=1

L∑
i=1

βit(yi, xt)φa(xt)
>φv(yi). (3)

The functions φa(·) ∈ RD and φv(·) ∈ RD are two neural networks
called the speech encoder and visual encoder respectively used to
map the speech and visual features to the joint embedding space,
usually constrained to be unit-norm. The weighted average A =
γα + (1 − γ)β> ∈ [0, 1]T×L can be viewed as the soft alignment
between the speech frames and image region i, with properties that
γ ∈ [0, 1],

∑T
t=1 αti = 1, and

∑L
i=1 βit = 1. For example, [4]

proposes a MISA (max-image, summed-audio) alignment, in which
γ = 0, βit = 1 if i = argmaxt φa(xt)

>φv(yi), and βit = 0
otherwise. Alternatively, αti and βit may be computed as functions
of xt and yi, inspired by the attention-weighting of NMT [12, 14,
13]. By maximizing Eq. (3), the model is essentially solving the
following optimization problem:

max
φa,φv

s(x,y) = max
‖φa(xt)‖2=1∀t,
‖φv(yi)‖2=1∀i

Tr
(
ΦaAΦ>v

)
(4)

where

Φa := [φa(x1), · · · , φa(xT )] ∈ RD×T , (5)

Φv := [φv(y1), · · · , φv(yL)] ∈ RD×L (6)

Let the singular value decomposition of A = UΣV>,U ∈
RT×K ,V ∈ RL×K , we can show that the objective satisfies:

max
‖Φa,t‖2=1∀t
‖Φv,i‖2=1∀i

s(x,y) = max
‖Φ̃a,k‖2=1

‖Φ̃v,k‖2=1,∀k

Tr
(
Φ̃aΣΦ̃>v

)
(7)

≤ max
‖Φ̃a,k‖2=1

‖Φ̃v,k‖2=1,∀k

‖Σ1/2Φ̃>a ‖2‖Σ1/2Φ̃>v ‖2 (8)

by the Cauchy-Schwartz inequality, where Φ̃a = ΦaU, Φ̃v =
ΦvV, and the maximum is achieved if and only if Φ̃a = Φ̃v . If
A is independent of x and y, then the optimal Φa depends only
on the average of the embedding vectors and thus does not contain
word-level information. A special case of this will be the SISA score
function used in [4], where A = 1

TL
1T×L and the model can simply

assign the same embedding to every frame to achieve maximum like-
lihood: φ̄a = 1

T

∑T
t=1 φa(xt) = φ̄v = 1

L

∑L
i=1 βitφv(yi). If the

goal of the system is information retrieval, then this is an acceptable
outcome: averaging embeddings across the utterance is acceptable
if it boosts the match between the image and the audio. If the goal
is word discovery, however, this is an unacceptable outcome. Word
discovery requires a meaningful alignment matrix A, therefore word
discovery requires that some sort of attention mechanism be used to
represent the dependence of A on x and y.

Instead of mapping the feature vectors to a joint embedding
space, an alternative for the joint likelihood function is to use a
Bayesian network based on SMT [11], as done in [13]. SMT-style
alignment explicitly models the co-occurrence patterns between dis-
crete units discovered in the two modalities, namely, the image con-
cepts zi ∈ {1, . . . ,K} and word types wt ∈ {1, . . . ,W}. In this
work, we assume that speech frames can be segmented accurately
into words with an unsupervised algorithm, such as those in [15],
though segmentation can also be inferred multi-modally. Let us
further assume a many-to-one, bag-of-words translation probability:
the probability of a visual concept given a word type is independent
of the sequential order in either modality. Under these assumptions,
Eq. (1) can be simplified to the following conditional likelihood:

max
θ
p(y|x, θ) ∝ max

Ψa,Ψv,P,A
Tr
(
Ψ>a PΨvA

)
(9)

s.t. ψa,t ∈ ∆W , ψv,z ∈ ∆L,Pw ∈ ∆K , ∀t, i, w (10)

where ∆d is the probability simplex of dimension d, Ψa ∈
[0, 1]W×T and Ψv ∈ [0, 1]K×L are two classifiers with proba-
bilities over the latent word types (image ROI) given the acoustic
features (visual concepts) respectively, and P is the translation
probability from a word type to an image concept. Notice with
Ψa,Ψv,P fixed, this objective can be rewritten as:

max
At∈∆L,∀t

Tr
(
Ψ>a PΨvA

)
≤

L∑
`=1

‖
(
Ψ>v P>Ψa

)
`
‖∞, (11)

with equality iff At` = 1 for ` = argmax`
(
ΨvP

>Ψ>a
)
`

and
At` = 0 otherwise. Therefore, as long as the latent word/concept
classifiers are sufficiently accurate, it can be shown that the SMT is
a consistent estimator when learning many-to-one relations between
spoken words and image regions. In this work, we trained end-to-
end using an exact EM-algorithm described in [13]. We can then
plug Eq. (9) into Eq. (2) to find the match likelihood for speech-to-
image retrieval. To find the optimal alignment and image concepts,
we used a two-stage decoding procedure:

A∗ = argmax
A

p(A|x,y), z∗ = argmax
z

p(z|A,x,y). (12)



Data S2I
@1 @5 @10 I2S

@1 @5 @10

MISA+
TDNN [4] COCO 12 38 57 12 41 59

Cosine+
TDNN COCO 13 42 60 14 43 61

Additive+
TDNN COCO 9 31 48 10 35 53

Normalized+
TDNN COCO 10 32 48 9 33 48

Cosine+
LSTM COCO 10 30 45 11 32 45

Cosine+
Transformer COCO 5 17 26 4 16 24

SMT+
TDNN COCO 3 13 20 0.1 0.5 1

TDNN
(phones)

COCO 32 66 79 32 66 79
Flickr 17 42 55 18 39 51

SMT
(phones)

COCO 7 24 36 4 16 28
Flickr 7 19 29 3 11 19

Table 1: Speech-to-image (S2I) and image-to-speech (I2S) retrieval
performance of various systems: Recall @ 1, 5, 10. Inputs are either
phones or audio. Encoders are trained for speech-to-image retrieval
using either a TDNN [4], an LSTM, or a Transformer. Alignment is
either MISA, SMT, cosine, additive, or normalized.

Alignment
Recall

Alignment
Precision

Alignment
F1

SMT+TDNN 60 30 40
SMT+Transformer 21.8 43 29
SMT (phones) 37.9 19 25.5
NMT+TDNN 54.9 27.8 36.9
NMT+Transformer 62.7 31.8 42.2

Table 2: Word discovery performance of various systems on
MSCOCO. NMT systems use cosine-similarity attention

3. EXPERIMENTS

3.1. Dataset

Two datasets commonly used in cross-modal learning tasks, Flickr8k
[16] and MSCOCO [17], are adopted in this paper. Their corre-
sponding spoken captions are given by [18] and [19] respectively. In
the original spoken databases [18, 19], each image in both datasets
is paired with five spoken captions. To make the training process
easy, only one spoken caption is randomly selected from the 5 paired
captions for each image. Flickr8k is split according to [20], with
1000 images in the evaluation set. The evaluation set of MSCOCO
also consists of 1000 images that were randomly chosen from the
MSCOCO 2014 validation set. For both datasets, the reference cap-
tion is filtered to remove all but the most frequent 2000 word types,
not including stop words.

3.2. Feature extraction

To obtain the image features from different ROI, a Faster-RCNN
[21] pre-trained on ImageNet [22] and Visual Genome [23] by [24]
is adopted. This pre-trained Faster-RCNN predicts the possible re-

Fig. 2: Alignment and Retrieval precision-recall curves for various
models

gions and gives the corresponding confidence score for each region.
Here, we extract 10 feature vectors from the penultimate layer of the
Faster-RCNN of the 10 ROIs with top confidence scores predicted
by the Faster-RCNN. Their bounding boxes are also obtained, which
allows us map the discovered words to the original images.

In the retrieval systems, the speech inputs are represented by
mel-frequency filter bank (Fbank) features [25] calculated with
25ms hamming window and 10ms skip. We experiment with three
different speech encoders all trained for the speech-to-image re-
trieval task, namely, the TDNN-based speech encoder from the
distributed implementation of the state-of-the-art model DAVEnet
[4], a three-layer LSTM encoder [26], and a three-layer, single-head
Transformer encoder trained using ESPnet [27]. The embedding
dimensions of the models are set to be 1024 except for the LSTM
encoder, whose embedding dimension is 1000. The number of pa-
rameters for the TDNN, LSTM and Transformer are 15, 965, 570,
56, 370, 001 and 37, 793, 792 respectively.

The speech and image outputs from the retrieval systems (φa
and φv respectively) are used as inputs to the word discovery sys-
tems. Before the alignment step, the SMT system averages embed-
ding vectors of the speech encoders within each spoken segment and
compresses them to 300 dimensions using principal component anal-
ysis (PCA). ψa(·) and ψv(·) are set to be softmax distributions with
Gaussian kernels with 400 latent word types and 80 latent image
concepts respectively for COCO.

3.3. Evaluation metrics

To evaluate the retrieval performance in the retrieval experiments,
commonly used evaluation metrics, i.e., Recall@1, 5, 10 scores, are
adopted. The alignment F1 is adopted to evaluate the performance in
the word discovery task. An alignment is defined as the association
of a spoken segment (in the phone-level case, a sequence of consec-
utive phones) to an image ROI. The alignment F1 is the harmonic
mean of alignment recall and precision. The alignment recall is the
percentage of alignments discovered by the system from the set of
correct alignments and the alignment precision is the percentage of
correct alignments in the set of alignments discovered by the system.

In the evaluation of word discovery performance, we assume
ground truth word boundaries to be known to systems with raw au-
dio as inputs and unknown to systems with phone-level transcrip-
tions. For SMT with phone labels, we instead use an unsupervised
segmentation system [28] to segment the phone sequence into word-
like units. Since the ground truth ROI bounding box is inaccessi-
ble during training, direct comparison of the gold alignments with
the predicted alignments is impossible. Instead, we align a spo-
ken word with the ground truth bounding box having the highest
intersection-over-union (IoU) score with its aligned, predicted box.



(a) audio-level TDNN+NMT (b) audio-level TDNN+SMT (c) phone-level SMT

Fig. 3: Word discovery results of different systems on the image-caption pair “a woman eating a piece of pastry in a market area.” The texts
are not available in the first two figures during training and are shown for ease of understanding.

For MSCOCO, due to the lack of phrase-level ground truth align-
ment, we only evaluate on visual words, which are words that de-
scribe one of the 80 class names for MSCOCO. To find the visual
words, we augment the class names with their plural forms and the
related words most commonly mentioned in the captions, such as
“man” and “girl” for the person class. Phone-level models tend to
align each ROI to a long sequence of phones (a phrase) rather than
to individual words, which is often the correct behavior, but fails to
be detected using a standard IoU criterion. In order to detect correct
alignments of phrases to ROI, therefore, we report a correct align-
ment if the plurality of phones within the phrase are aligned to their
correct bounding box.

3.4. Implementation Details

The models are trained with masked margin softmax loss [7], which
is a special case of Eq. (2) and observed to work better than triplet
loss. Stochastic gradient descent (SGD) is used with a starting learn-
ing rate set to be 10−6 for the transformer to avoid gradient explo-
sion and 10−5 for all other systems. We also train two types of
alignment models based on NMT and SMT respectively. The NMT
system uses an attention mechanism on top of the speech encoder to
learn the soft alignment in Eq. (3). We experiment with three types
of attention mechanisms: cosine-similarity (dot product) attention,
additive attention and normalized attention [29].

3.5. Results

The retrieval results are shown in Table 2. The cosine-similarity at-
tention mechanism is shown to improve the retrieval performance of
TDNN and performs the best among all the speech-level systems.
Among the attention mechanisms, we found the cosine-similarity at-
tention not only the most accurate but also the most efficient, as it
does not involve additional training parameters. Further, we observe
that TDNN performs better than both BiLSTM and Transformer,
suggesting that local context is more important than the global con-
text for retrieval. Lastly, the SMT system does not perform as well
as the NMT, as it does not use any contextual information beyond
word level, which may be beneficial to learn better word-level repre-
sentation. SMT performance is particularly bad for image-to-speech
(I2S) retrieval, suggesting that long-term audio context may be more
important for I2S than S2I.

The word discovery results are shown in Table 2. For the
SMT+TDNN and NMT+TDNN model, we use the embedding vec-
tors from the cosine-similarity attention system as it performs the

best during retrieval. To better understand the relation between word
discovery and retrieval, we also plot the precision-recall curves for
the two tasks side by side in Fig. 2 and provide an example of
bounding box alignments for NMT+TDNN, SMT+TDNN and the
phone-level SMT in Fig. 3. Quantitatively, the NMT+Transformer
outperforms the SMT+TDNN and the NMT+TDNN systems by
2% and 5% respectively, suggesting that a better alignment mech-
anism is indeed beneficial for word-level representation learning.
However, combining SMT with self attention is not effective for
word discovery as it degrades the word discovery performance com-
pared to SMT+TDNN. Also, we found that while the phone-level
model tends to perform better than audio-level in retrieval, the noise
in segmentation makes it perform worse in word discovery than
the audio-level model. From Fig. 2, while NMT+TDNN outper-
forms the other two systems in retrieval, it underperforms them in
word discovery, showing a discrepancy between learning to retrieve
images and learning to discover word-like units. The gap in per-
formance is also explained qualitatively by Fig. 3. We can see
that the NMT+TDNN system is able to align the store name to the
word “market,” but aligns all the other regions to the word “piece”,
showing a lack of word-level knowledge. The SMT-based discovery
system is able to correctly identify objects such as the woman in
front annotated by the red bounding box and the pastry near her
mouth. Further, the SMT model is able to align the person inside the
orange box to the word “woman,” even though she is not mentioned
in the caption, due to the bag-of-word nature of the SMT model.
The SMT model also aligns the objects sold in the shop to the word
“pastry,” apparently because they are visually similar to pastry. Sim-
ilarly to the audio-level SMT, the phone-level SMT model is able
to align the semantically correlated regions to segments of the cor-
responding words for both “market” and “woman,” which suggests
that segmentation error is the main cause of its low performance.

4. CONCLUSION

We have studied theoretically and empirically the tradeoff between
speech-to-image retrieval and word discovery. We demonstrate that a
speech embedding learned using a TDNN gives the highest speech-
to-image retrieval scores, but that embedding learned using a self-
attention Transformer model gives higher scores for word discovery.
In both cases, accuracy is boosted by using an NMT-based atten-
tion mechanism with self-attention layers, which helps the retrieval
model to learn better alignments for visual words. From our results,
we believe a joint retrieval-discovery is important for developing bet-



ter word discovery systems.

5. REFERENCES

[1] D. Roy, “A computational model of word learning from multi-
modal sensory input,” in Proceedings of the international con-
ference of cognitive modeling, Groningen, The Netherlands,
2000, pp. 1–8.

[2] S. E. Levinson, Q. Liu, C. Dodsworth, R.-S. Lin, W. Zhu, and
M. Kleffner, “The role of sensorimotor function, associative
memory and reinforcement learning in automatic acquisition
of spoken language by an autonomous robot,” in Joint NSF
DARPA Workshop on Development and Learning, East Lans-
ing, MI, 2000.

[3] D. Harwath, A. Torralba, and J. Glass, “Unsupervised learning
of spoken language with visual context,” in Neural Information
Processing Systems, 2016.

[4] D. Harwath, A. Recasens, D. Suris, G. Chuang, A. Torralba,
and J. Glass. (2018) Jointly discovering visual objects and
spoken words from raw sensory input. [Online]. Available:
https://arxiv.org/pdf/1804.01452.pdf

[5] W. Havard, J. Chevrot, and L. Besacier, “Models of visually
grounded speech signal pay attention to nouns: a bilingual ex-
periment on english and japanese,” in Proc. International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
2019.

[6] D. Merkx, S. Frank, and M. Ernestus, “Language learning us-
ing speech to image retrieval,” in Interspeech, 2019.

[7] G. Ilharco, Y. Zhang, and J. Baldridge, “Large-scale represen-
tation learning from visually grounded untranscribed speech,”
in The SIGNLL Conference on Computational Natural Lan-
guage Learning (CoNLL), 2019.

[8] H. Kamper, G. Shakhnarovich, and K. Livescu, “Semantic
speech retrieval with a visually grounded model of untran-
scribed speech,” IEEE Transaction on Audio, Speech and Lan-
guage Processing, vol. 27, pp. 89–98, 2019.

[9] D. Harwath, W.-N. Hsu, and J. Glass, “Learning hierarchical
discrete linguistic units from visually-grounded speech,” in In-
ternational Conference on Learning Representation, 2020.

[10] A. van den Oord, O. Vinyals, and K. Kavukcuoglu, “Neural
discrete representation learning,” in 31st Conference on Neural
Information Processing Systems (NIPS 2017), 2017.

[11] P. F. Brown, V. J. D. Pietra, S. A. D. Pietra, and R. L. Mercer,
“The mathematics of statistical machine translation: parameter
estimation,” Computational Linguistics, vol. 19, no. 2, pp. 263
– 311, 1993.

[12] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine trans-
lation by jointly learning to align and translate,” in ICLR, 2015.

[13] L. Wang and M. Hasegawa-Johnson, “A DNN-HMM-DNN hy-
brid model for discovering word-like units from spoken cap-
tions and image regions,” in Interspeech, 2020.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all
you need,” in Neural Information Processing Systems (NIPS),
2017.

[15] O. J. Ras̈an̈en, G. Doyle, and M. C. Frank, “Unsupervised
word discovery from speech using automatic segmentation into
syllable-like units,” in Interspeech, 2015.

[16] C. Rashtchian, P. Young, M. Hodosh, and J. Hockenmaier,
“Collecting image annotations using Amazon’s mechanical
turk,” in Proceedings of the NAACL HLT 2010 Workshop on
Creating Speech and Language Data with Amazon’s Mechani-
cal Turk, 2010.

[17] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick,
J. Hays, P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollr,
“Microsoft COCO: Common objects in context,” in European
Conference on Computer Vision, 2014.

[18] D. Harwath and J. Glass, “Deep multimodal semantic embed-
dings for speech and images,” Automatic Speech Recognition
and Understanding, 2015.

[19] W. Havard, L. Besacier, and O. Rosec, “Speech-COCO: 600k
visually grounded spoken captions aligned to MSCOCO data
set,” in GLU 2017 International Workshop on Grounding Lan-
guage Understanding, 2017.

[20] A. Karpathy, A. Joulin, and L. Fei-Fei, “Deep fragment em-
beddings for bidirectional image sentence mapping,” in Neural
Information Processing Systems, 2014.

[21] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards
real-time object detection with region proposal networks,” in
Advances in Neural Information Processing Systems 28 (NIPS
2015), 2015.

[22] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in 2009
IEEE conference on computer vision and pattern recognition.
Ieee, 2009, pp. 248–255.

[23] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz,
S. Chen, Y. Kalantidis, L.-J. Li, D. A. Shamma et al., “Visual
genome: Connecting language and vision using crowdsourced
dense image annotations,” International journal of computer
vision, vol. 123, no. 1, pp. 32–73, 2017.

[24] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson,
S. Gould, and L. Zhang, “Bottom-up and top-down attention
for image captioning and visual question answering,” in Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, 2018, pp. 6077–6086.

[25] S. B. Davis and P. Mermelstein, “Comparison of parametric
representation for monosyllabic word recognition in contin-
uously spoken sentences,” IEEE Transactions on Acoustics,
Speech and Signal Processing, vol. 28, no. 4, pp. 357–366,
1980.

[26] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, pp. 1735–1780, 1997.

[27] S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba,
Y. Unno, N. Enrique Yalta Soplin, J. Heymann, M. Wiesner,
N. Chen, A. Renduchintala, and T. Ochiai, “ESPnet:
End-to-end speech processing toolkit,” in Proceedings of
Interspeech, 2018, pp. 2207–2211. [Online]. Available:
http://dx.doi.org/10.21437/Interspeech.2018-1456

[28] S. Goldwater, T. L. Griffiths, and M. Johnson, “Contextual de-
pendencies in unsupervised word segmentation,” in Proceed-
ings of the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Association for
Computational Linguistics, 2006, p. 673680.

[29] T. Xu, P. Zhang, Q. Huang, H. Zhang, Z. Gan, X. Huang, and
X. He, “Attngan: Fine-grained text to image generation with
attentional generative adversarial networks,” in CVPR, 2018.


