
Proceedings of the ASME 2021 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2021
August 17-20, 2021, Online, Virtual

IDETC2021-70502

GRADIENT-ENHANCED MULTIFIDELITY NEURAL NETWORKS FOR
HIGH-DIMENSIONAL FUNCTION APPROXIMATION

Jethro Nagawkar
Department of Aerospace Engineering

Iowa State University
Ames, Iowa, 50011

Email: jethro@iastate.edu

Leifur Leifsson∗
Department of Aerospace Engineering

Iowa State University
Ames, Iowa, 50011

Email: leifur@iastate.edu

ABSTRACT
In this work, a novel multifidelity machine learning (ML)

algorithm, the gradient-enhanced multifidelity neural networks
(GEMFNN) algorithm, is proposed. This is a multifidelity ex-
tension of the gradient-enhanced neural networks (GENN) algo-
rithm as it uses both function and gradient information available
at multiple levels of fidelity to make function approximations.
Its construction is similar to the multifidelity neural networks
(MFNN) algorithm. The proposed algorithm is tested on three
analytical functions, a one, two, and a 20 variable function. Its
performance is compared to the performance of neural networks
(NN), GENN, and MFNN, in terms of the number of samples re-
quired to reach a global accuracy of 0.99 of the coefficient of
determination (R2). The results showed that GEMFNN required
18, 120, and 600 high-fidelity samples for the one, two, and 20
dimensional cases, respectively, to meet the target accuracy. NN
performed best on the one variable case, requiring only ten sam-
ples, while GENN worked best on the two variable case, requir-
ing 120 samples. GEMFNN worked best for the 20 variable case,
while requiring nearly eight times fewer samples than its nearest
competitor, GENN. For this case, NN and MFNN did not reach
the target global accuracy even after using 10,000 high-fidelity
samples. This work demonstrates the benefits of using gradient
as well as multifidelity information in NN for high-dimensional
problems.

∗Address all correspondence to this author.

INTRODUCTION
Surrogate modeling methods are useful for reducing the

computational cost in various problems involving optimum de-
sign [1, 2], uncertainty quantification [3, 4], and global sensitiv-
ity analysis [5, 6]. In these methods, a computationally efficient
surrogate model replaces an expensive physics-based model, re-
ducing the overall cost involved in solving such problems.

Surrogate modeling methods can be broadly classified as ei-
ther being data-fit methods [7] or multifidelity methods [8]. In
data-fit methods, a response surface is fitted through evaluated
single-fidelity sample points. While in multifidelity methods,
low-fidelity data is used to augment the predictive capabilities
of surrogate models constructed from a limited number of high-
fidelity data. High-fidelity models are models that solve the task
at hand with a desired accuracy. Low-fidelity models solve the
same task but at lower cost and with lower accuracy.

A variety data-fit methods exist in literature such as Kriging
[9] (also known as Gaussian process regression) and its variants
[10–12], polynomial chaos expansions [13], and support vector
machines [14]. Of these methods, Kriging is the most widely
used method in various engineering analysis and design tasks
[15]. Kriging, however, suffers from a variety of issues such as
being poor at approximating discontinuous functions [16], diffi-
culty in handling high-dimensional problems [17], costly to use
in the presence of a large number of data samples [15], and be-
ing difficult to implement [18]. Several methods have been in-
troduced to handle these issues such as the use of gradient in-
formation [15,19], and the partial least-squares correlation func-

1 Copyright © 2021 by ASME

tions [11, 12]. While improvements have been reported, several
of the key issues still remain [18, 20].

Multifidelity methods have been introduced as a way of re-
ducing the overall cost involved in engineering design and anal-
ysis tasks [8, 15]. The key benefit is the use of low-fidelity
data, along with a limited number of high-fidelity data, reduc-
ing the overall cost in acquiring the data to construct the surro-
gate model. Cokriging [21], the multifidelity version of Kriging,
and its variants [22, 23], while becoming popular in design and
analysis tasks, still suffers from the issues associated with Krig-
ing [18].

The use of neural networks (NN) [24] in engineering de-
sign and analysis problems is becoming more prevalent [18, 20].
NN overcome many of the major challenges in Kriging models
such as the ability to handle high-dimensional datasets [20], scal-
ability with the number of data [24], easier to implement [18],
as well as being good at approximating discontinuous data [18].
The major drawback of NN is that they require a large number of
samples to make accurate predictions [24], especially for high-
dimensional problems [20]. To overcome this challenge, differ-
ent NN variants, such as gradient-enhanced NN (GENN) [20,25],
and multifidelity NN (MFNN) [18], have been recently intro-
duced.

In this work, a multifidelity variant of GENN [25], gradient-
enhanced MFNN (GEMFNN) is introduced and demonstrated
on three different analytical problems, involving one, two, and
20 variables. The proposed approach is compared to NN [24],
GENN [25], and MFNN [18] for these problems. GEMFNN are
constructed in a similar fashion as MFNN by leveraging both
function and gradient information available from low- and high-
fidelity models to yield accurate function approximations. To the
author’s knowledge, the proposed GEMFNN is a novel machine
learning (ML) modeling algorithm.

The remainder of this paper is organized in the following
way. The next section describes the methods used to construct
the GEMFNN ML algorithm. In the following section, the
GEMFNN algorithm is demonstrated on three analytical bench-
mark problems. This paper then ends with the conclusion and
future work.

METHODS
This section describes the construction of the GEMFNN ML

algorithm. An outline of the GEMFNN-based analysis is first
introduced, followed by the sampling plan used to generate the
data, which is needed in order to train and test this ML algorithm.
The construction methodology of the GEMFNN algorithm is dis-
cussed in the following section, followed by the validation metric
used to quantify its global accuracy. Finally, this algorithm can
be used for further analysis, such as optimal design and uncer-
tainty quantification.

Sampling plan

Observations

Construct GEMFNNs

Validation

High-fidelity model

Low-fidelity model
Resample

𝐱𝐱H, 𝐲𝐲H,∇𝐲𝐲H

𝐱𝐱L, 𝐲𝐲L,∇𝐲𝐲L

𝐗𝐗

y, ∇y

�𝐲𝐲H,∇�𝐲𝐲H

GEMFNNs - based
analysis

𝑅𝑅2 < 0.99

𝑅𝑅2 ≥ 0.99

FIGURE 1. FLOWCHART OF THE GRADIENT-ENHANCED
MULTIFIDELITY NEURAL NETWORK CONSTRUCTION.

Outline of the GEMFNN Construction
A flowchart of the GEMFNN construction is shown in

Fig. 1. It begins by sampling the input design space, X ∈ Rm×n,
first, in order to generate the data required to both train and test
the ML algorithm. m is the number of samples and n is the
number of input variables. The training data consists of two dif-
ferent sample sets, one for evaluating the high-fidelity model,
xH ∈ RmH×n, and the other for evaluating the low-fidelity model,
xL ∈RmL×n. mH and mL are the number of high- and low-fidelity
samples, respectively. Both the function and its gradients need
to be evaluated at the high- (yH ∈ RmH×1 and ∇yH ∈ RmH×n)
and low-fidelity models (yL ∈RmL×1 and ∇yL ∈RmL×n), respec-
tively. yL and yH together represent the combined observation
y ∈ Rm×1, while ∇yL and ∇yH together represent the combined
observation ∇y∈Rm×n. A separate testing set is created by eval-
uating only the high-fidelity model’s function and its gradients.
ŷH ∈RmH×1 and ∇ŷH ∈RmH×n are the high-fidelity function and
gradient predictions, respectively, from the GEMFNN. The accu-
racy of these predictions are then measured using the coefficient
of determination (R2) error metric. The above process is repeated
several times, each with an increasing training sample size, until
terminating on the validation criteria. On terminating, GEMFNN
can be used for further analysis in engineering design and analy-
sis.

Sampling Plan
Sampling is the first process involved in constructing the

GEMFNN. It is the process of selecting discrete samples in the
variable space [15]. In this study , both the full factorial sampling
plan [15], as well as the Latin Hypercube sampling (LHS) [26]
plan are used to generate both the training and testing data. The
choice of the sampling plan used is case dependent and is dis-
cussed in their corresponding sections.

2 Copyright © 2021 by ASME

𝐱L,1

𝐱L,n

𝐱H,1

𝐱H,n

ො𝐲L ො𝐲H

𝐍𝐍L 𝐍𝐍H2

𝐍𝐍H1

ω෤𝐲l

(1 - ω)෤𝐲nl

FIGURE 2. MULTIFIDELITY NEURAL NETWORK ARCHITEC-
TURE (ADAPTED FROM [18]).

Gradient-Enhanced Multifidelity Neural Networks
NN are universal function approximators [24], where a hier-

archy of features, known as layers, is used to approximated any
given function. The layers in-between the input and output lay-
ers are called hidden layers. The output and hidden layers con-
tain neurons, which are a fundamental unit of computation and
contain an activation function [24]. In NN, an unconstrained op-
timization problem is solved, where the parameters of the NN are
tuned using the Adaptive Moments (ADAM) [27] gradient-based
optimizer [24], where the backpropagation algorithm [28] is used
to compute the gradients. In this study, the mean squared error
(MSE) is used as the loss function in the optimization problem is
given by

LNN =
∑

N
l=1(ŷ

(l)
H − y(l)H)2

N
, (1)

where N the number of samples in a subset of the training data,
called mini-batch [24], is used to minimize the mismatch be-
tween the high-fidelity training data observations, yH, and the
predicted values, ŷH, of the NN.

GENN [20] modify the loss function in (1) by adding the
mismatch match between the high-fidelity training data gradient,
∇yH, and the predicted gradient of the NN, ∇ŷH, to it, and is
given by

LGENN = LNN +
∑

N
l=1 ∑

D
k=1(∇ŷ(l)H,k−∇y(l)H,k)

2

N
, (2)

where D is the dimension of the input variable space. This loss
function ensures a reduction in the mismatch between both the
function and its tangent at a given training point to the corre-
sponding true values, respectively.

A schematic of the MFNN [18] architecture is shown in Fig.
2. It contains three NN, NNL, which is used to approximate the
low-fidelity data, the output of which is used as an additional in-
put variable to two other NN, NNH1 and NNH2 . NNH1 and NNH2
are used to capture the linear (ỹl) and nonlinear correlations (ỹnl)
between high- and low-fidelity data. NNH1 contains linear acti-
vation functions, while NNH2 contains nonlinear activation func-
tions. The weighted sum of the outputs of the linear and nonlin-
ear layer gives the high-fidelity prediction of the MFNN as

ŷH = ω ỹl +(1−ω)ỹnl , (3)

where ω is an additional parameter of the MFNN. Note that NN
and GENN use only the NNH2 part of MFNN, but do not include
ŷL as an additional input parameter. The loss function of MFNN
is given as

LMFNN = LNN +
∑

N
l=1(ŷ

(l)
L − y(l)L)2

N
. (4)

The proposed GEMFNN algorithm is a novel multifidelity
version of GENN [25] and is constructed similar to MFNN [18].
It uses gradient information available at high and low-fidelity
data during training. The new and unique loss function for
GEMFNN is taken as

LGEMFNN =LMFNN +
∑

N
l=1 ∑

D
k=1(∇ŷ(l)L,k−∇y(l)L,k)

2

N

+
∑

N
l=1 ∑

D
k=1(∇ŷ(l)H,k−∇y(l)H,k)

2

N
.

(5)

The steps in the GEMFNN algorithm are as follows:

1. Normalize the input, output and gradient of output with re-
spect the inputs for all the data.

2. Perform forward propagation through NNL to get ŷL. Then
do the same through the MFNN to get ŷH.

3. Use reverse mode automatic differentiation [29] to calculate
both ∇ŷL and ∇ŷH.

4. Calculate LGEMFNN using (5).
5. Use backpropagation [28] to calculate the gradient of

LGEMFNN with respect to all the parameters in GEMFNN
(θ), given by ∇LGEMFNN .

6. Update the parameters:

θ ← θ −α∇LGEMFNN , (6)

where α is the learning rate hyperparameter.

3 Copyright © 2021 by ASME

7. Iterate over steps 2− 6 till all the mini-batches present in
one epoch is used. One epoch refers to one iteration over an
entire training dataset [24].

8. Repeat steps 2−7 for all the epochs.
9. GEMFNN is now trained and ready to be used for function

approximation.

Validation
In this work, the coefficient of determination is used to mea-

sure the global accuracy of the ML algorithms, R2, given as

R2 = 1−
∑

Nt
j=1(y

(j)
t − ŷ(j)

t)2

∑
Nt
j=1(y

(j)
t − ȳt)2

, (7)

where Nt is the total number of testing data samples in one
dataset, ŷ(j)

t and y(j)
t are the ML algorithm estimation and high-

fidelity observation of the jth testing point, respectively, and ȳt is
the mean of y(j)

t , given by

ȳt =
∑

Nt
j=1 y(j)

t

Nt
. (8)

R2 is the measure of “Goodness of fit” [15] of an algorithm.
When R2 equals one, the algorithm has approximated the true
function perfectly. R2 = 0 implies that the algorithm prediction
is the same as the mean of the true function, while R2 less than
zero implies that the mean of the true function is better than the
algorithm at predicting the trend of the true function. This makes
it easier to chose the global accuracy criterion. In this work, a
value of R2 greater than 0.99 is considered an acceptable global
accuracy.

In this work, for each high-fidelity sample size and for each
ML algorithm, the mean and the standard deviation of the R2

metric is plotted using ‘nt ’ different datasets. This is done in
order to account for the variation in the training data used as well
as due to the stochastic nature of the ADAM optimizer [27]. The
mean of R2 is

µR2 =
∑

nt
k=1 R2

k
nt

, (9)

and the standard deviation is

σR2 =

√
∑

nt
k=1(R

2
k−µR2)2

nt
. (10)

In this work, nt is set to ten for all the cases.

TABLE 1. ONE DIMENSIONAL FUNCTION MODELING COST.

ML algorithm Modeling cost

NN 10

GENN 12∗

MFNN 12∗∗

GEMFNN 18∗,∗∗

∗Function plus gradient evaluation cost
∗∗Plus 50 low-fidelity training samples

NUMERICAL EXAMPLES
In this study, the GEMFNN ML algorithm is demonstrated

on three different analytical problems. The first is an one vari-
able analytical function. The second, the two variable Rastrigin
function [30], and the final a 20 variable analytical function. The
GEMFNN ML algorithm is compared to other ML algorithms,
namely, NN, GENN, and MFNN.

Case 1: One Dimensional Analytical Function
The one dimensional analytical function used in this study

was developed by Forrester et al. [15] and is written as

fHF(x) = (6x−2)2 sin(12x−4), (11)

where x ∈ [0,1]. Forrester et al. [15] also introduced a corre-
sponding low-fidelity model given by

fLF(x) = 0.5 fHF(x)+10(x−0.5)−5. (12)

The corresponding gradient of the high-fidelity model is

∇ fHF(x) =12(6x−2)sin(12x−4)

+12(6x−2)2 cos(12x−4),
(13)

and the low-fidelity model gradient is

∇ fLF(x) = 0.5∇ fHF(x)+10. (14)

ML Algorithm Setup In this case, the full factorial sam-
pling plan is used to generate both the high- and low-fidelity

4 Copyright © 2021 by ASME

5 10 15 20 25

Number of high-fidelity samples

0

0.2

0.4

0.6

0.8

1

1.2

R
2

NN

GENN

MFNN

GEMFNN

R
2
 = 0.99

FIGURE 3. MEAN OF R2 FOR CASE 1.

5 10 15 20

Number of high-fidelity samples

10 -6

10 -4

10 -2

10 0

10 2

R
2

NN

GENN

MFNN

GEMFNN

FIGURE 4. STANDARD DEVIATION OF R2 FOR CASE 1.

training data, as well as the high-fidelity testing data. The testing
data contains 1,000 samples. As discussed the in the previous
section, NN and GENN use only the NNH2 section of the com-
posite NN, while MFNN and GEMFNN use NNL, NNH1 , and
NNH2 . Note that the various hyperparameters used for this case
are kept the same for the different ML algorithms. NNH1 and
NNH2 for this case is set to include only one hidden layer, with
ten neurons, while NNL has 20 neurons and one hidden layer.
Both NNL and NNH2 use the tangent hyperbolic activation func-
tion, while NNH1 uses a linear activation function. The learning

rate is set to 0.001, while the batch size is fixed with a value of
10. The maximum number of epochs used in this case is 15,000.
No regularization is used while training the different ML algo-
rithms.

Results Table 1 shows the number of high-fidelity sam-
ples required by each ML algorithm to reach the global accu-
racy of R2 = 0.99. The multifidelity algorithms use an additional
of 50 low-fidelity sample points. Note that the number of sam-
pling points for the gradient-enhanced cases accounts for both
the cost of evaluating the function and its gradient. Therefore,
200 sampling points for these cases, for example, correspond
to 100 function and 100 gradient evaluations. Figure 3 shows
that NN outperformed all the other algorithms, requiring only
ten high-fidelity samples to reach the global accuracy. GENN
and MFNN both required twelve samples each to reach this ac-
curacy, while GEMFNN required 18 samples. The results in Fig.
3 are generated by averaging the outcomes from ten different
datasets. The corresponding standard deviation for each algo-
rithm is shown in Fig. 4. Figure 4 shows that the standard de-
viation decrease with increase number of samples, resulting in
algorithms that are less sensitive to the training data, as well as
due to the stochastic nature of the ADAM optimizer [27]. For this
case, the cost of evaluating the low-fidelity model is neglected.
The results for this case imply that there is no benefit of using
gradients as well as data from different levels of fidelity in NN
when the model is of a low-dimensional input space.

Case 2: Two Dimensional Rastrigin Function
The two dimensional Rastrigin function [30] used in this

study is written as

fHF(x) = 20+
2

∑
i=1

(x2
i −10cos(2πxi)), (15)

where x ∈ [-1,1.5]. For this study the low-fidelity model

fLF(x) = 0.5 fHF(x)+
2

∑
i=1

(xi−0.5) (16)

is introduced. The corresponding high-fidelity model gradient is

∇ fHF,i(x) = 2xi +20π sin(2πxi), (17)

where i = 1,2, and the low-fidelity model gradient is

∇ fLF,i(x) = 0.5∇ fHF,i(x)+1. (18)

5 Copyright © 2021 by ASME

TABLE 2. RASTRIGIN FUNCTION MODELING COST.

ML algorithm Modeling cost

NN 150

GENN 120∗

MFNN 150∗∗

GEMFNN 120∗,∗∗

∗Function plus gradient evaluation cost
∗∗Plus 500 low-fidelity training samples

0 50 100 150 200

Number of high-fidelity samples

0

0.2

0.4

0.6

0.8

1

1.2

R
2

NN

GENN

MFNN

GEMFNN

R
2
 = 0.99

FIGURE 5. MEAN OF R2 FOR CASE 2.

ML Algorithm Setup The LHS plan is used to gener-
ate the low- and high-fidelity training data, while the full fac-
torial sampling plan is used to generate the testing data. The
testing dataset consists of 10,000 samples. NNL and NNH2 use
two hidden layers, with 50 neurons each, while NNH1 contains
only one hidden layer with ten neurons. Similar to the previous
case, NNL and NNH2 use the tangent hyperbolic activation func-
tion, and NNH1 contains a linear activation function. The batch
size, the learning rate and total number epochs used in this study
are set to 32, 0.001, and 10,000, respectively. No regularization
was used.

Results The number of high-fidelity samples required to
reach the global accuracy threshold of R2 = 0.99 is shown in Ta-
ble 2. The multifidelity algorithms also use an additional of 500

0 50 100 150 200

Number of high-fidelity samples

10 -4

10 -3

10 -2

10 -1

10 0

R
2

NN

GENN

MFNN

GEMFNN

FIGURE 6. STANDARD DEVIATION OF R2 FOR CASE 2.

low-fidelity samples during its construction. The variation of the
R2 error metric with number of high-fidelity samples is shown
in Fig. 5. The results in Fig. 5 are averaged over ten different
datasets. Figure 6 shows the corresponding standard deviations
for the same datasets. GENN and GEMFNN both require 120
high-fidelity sample points to reach the target threshold. NN and
MFNN, other the other hand, require 150 high-fidelity samples to
reach the same threshold. Similar to the previous case, the stan-
dard deviation of the R2 metric decrease with increasing sample
size, as seen in Fig. 6. For this case, the use of multifidelity
data does not add to an improvement in predictive capabilities
of the ML algorithms, however, using gradient information does.
GENN, hence, work best for modeling the Rastrigin function.

Case 3: 20 Dimensional Analytical Function
The high-fidelity model of the 20 dimensional analytical

function [18] is written as

fHF(x) = (x1−1)2 +
20

∑
i=2

(2x2
i − xi−1)

2, (19)

where x ∈ [-3,3]. The corresponding low-fidelity model is [18]

fLF(x) = 0.8 fHF(x)−
19

∑
i=1

0.4xixi+1−50. (20)

The high-fidelity gradient is

∇ fHF,1(x) = 2(x1−1)−2(2x2
2− x1), (21)

6 Copyright © 2021 by ASME

TABLE 3. 20 DIMENSIONAL FUNCTION MODELING COST.

ML algorithm HF sample cost

NN >10,000

GENN 5,000∗

MFNN >10,000∗∗

GEMFNN 600∗,∗∗

∗Function plus gradient evaluation cost
∗∗Plus 30,000 low-fidelity training samples

∇ fHF,i(x) = 8xi(2x2
i − xi−1)−2(2x2

i+1− xi), (22)

for i = 2,3, ...,19, and

∇ fHF,20(x) = 8x20(2x2
20− x19). (23)

The low-fidelity gradient is

∇ fLF,1(x) = 0.8∇ fHF,1(x)−0.4x2, (24)

∇ fLF,i(x) = 0.8∇ fHF,i(x)−0.4(xi−1 + xi+1), (25)

for i = 2,3, ...,19, and

∇ fLF,20(x) = 0.8∇ fHF,20(x)−0.4x19. (26)

ML Algorithm Setup For this case, the LHS plan was
used to generate the training and testing data. The testing data
contains 10,000 samples. Similar to the previous two cases,
NNH1 contains only one hidden layer with ten neurons. NNH2
contains four hidden layers, with 64 neurons, while NNL con-
tains six hidden layers with 128 neurons. No regularization was
used, while the batch size, learning rate, and number of epochs
were set to 64, 0.001, and 10,000, respectively.

Results Table 3 shows the high-fidelity sample cost re-
quired by each ML algorithm to reach the target accuracy.
GEMFNN far outperforms the other algorithms and requires
around eight times fewer samples compared to its nearest com-
petitor, GENN, which requires 5,000 samples. Both NN and

10 2 10 3 10 4

Number of high-fidelity samples

0

0.2

0.4

0.6

0.8

1

1.2

R
2

NN

GENN

MFNN

GEMFNN

R
2
 = 0.99

FIGURE 7. MEAN OF R2 FOR CASE 3.

10 2 10 3 10 4

Number of high-fidelity samples

10 -4

10 -3

10 -2

10 -1

10 0

R
2

NN

GENN

MFNN

GEMFNN

FIGURE 8. STANDARD DEVIATION OF R2 FOR CASE 3.

MFNN fail to meet the target accuracy, even with 10,000 sam-
ples. Figures 7 and 8 show the mean and standard deviations,
respectively, of R2 with respect to the number of high-fidelity
samples, performed using ten different datasets. The mean of
R2 increases, while the standard deviation of R2 decreases with
increasing sample sizes. The benefit of both gradient and mul-
tifidelity information in training the NN is demonstrated for a
high-dimensional problem and is shown in this case.

7 Copyright © 2021 by ASME

CONCLUSION
The GEMFNN ML algorithm is applied to three analytical

cases, namely, a one, two and a 20 dimensional variable prob-
lem, and is compared to NN, GENN, and MFNN. GEMFNN are
a multifidelity version of GENN and its construction is similar
to MFNN. GEMFNN consists of three NN, one to approximate
the low-fidelity data (NNL), which is then connected to two other
NN, one with linear (NNH1) and the other with nonlinear (NNH2)
activation functions, in order to capture both linear and nonlinear
correlations, respectively, between high- and low-fidelity data. In
NN, the loss function used is the MSE between the true and pre-
dicted function values. In GENN, this loss function is modified
by adding the MSE of the true and predicted gradient values to
the original loss function.

NN outperformed all the other algorithms in the one dimen-
sional case, while GENN did the same for the two dimensional
case and GEMFNN for the 20 variable case. This study shows
the benefit of using both gradient and multifidelity information
in training the ML algorithms for high-dimensional cases. It also
shows, that for low dimensional cases, using multifidelity infor-
mation does not improve predictive performance of the ML al-
gorithms.

In this study, for each case, the same hyperparameters are
used for all the algorithms. This may not be ideal for individual
algorithms as they might perform better with different hyperpa-
rameters. Using different hyperparameters such as different ac-
tivation functions, the addition of regularization as well as the
varying the number of hidden layers and the number of neuron
in each hidden layers will need to be done.

This study has been conducted using analytical benchmark
cases. While they do not represent engineering problems, they
are a good starting point in testing ML algorithms. Future appli-
cations of the above algorithms will done on problems involving
optimum design, uncertainty quantification and global sensitivity
analysis.

ACKNOWLEDGMENT
This material is based upon work supported in part by the

National Science Foundation under grant number 1846862 and
by the Department of Energy under a Laboratory Directed Re-
search and Development grant at Ames Laboratory.

REFERENCES
[1] Li, J., Bouhlel, M. A., and Martins, J. R. R. A., 2019.

“Data-based approach for fast airfoil analysis and optimiza-
tion”. AIAA Journal, 57(2), pp. 581–596.

[2] Nagawkar, J., Ren, J., Du, X., Leifsson, L., and Koziel,
S., 2021. “Single- and multipoint aerodynamic shape op-
timization using multifidelity models and manifold map-
ping”. Journal of Aircraft, Articles in Advance, pp. 1–18.

[3] Nagawkar, J., Leifsson, L., and Du, X., 2020. “Applica-
tions of polynomial chaos-based cokriging to aerodynamic
design optimization benchmark problems”. AIAA Scitech
2020 Forum, 6-10 January, Orlando Florida.

[4] Du, X., and Leifsson, L., 2019. “Optimum aerody-
namic shape design under uncertainty by utility theory and
metamodeling”. Aerospace Science and Technology, 95,
p. 105464.

[5] Wang, P., Lu, Z., and Tang, Z., 2013. “An application of the
kriging method in global sensitivity analysis with parame-
ter uncertainty”. Applied Mathematical Modelling, 37(9),
pp. 6543–6555.

[6] Du, X., Leifsson, L., Meeker, W., Gurrala, P., Song, J., and
Roberts, R., 2019. “Efficient Model-Assisted Probability of
Detection and Sensitivity Analysis for Ultrasonic Testing
Simulations Using Stochastic Metamodeling”. Journal of
Nondestructive Evaluation, Diagnostics and Prognostics of
Engineering Systems, 2(4), p. 041002.

[7] Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T.,
Vaidyanathan, R., and Tucker, P. K., 2005. “Surrogate-
based analysis and optimization”. Progress in Aerospace
Sciences, 21(1), pp. 1–28.

[8] Peherstorfer, B., Wilcox, K., and Gunzburger, M., 2018.
“Survey of multifidelity methodsin uncertainty propaga-
tion, inference, and optimization”. Society for Industrial
and Applied Mathematics, 60(3), pp. 550–591.

[9] Krige, D. G., 1951. “Statistical approach to some basic
mine valuation problems on the witwatersrand”. Journal of
the Chemical, Metallurgical and Mining Engineering Soci-
ety of South Africa, 52(6), pp. 119–139.

[10] Schobi, R., Sudret, B., and Wairt, J., 2015. “Polynomial-
chaos-based kriging”. International Journal of Uncertainty
Quantification, 5, pp. 193–206.

[11] Bouhlel, M. A., Bartoli, N., Otsmane, A., and Mor-
lier, J., 2016. “Improving kriging surrogates of high-
dimensional design models by partial least squares dimen-
sion reduction”. Structural and Multidisciplinary Opti-
mization, 53(5), p. 935–952.

[12] Bouhlel, M. A., Bartoli, N., Otsmane, A., and Morlier, J.,
2016. “An improved approach for estimating the hyperpa-
rameters of the kriging model for high-dimensional prob-
lems through the partial least squares method”. Mathemat-
ical Problems in Engineering, 2016(5).

[13] Blatman, G., 2009. “Adaptive sparse polynomial chaos ex-
pansion for uncertainty propagation and sensitivity analy-
sis”. PhD Thesis, Blaise Pascal University, France.

[14] Li, D., Wilson, P. A., and Jiong, Z., 2015. “An Improved
Support Vector Regression and Its Modelling of Manoeu-
vring Performance in Multidisciplinary Ship Design Opti-
mization”. International Journal of Modelling and Simula-
tion, 35, pp. 122–128.

[15] Forrester, A. I. J., Sobester, A., and Keane, A. J., 2008.

8 Copyright © 2021 by ASME

Engineering design via surrogate modelling: A practical
guide. John Wiley and Sons, Ltd, United Kingdom.

[16] Raissi, M., and Karniadakis, G., 2016. Deep multi-fidelity
gaussian processes. arXiv:1604.07484.

[17] Perdikaris, P., Raissi, M., Damianou, A., Lawrence, N. D.,
and Karniadakis, G. E., 2017. “Nonlinear information fu-
sion algorithms for data-efficient multi-fidelity modelling”.
Proceedings of the Royal Society A: Mathematical, Physi-
cal and Engineering Sciences, 473(2198), p. 20160751.

[18] Meng, X., and Karniadakis, G. E., 2020. “A composite neu-
ral network that learns from multi-fidelity data: Application
to function approximation and inverse pde problems”. Jour-
nal of Computational Physics, 401, p. 109020.

[19] Bouhlel, M. A., and Martins, J. R., 2019. “Gradient-
enhanced kriging for high-dimensional problems”. Engi-
neering with Computers, 35(1), p. 157–173.

[20] Bouhlel, M. A., He, S., and Martins, J., 2020. “Scal-
able gradient–enhanced artificial neural networks for air-
foil shape design in the subsonic and transonic regimes”.
Structural and Multidisciplinary Optimization, 61(4),
p. 1363–1376.

[21] Kennedy, M. C., and O’Hagan, A., 2000. “Predicting the
output from a complex computer code when fast approxi-
mations are available”. Biometrika Trust, 87(1), pp. 1–13.

[22] Du, X., and Leifsson, L., 2020. “Multifidelity modeling
by polynomial chaos-based cokriging to enable efficient
model-based reliability analysis of ndt systems”. Journal
of Nondestructive Evaluation, 39(1).

[23] Deng, Y., 2020. “Multifidelity data fusion via gradient-
enhanced gaussian process regression”. Communications
in Computational Physics, 28(5), p. 1812–1837.

[24] Goodfellow, I., Bengio, Y., and Courville, A., 2016. Deep
Learning. The MIT Press, Cambridge, MA.

[25] Czarnecki, W. M., Osindero, S., Jaderberg, M., Świrszcz,
G., and Pascanu, R., 2017. “Sobolev training for neural net-
works”. 31st Conference on Neural Information Processing
Systems (NIPS 2017), Long Beach, CA, USA.

[26] McKay, M. D., Beckman, R. J., and Conover, W. J., 1979.
“A comparison of three methods for selecting values of
input variables in the analysis of output from a computer
code”. Technometrics, 21(2), pp. 239–245.

[27] Kingma, D. P., and Ba, J., 2014. Adam: A method for
stochastic optimization. arXiv:1412.6980.

[28] Chauvin, Y., and Rumelhart, D. E., 1995. Backpropaga-
tion: theory, architectures, and applications. Psychology
press, Hillsdale, NJ.

[29] Rall, L. B., 1981. Automatic Differentiation: Techniques
and Applications. Lecture Notes in Computer Science.
Springer-Verlag, Berlin, Germany.

[30] RASTRIGIN, L. A., 1974. “Systems of extremal control”.
Mir Moscow.

9 Copyright © 2021 by ASME

