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A B S T R A C T   

Thermal loadings in saturated (two-phase) clays induce excess pore water pressure due to the difference in the 
thermal expansion coefficient of the pore volume and the pore water. The gradual dissipation of the excess pore 
water pressure causes thermal volume reduction which is known as thermal consolidation. However, thermal 
consolidation in a three-phase soil system such as unsaturated soil is more sophisticated. In this paper, an 
analytical model for thermal consolidation around a heat source embedded in unsaturated clay or in calyey soils 
containing two immiscible fluids is developed based on the effective stress concept. Governing equations, 
including energy, mass, and momentum balance equations are developed. Coexisting solid and pore fluids are 
assumed to be in local thermal equilibrium. First, a solution is provided using Fourier-Laplace transformation by 
considering constant coefficients. The inverse transformation is carried out fully analytically and thus, a closed- 
form solution is proposed. Then, the variations of soil properties during the thermal consolidation process are 
considered through a temporal discretization process. The developed model is validated using Green’s function 
theory and the equations and results are compared with the available models in the literature. Results indicate 
the capability of the model to accurately predict thermal consolidation in a three-phase clayey soil.   

1. Introduction 

Predicting the thermo-hydro-mechanical (THM) response of porous 
media is of cardinal importance in various engineering problems, 
including deep waste disposal (Gibb, 2000), harvesting shallow (Cherati 
and Ghasemi-Fare, 2019; Cherati et al., 2020; Senejani et al., 2020) and 
deep (Hirschberg et al., 2014; Falcone et al., 2018) geothermal energy, 
deep drilling, and excavation (Abousleiman and Ekbote, 2005; Tao and 
Ghassemi, 2010), oil extraction (Kiamanesh, 1992; Pan et al., 2005), fire 
resistance of concrete (Khoury, 2000; Kodur and Dwaikat, 2008), buried 
electrical cables (Abdel-Hadi and Mitchell, 1981; de Lieto Vollaro et al., 
2011), and stability of road subgrades subjected to temperature fluctu-
ations (Asefzadeh, 2019; Teltayev and Suppes, 2019). 

Thermal stresses create volume expansion in both pore fluid and 
solid soils. However, due to the difference in thermal expansion co-
efficients of the pore volume and pore fluid, excess pore fluid pressure 
will be induced (Ghasemi-Fare and Basu, 2016; Tamizdoust and 
Ghasemi-Fare, 2020a). Generation of the excess pore water pressure 
reduces effective stress, weakens the soil, and may result in soil thermal 

failure (Song et al., 2018). In addition, the dissipation of excess pore 
fluid pressure causes soil thermal volume reduction (thermal consoli-
dation) in normally consolidated (NC) clays (Joshaghani and Ghasemi- 
Fare, 2019). Thermal consolidation in a three-phase soil (e.g., unsatu-
rated clay) is more sophisticated since it requires solving a set of gov-
erning equations that couple more unknown variables. Several 
experimental analyses have been performed to study the thermal 
consolidation in fine-grained soils and investigate alterations in soil 
mechanical properties during thermal loadings (Abuel-Naga et al., 2006; 
Uchaipichat and Khalili, 2009; Coccia and McCartney, 2016). However, 
in small scale experimental modeling (temperature-controlled condi-
tion), the temperature of the whole medium changes almost equally, and 
thus the effects of temporal and special variation of thermal stress 
cannot be observed accurately. This is while, a heat source buried in the 
ground generates transient heat flow in the soil medium. 

Many analytical and numerical models were developed to address 
soil consolidation induced by transient thermal loads (Yazdani Cherati 
and Ghasemi-Fare, 2021) based on Biot’s consolidation theory (Biot, 
1941). Equations governing thermal consolidation are strongly coupled; 
however, researchers mostly consider energy conservation equation 
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uncoupled from other governing equations, for the sake of simplicity. In 
one of the early studies, Booker and Savvidou (Booker and Savvidou, 
1985), and Savvidou and Booker (Savvidou and Booker, 1988) devel-
oped analytical models, respectively, to predict thermal consolidation 
around a heat source with constant and decaying heat fluxes in saturated 
soils. In a separate study, Savvidou and Booker investigated thermal 
consolidation in soils with anisotropic flow properties (Savvidou and 
Booker, 1989). Smith and Booker derived Green’s function in Laplace 
and real-time domains for equations governing thermal consolidation in 
homogeneous soils (Smith and Booker, 1993). Nguyen and Selvadurai 
(Nguyen and Selvadurai, 1995), and Selvadurai and Nguyen (Selvadurai 
and Nguyen, 1997) proposed a finite element model to analyze the THM 
behavior of a rock mass around a waste repository. Bai investigated the 

response of saturated soils under cyclic thermal loading using the Lap-
lace transformation method (Bai, 2006a). Some studies in the literature 
analyzed stratified soil response under thermal loads with the aid of the 
Laplace transformation method (Bai, 2006b), layer element method (Ai 
and Wang, 2015; Ai and Wang, 2016), propagator matrix method (Yang 
et al., 2016), and Laplace-Henkel transformation method (Ai et al., 
2018). 

The above-mentioned analytical models only analyze thermal 
consolidation in saturated soils and thus, they cannot accurately predict 
unsaturated thermal consolidation. Nevertheless, in most areas, 
groundwater is deep and heat sources (e.g. power cables, energy piles/ 
boreholes, and thermally enhanced PVDs) are placed in the vadose zone. 
Additionally, the mentioned models for saturated thermal consolidation 

Nomenclature 

σ ́ Effective stress 
ε Strain 
G, λ Lame’s constants 
δ Kronecker’s delta 
T Temperature 
á Coefficient of thermal volume expansion of the soil 

particles 
u Soil deflection 
σ Total stress 
pw Pore water pressure 
pf Second pore fluid (air or an immiscible fluid) pressure 
χ Bishop’s effective stress parameter 
Fi Body force per unit volume of the soil element 
e An indicator for a variation of a parameter 
i, j,k Unit vectors in cartesian coordinate system 
εv Volumetric strain 
x,y,z Cartesian coordinates 
kw Unsaturated permeability of the soil with respect to the 

water 
kf Unsaturated permeability of the soil with respect to the 

second pore fluid phase 
ρ Density 
g Gravitational acceleration 
Q Power output 
U,P,Θ,Ev Transformed form of u, p, T, εv after Fourier transformation 
I Imaginary unit 
κ A function of thermal conductivity 
D A complex number 
A,B Constants 
Erf Error function 
f A linear function 
Rs Location of the point heat source in spherical coordinate 
R0 Radius of the spherical heat source 
r,z Location of the object point in cylindrical coordinate 
l Correlations which relate the coefficients to the prime 

variables 
m Total number of steps in the stepwise method 
J A set of prime variables 
Kunsat, Ksat,Kdry Soil thermal conductivity in unsaturated, saturated, 

and dry conditions, respectively 
ψ Matric suction 
βe(T) Air entry value at the temperatureT 
k Soil intrinsic permeability 
Se Effective degree of saturation 
aw Coefficient of thermal volume expansion of water 
G Green’s function 
Ŕ Location of an instantaneous point in spherical coordinate 

system 
t* Dimensionless time 
μw Water viscosity 
μf Second pore fluid viscosity 
t Time 
au Coefficient of thermal volume expansion 
a11, a12,a22 Apparent compressibility coefficients of the pore fluids 
q Heat generation term 
ρc Volumetric heat capacity 
ρ Mass density 
c Specific heat capacity 
P latent heat of vaporization 
θ Volumetric moisture content 
Dθ Isothermal vapor diffusivity 
ϑ Coefficient of the convection term that accounts for the 

effects of thermally induced pore water flow on heat 
transport 

vw Water velocity 
h Heat flux vector 
K Thermal conductivity 
∇ Nabla operator 
∇2 Laplace operator 
W A defined variable 
Δ Dirac delta function 
α, β,γ Real numbers 
Ũ, P̃, Θ̃,Ẽv Transformed form of u, p, T, εv after Fourier-Laplace 

transformation 
s A complex number 
∊, ζ, ξ, Y,Z, ġ Functions of soil properties 
Λ A function of transformed prime variables 
R A spherical coordinate 
erfc Complementary error function 
RLocal Distance between the object point and the point heat 

source 
rs, zs Location of the point heat source in cylindrical coordinate 
r0,h Radius and height of the cylindrical heat source 
H Analytical solution derived in this study 
C A set of coefficients 
S Soil saturation degree 
w, a, s An indicator for water, air, and solid soil, respectively 
ψ0 Initial matric suction 
ϖT Surface tension energy at temperatureT 
krw Relative permeability of water 
n Porosity 
as Coefficient of thermal volume expansion of the soil 
τ An instantaneous time 
np Pore size distribution index 
ς, η, ω,a,b, ϕ Variables  
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cannot be employed to assess thermal consolidation in soils with two 
immiscible fluids. 

This paper develops a fundamental analytical solution for thermal 
consolidation around a heat source buried in porous media containing 
two immiscible pore fluids, or in unsaturated soil comprised of three 
phases of soil, gas, and liquid (e.g., shallow subsurface soil containing 
both pore water and pore air). Primary governing equations including 
equilibrium, pore fluids continuity, and energy balance equations are 
derived and the analytical solution is provided using Fourier-Laplace 
transformation based on the solution developed by Booker and Sav-
vidou (Booker and Savvidou, 1985) for saturated thermal consolidation. 
Then, to consider the variation of the soil thermal, hydraulic, and me-
chanical properties (e.g., thermal conductivity, degree of saturation, and 
dynamic viscosity of water) during the thermal consolidation process, a 
temporal discretized (stepwise linear) method is implemented, so that 
the coefficients are modified and updated in each time step using the 
analytical results obtained for the previous time step. The developed 
solution is compared with the analytical models proposed in the litera-
ture for thermal consolidation in saturated soils and the comparison 
proves the accuracy of the proposed model. Further, the developed 
analytical model is used to study the difference in THM response 
(thermal consolidation) of saturated and unsaturated soils. 

2. Proposed model 

To predict thermal consolidation in three-phase clayey soils, partial 
differential equations (PDEs) governing coupled thermo-hydro- 
mechanical behavior of soils including energy, mass, and momentum 
balance equations are derived. To make the analytical solution possible, 
it is assumed that the solid soil is incompressible. Local thermal equi-
librium is considered between all phases which lead to the same tem-
perature at a single point for all the phases (e.g., soil, water, and air). 
Additionally, the heat source is assumed to be buried deep enough from 
the ground surface such that ambient temperature and moisture fluc-
tuations do not affect the results. Please note, previous studies indicated 
that atmospheric temperature and moisture fluctuations could only 
change the temperature and moisture content at the very shallow sub-
surface soils (Olgun, 2013; Tamizdoust and Ghasemi-Fare, 2020b). 

In addition to the above-mentioned assumptions, the variations of 
the soil properties are assumed to be constant within each small time- 
step. Nevertheless, the changes in these parameters with temperature 
and pressure increments are considered through the proposed temporal 
discretized (stepwise linear) method. 

The governing equations are derived as follows. 

2.1. Incremental constitutive law (the equilibrium of solid skeleton) 

The effective stress-strain relationship for an isotropic thermo-elastic 
medium can be expressed based on Lame’s constants as follows: 

σ ́ij = 2Gεij + λεkkδij −

(

λ +
2G
3

)

áTδij (1)  

where σ ́ij is effective stress, εij denotes the strain of the soil skeleton, G,

and λ are Lame’s constants, δij is Kronecker’s delta, T is temperature, and 
á is the coefficient of thermal volume expansion of the soil particles. The 
last term in Eq. (1) indicates the variation of effective stress due to 
thermal loadings. 

The strain of soil skeleton can be defined in terms of displacements as 
presented below: 

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)

i, j = 1, 2, 3 (2)  

where ui, uj are the Cartesian components of deflection, and xi, xj are 
coordinate axes. 

Substituting Eq. (2) in Eq. (1) yields predicting effective stress based 

on displacement vectors. 

σ ́ij = G
(

∂ui

∂xj
+

∂uj

∂xi

)

+ λ
∂uj

∂xj
δij −

(

λ +
2G
3

)

áTδij (3) 

Bishop’s effective stress for three-phase thermo-elastic soil systems 
can be defined as (Khalili et al., 2004; Vahab and Khalili, 2020): 

σij − pf δij = σ ́ij − χ
(
pf − pw

)
δij (4)  

where σij and σ ́ij are total and effective stresses, respectively, pw is the 
pore water pressure, pf is the second pore fluid (air or an immiscible 
fluid) pressure, χ is Bishop’s effective stress parameter which highly 
depends on soil saturation degree. σij −pf δij denotes net stress. (pf −pw)

and χ(pf −pw) are known as matric suction and suction stress, respec-
tively (Ghaffaripour et al., 2019; Lu and Likos, 2006). 

Eq. (4) can be rearranged as follows: 

σij = σ ́ij + (1 − χ)pf δij + χpwδij (5) 

Combining Eqs. (3) and (5) yields: 

σij = G
(

∂ui

∂xj
+

∂uj

∂xi

)

+ λ
∂uj

∂xj
δij + (1 − χ)pf δij + χpwδij − b́Tδij (6)  

where b́ =

(

λ +2G
3

)

á. 

By considering a representative soil volume that is subjected to a 
total stress σij, the equilibrium equation can be expressed as: 

∂σij

∂xj
+ Fi = 0 j = 1, 2, 3 (7)  

where Fi is the body force per unit volume of the soil element. 
The thermo-elastic deformation in unsaturated soils (or porous 

media containing two fluid phases) with simultaneous variations of pore 
fluids pressures and temperature is obtained by combining Eqs. (6) and 
(7). 

G
(

∂2ui

∂xj∂xj
+

∂2uj

∂xj∂xi

)

+ λ
∂2uj

∂xi∂xj
+ (1 − χ)

∂pf

∂xi
+ χ ∂pw

∂xi
− b́ ∂T

∂xi
+ Fi = 0 (8) 

By considering the variation of the parameters instead of absolute 
values, and by neglecting the effects of gravity, the equilibrium equation 
can be simplified as: 

G
(

∂2ui

∂xj∂xj
+

∂2uj

∂xj∂xi

)

+ λ
∂2uj

∂xi∂xj
+ (1 − χ)

∂pef

∂xi
+ χ ∂pew

∂xi
− b́

∂Te

∂xi
= 0 (9)  

where subscript e denotes the variation of a parameter. 
Eq. (9) for i = 1,2, and 3 in the Cartesian coordinate system can be 

demonstrated as follows. 

G∇2ux + (λ + G)
∂εv

∂x
+ (1 − χ)

∂pef

∂x
+ χ ∂pew

∂x
− b́

∂Te

∂x
= 0

G∇2uy + (λ + G)
∂εv

∂y
+ (1 − χ)

∂pef

∂y
+ χ ∂pew

∂y
− b́ ∂Te

∂y
= 0

G∇2uz + (λ + G)
∂εv

∂z
+ (1 − χ)

∂pef

∂z
+ χ ∂pew

∂z
− b́ ∂Te

∂z
= 0

(10)  

where εv denotes volumetric strain. 

2.2. Pore fluids continuity equations 

Excess pore fluids continuity equations based on Darcy’s law in 
general forms can be expressed as Eqs. (11) and (12), respectively 
(Khalili et al., 2000; Khalili et al., 2008; Shahbodagh-Khan et al., 2015). 

kw

μw

(
∇2pew + ∇ρwg

)
+ χ

(
∂εv

∂t
+ au

∂Te

∂t

)

− a11
∂pew

∂t
− a12

∂pef

∂t
= 0 (11) 
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kf

μf

(
∇2pef + ∇ρf g

)
+ (1 − χ)

(
∂εv

∂t
+ au

∂Te

∂t

)

− a12
∂pew

∂t
− a22

∂pef

∂t
= 0 (12)  

where kw and kf denote the unsaturated permeability of the soil with 
respect to the water and the second pore fluid phases, respectively. ρ is 
density, g is gravitational acceleration, μw is viscosity of water, μf is 
viscosity of the second pore fluid, t is time, au is the coefficient of 
thermal volume expansion, and a11, a12, and a22 are the apparent 
compressibility coefficients. Subscripts w, and f , respectively represent 
pore water and the second pore fluid. 

The fluids continuity equations presented above for a porous media 
containing two immiscible incompressible fluids, by neglecting the ef-
fects of gravity, can be simplified as: 

kw

μw
∇2pew + χ

(
∂εv

∂t
+ au

∂Te

∂t

)

= 0 (13)  

kf

μf
∇2pef + (1 − χ)

(
∂εv

∂t
+ au

∂Te

∂t

)

= 0 (14) 

For the case of unsaturated soil containing water and air (shallow 
subsurface soil), the air continuity equation is governed by simultaneous 
Fick’s law (diffusion) and Darcy’s law (advection). Depending on the 
soil saturation degree, one of these mechanisms is dominant. When air is 
in occluded form (higher degrees of saturation) diffusion is dominant. 
On the contrary, when the air phase is continuous (lower water satu-
ration degrees) advection has a more critical role. Nevertheless, in both 
cases, the advection-diffusion process leads to the immediate dissipation 
of pore air pressure due to a high air diffusion coefficient, and higher 
relative permeability of air compares to water. It has been shown in the 
literature that excess pore air pressure close to heat sources embedded in 
the shallow subsurface soil (e.g., geothermal piles, or boreholes, and 
power cables) dissipates very fast. Consequently, the changes in air 
pressure are negligible compares to the atmospheric pressure and the 
thermally induced pore water pressure. Therefore, in several numerical 
models, pore air pressure has been assumed to be constant and equal to 
the atmospheric pressure (Novak, 2010; Akrouch et al., 2016; Novak, 
2016). Neglecting the changes in air pressure for the case of thermal 
consolidation in the vadose zone leads to the elimination of the air 
continuity equation. Thus, Eq. (13) is the sole continuity equation that 
should be solved for the unsaturated soil containing pore water and pore 
air. In this case, by considering the equilibrium state, air density can be 
independently calculated at each step through the ideal gas law. Please 
note, in this study, equations are solved in a general form. After 
providing the solution, by considering pef = 0 the solution for the case of 
unsaturated soil is derived. Please also note, this assumption may not be 
correct in temperature-controlled unsaturated triaxial tests or 
experimental-controlled conditions (Khalili et al., 2000). 

2.3. Energy conservation equation 

Thermal energy balance in unsaturated soil media under hydrostatic 
condition can be presented as below: 

− ∇h + ρc
∂Te

∂t
− q + ϑvw∇Te + ρP∇(Dθ∇θ) = 0 (15)  

where q is the heat generation term, ρc is the volumetric heat capacity of 
the medium, ρ is mass density, c is specific heat capacity, P is the latent 
heat of vaporization,θ is the volumetric moisture content, Dθ is the 
isothermal vapor diffusivity,ϑ is the coefficient of the convection term 
that accounts for the effects of thermally induced pore water flow on 
heat transport, vw is the water velocity, andh is the heat flux vector and 
can be calculated based on Fourier’s law (Eq. (16)). 

h = K∇Te (16)  

where K is thermal conductivity. 
The last term in the thermal energy balance equation (Eq. (15)) de-

termines the effects of vaporization which depends on many parameters 
such as soil permeability and saturation degree. In this study, to make 
the analytical solution possible, the nonlinear evaporation term is 
neglected. This is an adjustable assumption in modeling fine-grained (e. 
g. clayey) soils (Hartley and Black, 1981; Rees et al., 2000; Brandl, 2006; 
Cherati and Ghasemi-Fare, 2019). Therefore, by combining Eqs. (15) 
and (16), the energy balance equation can be represented as below: 

∂Te

∂t
=

K
ρc

∇2Te −
ϑvw

ρc
∇Te +

q
ρc

(17) 

To analytically solve the governing equations, a new variable (W) is 
defined as below. 

Te = W × exp

(
ϑvw

2K
(x + y + z) −

3(ϑvw)
2

4K
t

)

(18) 

The definition of the new parameter (W) helps to combine the effects 
of both heat conduction and convection. Therefore, the Energy balance 
equation (Eq. (17)) can be reduced to a new equation in terms of W (Eq. 
(19)). 

∂W
∂t

=
K
ρc

∇2W +
q́
ρc

(19)  

where q́ = qexp

(

−ϑvw
2K (x + y + z) +

3(ϑvw)
2

4K t

)

. 

Therefore, by solving the heat conduction equation (Eq. (19)) and 
then, changing the main variable using Eq. (18), the solution for coupled 
heat conduction-convection equation (Eq. (17)) can be obtained. How-
ever, since the relative permeability of water in clayey soils is very low, 
water velocity is negligible (e.g., 10−10 m.s−1), claiming that 

exp

(

ϑvw
2K (x + y + z) −

3(ϑvw)
2

4K t

)

≈ 1 (the term inside the parenthesis is 

almost zero), and thus Te ≈ W, and q́ ≈ q. Therefore, Eq. (19) can be 
reduced to Eq. (20). 

∂Te

∂t
= κ∇2Te +

q
ρc

(20)  

where κ = K
ρc. 

According to Eq. (20), convection term in the energy balance equa-
tion can be neglected in impermeable or very low permeable soils (e.g., 
clayey soils). The negligible effect of convection term on heat transfer 
process in soils with relatively low permeability has been acknowledged 
in several studies (Tamizdoust and Ghasemi-Fare, 2020a; Ghasemi-Fare 
and Basu, 2019). Tamizdoust and Ghasemi-Fare (2020a) showed that 
when the permeability is lower than 10−13 m2 (silt and clays) the effect 
of heat convection in the heat transfer mechanism is negligible and heat 
conduction can be considered as the sole heat transfer mechanism in the 
ground. It has also been shown in the literature that the convection term 
has a considerable effect on heat transfer mechanism in saturated soil 
only when the permeability is high or the seepage flow passes a 
threshold (Zhang et al., 2013; Zhang et al., 2014; Wang et al., 2015). 
Thus, the convection term is neglected in this study, and heat conduction 
is considered to be the sole mode of heat transport. 

2.4. Summary of the governing equations 

Equations governing unsaturated thermal consolidation derived in 
this study are summarized below. Unknown variables of deformations, 
pore fluids pressures, and temperature can be illustrated as a set of 
(u, p, T). 
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G∇2ux + (λ + G)
∂εv

∂x
+ (1 − χ)

∂pef

∂x
+ χ ∂pew

∂x
− b́ ∂Te

∂x
= 0

G∇2uy + (λ + G)
∂εv

∂y
+ (1 − χ)

∂pef

∂y
+ χ ∂pew

∂y
− b́

∂Te

∂y
= 0

G∇2uz + (λ + G)
∂εv

∂z
+ (1 − χ)

∂pef

∂z
+ χ ∂pew

∂z
− b́

∂Te

∂z
= 0

kw

μw
∇2pew + χ

(
∂εv

∂t
+ au

∂Te

∂t

)

= 0

kf

μf
∇2pef + (1 − χ)

(
∂εv

∂t
+ au

∂Te

∂t

)

= 0

∂Te

∂t
= κ∇2Te +

q
ρc

(21) 

The physical parameters considered in Eqs. (21) changes with the 
variation of the prime variables (e.g. temperature and pore pressures) 
(Khalili and Loret, 2001). However, to make the analytical solution 
possible, they are assumed to remain constant as a first approximation in 
this study. Then, the changes in these parameters are considered in time 
by utilizing a temporal discretized (stepwise linear) approach. 

3. Analytical solution for a point heat source 

In this section, a solution is developed for a point heat source with 
the intensity of q located at the origin in an infinite three-phase homo-
geneous medium. 

Dirac delta function is employed according to Eq. (22) to define a 
point heat source. 

q = QΔ(x)Δ(y)Δ(z) (22)  

where Δ is the Dirac delta function and Q is the power output. 
To solve the governing equations analytically, combined Fourier- 

Laplace transformation is employed. First, Fourier transformation is 
carried out in x, y, and z directions based on Eq. (23). 

(U, P, Θ) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−i(αx+βy+γz)(u, p, T)dxdydz (23)  

where (U, P, Θ) is the transformed form of (u, p, T) after Fourier trans-
formation, α, β, and γ are real numbers, and i is an imaginary unit. 

Laplace transformation is carried out after Fourier transformation 
according to Eq. (24). 
(

Ũ, P̃, Θ̃
)

=

∫ ∞

0
e−st(U, P, Θ)dt (24)  

where 
(

Ũ, P̃, Θ̃
)

is the transformed form of (u, p, T) after Fourier-Laplace 

transformation, and s is a complex number. 
The transformed form of the governing equations (Eqs. (21)) can be 

expressed as Eqs. (25) to (28). 

GD2Ũx = iα
[

(λ + G)Ẽv + (1 − χ)P̃ea + χP̃ew − b́Θ̃
]

GD2Ũy = iβ
[

(λ + G)Ẽv + (1 − χ)P̃ea + χP̃ew − b́Θ̃
]

GD2Ũz = iγ
[

(λ + G)Ẽv + (1 − χ)P̃ea + χP̃ew − b́Θ̃
]

(25)  

kw

μw

D2P̃ew

s
= χ

(

Ẽv + auΘ̃
)

(26)  

kf

μf

D2P̃ef

s
= (1 − χ)

(

Ẽv + auΘ̃
)

(27)  

Θ̃s = −
K
ρc

D2Θ̃ +
Q
ρc

(28)  

where D2 = −(α2 + β2 + γ2), Ev = (iαUx + iβUy + iγUz), and s is the 
Laplace transform variable. 

Eq. (28) can be given as: 

Θ̃ =
Q

K
(

sρc
K + D2

) =
Q

K
(

s
κ + D2

) (29)  

where κ = K
ρc. 

By merging Eqs. (26) and (27) the transformed excess pore fluid 
pressure of the second fluid can be expressed as: 

P̃ef =
(1 − χ)kwμf

χμwkf
P̃ew (30) 

If a divergence and then Fourier-Laplace transformation is applied to 
Eq. (10), the transformed form of volumetric strain Ev can be calculated 
based on the transformed temperature and excess pore fluids pressures 
as below. 

Ẽv = −

(

(1 − χ)P̃ef + χP̃ew − b́Θ̃
)

λ + 2G
(31) 

Combining Eqs. (30) and (31) results in 

Ẽv = −
∊

λ + 2G
P̃ew +

b́
λ + 2G

Θ̃ (32)  

where ∊ =
(1−χ)

2kwμf
χμwkf

+ χ. 
Transformed excess pore water pressure in terms of the transformed 

excess temperature can be represented by combining Eqs. (26) and (32). 

P̃ew =
ξ

ζ D2

s + 1
Θ̃ (33)  

where ζ =
kw(λ+2G)

μwχ∊ , and ξ =
au(λ+2G)−b́

∊ . 
Substituting Eq. (29) in Eq. (33) leads to the transformed excess pore 

water pressure in terms of the heat intensity. 

P̃ew =
ξ

(

ζ D2

s + 1
)

Q
K

(
s/κ + D2

) =
ξQ

K(1 − ζ/κ)

⎡

⎢
⎣

1
(

s
κ + D2

) −
1

(
s
ζ + D2

)

⎤

⎥
⎦

(34) 

And transformed second pore fluid pressure variation in terms of the 
heat intensity can be predicted by combining Eqs. (30) and (34): 

P̃ef =
(1 − χ)kwμf

χμwkf
P̃ew =

(1 − χ)kwμf

χμwkf

ξQ
K(1 − ζ/κ)

⎡

⎢
⎣

1
(

s
κ + D2

) −
1

(
s
ζ + D2

)

⎤

⎥
⎦

(35) 

According to Eq. (25), a set of transformed deformations can be 
expressed as: 
(

Ũx, Ũy, Ũz

)

= Λ(iα, iβ, iγ) (36)  

where Λ is 1
GD2

[
(λ + G)Ẽv +(1 − χ)P̃ea +χP̃ew −b́Θ̃

]
. 

By having Θ̃, Ẽv, P̃ew, and P̃ef according to Eqs. (29), (32), (34), and 
(35), it can be indicated that: 

Λ =
Q
K

au

⎡

⎢
⎣

Y
(

s
κ + D2

)
D2

−
Z

(
D2 + s

ζ

)
D2

⎤

⎥
⎦ (37)  

where Y = 1
λ+2G

(

au(λ+2G)−b́
(1−

ζ
κ)au

+ b́
au

)

, and Z = 1
λ+2G

(

au(λ+2G)−b́
(1−

ζ
κ)au

)

. 
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Eqs. (29), (34), (35), and (37) are the main transformed equations for 
the set of main variables (u, p, T) which can be written in the form of 
F (D, s) = A(

s
B+D2

), where A, B are constants. In order to analyze thermal 

consolidation, it is essential to find the inverse Laplace-Fourier trans-
form of F (D, s). The inverse transforms in a spherical coordinate system 
can be calculated much easier by amending a rectangular to a spherical 
coordinate system: 

R =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(x2 + y2 + z2)

√
(38)  

where R is the location of a point in a spherical coordinate system. 
The inverse transform of F (D, s) in a spherical coordinate can be 

derived as (See Appendix A): 

f (R, t) =
A

4πR
erfc(

R
2

̅̅̅̅̅
Bt

√ ) (39) 

According to Eq. (39), deformations (u), pore fluids pressures (p), 
and temperature (T) can be defined as follows: 

T(R, t) =
Q

4πKR
f
(

κt
R2

)

pew(R, t) =
ξ

(
1 −

ζ
κ

)
Q

4πKR

[

f
(

κt
R2

)

− f
(

ζt
R2

) ]

pef (R, t) =
(1 − χ)kwμf

χμwkf

ξ
(

1 −
ζ
κ

)
Q

4πKR

[

f
(

κt
R2

)

− f
(

ζt
R2

) ]

εv =
Q

(λ + 2G)4πKR

⎡

⎢
⎣

au(λ + 2G) − b́
(

1 −
ζ
κ

)

[

f
(

κt
R2

)

− f
(

ζt
R2

) ]

+ b́f
(

κt
R2

)
⎤

⎥
⎦

uR(R, t) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ux
2 + uy

2 + uz
2

√

= au
Q

4πK
ġ

(40)  

where 

f
(

κt
R2

)

= erfc
(

R
2

̅̅̅̅
κt

√

)

g
(

κt
R2

)

=
κt
R2 +

(
1
2

−
κt
R2

)

erfc
(

R
2

̅̅̅̅
κt

√

)

−

̅̅̅̅̅̅̅̅
κt

πR2

√

exp
(

−
R2

4κt

)

ġ = Yg
(

κt
R2

)

− Zg
(

ζt
R2

)

And uR is the absolute radial deflection in a spherical coordinate 
system. It comprises three axial components in x, y , and z directions 
which are obtained easily as |x|

R au
Q

4πKġ, |y|

R au
Q

4πKġ, and |z|

Rau
Q

4πKġ, respectively. 
Moreover, the summation of absolute values results in cumulative (total) 
deflection. 

Eq. (40) is the closed-form solution for thermal consolidation of a 
porous medium containing two immiscible fluids around a point heat 
source embedded in an infinite domain and located at the origin. 

The axial strains εij and stresses σij in all directions can be derived by 
Eqs. (2) and (6) and using the following derivatives: 

∂
∂x

(
x

R2 erfc(R)

)

=
erfc(R)

R2 −
2x2erfc(R)

R4 −
2x2exp

(
− R2)

̅̅̅
π

√
R3

∂
∂y

(
x

R2 erfc(R)

)

= −
2xyerfc(R)

R4 −
2xyexp

(
− R2)

̅̅̅
π

√
R3

∂
∂z

(
x

R2 erfc(R)

)

= −
2xzerfc(R)

R4 −
2xzexp

(
− R2)

̅̅̅
π

√
R3

(41)  

where R =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(x2 + y2 + z2)

√
.

4. Analytical solution for spherical and cylindrical heat sources 

In this study, two different heat sources are considered separately 
with spherical and cylindrical geometry. Then, thermal consolidation in 
unsaturated soil in the vicinity of each of the heat sources is derived 
separately based on the developed solution for a point heat. According to 
Fig. 1 (a), if a point heat source is placed on a line between the object 
point (the desirable point at which deflections, pressures, and temper-
ature are estimated) and the origin, a general function can be defined 
based on their distances. 

f (RLocal, t) = f (R − Rs, t) (42)  

where f is a linear function, RLocal(= R − Rs) is the distance between the 
object point and the point heat source, Rs is the location of the point heat 
source, and R is the location of the object point (please see Fig. 1a). 
When a spherical heat source is buried far enough from the ground 
surface, the problem can be solved in one-dimensional with respect to 
radius due to symmetry. Therefore, the solution for the thermal 
consolidation of unsaturated soils at any point close to a spherical heat 
source with a radius of R0 can be derived using Eqs. (40) and (42) and by 
considering the origin at the center of the sphere (please see Fig. 2a). 
Please note, in this case, similar to the point heat source, shear stresses 
and shear strains are equal to zero, due to the symmetry.  

T(R, t) =
Q

4πK(R − R0)
f

(
κt

(R − R0)
2

)

pew(R, t) =
ξ

(
1 −

ζ
κ

)
Q

4πK(R − R0)

[

f

(
κt

(R − R0)
2

)

− f

(
ζt

(R − R0)
2

) ]

pef (R, t) =
(1 − χ)kwμf

χμwkf

ξ
(

1 −
ζ
κ

)
Q

4πK(R − R0)

[

f

(
κt

(R − R0)
2

)

− f

(
ζt

(R − R0)
2

) ]

εv =
Q

(λ + 2G)4πK(R − R0)

⎡

⎢
⎣

au(λ + 2G) − b́
(

1 −
ζ
κ

)

[

f

(
κt

(R − R0)
2

)

− f

(
ζt

(R − R0)
2

) ]

+ b́f

(
κt

(R − R0)
2

)
⎤

⎥
⎦

uR(R, t) = au
Q

4πK
ġ

(43)   
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where q =
Qδ(R−R0)

4πR0
2 , and ġ = Yg

(

κt
(R−R0)

2

)

−Zg

(

ζt
(R−R0)

2

)

. Note, heat flux 

(q) is defined differently for point, cylindrical, and spherical heat 
sources. 

For the cylindrical heat source, the problem can be solved in a two- 
dimensional axisymmetric condition (r, z) where, r is the radial coordi-
nate with its origin at the central line passing through the center of the 
heat source and z is the vertical coordinate which is positive downward 
(Fig. 2b). Note, to amend a spherical to a cylindrical coordinate, it can be 
declared that R =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 + z2

√
, where R is a radius in a spherical 

coordinate. 
As mentioned above, in the first step, the presented solution for a 

point heat source in Eq. (40) should be modified to consider the effect of 
a point heat source where located in an arbitrary point other than the 
origin (Fig. 1b). To modify the solution for the cylindrical coordinate 

system, another relation is defined: 

f (RLocal, t) = f
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − rs)
2

+ (z − zs)
2

√

, t
)

(44)  

where f is a linear function, RLocal is the distance between the object 
point and the point heat source, (rs, zs) is the location of the point heat 
source, and (r, z) is the location of the object point in a cylindrical co-
ordinate. 

Since the derived equations for a point heat source are linear, ac-
cording to Green’s function theory, the superposition technique is valid 
(Ã–zisik et al., 1993). Thus, the solution for a cylindrical heat source 
with a radius of r0 can be derived by integrating the solution of a point 
heat source on the area of cylinder. By considering the origin at the 
center of the heat source, the solution in an axisymmetric domain can be 
derived as (Please see Fig. 2b): 

Fig. 1. Schematic of the location of the point heat source and the object point in (a) 1-D condition (Spherical loading), (b) 2-D axisymmetric cylindrical condition.  

Fig. 2. Schematic configuration of the problem. (a) Spherical heat source (b) Cylindrical heat source.  
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where q=
Qδ(r−r0)

2πr0h , ġ= Yg

(

κt
(r−r0)

2
+(z−zs)

2

)

−Zg

(

ζt
(r−r0)

2
+(z−zs)

2

)

, g
(

κt
R2

)

=

κt
R2+

(
1
2− κt

R2

)

erfc
(

R
2

̅̅̅
κt

√

)

−
̅̅̅̅̅̅
κt

πR2

√
exp

(

−R2

4κt

)

, uR is a deflection vector with 

two components in r (radial deflection) and z (vertical deflection) di-

rections equal to 
∫ h

2
−h

2

|r−r0 |̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(r−r0)

2
+(z−zs)

2
√ au

Q
4πhKġdzs, and 

∫ h
2
−h

2

|z−z0 |̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(r−r0)

2
+(z−zs)

2
√ au

Q
4πhKġdzs, respectively. Note, to derive Eq. (45), the 

origin is considered at the center of the heat source; however, it can be 
located at any desirable point on the line passing through the center of 
the source. 

The same method can be used to derive a solution for a cubical heat 
source using Eq. (38). 

5. Temporal discretization approach (stepwise linear solution) 

In practice, the coefficients in Eqs. (21) (K, χ, kw, μw, …) which 
represent thermal, hydraulic, and mechanical properties of the soil 
media vary during the thermal consolidation process with the change of 
the prime variables (u, p, t). Since analytical solutions can only solve 
linear equations, the variation of the coefficients cannot be considered in 
analytical models. This simplifying assumption causes an error that 
might be noticeable when thermal stresses are enormous. To minimize 
the error generated by assuming constant coefficients, a temporal dis-
cretization approach is adopted in this study, so that the coefficients are 
updated based on the values of the main variables predicted in the 
previous time step. 

If the set of coefficients (K,χ, kw, μw, …) and the set of prime variables 
(u, p, t) are represented by C and J, respectively, according to the 
explained method, for ith time step it can be expressed that: 

C(i) = l(J(i − 1) )&J(i) = H(C(i) ) 1 ≤ i ≤ m (46)  

where l denotes the correlations (e.g. a relation between Bishop’s 
effective stress parameter χ, and matric suction) which relate the co-
efficients to the prime variables, H is the analytical solution derived in 
the previous section, and m is the total number of time steps. 

In the following, to obtain the stepwise solution for unsaturated soils, 
proposed functions for thermal, hydraulic, and mechanical properties of 

an unsaturated soil are presented which all are borrowed from the 
literature. Please note, the same method can be employed for soils with 
two immiscible fluids. 

Thermal conductivity can be predicted based on the soil saturation 
degree as follows (Johansen, 1977): 

Kunsat = (log(S) + 1 )
(
Ksat − Kdry

)
+ Kdry (47)  

where S is the soil saturation degree, and Kunsat, Ksat, and Kdry are soil 
thermal conductivity in unsaturated, saturated, and dry conditions, 
respectively. 

Volumetric heat capacity of the unsaturated medium can be pre-
dicted as below: 

ρc = nS(ρc)w + n(1 − S)(ρc)a + (1 − n)(ρc)s (48)  

where ρc is volumetric heat capacity, n is porosity, S is saturation degree, 
and subscripts w, a, ands denote water, gas, and solid soil, respectively. 

A relationship between the effective stress parameter and matric 
suction can be expressed as below (Khalili and Loret, 2001): 

χ =

⎧
⎪⎨

⎪⎩

[
βe(T)

ψ

]0.55

for ψ ≥ βe(T)

1 for ψ ≤ βe(T)

(49)  

where ψ = ψ0 −pew is matric suction, ψ0 is initial matric suction, and 
βe(T) is the air entry value at the temperature, T, which can be repre-
sented in terms of the air entry value at the reference temperature, T0, as 
(Khalili and Loret, 2001): 

βe(T) =

(
ϖT

ϖT0

βe(T0)

)

(50)  

where ϖT is the surface tension energy at temperature T which is 
approximated as (Hilgardia, 1943): 

ϖ = 0.1171 − 0.0001516T (51) 

The following relationship to predict water permeability is proposed 
by Brooks and Corey (Brooks and Corey, 1966). 

kw = k × krw = k × S
2+3np

np
e (52) 

T(r, z, t) =

∫ h
2

−h
2

Q

4πhK
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − r0)
2

+ (z − zs)
2

√ f

(
κt

(r − r0)
2

+ (z − zs)
2

)

dzs

pew(r, z, t) =

∫ h
2

−h
2

ξ
(

1 −
ζ
κ

)
Q

4πhK
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − r0)
2

+ (z − zs)
2

√

[

f

(
κt

(r − r0)
2

+ (z − zs)
2

)

− f

(
ζt

(r − r0)
2

+ (z − zs)
2

) ]

dzs

pef (r, z, t) =

∫ h
2

−h
2

(1 − χ)kwμf

χμwkf

ξ
(

1 −
ζ
κ

)
Q

4πhK
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − r0)
2

+ (z − zs)
2

√

[

f

(
κt

(r − r0)
2

+ (z − zs)
2

)

− f

(
ζt

(r − r0)
2

+ (z − zs)
2

) ]

dzs

εv =

∫ h
2

−h
2

Q

(λ + 2G)4πK
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − r0)
2

+ (z − zs)
2

√

⎡

⎢
⎣

au(λ + 2G) − b́
(

1 −
ζ
κ

)

[

f

(
κt

(r − r0)
2

+ (z − zs)
2

)

− f

(
ζt

(r − r0)
2

+ (z − zs)
2

) ]

+ b́f

(
κt

(r − r0)
2

+ (z − zs)
2

)

dzs

⎤

⎥
⎦

uR(r, z, t) =

∫ h
2

−h
2

au
Q

4πhK
ġdzs

(45)   
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where k is the soil intrinsic permeability, krw is the relative permeability 
of water, Se is an effective degree of saturation and is considered equal to 
χ in this study, and np is the pore size distribution index. 

The dynamic viscosity of water can be represented as: 

μw = 2.5 × 10−5 × 10248/(T+133) (53) 

Thermal volume expansion of the unsaturated medium can be esti-
mated as below: 

au = nSaw + (1 − n)as (54)  

where a is thermal expansion coefficient, n is porosity, S is saturation 
degree, and subscripts wands denote water, and solid soil, respectively. 

The above-mentioned relations are used in the temporal discretized 
(stepwise linear) model to derive an accurate solution for unsaturated 
thermal consolidation. 

6. Validation 

The validation is carried out in three steps separately for the gov-
erning equations, the proposed solution, and the analytical results. 

Step 1: For the first step, the derived equations in this study for the 
special case of saturated soil are compared with the equations proposed 
in the literature for saturated thermal consolidation. The derived 
equations in this study for the saturated state (χ = 1) can be represented 
as below: 

G∇2ux + (λ + G)
∂εv

∂x
+

∂pew

∂x
− b́ ∂T

∂x
= 0

G∇2uy + (λ + G)
∂εv

∂y
+

∂pew

∂y
− b́

∂T
∂y

= 0

G∇2uz + (λ + G)
∂εv

∂z
+

∂pew

∂z
− b́

∂T
∂z

= 0

kw

μw
∇2pew +

∂εv

∂t
+ au

∂T
∂t

= 0

∂T
∂t

= κ∇2T +
q
ρc

(55) 

Eqs. (55) are consistent with the equations presented by Booker and 
Savvidou for thermal consolidation in saturated soils (Booker and Sav-
vidou, 1985). Note, there is no second pore fluid continuity equation 
when χ = 1 (saturated state). 

The developed equations in this study for the unsaturated condition 
are also consistent with the equations proposed in the literature for THM 
analysis of unsaturated soils (Khalili et al., 2000; Khalili et al., 2008; 
Shahbodagh-Khan et al., 2015). 

Step 2: To validate the solution approach for a point heat source, the 
accuracy of the solution proposed in Eq. (40) needs to be evaluated. 
However, since the same analytical approach (Eq. (39)) has been 
employed to solve the PDEs for all four parameters (excess pore fluids 
pressures, displacement, and temperature), validating one of them (e.g., 
temperature variations) confirms the accuracy of the solution approach. 
To validate the provided solution for the heat conduction equation, 
Green’s function method is employed. Green’s function estimates the 
effects of a point heat source with unit intensity at time t, located at Ŕ 
activated at an instantaneous time τ on a point in the domain located at 
R (Ã–zisik et al., 1993; Cole et al., 2010). Green’s function for heat 
conduction around a point heat source embedded in the ground in a 
spherical coordinate system can be expressed as (Ã–zisik et al., 1993; 
Cole et al., 2010): 

G(R, t|Ŕ, τ) =
1

[4πκ(t − τ)]
3/2 exp

[

−
(R − Ŕ)2

4κ(t − τ)

]

(56) 

To evaluate the effects of a heat source on the adjacent soil from 0 to t 
(by considering τ = 0 and Ŕ = 0) Green’s function should be integrated 
with respect to time from 0 to t. 

T =

∫ t

0

1
[4πκ(t − τ)]

3/2 exp
[

−
R2

4κ(t − τ)

]

dτ (57) 

The solution for the above integration (Eq. (57)) using Green’s 
function method (Please see Appendix B), matches with the solution 
provided in this study in Eq. (40). 

Step 3: In the last step, temperature increment and excess pore water 
pressure around a point heat source predicted in this study are compared 

Fig. 3. Comparison of thermal consolidation around a point heat source in 
saturated condition (χ = 1) for (a) excess temperature and (b) excess pore 
water pressure obtained in this study by the results presented by Booker and 
Savvidou (1985) and Blanco-Martín et al. (2017). 

Fig. 4. Comparison of excess pore water pressure derived from linear and 
stepwise linear solutions for Q = 100πW,300πW, and 500πW at R = 1m around 
a point heat source. 
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with the solutions proposed by Booker and Savvidou (1985) and Blanco- 
Martín et al. (2017) for a saturated soil (specific condition when χ = 1). 
In the latter study, the authors employed TOUGH-FLAC simulator to 
predict temperature and pore water pressure at distances of R = 0.22,

0.63, and1m from a point heat source while considering, χ = 1, E =

0.65 × 109Pa, ξ = 5.5 × 103Pa.K−1, ζ = 1.63 × 10−5m2s−1, K =

1.2W.m−1.K−1, κ = 1.09 × 10−6m2s−1, Q = 15.6W, and ρc = 4.4 ×

106Jm−3K−1. 
Fig. 3 (a) and (b) compare the temperature increment and excess 

pore water pressure around a point heat source estimated using the 
analytical solution provided in this study with the analytical solution 
available in the literature for a saturated soil (Booker and Savvidou, 
1985; Blanco-Martín et al., 2017). As it can be seen in Fig. 3, the pro-
posed analytical solution for χ = 1 is consistent with the available 
models. 

7. Results and discussion 

In order to present the results, first, linear and stepwise linear solu-

tions proposed in this study are compared to show the errors caused by 
considering constant soil properties during unsaturated thermal 
consolidation around a point heat source. Then, the effects of soil 
saturation degree on the THM behavior of unsaturated soil are assessed 
by comparing thermal consolidation of saturated and unsaturated soils 
around a point heat source. Finally, unsaturated thermal consolidation 
around spherical and cylindrical heat sources are analyzed separately. A 
representative spherical heat source with R0 = 1m and a cylindrical heat 
source with r0 = 1m and h = 10m stretched from z = −5m to z = 5m 
buried in an unsaturated soil are considered separately. The variation of 
pore air pressure during thermal loading in the shallow subsurface is 
neglected. The initial parameters required for numerical study are 
considered as follows: kw

μw
= 0.2 × 10−12m−3.s.kg−1, kf

μf
= 0.2 ×

10−8m−3.s.kg−1, χ = 0.8, λ + 2G = 0.5 × 109Pa, au = 0.2 × 10−4K−1, 
b́ = 0.25 × 104Pa.K−1, K = 1W.m−1.K−1, κ = 7 × 10−5m2s−1 and Q =

100πW, n = 1.5. Dimensionless time in spherical and cylindrical co-
ordinates are defined as t* = 4κt

R0
2 and t* = 4κt

r02, respectively. Please note, 
compressive stresses and strains are considered positive in this study. 

7.1. Comparison of linear and stepwise linear solutions 

To investigate the error caused by neglecting the variation of co-
efficients, the linear and stepwise linear solutions for pore water pres-
sure around a point heat source are compared for three different values 
of heat intensity (Q = 100πW, 300πW, and 500πW). Other parameters 
are kept constant. Fig. 4 compares the values of pore water pressure 
obtained by linear and stepwise linear solutions. When Q = 100πW the 
error is negligible since lower heat intensity (thermal loading) has a 
limited effect on thermal, hydraulic, and mechanical properties of the 
soil media. Thus, for lower amounts of the heat flux (lower than 100πW), 
the closed form solution proposed in this study accurately predicts the 
unsaturated thermal consolidation. However, for Q = 500πW, the 
changes in temperature and pore water pressure are considerable. Thus, 
the variation of the coefficients is tangible and consequently, the error 
induced by employing the linear solution cannot be ignored when 
temperature changes are significant. Consequently, the stepwise method 
should be employed. 

7.2. Effects of saturation degree 

To analyze the performance of the proposed analytical model for the 
unsaturated soil state, temperature variation, excess pore water pres-
sure, and soil deflection in saturated soil (χ = 1) are compared with the 
analytical model considering different values of effective degree of 
saturation (χ = 1,0.8,and0.6). Soil parameters in saturated state (χ = 1)

are considered same as previous sections. However, to accurately model 
the unsaturated condition, all the soil parameters at the 80% and 60% 
saturation degrees (χ = 0.8and0.6) are updated by using Eqs. (47)–(54). 
Fig. 5 compares thermal consolidation for different values of χ. As it can 

Fig. 5. Variation of (a) temperature at R = 1m, (b) pore water pressure at R =

1m, and (c) deflection at t* = 10 for different values of Bishop’s effective stress 
parameter (effective saturation degree). 

Fig. 6. Temperature variations at different locations close to the spherical 
heat source. 
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be seen in the figure, soil temperature increment is higher when the χ is 
lower. This happens because of reduction in thermal conductivity for 
lower effective degree of saturation. This is compatible with the results 
presented in the literature which compared the heat transfer in saturated 
and dry soils (Ghasemi-Fare and Basu, 2018). However, in saturated soil, 
due to the higher amount of water, the thermal volume change (thermal 
expansion) of the pore water in the soil medium is larger, and therefore, 
as it is expected, the excess pore water pressure is higher for the satu-
rated condition. Furthermore, matric suction in unsaturated soil in-
creases the soil strength and consequently, under the same thermal 
stress, unsaturated soil undergoes a lower deflection in comparison with 
saturated soil. Fig. 5 (c) indicates soil deflection in radius at t* = 10 for 
different values of χ. As it can be seen, the analytical model demon-
strates higher deflection when χ increases. Hence, these comparisons 
prove the applicability of this model for predicting thermal consolida-
tion in both saturated and unsaturated conditions. 

7.3. Unsaturated thermal consolidation around a spherical heat source 

In this section, unsaturated thermal consolidation around a spherical 
heat source with R0 = 1m is investigated by using the stepwise linear 
method. Figs. 6–9 present thermal consolidation in the unsaturated soil 
around the spherical heat source. Fig. 6 shows temperature variations 
over time at different points. Temperature undergoes a tremendous 
surge very close to the heat source (R = 2) and reaches an asymptotic 
value at farther points. As can be seen, the intensity of temperature 
growth alleviates over time and thus, it is expected that pore pressure 
generation rate reduces gradually. 

Fig. 7 determines the variation of excess pore water pressure from 
the core of the spherical heat source. The figure illustrates a drastic 
dissipation of excess pore water pressure for zones close to the heat 
source (R < 2) in a short time (e.g., from t* = 1 to t* = 10) while, in 
farther points, excess pore water pressure generation is still superior. 

Fig. 8 (a) and (b), respectively, present the changes in excess pore 
water pressure and the volumetric strain (thermal volume change) 
evolution over time at three different radial distances from the core of 
the heat source. During the early stage of thermal loading, pore fluid and 
solid soils expand. However, due to the difference in thermal expansion 
coefficients of the pore volume and the pore fluid, excess pore fluid 
pressure is generated. As it can be seen in Fig. 8 (a), excess pore water 
pressure generation is not a sudden phenomenon and it continues with a 
decaying intensity due to the transient nature of the thermal loading. It 
also demonstrates that excess pore water pressure generation starts 
earlier at the points closer to the heat source. Then, at a later time, by 
alleviating the temperature increment, the generation rate wanes and 
the dissipation will be dominant. Therefore, excess pore water pressure, 
which depends on both generation and dissipation rates, decreases and 
thermal volume reduction (thermal consolidation) happens due to the 
outflow of the fluid. Results presented in Fig. 8 (b) shows initial thermal 

Fig. 7. Variation of excess pore water pressure in radius from the core of the 
spherical heat source. 

Fig. 8. Variations of (a) excess pore water pressure, and (b) volumetric strain at 
different points close to the spherical heat source. 

Fig. 9. Thermal absolute displacement in radius at different time steps for the 
spherical heat source. 

Fig. 10. Temperature increments along the depth of the cylindrical heat source 
at r = 2. 
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volume expansion in the medium before starting the dissipation of pore 
fluid pressure. Please note, negative volumetric strain denotes thermal 
expansion. Thermal expansion and excess pore water pressure genera-
tion happen immediately close to the heat source. Then, excess pore 
water pressure starts to dissipate in zones close to the heat source while 
thermal expansion and excess pore water pressure generation occur at 
farther zones. Fig. 8 (a) and (b) demonstrate initial expansion and higher 
initial excess pore water generation rate which follow by higher dissi-
pation rate and volume reduction. However, the time corresponding to 
the domination of volume reduction (the peak points in the figures) 
depends on the distance of the object point from the heat source. Note, 
the dissipation rate depends on pore size distribution in the medium and 
thus, the thermal consolidation process in unsaturated soil varies for 
clays with different permeability values. 

In the next step, thermal radial displacement close to the spherical 
heat source is analyzed. Fig. 9 confirms that thermal deflection reaches 
its maximum value very close to the heat source in a short period. It also 
depicts the progress in the thermal consolidation influence zone (where 
the deflection is bigger than zero) which increases from R = 30 at t* = 1 
to R = 80 at t* = 10. 

7.4. Unsaturated thermal consolidation around a cylindrical heat source 

A heat source with r0 = 1m and h = 10m (from z = −5m to z = 5m) 
is considered to present the result for the thermal consolidation in un-
saturated soil around a cylindrical heat source. Fig. 10 demonstrates the 
temperature increment at r = 2 along the depth. The result indicates an 
almost identical temperature increase along the depth at r = 2 in rela-
tively shorter times (t* = 1) while the temperature increment rate is 
higher at the center axis due to the accumulation of heat. 

Fig. 11 demonstrates the variation of pore water pressure along the 
depth of the heat source at r = 2. It can be seen that at the early stage of 
thermal loading (at t* = 1) identical excess pore water pressure 

generated between z = −4 to 4. Comparing temperature increment and 
pore water pressure at the z = 0 in Figs. 10 and 11 at t* = 10 and 100 
indicate that excess pore fluid pressure reaches the maximum value 
while the temperature is still increasing. This confirms that the dissi-
pation of the pore water pressure can be dominant even during the 
thermal loading. That is to say, there are thermal expansion and pore 
water pressure generation from t* = 10 to t* = 100; however, the rate of 
consolidation and pore pressure dissipation is dominant. Fig. 11 also 
shows while dissipation of pore water pressure close to the heat source 
(from z = −6 to 6) is dominant from t* = 10 and t* = 100, during the 
same time, pore fluid pressure generation is dominant at the farther 
zones (z > 6orz < −6). 

Fig. 12 presents volumetric strain evolution over time along the 
depth of the heat source. According to Fig. 12, initially, at t* = 1 soil 
close to the heat source tends to expand, but gradually with the dissi-
pation of the pore fluid pressure, thermal volume reduction is visible. It 
is also interesting to note that, while thermal consolidation happens in 
the zones closer to the heat source, thermal expansion is still the primary 
mechanism that determines the soil behavior in farther zones. 

8. Conclusion 

Thermal consolidation in porous media is a challenging problem in 
various engineering fields. The available analytical models for soil 
thermal consolidation are derived for the fully saturated condition. 
While in several cases heat sources are buried in the vadose zone or a 
porous medium with two immiscible pore fluids. Thus, thermal 
consolidation needs to be analyzed in a three-phase soil system. In this 
paper, a fundamental analytical solution for thermal consolidation in 
three-phase fine-grained soils (e.g., unsaturated thermal consolidation 
in clayey soils) in the vicinity of an embedded heat source is developed 
based on the effective stress concept. The developed model considers the 
variation of pore water pressure, and displacements induced by tran-
sient heat transfer in a thermo-elastic soil medium around a heat source. 
PDEs governing thermo-hydro-mechanical behavior of three-phase soils 
are developed and the solution is derived by employing Fourier-Laplace 
transformation. The inverse transformation is carried out fully analyti-
cally and thus, a closed-form solution is developed. Then, to consider the 
variation of the soil properties (coefficients in the governing equations) 
during the thermal consolidation process, a temporal discretization 
method is implemented. The analytical model is validated through a 
three-step validation process including validating the developed equa-
tions, the derived solution, and the results. The variation of excess pore 
fluid pressures, volumetric strain, and soil displacement are studied 
around both spherical and cylindrical heat sources. The analytical re-
sults demonstrate while temperature increases, the excess pore fluid 
pressures may drop. Moreover, while unsaturated thermal consolidation 
occurs in points closer to the heat source, thermal expansion, and excess 
pore fluid generation can be still dominant in farther zones. 
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Appendix A 

The inverse Fourier transformation of A(
s
B+D2

) in a spherical coordinate system can be expressed as: 

A
(2π)

3

∫ ∞

0

∫ π

0

∫ 2π

0

exp(iRDsin(η) )
(

D2 + s
B

) cos(η)D2dςdηdD (A.1) 

Integrating with respect to ς yields: 

A
(2π)

2

∫ ∞

0

∫ π

0

exp(iRDsin(η) )
(

D2 + s
B

) cos(η)D2dηdD (A.2) 

Then, by integrating with respect to η Eq. (A.2) can be simplified as below: 

A
(2π)

2

∫ ∞

0

[
exp(iRDsin(η) )

iRD

]
π
0

D2
(

D2 + s
B

) dD (A.3) 

Due to the nature of the problem and since parameters in this study only adapt real numbers, the real part of Eq. (A.3) should be considered. Using 
Euler’s formula exp(ix) = cosx + isinx, and considering 1i = −i, the real part of Eq. (A.3) can be written as: 

A
(2π)

2R

∫ ∞

0
2sin(RD)

D
(

D2 + s
B

) dD (A.4) 

Inverse Fourier transform of A(
s
B+D2

) is derived by solving Eq. (A.4), as follows: 

F(R, s) =
A

4πR
exp(−

̅̅̅
s
B

√

R) (A.5) 

Calculating the inverse Laplace transform of Eq. (A.5) yields: 

f (R, t) =
A

4πR
erfc(

R
2

̅̅̅̅̅
Bt

√ ) (A.6)  

Appendix B 

By considering t −τ = ω Eq. (57) could be restated as below: 

T = −
1

[4πκ]
3/2

∫ t

0

1
ω3/2 exp

[

−
R2

4κω

]

dω (B.1)  

where dω = −dτ. 
In order to solve Eq. (B.1), it is needed to come up with a solution for the integration below: 

∫
1

ω3/2 exp
[

−
a2

ω

]

dω (B.2)  

where = R
2

̅̅
κ

√ . 

To solve Eq. (B.2), a new variable is defined as ω−1
2 = ϕ. Thus, Eq. (B.2) could be rearranged with respect to the new variable as: 

∫
1

ω3/2 exp
[

−
a2

ω

]

dω = − 2
∫

exp
[

− a2ϕ2]
dϕ (B.3) 

The error function is defined as: 
∫

exp
(

−b2x2
)
dx =

̅̅
π

√

2b erf(bx). 
Eq. (B.3) can be rearranged using the Error function as below 

∫
1

ω3/2 exp
[

−
a2

ω

]

dω = − 2
∫

exp
[

− a2ϕ2]
dϕ = −

̅̅̅
π

√

a
erf(aϕ) (B.4) 

By using Eq. (B.4), soil temperature response (Eq. (B.1)) can be expressed as: 

T = −
1

4πκR

[

erf
(

R̅̅̅̅
̅̅̅̅

4κω
√

) ]t

0
= −

1
4πκR

[

erf
(

R̅̅̅
̅̅̅̅

4κt
√

)

− 1
]

(B.5) 
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Complementary error function is defined as erfc(x) = 1 −erf(x). Therefore, Eq. (B.5) can be expressed as below: 

T =
1

4πκR

[

erfc
(

R
̅̅̅̅̅̅̅
4κt

√

) ]

(B.6) 

Eq. (B.6) predicts soil temperature variation induced by a point heat source with unit intensity. Thus, for a point heat source with the intensity of Qρc , 
temperature evolution could be calculated as below: 

T =

Q
ρc

4πκR

[

erfc
(

R̅̅̅
̅̅̅̅

4κt
√

) ]

=
Q

4πKR

[

erfc
(

R̅̅̅
̅̅̅̅

4κt
√

) ]

(B.7)  

where κ = K
ρc. 
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