High Performance Correctly Rounded Math Libraries
for 32-bit Floating Point Representations

Jay P. Lim
Department of Computer Science
Rutgers University
United States
jpl169@cs.rutgers.edu

Abstract

This paper proposes a set of techniques to develop correctly
rounded math libraries for 32-bit float and posit types. It
enhances our RL1BM approach that frames the problem of
generating correctly rounded libraries as a linear program-
ming problem in the context of 16-bit types to scale to 32-bit
types. Specifically, this paper proposes new algorithms to
(1) generate polynomials that produce correctly rounded
outputs for all inputs using counterexample guided polyno-
mial generation, (2) generate efficient piecewise polynomials
with bit-pattern based domain splitting, and (3) deduce the
amount of freedom available to produce correct results when
range reduction involves multiple elementary functions. The
resultant math library for the 32-bit float type is faster than
state-of-the-art math libraries while producing the correct
output for all inputs. We have also developed a set of cor-
rectly rounded elementary functions for 32-bit posits.

CCS Concepts: » Mathematics of computing — Math-
ematical software; Linear programming; « Theory of
computation — Numeric approximation algorithms.

Keywords: elementary functions, correctly rounded math
libraries, floating point, posits, piecewise polynomials

ACM Reference Format:

Jay P. Lim and Santosh Nagarakatte. 2021. High Performance Cor-
rectly Rounded Math Libraries for 32-bit Floating Point Represen-
tations. In Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation
(PLDI °21), June 20-25, 2021, Virtual, Canada. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3453483.3454049

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PLDI °21, June 20-25, 2021, Virtual, Canada

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8391-2/21/06...$15.00
https://doi.org/10.1145/3453483.3454049

359

Santosh Nagarakatte
Department of Computer Science
Rutgers University
United States
santosh.nagarakatte@cs.rutgers.edu

1 Introduction

Math libraries provide implementations of elementary func-
tions (e.g. log(x), e*, cos(x)) [37]. They are crucial compo-
nents in various domains ranging from scientific computing
to machine learning. Designing math libraries is a challeng-
ing task because they are expected to provide correct results
for all inputs and also have high performance. These ele-
mentary functions are typically approximated with some
hardware supported representation for performance.

Given a representation T with finite precision (e.g., float),
the correctly rounded result of an elementary function f for
an input x € T is defined as the value of f(x) computed with
real numbers and then rounded to a value in the representa-
tion T. The IEEE-754 standard recommends the generation of
correctly rounded results for elementary functions. Seminal
prior work on generating approximations for elementary
functions has resulted in numerous implementations that
have reduced error significantly [5-10, 15, 24, 25, 29, 49]. Fur-
ther, numerous correctly rounded libraries have also been
developed [13, 15]. Unfortunately, they are not widely used
due to performance considerations. Moreover, widely used
libraries do not produce correct results for all inputs.

Mini-max approaches. Most prior approaches identify
a polynomial that minimizes the maximum error among all
input points (i.e., a mini-max approach) compared to the
real value of the elementary function using the Weierstrass
approximation theorem and the Chebyshev alternation the-
orem [47]. The Weierstrass approximation theorem states
that if f is a continuous real-valued function on [a, b] and
€ > 0, there exists a polynomial P such that | f(x)—P(x)| < €
for all x € [a, b]. The Chebyshev alternation theorem pro-
vides the condition for such a polynomial: a polynomial of
degree d that minimizes the maximum error will have at
least d + 2 points where it has the absolute maximum error
and the error alternates in sign. Remez algorithm [37, 39]
is a procedure to identify such mini-max polynomials. The
maximum approximation error has to be below the error
threshold required to produce correct results for all inputs.

As approximating a polynomial in a small domain [a, b]
is much easier, the input domain of the function is reduced
using range reduction [12, 31, 45]. The approximated result
is adjusted to produce the result for the original input (i.e.,
output compensation). Both range reduction and polynomial

PLDI 21, June 20-25, 2021, Virtual, Canada

evaluation in a representation with finite precision will have
some numerical errors. The combination of approximation
errors with the mini-max approach and numerical errors
with polynomial evaluation, range reduction, and output
compensation can result in wrong results.

RL1BM. Our RLiBM approach [31, 32] generates polynomi-
als that approximate the correctly rounded result rather than
the real value of the elementary function. The generation of
the polynomial considers errors in polynomial approxima-
tion and numerical errors in polynomial evaluation, range
reduction, and output compensation to produce the correctly
rounded output for all inputs. The task of generating the
polynomial is then structured as a linear programming (LP)
problem. The RLiBM approach first computes the correctly
rounded result for each input in a target representation T us-
ing an oracle (e.g., the MPFR library [15]). Given the correctly
rounded result for an input, it finds an interval in double
precision such that every value in the interval rounds to
the correctly rounded result, which is called the rounding
interval. The rounding intervals are further constrained to
account for numerical errors during range reduction and
output compensation. Subsequently, it attempts to generate
a polynomial of degree d using an LP solver, which when
evaluated with an input produces a result that lies within
the rounding interval. Using the RLiBM approach, we have
been successful in generating correctly rounded libraries
with 16-bit types such as bfloat16 and posit16.

Challenges in scaling to 32-bits. To extend our RLiBM
approach to 32-bit data types, we have to address the fol-
lowing challenges. First, modern LP solvers can handle a
few thousand constraints. A naive use of the RLiBM ap-
proach with 32-bit types will generate more than a billion
constraints, which is beyond the capabilities of current LP
solvers. Second, it may not be feasible to generate a single
polynomial of a reasonable degree given the large number of
constraints. Third, LP solvers are sensitive to the condition
number of the system of constraints. LP solvers will not be
able to solve an ill-conditioned system of constraints. An
effective range reduction is a strategy to address it. Although
there are excellent books on range reduction [12], these tech-
niques need to be adapted to work with our RL1BM approach.
Fourth, some range reduction strategies need multiple el-
ementary functions themselves (e.g., sinpi(x)). Finally, we
need to ensure that output compensation does not experi-
ence pathological cancellation errors (e.g., cospi(x)).

This paper. Our goal is to generate efficient implementa-
tions of elementary functions that produce correctly rounded
results for all inputs with 32-bit types. This paper extends
our RL1BM approach to scale to 32-bit FP types to address the
challenges described above. We propose (1) sampling of in-
puts with counterexample guided polynomial generation to
handle the large input space, (2) generation of piecewise poly-
nomials for efficiency, (3) deduction of rounding intervals
when a range reduction technique uses multiple elementary

360

Jay P. Lim and Santosh Nagarakatte

functions, and (4) modified range reduction techniques for
some elementary functions to address cancellation errors
in output compensation. Figure 1 pictorially represents our
approach to scale to 32-bit data types.

Counterexample guided polynomial generation. We
sample inputs proportional to the number of representable
values in a given input domain [q, b] with a 32-bit represen-
tation T. To generate polynomials that produce the correctly
rounded result for every input, it is not necessary to consider
every input and its rounding interval. We primarily need to
consider those rounding intervals that are highly constrained.
For each input in the sample, we generate the oracle result
using the MPFR library. We compute the rounding interval
in double precision (i.e., set of values in the double type that
round to the oracle result). We generate LP constraints to
create a polynomial of degree d such that it evaluates to a
value in the rounding interval for each input in the sample.
If the initial sample generates a polynomial that produces
the correctly rounded output for all values in [a, b], then the
process terminates. Otherwise, we add counterexamples to
the sample and repeat the process. The size of the sample
is bounded by the number of constraints that the LP solver
can process.

Piecewise polynomials. When either the number of in-
puts in the sample exceeds our LP constraint threshold or the
LP solver is not able to generate a polynomial, we split the
input domain [a, b] to [a,b’) and [b’, b] to generate piece-
wise polynomials using the above process for each input
sub-domain. We choose the splitting point such that we can
identify the sub-domain quickly using a few bits of the input,
which results in efficient implementations. The ability to
generate piecewise polynomials ensures that our resultant
polynomials are of a lower degree and provide performance
improvements when compared to state-of-the-art libraries.

Range reduction with multiple functions. We pro-
pose new algorithms to deduce rounding intervals for a
class of range reduction techniques that involve multiple
elementary functions. Range reduction reduces the input
x to x’. The creation of the polynomial happens with the
reduced inputs. The output of the polynomial P(x”) should
be adjusted to compute the correctly rounded result for x,
which is called output compensation. We have to deduce
the rounding intervals for the reduced input x” that con-
siders the numerical error in range reduction, polynomial
evaluation, and output compensation. We propose new tech-
niques to create reduced rounding intervals when range
reduction uses multiple elementary functions (e.g., sinpi(x)
in Section 2). These techniques allow us to perform range
reduction on functions that otherwise cause condition num-
ber issues with the LP formulation (i.e., sinh(x) or cosh(x)).
Further, we develop modified range reduction techniques for
some elementary functions to avoid cancellation errors in
output compensation (e.g., cospi(x) in Section 5).

High Performance Correctly Rounded Math Libraries for 32-bit Floating Point Representations

PLDI ’21, June 20-25, 2021, Virtual, Canada

1
1 1 1
nputs xand it xana | || [Recuced | || [[Sit-goman 1] Sample] ' Generate] Moot o]
List of the COfdl’e(éﬂy N the rounding inputs R Sub-domain #1 R polynomial Polynomial #1
allinputs | rounde intervals and reduced
xinT result yT= f(x) Il hinH intervals [i;, hy] Sub-domain #2 — o Polynomial #2
in
for £ lIl R to sample correct? ’|:]

Domain Splitting for
Range Reduction Piecewise Polynomials

Oracle Result

Counterexample Guided Polynomial Generation

Figure 1. Steps in our approach to generate correctly rounded libraries for 32-bit types (T).

The RL1BM-32 prototype. We have developed library
generators and correctly rounded libraries for multiple 32-
bit data types: IEEE-754 float and posits. Our elementary
functions for floats are faster than existing libraries: Intel’s
libm, Glibc’s libm, CR-LIBM [13], and Metalibm [25]. Unlike
existing libraries, our functions produce correctly rounded
results for all inputs. We have developed the first correctly
rounded implementations of functions for 32-bit posits.

2 Overview of Our Approach with sinpi(x)

We provide an overview of our approach for generating
piecewise polynomials for sinpi(x) (i.e., sin(mx)) with a 32-
bit float. The function sinpi(x) is defined for x € (—o0, c0).
There are four billion inputs with a 32-bit float. There are
three kinds of special cases:

if |x| < 1.173--- x 1077

X
sinpi(x) =40 if |x| >= 223
NaN ifx = NaN or x = o0

For the first class of special cases, we compute 7x in double
and round the result to float, which produces the correctly
rounded result for those inputs.

2.1 Our Range Reduction for sinpi(x)

After considering special cases, there are close to 800 million
float inputs that need to be approximated with polynomials.
Using RL1BM’s approach directly with an LP solver will fail.
Next, we perform range reduction to reduce the domain for
polynomial approximation. The key idea is to use periodicity
and trigonometric identities of sinpi(x). We transform input
x into x = 2.0 X I + J, where I is an integer and J € [0, 2). As
a result of periodicity, sinpi(x) = sinpi(J). Next, we further
split J into J = K + L where K € {0, 1} is the integral part of
Jand L € [0,1) is the fractional part. Then, sinpi(J) can be
computed as,

sinpi(J) = (-1 x sinpi(L)

Given that sinpi between [0.5,1) is a mirror image of

values between [0, 0.5), we further reduce as follows:
oot ifL <05
T l1o-1L

if L > 0.5

361

From Sterbenz lemma [42], the expression 1.0 — L can be
computed exactly. Hence, sinpi(L) = sinpi(L’). Even after
reducing the input x to L’ € [0, 0.5], there are around 184
million inputs with a 32-bit float in this reduced domain.

To enable easier polynomial approximation, we further
reduce L’ to a value between [0, SIEJ' We split L as L” =
% +R where N is an integer in the set {0, 1, ...,255} and R is
a fraction that lies in [0, 5%]. There are 110 million reduced
inputs in R ignoring special cases. Now, sinpi(L’) can be
computed using the trigonometric identity sinpi(a + b) =
sinpi(a)cospi(b) + cospi(a)sinpi(b) as follows,

N N
sinpi(L’) = sinpi(ﬁ)cospi(R) + cospi(ﬁ)sinpi(R)

We precompute the values for sinpi(%) and cospi(s—l;g)
in lookup tables (i.e., 512 values in total). Finally, we approx-
imate sinpi(R) and cospi(R) for the reduced input domain
R € [0, 55 To approximate sinpi(x) for the entire domain,
the range reduction requires us to approximate sinpi and cospi
over the reduced domain R. We can compute the result for
sinpi(x) as follows,

sinpi(x) = (-DX x (sinpi(%)cospi(R) + cospi(%)sinpi(R))

2.2 Generating Piecewise Polynomials for sinpi(x)

To produce correctly rounded results for sinpi(x), our ap-
proach involves the following steps. First, we identify the
correctly rounded result and the rounding interval for each
input in the entire domain. Second, we identify the reduced
rounding interval after range reduction. Third, we split the
reduced domain into sub-domains to generate piecewise
polynomials. Fourth, we perform counterexample guided
polynomial generation for each sub-domain. Finally, we val-
idate the generated piecewise polynomials for the entire
input domain.

Step 1: Identifying the correctly rounded result and
the rounding interval. For each input x, we first iden-
tify the correctly rounded result of sinpi(x) using an oracle.
Then, we identify an interval of values [/, h] in double where
all values in the interval rounds to the correctly rounded
result. We call this interval the rounding interval. If our

PLDI 21, June 20-25, 2021, Virtual, Canada

Jay P. Lim and Santosh Nagarakatte

6.1358909..E-3 6.7443925..E-2 5.8516727..E-9

~ 5.85167235..E-9

sinpi(x,) sinpix,) 5.85167230..E-9

6.7443918..E-2 5.8516717..E-9

6.1358904..E-3
X4 X5

R

x1

Reduced input (R) = 1.86264514923095703125e-09
= 0x3E20000000000000

[ofoft]+]1]+]1]ofofoft]ofofo].]

L Common bits —I L Sub-domain _|
index

R)(2

@ () ©

@

2.26752299 - - - x 1078 1.0 7.2177499---x 1072 |1

5.85167231 - - X 10*9} - [1.0

1.8626451--- x 1079 [co - 5.85167232---x 1079
= 12.26752312---x 1078

|y = 3.14159265519844.. X R|

C]

(

Figure 2. (a) A 32-bit float input x; = 1.95-- - X 107> and its correctly rounded result of sinpi(x1) (shown with a black circle). The rounding
interval in double is colored gray. (b) Input xz = 2.14 - - - X 1072, its correctly rounded result for sinpi(xz), and the rounding interval. (c) The
reduced intervals for sinpi(R) corresponding to x; and x; so that both x; and x2 produce correctly rounded results, respectively. Both x;
and xz map to the same reduced input R. The common interval for R is highlighted with darker color. (d) To approximate sinpi(R), we create
a piecewise polynomial with 32 sub-domains in total. We use the 5-bits in the double representation of R to identify the sub-domain for the
piecewise polynomial. () Our LP formulation for generating a piecewise polynomial of degree 1 for the sub-domain with bit-pattern (10001)
with two reduced inputs in the sample. (f) The resulting coefficients returned by the LP solver.

polynomial approximation produces a value in the rounding
interval, the rounded result is the correct result. Consider
the inputs:

x1 = 1.95312686264514923095703125 X 1073
xp = 2.148437686264514923095703125 X 1072

We show the correctly rounded result of sinpi(x) for these
inputs with a black circle in Figure 2(a) and Figure 2(b),
respectively. It also shows the rounding interval in gray.

Step 2: Identifying the reduced interval for input R.
Range reduction transforms input x into R. To produce the
result for sinpi(x), we need to compute both sinpi(R) and
cospi(R) (i.e., multiple elementary functions). The result that
we produce for sinpi(R) and cospi(R) should allow us to
produce the correct result for sinpi(x) (i.e., produce a value
within the rounding interval [/, k] of input x).

To compute sinpi(x), we will generate piecewise poly-
nomials for sinpi(R) and cospi(R). Two inputs x; and x;
(Figure 2(a) and 2(b)) map to the same reduced input after
range reduction,

R = 1.86264514923095703125 x 10~°

Now, we need to deduce an interval [Is’, hs’] for the out-
put of sinpi(R) and an interval [Ic’, h¢’] for the output of
cospi(R) such that the result of output compensation pro-
duces a value within the rounding interval for x. We compute
the correctly rounded value (v) of sinpi(R) in double using
the oracle and set it as our initial guess for [Is’, hs’] (i.e., [v, v]
a singleton). Similarly, we compute the interval [Ic’, hc’] for
cospi(R). Now, we need to check if these intervals are suffi-
cient to produce the correct output for the original input x.
Section 3.2 provides our detailed algorithm. The key idea is

362

to simultaneously lower the lower bound for both sinpi(R)
and cospi(R) and check if output compensation produces the
correct result for all inputs. Similarly, we deduce the upper
bound for both sinpi(R) and cospi(R). The reduced interval
for sinpi(R) from the perspective of x; is [Is1’, hs1’]. Simi-
larly, the reduced interval for sinpi(R) from the perspective
of x; is [Is2’, hs2’]. These reduced intervals for sinpi(R) cor-
responding to x; and x; are shown in Figure 2(c). They are
not identical because our approach considers the numerical
error in both range reduction and output compensation.

Step 3: Splitting the reduced domain into sub-domains.
Now that we have reduced intervals for all reduced inputs,
the next task is to generate polynomials for sinpi(R) and
cospi(R). We illustrate this process with sinpi(R). It is simi-
lar for cospi(R). Even after range reduction, there are approx-
imately 110 million unique reduced inputs for R € [0, z}].
Using our counterexample guided polynomial generation
strategy (Step 4), we attempt to generate a polynomial for
the entire reduced domain. If we cannot generate a poly-
nomial or the polynomial does not satisfy the performance
constraints, then we split the reduced input domain into
smaller sub-domains to generate piecewise polynomials. We
iteratively split the domain into smaller sub-domains un-
til we can produce a polynomial that produces the correct
results for all inputs and satisfies the performance criterion.

Let us say we want to generate 32 (i.e. 2%) piecewise poly-
nomials for the domain [0, ﬁ]. We use the bit-pattern of
the reduced input R in double to identify the sub-domain.
Although the domain of R is [0, ﬁ] the value of R in our
reduced inputs ranges between [27%2,27°] along with R = 0.
There is a large gap of values between the reduced input 0
and 2732, This is because we have already handled special
cases for the original input. Excluding the reduced input
R =0, all other reduced inputs in the double representation
have the left-most six bits identical. Hence, we use 5-bits

High Performance Correctly Rounded Math Libraries for 32-bit Floating Point Representations

after the six left-most bits to identify the sub-domain for the
piecewise polynomial. Figure 2(d) shows the reduced input
R, its double bit-pattern, and the 5-bits used to identify the
sub-domain.

Step 4: Generating a polynomial for a sub-domain. The
final step is to produce a polynomial that approximates
sinpi(R) for a particular sub-domain. This polynomial must
produce a value within the reduced interval [Is’, hs’] for each
reduced input R in the sub-domain. This requirement can be
encoded as a linear constraint for each reduced input,

Is" <P(R) < hs’

where P(R) is a polynomial that approximates sinpi(R).

We show the generation of the polynomial for sub-domain
with bit-pattern 10001. First, we sample a portion of the
reduced inputs (e.g., 2 in Figure 2(e)). Second, we encode
the two reduced inputs and reduced intervals as linear con-
straints to create a LP query (see Figure 2(e)). Third, we use a
LP solver to identify coefficients that satisfy the constraints.
The generated polynomial is shown in Figure 2(f). Fourth, we
check if the generated polynomial produces a value within
the reduced interval for all inputs in the sub-domain. In this
case, there are two reduced inputs where the generated poly-
nomial does not produce a value within the reduced interval.
Fifth, we add both counterexamples (i.e., reduced inputs) to
the sample. Next, we create a LP query using these four re-
duced inputs and intervals. Then, we check if the generated
polynomial satisfies all reduced inputs in the sub-domain
corresponding to bit-pattern 10001.

After generating polynomials for all 32 sub-domains, we
store the coefficients of the piecewise polynomial in a table,
which is indexed by the bit-pattern of the reduced input that
identifies the sub-domain. The approximation for the elemen-
tary function sinpi(x) is now ready. To produce the result
for input x, our library will perform range reduction on x,
identify the reduced input R, identify the sub-domain based
on the bit-pattern of R, evaluate the piecewise polynomial
using the coefficients from the table, perform output com-
pensation, and round the result to a 32-bit float to produce
the correctly rounded result.

3 Generating Piecewise Polynomials

Our goal is to generate polynomial approximations for ele-
mentary functions f(x) that produce the correctly rounded
result for all inputs x in 32-bit target representations T. Simi-
lar to our prior work on RL1BM [31, 32], we approximate the
correctly rounded result rather than the real value of f(x).
We extend it in three main directions. First, we develop coun-
terexample guided polynomial generation with sampling to
make this approach feasible with 32-bit types. Second, we
design techniques to generate piecewise polynomials, which
provide performance improvements. Third, we develop mod-
ified range reduction techniques for a class of elementary

363

PLDI ’21, June 20-25, 2021, Virtual, Canada

functions and develop methods to deduce rounding intervals
when range reduction involves multiple functions.

Correctly rounded result. For a given input x and ele-
mentary function f, the output of our approximation is the
correctly rounded result if it is equal to the value of f(x)
computed with real numbers and then rounded to the target
representation. We use RNy (f(x)) to denote the rounding
function that rounds f(x) computed with real numbers to
target representation T. All internal computation such as
range reduction, polynomial evaluation, and output com-
pensation is performed in representation H where H has
higher precision than T. To attain good performance, H is a
representation that is supported in hardware (e.g., double).

Our approach. There are three main tasks in creating
polynomial approximations with our approach. First, we
need to create a range reduction function, which we denote
as RRy(x), that reduces input x to a reduced input r in a
smaller domain. Once we have the result of the elementary
function for the reduced input r (let’s say y’ = f(r)), we need
to develop an output compensation function, which we de-
note as OCy(y’, x), to produce the result of f(x) for input x.
Second, we need to generate polynomial approximations for
each elementary function f;(r) in the reduced domain (e.g.,
there were two elementary functions sinpi and cospi after
range reduction in Section 2). We need to generate polyno-
mials ¥; for each f;(r) in the reduced domain when there are
millions of reduced inputs in each reduced input domain. We
have to ensure that the polynomials generated for each f;(r)
in the reduced domain produce correctly rounded results for
all inputs after output compensation and polynomial eval-
uation is performed in H. Third, we may have to split the
reduced input domain to generate piecewise polynomials for
each f;(r) to create efficient implementations.

High-level sketch. Algorithm 1 provides a high-level
sketch of our approach. Given an elementary function f(x)
and a list of inputs X, we compute the correctly rounded re-
sult y in our target representation T (line 4) and compute the
rounding interval of y in H (lines 14-17). If our approximation
of f(x) produces a value in the rounding interval, then the
result will round to y. Next, we compute the reduced input r
using range reduction. The range reduction may require us
to compute multiple elementary functions f; to produce the
result for x. Hence, we identify the range of values that each
function f; should produce such that the result when used
with output compensation produces a value in the rounding
interval of y (line 7). We call this range of values for the re-
duced input r as the reduced interval (see Section 3.2). Finally,
we approximate each elementary function f;(r) used in out-
put compensation with piecewise polynomials of degree d
(line 11) with counterexample guided polynomial generation
and by using an LP solver. A single polynomial for each f;
may not be ideal for performance. To create efficient imple-
mentations, we iteratively split the domain of the reduced
input into multiple sub-domains (see Section 3.3). Even such

PLDI 21, June 20-25, 2021, Virtual, Canada

1 Function CorrectPolys(f, X, RRy, OCy, d):

2 Y0

3 foreach x € X do

4 y < RNp(f(x))

5 [L, h] < RoundingInterval(y, T, H)
6 Y « (x, [, h])

7 L « ReducedIntervals(Y, RRy, OCy)
8 Result «— 0

9 foreach (f;, £L;) € L do

if £; < 0 then return 0

¥; < GenApproxFunc(ZL;, d)
Result < (fi, ¥;) U Result

11

12

13 return Result

Function RoundingInterval(y, T, H):
I < min{v € H | v < y and RNt (v) =y}
h <« max{v € H|v >y and RN7(v) = y}
| return [, h]

14
15

16

17

Algorithm 1: CorrectPolys computes piecewise polynomi-
als of degree d for each elementary function f; used in output
compensation, OCyy, to generate a math library for elementary
function f. It produces the correctly rounded result of f(x) for
each input x € X. RoundingInterval computes the rounding
interval [/, h] ¢ H of y where all values in the interval rounds
to y in T. ReducedIntervals is shown in Algorithm 2 while
GenApproxFunc is shown in Algorithm 3.

sub-domains for the reduced inputs can have millions of
reduced inputs. Hence, we create a sample of the reduced
inputs, generate constraints to ensure that the polynomial
of degree d produces a value in the reduced interval for the
reduced inputs in the sample, and query the LP solver to
solve for the coefficients. When the LP solver returns the
coefficients, we check whether the generated polynomial
produces a value within the reduced interval for all inputs
in the sub-domain. We add any input that violates the con-
straints to the sample and repeat this process. We call this
process as counterexample guided polynomial generation.
At the end of this process, our approach produces piece-
wise polynomials for each f;(r), where the results of f;(r)
when used with output compensation produces the correctly
rounded result for all inputs when rounded to T.

3.1 Computing Rounding Intervals

Our approach approximates the correctly rounded result
rather than the real value. Hence, the first step is to iden-
tify the correctly rounded result using an oracle and then
identify all values in H that rounds to the correct result in T.
As H has higher precision than T, there is a range of values
in H that our approach can produce and still round to the
correctly rounded result in T. We call this range the round-
ing interval. Algorithm 1 illustrates our steps to compute
the rounding interval for each input x € X (lines 14-17).

364

Jay P. Lim and Santosh Nagarakatte

1 Function ReducedIntervals(Y, RRy, OCy):

2 if OCy is not a monotonic function then return 0
3 F « {list of functions used in OCy}

4 foreach fi e Fdo L; < 0

5 foreach (x, [L,h]) € Y do

6 r < RRy(x)

7 V — {RNu(fi(r)) | fi € F}

8 if OCy(V,x) ¢ [L, h] then return 0

9 //Set initial reduced range for each f;(r)

I’ — {[v,0] |0 eV}
//Decrease the lower bounds [/ simulataneously

10
11
while true do

A — {GetPrev(l{, H) | [I,h]] € I}

if OCy (A, x) ¢ [I, h] then break
| 1" < {[GetPrev(l/,H),h]] | [I/,h]] € I'}

12
13
14

15

16 //Tncrease the upper bounds k] simulataneously

while true do

B « { GetNext(h], H) | [I[,h]] € I’}

if OCy(B,x) ¢ [, h] then break
| I {[I], GetNext (h,)] | [I{,h]] € I'}
foreach [I],h] € I’ do

| Li— Liv(r (IR
| return {(fi, £Li) | fi € F}
Algorithm 2: ReducedIntervals computes the reduced in-

K]

L
put x for each function f; used with output compensation.

17
18
19

20

21
22

23

terval [I/,h]] and the reduced input r corresponding to in-
If our polynomial approximation for f; produces a value in
[I, k], then we can generate the correctly rounded result for
x. ReducedIntervals returns a list with (7, [/}, h{]) for each
fi- GetPrev(p, H) returns the preceding value of p in H and
GetNext(p, H) returns the succeeding value of p in H.

We compute the oracle correctly rounded result, y = f(x),
using the MPFR math library with a large number of preci-
sion bits. To compute the rounding interval, we identify the
smallest value | € H that rounds to y when rounded to T
and the largest value h € H that rounds to y when rounded
to T. This search procedure can be efficiently implemented
either using a binary search or by leveraging the properties
of T and H. As long as our approach produces a value in
the rounding interval [/, k] for input x, it will produce the
correctly rounded result.

3.2 Computing Reduced Rounding Intervals

Range reduction is crucial for any technique that generates
approximations for elementary functions. It is particularly
important with our approach for 32-bit types because the
condition number of the LP problem increases drastically
if the input domain has both extremely large and small val-
ues. Further, large inputs can cause overflows during the
evaluation of a polynomial with a large degree in H.

High Performance Correctly Rounded Math Libraries for 32-bit Floating Point Representations

After computing rounding intervals from Algorithm 1, we
have a list of constraints (x, [/, h]) that our approximation
for f(x) needs to satisfy for each input x to produce the cor-
rectly rounded result. The range reduction and subsequent
output compensation can require us to approximate multiple
elementary functions f;. The next step is to identify reduced
inputs to f; and a range of values that f; should produce such
that the result of the output compensation produces a value
in [I,] for each x. The input to f; is the reduced input and
the range of values that f; should produce is the reduced
interval.

Algorithm 2 shows the steps in deducing the reduced
interval. For each constraint (x, [[, h]), we can identify the
reduced input r by performing range reduction on x (line
6). However, computing the reduced interval is challenging.
We present an algorithm to deduce reduced intervals when
output compensation (OCy) is monotonic (either increasing
or decreasing), which is the case with all range reductions
that we explore in the paper.

To compute the reduced interval, we identify all functions
fi used in OCy (line 4). Then, we compute the correctly
rounded result v; for each f;(r) in H using an oracle (line
7). If the result of output compensation using v;’s does not
produce a value in the rounding interval for x, then either
the range reduction technique should be redesigned or the
precision of H should be increased.

Now, we have a candidate value (i.e., v;) for each f;(r) to
produce the correctly rounded result of x. We have to deduce
the maximum amount of freedom available for each f;(r).
We initially set the reduced intervals [}, h;] for each f; to
be [v;, v;] (line 10). Next, we identify if we can decrease the
lower bound of the intervals of f;(r). For a given reduced
input r of input x, we check if using the preceding values
of [; in H for all f;’s with output compensation produces
a value in the rounding interval [[, h] of x. If it does, then
we widen the reduced interval by replacing each [; with the
preceding value. We repeat the process until the result of
output compensation using the preceding values no longer
produces a value in [, h] (lines 12-15). This procedure to
compute the lower bound can be efficiently implemented
by performing binary search between v; and the minimum
representable value.

Similarly, we identify if we can increase the upper bound
of the interval for each f;(r). For each upper bound A; of f;(r),
we identify the value that succeeds h; and check whether the
result of output compensation using the succeeding value
produces a value in [[, h]. If it does, then we widen the re-
duced interval by replacing each h; with the succeeding value.
We repeat the process until output compensation produces
a value outside the interval [, h] of input x (lines 17-20).
The upper bound of the reduced interval can be efficiently
computed by performing binary search between v; and the
maximum representable value. Finally, we store the reduced
constraints (7, [I/, h{]) for each function f; in a list .£;.

365

PLDI ’21, June 20-25, 2021, Virtual, Canada

1 Function GenApproxFunc(/L, d):

2 LT —{(r,[l,])e L]|r<0}
3 LY —{(r,['K])eL]|r=0}
4 ¥~ « GenApproxHelper(L~,d)
5 ¥t « GenApproxHelper(Lt,d)
3 return {¥~, ¥*}

7 Function GenApproxHelper (L, d):

8 neo

9 while true do

A =SplitDomain(L, n)

(status, ¥) = GenPiecewise(A, d)
if status = true then return ¥

11
12

13 n«—n+1l

Function GenPiecewise (A, d):

VY0

foreach Aj € A do
(status, ¥j) < GenPolynomial(Aj, d)
if status = false then return (false, 0)
Y YUY,

14
15
16
17
18

19

20 return (true, ¥)

Algorithm 3: GenApproxFunc generates piecewise polyno-
mials that produce a value in the reduced interval for all reduced
inputs in £. It initially attempts to produce a single polynomial
for the entire reduced input domain. If unsuccessful, then it
splits the domain into multiple sub-domains. SplitDomain (not
defined in this algorithm) splits the reduced input domain into
sub-domains based on the bit-pattern of the reduced inputs
in H. SplitDomain returns A, which includes a set of reduced
constraints for each sub-domain A;. GenPiecewise generates
a polynomial for each sub-domain, which is shown in Algo-
rithm 4.

Each L; corresponding to f; contains reduced intervals
(r, [I{, h]) for the reduced input r to produce a correct re-
sult for input x. As multiple inputs can map to the same
reduced input r, there can be multiple reduced constraints
(r,[11},h1]) and (r, [I2], h2]]) for the same reduced input
r corresponding to original inputs x1 and x2. The reduced
intervals [I1}, h1{] and [I2], h2]] are not exactly identical to
account for numerical errors in range reduction and output
compensation. Our polynomial approximation for f; must
satisfy the constraints (r, [I1}, h1]]) to produce the correctly
rounded result for x1 and (r, [[1}, h1}]) to produce the cor-
rectly rounded result for x2. Thus, we generate a single com-
bined interval by computing the common interval between
them. If there is no common interval between all reduced
intervals corresponding to the same reduced input, then it
implies that there is no polynomial approximation for f; that
produces the correctly rounded results for all inputs x in the
original domain. The library designer will have to redesign
range reduction in such cases.

PLDI 21, June 20-25, 2021, Virtual, Canada

3.3 Efficient Piecewise Polynomials

After the above steps, we have a list of reduced constraints
(r, [I{, h{]) in L for each reduced input r and for each func-
tion f; that we need to approximate. The next step in our
approach is to generate polynomials that approximate f;
and satisfy the constraints in £;. Even after range reduction,
there can be hundreds of millions of reduced inputs. The
counterexample guided polynomial generation algorithm,
which we describe in Section 3.4, can likely generate a sin-
gle polynomial in many cases. However, it will also have
a large degree and may not be efficient. To generate high
performance math libraries, we propose the generation of
piecewise polynomials. Effectively splitting the domain into
smaller domains for the generation of piecewise polynomials
is essential to improve performance. Hence, we group the
reduced input into sub-domains based on the bit-patterns of
the reduced input in H.

Algorithm 3 describes our steps to generate piecewise
polynomials. Range reduction techniques for many elemen-
tary functions can create both positive and negative reduced
inputs (e.g., €, 2%, 10%). The bit-patterns for positive and
negative reduced inputs in H will not have common bits at
the beginning (e.g., the explicit sign bit distinguishes posi-
tive and negative values in double). Hence, we separate the
reduced inputs (and their intervals) into two groups: £~ that
contains negative reduced inputs and £* that contains non-
negative reduced inputs (lines 2-3). We create polynomial
approximations for each £~ and L* (lines 4-5). This step
also allows us to subsequently group the reduced input into
sub-domains in an efficient manner.

If £ contains only negative or positive reduced inputs, we
try to generate a single polynomial of degree d that satisfies
all reduced constraints in £ (line 11 and 17) using our coun-
terexample guided polynomial generation (see Section 3.4).
If it cannot generate a polynomial of degree d that satisfies
all constraints, then we split the reduced input domain in £
into multiple sub-domains (lines 9-13 in GenApproxHelper).
We iteratively split the domain of reduced inputs into 2" sub-
domains based on the bit-pattern of r in H (i.e., SplitDomain
call in line 10). To split the reduced input domain, we first
identify the smallest reduced input R,,;, and the largest re-
duced input Ry,x. Then, we compute the number of consec-
utive bits that are identical in the bit-string representation of
Rumin and Ry, 4 in H starting from the most significant bit. We
use the next n bits to identify the sub-domain for the piece-
wise polynomial. Subsequently, we group the reduced inputs
and reduced intervals based on the bit-pattern of the reduced
input into sub-domains (A returned by SplitDomain). We
try to generate a polynomial of degree d that satisfies all
reduced constraints in A; for all A;’s belonging to f; (lines
16-19). Using bit-patterns of the reduced input in H allows
us to efficiently identify the sub-domain for the piecewise
polynomial with two bitwise operations (and and a shif't).

366

Jay P. Lim and Santosh Nagarakatte

1 Function GenPolynomial(Aj, d):
2 S « Sample(A;)
while true do

4 ¥; < GetCoeffsUsinglLP(S, d)

5 if ¥j = 0 then return (false, 0)

6 (Done, S) « Check(¥j, Aj, S)

7 if Done = true then return (true, ¥;)

8 if |S| > threshold then return (false, 0)

9 Function Check (¥}, Aj, S):
Done « true
foreach (r,[I’,h']) € Aj do
if not!’ < ¥;(r) < h’ then

L S—{r[l'"KDIuS

Done « false
| return (Done, S)

10
11
12
13

14

15

Algorithm 4: GenPolynomial attempts to find a polynomial
of degree d that satisfies the reduced input and interval con-
straints in A; using our counterexample guided sampling ap-
proach. If it is infeasible to find a polynomial of degree d or the
size of the sample exceeds a threshold, then it returns (false, 0).
GetCoeffsUsingLP generates the coefficients of a polynomial
that satisfies all constraints in S using the LP solver. Check val-
idates that the polynomial generated using the sample satisfies
all reduced input and interval constraints. We add counterex-
amples (i.e., all inputs where the polynomial does not satisfy
the constraints) to the sample and repeat the process.

Once we generate a polynomial for each sub-domain of ev-
ery f;, the coefficients of the polynomial are stored in a table,
which is indexed using the bit-pattern of the reduced input
for each f;.

3.4 Counterexample Driven Polynomial Generation

Once we have the reduced input and the reduced intervals,
we structure the problem of generating polynomials as a
linear programming problem similar to our prior work on
RL1BM [31, 32]. Even after range reduction and creation of
sub-domains for the generation of piecewise polynomials,
we need to generate a polynomial approximation when there
are several million reduced inputs and reduced intervals in
the context of 32-bit types. However, they are beyond the
capabilities of modern LP solvers, which can handle a few
thousand constraints. To address this issue, we propose coun-
terexample guided polynomial generation with sampling.
The key insight is that we do not need to add every reduced
input and interval as a constraint in the LP formulation as
long as we identify and add the highly constrained intervals.

Our counterexample guided polynomial generation strat-
egy takes as input the set of reduced constraints (r, [I”, h"])
corresponding to reduced inputs that belong to a particular
sub-domain. The goal is to generate a polynomial of degree d
that produces a value in the reduced interval [, h’] for each

High Performance Correctly Rounded Math Libraries for 32-bit Floating Point Representations

reduced input r. Each reduced input r and the corresponding
interval [I”, h’] specifies the following linear constraint for a
polynomial of degree d that we want to generate:

U Sc0+clr+czr2+--~+cdrd <K

The task of the polynomial generator is to find coefficients
for the polynomial.

To scale to 32-bit types, we sample a small fraction of
the reduced input and intervals. Algorithm 4 reports our
counterexample guided polynomial generation process. It
takes two inputs: the degree of the polynomial and the set
of reduced inputs and intervals (i.e, A;) for generating a
polynomial approximation for an elementary function f; on
reduced inputs for sub-domain j. We maintain the reduced
inputs and their intervals in increasing order. Then we uni-
formly sample the reduced inputs based on the distribution
of reduced inputs. If there are a large number of reduced
inputs in a particular region of the sub-domain, then our
method has more samples from that region. We also add
highly constrained reduced inputs and intervals (i.e., the cor-
rectly rounded result and the lower bound/upper bound is
less than €, which is set by the math library designer) to the
sample.

Then we express all constraints in the sample (r, [I’, h'])
using a single system of linear inequalities and solve for
the coeflicients using an LP solver (line 4). If there are n
points in the sample, the system of linear inequalities is of
the following form:

1 { ri rf Co hi

lé ry rg C1 h;
< . . =0

Rl om rd] leal Ly

There are two issues with the polynomial generated using
the sampled reduced inputs that we need to address. First, as
the LP solver returns coefficients as real numbers, the coeffi-
cients are rounded to a value in H. As a result of rounding
error, the result of polynomial evaluation for a particular
reduced input in the sample may not lie within its rounding
interval. Second, the polynomial generated using the sample
may not satisfy the constraints for the entire set of reduced
inputs and their corresponding intervals.

We address the real coefficients issue with a search-and-
refine procedure similar to RLiBM. When the LP solver re-
turns real coefficients and we round it to H, we check whether
evaluating the polynomial satisfies constraints for every in-
put in the sample. If it does not, then we select the input
and reduce its rounding interval (either replace the lower
bound with its succeeding value or replace the upper bound
with the preceding value). Then we repeat the above process
until it generates a polynomial that either satisfies all con-
straints in the sample when evaluated in H or cannot find

367

PLDI ’21, June 20-25, 2021, Virtual, Canada

a polynomial of degree d. If we cannot find a polynomial
that satisfies all constraints in the sample, then we split the
entire reduced domain in £; into even smaller sub-domains
and repeat this process.

If we successfully generate a polynomial ¥; that satisfies
all constraints in the sample, then we check whether this
polynomial satisfies all constraints in A; (line 10-15). If ¥;
satisfies all constraints, then we return the polynomial (line
7). If there is any constraint not satisfied by ¥; in the entire
set of reduced inputs, then we add that reduced input and
its interval to the sample (i.e., adding the counterexample in
lines 12-13). We repeat the process of generating the polyno-
mial with the new sample. If the number of constraints in the
sample exceeds a threshold at any point, then we determine
that we cannot generate a polynomial for the sub-domain
Aj. Our function to generate the coefficients for the polyno-
mial (i.e., GetCoeffsUsinglLP) using an LP solver generates
a polynomial of a lower degree (than input degree d) if it is
possible to do so.

4 Experimental Evaluation

We provide details on our prototype, experimental method-
ology, and the results of our experiments to check the cor-
rectness and performance of the generated functions.

4.1 Experimental Setup and Methodology

Prototype. The RLiBM-32 prototype generates correctly

rounded elementary functions for 32-bit floats and posit32,
which is a 32-bit posit type providing tapered precision (i.e.,
more precision than float for values near 1) [19]. It con-
tains ten correctly rounded elementary functions for 32-bit

floats and eight elementary functions for the posit32 type.
To generate correctly rounded elementary functions with

good performance, the user can provide custom range re-
duction functions and specify the degree or the structure of
the polynomial (i.e., odd or even). RL1BM-32 uses the MPFR

library [15] with up to 400 precision bits to compute the

oracle for f(x) and rounds it to the target representation,
which is good enough to compute the oracle result for dou-
ble [28]. RL1BM-32 uses SoPlex [17], an exact rational LP

solver, for generating coefficients for the polynomials with a

five minute time limit. We use a threshold of fifty thousand

reduced inputs and intervals in the sample for counterexam-
ple guided polynomial generation. RLiBM-32’s math library
performs range reduction, polynomial evaluation, and output

compensation using double precision. Polynomial evaluation

uses the Horner’s method [3]. We designed novel extensions

to range reduction for many elementary functions, which

is inspired by table-based range reduction [13, 44-46]. Our

extended technical report provides additional details about

range reduction for each elementary function [34]. RLiBM-32

is open source and publicly available [33].

PLDI 21, June 20-25, 2021, Virtual, Canada

Jay P. Lim and Santosh Nagarakatte

Table 1. Generation of correctly rounded results for 32-bit floats with RLiBM-32, Intel’s libm (float and double), glibc’s libm (float and double),
CR-LIBM, and MetaLibm (float and double). v'indicates that the library produces the correctly rounded result for all inputs. Otherwise, we
use X. For each X, we show the number of inputs with wrong results. N/A indicates that the implementation is not available.

float Using Using Using Using Using Using Using Using
functions | RLiBM-32 | glibc float | glibc double | Intel float | Intel double | CR-LIBM | MetaLibm float | MetaLibm double
In(x) v X(4.2E5) X(5) X(1060) X(5) X(5) N/A N/A
log2(x) v X(3.1E5) v X(276) v v N/A N/A
log10(x) v X(3.0E7) X(1) X(1.5E5) X(1) X(1) N/A N/A
exp(x) v X(1.7E5) v X(2.5E5) v v X(5.1E8) X(5.1E8)
exp2(x) v X(1.7E5) X(2) X(7.2E5) X(2) N/A X(6.5E7) X(1026)
exp10(x) v X(1.7E5) v X(3.9E5) v N/A N/A N/A
sinh(x) v X(7.1E7) X(2) X(2.5E5) X(2) X(2) N/A N/A
cosh(x) v X(1.8E7) v X(1.4E5) v v X(1.1E7) v
sinpi(x) v N/A N/A X(3.4E5) v v N/A N/A
cospi(x) v N/A N/A X(3.8E5) v v N/A N/A

Methodology. We test the elementary functions in RL1Bm-
32 on two dimensions: (1) ability to generate correct results
and (2) performance in comparison to state-of-the-art li-
braries. We compare RL1BM-32’s functions with four libraries:
Intel’s libm, glibc’s libm, CR-LIBM [13], and Metalibm [25].
To use double precision libraries, we convert the float input
into double, use the double function, and round the result
back to float. Among these libraries, CR-LIBM has correctly
rounded functions for double precision. However, CR-LIBM
does not produce correctly rounded results for 32-bit floats
due to double rounding. There are no math libraries available
for posit32. All posit32 values can be exactly represented in
double. Hence, we compare our posit32 library with glibc
and Intel’s double libm and CR-LIBM.

Experimental setup. We performed all our experiments
on a 2.10GHz Intel Xeon Gold 6230R machine with 187GB of
RAM running Ubuntu 18.04. We disabled Intel turbo boost
and hyper-threading to minimize noise. We compiled RL1BM-
32’s math library at the 03 optimization level. We used Intel’s
libm from the oneAPI Toolkit and glibc’s libm from glibc-
2.33. We generated Metalibm implementations with opti-
mizations for AVX2 extensions enabled. Our test harness that
compares glibc’s libm, CR-LIBM, and Metalibm with RL1BM-
32 is built using the gcc-10 compiler with -03 -static
-frounding-math -fsignaling-nans flags. To use Intel’s
libm, we have to use the Intel compiler. Hence, the test har-
ness that compares Intel libm with RL1BM-32 is built using
the icc compiler with -03 -no-ftz -fp-model strict
-static to obtain as many correct results as possible. Fur-
ther, the size of the executable generated by statically linking
RL1BM-32 is 2% smaller on average when compared to the
executable generated with Intel’s double libm.

Measuring performance. To compare performance, we
measure the number of cycles taken to compute the result
for each input using hardware performance counters. The
total time taken is computed as the sum of the time taken
by all inputs (i.e., all 232 inputs for a 32-bit representation).

368

We ran the measurements for all inputs for each function six
times. Then, we compute the average time taken to compute
each elementary function. As Intel’s compiler performs vec-
torization by default at the 03 optimization level, our above
setup does not measure improvements due to vectorization.
Hence, we created another test harness that creates an array
of 1024 floats (i.e., 2!° inputs), populates it with different
inputs, and measures the number of cycles taken to com-
pute the results of 2!° inputs using hardware performance
counters. We repeat this experiment 2% times to compute
the result and measure the total time taken for all 232 inputs.

4.2 Generation of Correctly Rounded Results

Table 1 reports the results of our experiments to check the
correctness of various elementary functions in RL1BM-32 and
other mainstream libraries. RLiBM-32 produces the correctly
rounded results for all inputs for the ten elementary func-
tions for 32-bit floats. In contrast, elementary functions in
glibc, Intel, and MetaLibm’s float library do not produce the
correct result for all inputs. Multiple functions in glibc and
MetaLibm’s float library produce wrong results for several
million inputs. Intel’s libm also produces wrong results with
several thousand inputs with the float version. When we
use double precision version of functions from glibc, Intel’s
libm, and CR-LIBM, it does not produce the correct result
for In(x), log10(x), exp2(x), and sinh(x). These cases occur
when the real value of f(x) is extremely close to the round-
ing boundary of a floating point value. Even with a smaller
mini-max approximation error in the double library com-
pared to their float versions, these libraries do not produce
the correctly rounded result for all inputs. CR-LIBM, which
is a correctly rounded double library, produces wrong re-
sults for float functions due to double rounding. We observed
that functions in MetaLibm do not produce correct results
even when it internally uses Sollya [9], which can be used
to generate correctly rounded implementations.

High Performance Correctly Rounded Math Libraries for 32-bit Floating Point Representations

Table 2. Generation of correctly rounded results with posit32 func-
tions for all inputs by RLiBM-32, Intel and glibc’s double libraries,
and CR-LIBM. v'indicates that the library produces the correctly
rounded result for all inputs and otherwise, we use X.

PLDI ’21, June 20-25, 2021, Virtual, Canada

Table 3. Details about the generated polynomials. For each elemen-
tary function, time taken to generate the polynomials in minutes,
the size of the piecewise polynomial for approximating f;(r), the
maximum degree of the polynomial, and the number of terms in
the polynomial.

posit32 Using Using Using Using
functions | RLiBM-32 | glibc double | Intel double | CR-LIBM £(x) Gen. Time | Reduced | # of Poly- | Deg- | # of
In(x) / X(22) X(22) X(22) (Minutes) | Inputs nomials | ree | Terms
log2(x) v X(19) X(18) X(18) float functions
log10(x) v X(26) X(23) X(23) In(x) 218 7.2E6 210 3 3
Exp(x) v X(4.4E8) X(4.4E8) X(4.4E8) log2(x) 251 7.2E6 28 3 3
Exp2(x) v X(4.0E8) X(4.0E8) N/A log10(x) 429 7.2E6 28 3 3
Exp10(x v X(5.2E8 X(5.2E8 N/A 27 4 5
SiIr)nh(E()) 7 XE4.4E8§ XE4.4E8§ X(4.4E8) exp(x) 17 5-2E8 27 4 5
Cosh(x) v/ X(4.4EB) X(4.4E8) | X(4.4E8) exp2(x) %6 3.0E8 ;‘3‘ j :
28 4 5
Table 2 reports that RL1BM-32 produces correctly rounded exp10(x) 169 5-2E8 27 3 4
results with all inputs for the eight posit32 functions. All sinh(x) 28 1.5E8 26 5 3
posit32 values are representable in double precision but they cosh(x) 24 1.5E8 26 4 3
cannot be represented in 32-bit floats. Hence, we use CR- sinpi(x) 30 1.2E8 1 5 3
LIBM, Intel and glibc’s double library to compare with RLIBM- cospi(x) 19 1.2E8 1 4 3
32. These libraries for double precision do not produce cor- posit32 functions
rect results for all posit32 inputs. Unlike functions for 32-bit In(x) 264 1.1E8 2181 4 4
floats, they produce wrong results for several million inputs ll Ogl 20(x) 22? iiiz 221 , : i
especially for exponential and hyperbolic functions. One of 0g10(x) 6 - -
the key reasons for wrong results is the absence of overflows exp(x) 1089 3.5E9 212 g i
to co and underflows to 0 with the posit32 type. Instead, ex- 510 3 2
tremely large values are rounded to the largest representable exp2(x) 814 7.9E8 912 3 4
value. Similarly, extremely small values are rounded to the o3 3 4
smallest non-zero representable value in the posit32 type. exp10(x) 1528 3.4E9 913 3 4
Piecewise polynomials generated by RLiBm-32. Ta- oTd 5 3
ble 3 provides details on the piecewise polynomials generated sinh(x) 461 1.6E9 214 4 3
by RLiBM-32. Our goal is to get the best possible performance 214 3 2
within a given storage budget for piecewise polynomials (i.e., cosh(x) >28 1.7E9 212 6 4

number of sub-domains when we split the range of reduced
inputs). Hence, we used the RL1BM-32 to generate piece-
wise polynomials such that the degree of each polynomial
was less than or equal to 8 and the number of sub-domains
was less than or equal to 2!*. The output compensation for
sinh(x), cosh(x), sinpi(x), and cospi(x) involves two ele-
mentary functions. We generate two piecewise polynomials
for each of those elementary functions. There are both posi-
tive and negative reduced inputs for exp(x), exp2(x), and
exp10(x). Hence, we created two piecewise polynomials:
one for the negative reduced inputs and another for positive
reduced inputs. Notably, we were able to generate a single
polynomial of degree 5 and 4 that satisfies all reduced con-
straints for sinpi(r) and cospi(r), respectively. Both sinpi(r)
and cospi(r) have close to 120 million reduced inputs. Our
counterexample driven polynomial generation with sam-
pling was instrumental in creating this efficient polynomial.

Time taken to generate RLiBM-32 functions. Table 3
also reports the time taken to generate the 32-bit float and
the posit32 functions in RL1BM-32. It ranges from 19 minutes

369

for cospi(x) for the float type to approximately 25 hours for
exp10(x) for the posit32 type. Majority of the total time total
time is spent in computing the oracle result and the round-
ing interval using the MPFR library (i.e., 86% of total time
for 32-bit floats and 55% of total time for the posit32 type).
In contrast, counterexample guided polynomial generation
takes 14% and 45% of the total time for 32-bit floats and the
posit32 type, respectively. We noticed that it takes signifi-
cantly longer to generate posit32 functions. There are fewer
special cases, which requires longer oracle computation. Fur-
ther, RL1BM-32 generates larger piecewise polynomials for
posit32 functions to account for higher precision than a 32-
bit float and saturating behavior with extremal values.

4.3 Performance Evaluation of RLiBM-32

Performance of float functions. Figure 3(a) presents the
speedup of RL1BM-32’s float functions over glibc’s float func-
tions (left bar in each cluster) and double functions (right

PLDI 21, June 20-25, 2021, Virtual, Canada Jay P. Lim and Santosh Nagarakatte

(a) Speedup of RL1BM-32’s float functions over glibc libm (b) Speedup of RL1BM-32’s float functions over Intel libm
I Speedup over float libm I Speedup over double libm I Speedup over float libm I Speedup over double libm

2x

Speedup

W 002 \0gl0 exP exp? oyxpl0 s c0" eome” ™ 109710010 eXP exPZexp1Osin cos gin! °°5§‘eomea“
(c) Speedup of RLiBM-32’s float functions over CR-LIBM (d) Speedup of RL1BM-32’s float functions over MetaLibm
B Speedup over double libm mmm Speedup over float libm I Speedup over double libm
2.5x 2.5% 3.6x ax

\n \097- \0910 e)(plo Ginh (_05\" 5'\\'\9\ COS‘)\qeomea"\ exP e)(P?- (_OS‘“

Figure 3. (a) Speedup of RLiBM-32’s float functions compared to glibc’s float functions (left) and glibc’s double functions (right). (b) Speedup
of RL1BM-32’s functions compared to Intel’s float functions (left) and Intel’s double functions (right). (c) Speedup of RLiBM-32’s functions
compared to CR-LIBM functions. (d) Speedup of RL1BM-32’s functions compared to MetaLibm’s float functions (left) and double functions
(right) built with AVX2 optimizations.

bar in each cluster). On average, RLiBM-32’s float functions Vectorization. Intel compiler uses vector instructions to
have 1.1X speedup over glibc’s float libm and 1.2X speedup improve performance by default. In our experiments with
over glibc’s double libm. Figure 3(b) reports the speedup of vectorization using an array of 1024 inputs (see Section 4.1),
RL1BM-32’s float functions over Intel’s float libm and double RL1BM-32 is on average 10% and 5% slower than Intel’s float
libm. RL1BM-32’s float functions have an average of 1.5% libm and double libm, respectively. However, Intel’s compiler
speedup over Intel’s float functions and 1.6X speedup over produces wrong results for several million inputs (without
Intel’s double functions. Figure 3(c) reports that RL1BM-32’s -no-ftz -fp-model strict flags). In contrast, RLIBM-32’s
functions are on average 2X faster than CR-LIBM functions. functions are almost as fast as vectorized code while produc-
Figure 3(d) reports the speedup of RL1BM-32’s functions over ing correct results for all inputs.
MetaLibm’s float and double functions. RLiBM-32’s functions Performance impact of piecewise polynomials. To
are on average 2.5X and 2.7X faster than MetaLibm’s float analyze the performance benefits due to piecewise poly-
and double functions, respectively. RLiBM-32’s functions are nomials, we identified elementary functions for which we
faster than all the corresponding functions in Intel libm, CR- could generate a single polynomial that produces correctly
LIBM, and MetaLibm. RL1BM-32’s functions are faster than rounded results for all inputs (log2(x), log10(x), sinpi, and
glibc’s functions except for In(x), loga(x), and logio(x) for cospi) . We measured the change in performance with an
float and In(x) for double. However, glibc’s libm produces increase in the number of sub-domains ranging from 2° (i.e.,
a large number of wrong results for them. RL1BM-32’s func- a single polynomial) to 2!2. Figure 5 reports the performance
tions are not only faster but also produce correctly rounded of log2(x) and logyo(x) with an increase in the number of
results for all inputs. sub-domains when compared to the performance of a single
Performance of posit32 functions. The graphs in Fig- polynomial. We validated that all these polynomials produce
ure 4(a), Figure 4(b), and Figure 4(c) report the speedup the correct result for all inputs. Figure 5 does not report
of RL1BM-32’s posit32 functions when compared to math sinpi and cospi because the single polynomial has the best
libraries created by re-purposing glibc’s, Intel’s, and CR- performance. Initially, there is a small decrease in perfor-
LIBM’s double functions, respectively. On average, RL1BM- mance by moving from a single polynomial to a piecewise
32’s posit32 functions are 1.1X, 1.1X, and 1.4 faster than polynomial because the degree of the piecewise polynomial
glibc’s libm, Intel’s libm, and CR-LIBM, respectively. All does not decrease significantly to subsume the overhead of
three re-purposed math libraries produce wrong results for table lookup. On increasing the number of sub-domains, we
some inputs. RL1BM-32 provides the first correctly rounded observed almost 1.2X speedup with piecewise polynomials
functions for the posit32 type. having 2% sub-domains. It requires 6KB for storing coeffi-

cients of piecewise polynomials.

370

High Performance Correctly Rounded Math Libraries for 32-bit Floating Point Representations

(a) Speedup of RL1BM-32’s posit32 functions
over glibc libm

2x 2x

(b) Speedup of RL1BM-32’s posit32 functions
over Intel libm

PLDI 21, June 20-25, 2021, Virtual, Canada

(c) Speedup of RL1BM-32’s posit32
functions over CR-LIBM

e \097'\09\/0 e e*‘)’)'e\/\()\’gé\““ o o«\ea“
qe

e \097'\09\/0 er® e‘f*@fléﬂ)\’gé\““ o o‘“ea(\
ge

A\ \og'l«\og\,gew oo™ qed®
o®°

Figure 4. (a) Speedup of RL1BM-32’s posit32 functions compared to glibc’s double functions. (b) Speedup of RLIBM-32’s posit32 functions
compared to Intel’s double functions. (c) Speedup of RLIBM-32’s posit32 functions compared to CR-LIBM functions.

1.2x 1
%1_0)(_ \——‘_/‘_/._———__—-
3 0.8x 1
3 0.6x
& 0.4x - log2(x)
0.2x { = log10(x)
0.0x T T T T T T T
20 22 24 26 28 210 212

Number of sub-domains for the piecewise polynomial

Figure 5. Performance speedup of log2(x) and log10(x) with an
increase in the number of sub-domains when compared to a single
polynomial generated by RLiBm-32. All these polynomials produce
the correctly rounded result for all inputs. A circle represents a
decrease in the degree of the piecewise polynomial.

5 Case Study with cospi(x) for Float

We describe the case study with cospi(x) = cos(rx) to illus-
trate the importance of carefully designing range reduction
to avoid cancellation errors in output compensation. The
elementary function cospi(x) is defined for x € (—oo, c0).
Special cases. There are three kinds of special cases:

1.0 if |x| < 7.771 x 107°
cospi(x) = § (=1)(IXImod2) 510 if|x| > 223
NaN if x = NaN or x = £o0
All float values > 22 are integers. Hence, cospi(x) = 1.0
for even integers and cospi(x) = —1.0 for odd integer inputs.
Range reduction of cospi(x). After excluding special
cases, there are more than 600 million float inputs that need
to be approximated. Similar to range reduction for sinpi(x)
(Section 2.1), we use periodicity and trigonometric identities
of cospi(x) to reduce inputs to a smaller domain. We trans-
form input x into x = 2.0 X I + J where [is an integer and
J € [0, 2). Due to periodicity, cospi(x) = cospi(J). Next, we
decompose J into J = K + L where K is the integral part
of J (K € {0,1}) and L € [0, 1) is the fractional part. Then,
cospi(J) can be computed with,

cospi(J) = (—l)Kcospi(L)

371

To further reduce the range of L, we use the fact that
cospi(x) between [0.5,1) is a mirror image of cospi(x) be-
tween [0,0.5) with the opposite sign. We decompose L
into M and L” where

v- {L
1.0-L

K

We have cospi(L) = (—1)Mcospi(L’). After reducing the
input x to L’ € [0,0.5], there are around 107 million inputs.

if L <05
if L > 0.5

if <0.5
if L > 0.5

Thus, we further reduce L’ to a value in [0, 5—}2]. We split
L' = % +Q where N is an integer in the set {0, 1,2, ...,255}

and Q is a fractional value in [0, %]. One possible method
to compute cospi(L’) is to use the trigonometric identity
cospi(a+ b) = cospi(a)cospi(b) — sinpi(a)sinpi(b),

N N N

cospi (E + Q) = cospi (E) cospi(Q) — sinpi (E) sinpi(Q)

The above formula is not monotonic and can have cancel-

lation errors if N # 0 (if N = 0, then cospi(L’) = cospi(Q)).

Creating monotonic output compensation. If N # 0,

we transform N and Q to N’ and R such that L’ = é\li—z —Rto
create a monotonic output compensation function:

N’ = 0
N+1

Then, we can compute cospi(L’) = cospi(% — R) using
the trigonometric identity cospi(a—b) = cospi(a)cospi(b) +
sinpi(a)sinpi(b) as follows,

ifN=0

otherwise

o if N=0
- 5% —Q otherwise

cospi(L’) =
cospi(R) N =0
cospi (éVT;) cospi(R) + sinpi (éVT’z) sinpi(R) if N #0

This output compensation is monotonic and does not ex-
perience cancellation error. The values of N’ ranges from
0 to 256 and R € |0, 513] The computation 5% — Q can be
computed exactly with float or double type for all values of Q

PLDI 21, June 20-25, 2021, Virtual, Canada

that corresponds to N # 0. There are approximately 40 mil-

lion values of R. We precompute the values for cospi (é\]ﬁ)

and sinpi (é\lj—;) in lookup tables (i.e., 514 values in total). We

create polynomial approximations for sinpi(R) and cospi(R)
for the reduced input domain R € [0, 5%] Using RL1BM-32,
we were able to generate a single 5/ degree odd polyno-
mial for sinpi(R) and a single 4" degree even polynomial
for cospi(R). Finally, we can compute the result for cospi(x)
with the output compensation function,

ifN=0
ifN#0

) S X cospi(R)
cospi(x) =) o
S X (cpn X cospi(R) + spn X sinpi(R))
where § = (-1)K x (-=1)M, cpn = cospi(é\l]—;), and spn =
sinpi(%). These polynomials combined with the output
compensation functions produce correctly rounded results
for all inputs for sinpi(x) and cospi(x).

6 Related Work

Multiple decades of seminal work has advanced the state-of-
the-art on creating approximations for FP representations [7,
14, 15, 24, 37, 39, 47, 49]. Further, seminal research on range
reduction has made such approximation feasible [2, 12, 43—
46]. Simultaneously, there are verification efforts to prove
bounds for math libraries [21-23, 27, 41], identify numerical
errors with expressions that can be used in the implementa-
tion of math libraries [1, 11, 16, 18, 40], and repair individual
outputs of math libraries [38, 48, 50].

Correctly rounded libraries. Numerous groups have
developed correctly rounded elementary functions [7, 24].
Some correctly rounded libraries for FP are IBM LibUltim [49],
Sun Microsystem’s LibMCR, CR-LIBM [13], MPFR math
library [15], and RLIBM [31, 32]. CR-LIBM is a correctly
rounded double library developed using Sollya [9], which
generates mini-max polynomials to approximate elemen-
tary functions [4, 5]. Sollya uses the modified Remez algo-
rithm [39] using lattice basis reduction and also computes the
error bound of the polynomial [8, 10, 36]. Metalibm [6, 25]
builds on Sollya and generates efficient mini-max polynomi-
als with user-defined error bounds. It also uses domain split-
ting and hardware specific optimizations [26]. Compared
to mini-max approaches, our work approximates the cor-
rectly rounded result of f(x) and generates polynomials
that already account for numerical error in range reduction
and output compensation. Hence, it generates efficient and
correctly rounded results for all inputs.

This paper extends our prior work on RL1BM [31, 32] and
John Gustafson’s Minefield method [20], which advocate
approximating the correctly rounded value rather than real
value of an elementary function. Our prior work on RLiBM
also frames the problem of generating polynomials as an LP
problem. We have used RL1BM to create correctly rounded

372

Jay P. Lim and Santosh Nagarakatte

functions for 16-bit types: bfloat16 and posit16. This paper
extends RL1BM to handle 32-bit types with systematic coun-
terexample guided polynomial generation, generation of
piecewise polynomials to improve performance, and new
techniques to deduce rounding intervals when range reduc-
tion involves multiple elementary functions.

Posit libraries. SoftPosit-Math [30] and RLiBM libraries
provide correctly rounded math functions for 16-bit posits.
In our prior work, we have produced approximations for a
set of trigonometric functions using the CORDIC method
for posit32 [35]. However, it does not produce correct results
for all inputs. In this paper, we develop the first set of ele-
mentary functions that produce correctly rounded results
for all inputs for 32-bit posits.

7 Conclusion and Future Directions

Mainstream math libraries have been designed and improved
by numerous researchers spanning multiple decades. Yet,
they fail to generate correct results for all inputs. This pa-
per advocates approximating the correctly rounded value
instead of the real value similar to our prior work on RL1BM.
It extends RL1BM to scale to 32-bit representations: (a) coun-
terexample guided polynomial generation with an LP solver
to handle billions of inputs, (b) generation of constraints
to account for multiple elementary functions in range re-
duction, and (c) generation of piecewise polynomials. The
resulting functions produce correct results for all inputs and
are also faster than existing libraries for 32-bit floats and
posits.

Going forward, we plan to generate approximations for
all commonly used elementary functions with 32-bit types,
which we believe can be accomplished with our approach.
However, it may require us to develop novel extensions to
range reduction. Further, it may be necessary to perform
range reduction in higher precision for some trigonometric
functions such as sine and cosine that use z. Beyond 32-
bit types, we also plan to extend this approach to double
precision. Our approach can generate a polynomial that pro-
duces the correctly rounded result for the sampled points
in the double type. Validating the correctness of the result
produced by a polynomial generated using our approach for
all inputs in the double type is an open research problem.
Our long-term goal is to enable the standards of existing and
new representations to mandate correctly rounded results.

Acknowledgments

We thank our shepherd Rahul Sharma and the PLDI review-
ers for their feedback. We thank John Gustafson for his in-
puts on the Minefield method and the posit representation.
This material is based upon work supported in part by the
National Science Foundation under Grant No. 1908798 and
Grant No. 1917897.

High Performance Correctly Rounded Math Libraries for 32-bit Floating Point Representations

References

(1]

—
Do
—

[10

—

[11

—

[12

—

(13]

(14]

(15]

Florian Benz, Andreas Hildebrandt, and Sebastian Hack. 2012. A
Dynamic Program Analysis to Find Floating-point Accuracy Problems.
In Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation (Beijing, China) (PLDI ’12). ACM,
New York, NY, USA, 453-462. https://doi.org/10.1145/2345156.2254118
Sylvie Boldo, Marc Daumas, and Ren-Cang Li. 2009. Formally Verified
Argument Reduction with a Fused Multiply-Add. In IEEE Transactions
on Computers, Vol. 58. 1139-1145. https://doi.org/10.1109/TC.2008.216
Peter Borwein and Tamas Erdelyi. 1995. Polynomials and Polynomial
Inequalities. Springer New York. https://doi.org/10.1007/978-1-4612-
0793-1

Nicolas Brisebarre and Sylvvain Chevillard. 2007. Efficient polynomial
L-approximations. In 18th IEEE Symposium on Computer Arithmetic
(ARITH °07). https://doi.org/10.1109/ARITH.2007.17

Nicolas Brisebarre, Jean-Michel Muller, and Arnaud Tisserand. 2006.
Computing Machine-Efficient Polynomial Approximations. In ACM
ACM Transactions on Mathematical Software, Vol. 32. Association for
Computing Machinery, New York, NY, USA, 236-256. https://doi.org/
10.1145/1141885.1141890

Nicolas Brunie, Florent de Dinechin, Olga Kupriianova, and Christoph
Lauter. 2015. Code Generators for Mathematical Functions. In 2015
IEEE 22nd Symposium on Computer Arithmetic. 66-73. https://doi.org/
10.1109/ARITH.2015.22

Hung Tien Bui and Sofiene Tahar. 1999. Design and synthesis of an
IEEE-754 exponential function. In Engineering Solutions for the Next
Millennium. 1999 IEEE Canadian Conference on Electrical and Computer
Engineering, Vol. 1. 450-455 vol.1. https://doi.org/10.1109/CCECE.
1999.807240

Sylvain Chevillard, John Harrison, Mioara Joldes, and Christoph
Lauter. 2011. Efficient and accurate computation of upper bounds
of approximation errors. In Theoretical Computer Science, Vol. 412.
https://doi.org/10.1016/j.tcs.2010.11.052

Sylvain Chevillard, Mioara Joldes, and Christoph Lauter. 2010. Sollya:
An Environment for the Development of Numerical Codes. In Math-
ematical Software - ICMS 2010 (Lecture Notes in Computer Science,
Vol. 6327). Springer, Heidelberg, Germany, 28-31. https://doi.org/10.
1007/978-3-642-15582-6_5

Sylvain Chevillard and Christopher Lauter. 2007. A Certified Infinite
Norm for the Implementation of Elementary Functions. In Seventh
International Conference on Quality Software (QSIC 2007). 153-160.
https://doi.org/10.1109/QSIC.2007.4385491

Sangeeta Chowdhary, Jay P. Lim, and Santosh Nagarakatte. 2020.
Debugging and Detecting Numerical Errors in Computation with
Posits. In 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’20). https://doi.org/10.1145/3385412.
3386004

William J Cody and William M Waite. 1980. Software manual for
the elementary functions. Prentice-Hall, Englewood Cliffs, NJ. https:
//doi.org/10.1137/1024023

Catherine Daramy-Loirat, David Defour, Florent de Dinechin,
Matthieu Gallet, Nicolas Gast, Christoph Lauter, and Jean-Michel
Muller. 2006. CR-LIBM A library of correctly rounded elemen-
tary functions in double-precision. Research Report. Laboratoire
de I'Informatique du Parallélisme. https://hal-ens-lyon.archives-
ouvertes.fr/ensl-01529804

Davide De Caro, Ettore Napoli, Darjn Esposito, Gerardo Castellano,
Nicola Petra, and Antonio G. M. Strollo. 2017. Minimizing Coefficients
Wordlength for Piecewise-Polynomial Hardware Function Evaluation
With Exact or Faithful Rounding. IEEE Transactions on Circuits and
Systems I: Regular Papers (2017). https://doi.org/10.1109/TCSI.2016.
2629850

Laurent Fousse, Guillaume Hanrot, Vincent Lefévre, Patrick Pélissier,
and Paul Zimmermann. 2007. MPFR: A Multiple-precision Binary

373

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

PLDI ’21, June 20-25, 2021, Virtual, Canada

Floating-point Library with Correct Rounding. ACM Trans. Math.
Software 33, 2, Article 13 (June 2007). https://doi.org/10.1145/1236463.
1236468

Zhoulai Fu and Zhendong Su. 2019. Effective Floating-point Analy-
sis via Weak-distance Minimization. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (Phoenix, AZ, USA) (PLDI 2019). ACM, New York, NY, USA,
439-452. https://doi.org/10.1145/3314221.3314632

Ambros M. Gleixner, Daniel E. Steffy, and Kati Wolter. 2012. Improving
the Accuracy of Linear Programming Solvers with Iterative Refinement.
In Proceedings of the 37th International Symposium on Symbolic and
Algebraic Computation (Grenoble, France) (ISSAC ’12). Association for
Computing Machinery, New York, NY, USA, 187-194. https://doi.org/
10.1145/2442829.2442858

Eric Goubault. 2001. Static Analyses of the Precision of Floating-
Point Operations. In Proceedings of the 8th International Symposium
on Static Analysis (SAS). Springer, 234-259. https://doi.org/10.1007/3-
540-47764-0_14

John Gustafson. 2017. Posit Arithmetic.
Posits4.pdf

John Gustafson. 2020. The Minefield Method: A Uniformly Fast Solution
to the Table-Maker’s Dilemma. https://bit.ly/2ZP4kH;j

John Harrison. 1997. Floating point verification in HOL light: The ex-
ponential function. In Algebraic Methodology and Software Technology,
Michael Johnson (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
246-260. https://doi.org/10.1007/BFb0000475

John Harrison. 1997. Verifying the Accuracy of Polynomial Approx-
imations in HOL. In International Conference on Theorem Proving in
Higher Order Logics. https://doi.org/10.1007/BFb0028391

John Harrison. 2009. HOL Light: An Overview. In Proceedings of the
22nd International Conference on Theorem Proving in Higher Order
Logics, TPHOLs 2009 (Lecture Notes in Computer Science, Vol. 5674),
Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius
Wenzel (Eds.). Springer-Verlag, Munich, Germany, 60-66. https:
//doi.org/10.1007/978-3-642-03359-9_4

Claude-Pierre Jeannerod, Hervé Knochel, Christophe Monat, and
Guillaume Revy. 2011. Computing Floating-Point Square Roots via
Bivariate Polynomial Evaluation. IEEE Trans. Comput. 60. https:
//doi.org/10.1109/TC.2010.152

Olga Kupriianova and Christoph Lauter. 2014. Metalibm: A Mathemat-
ical Functions Code Generator. In 4th International Congress on Mathe-
matical Software. https://doi.org/10.1007/978-3-662-44199-2_106
Olga Kupriianova and Christoph Lauter. 2015. Replacing Branches by
Polynomials in Vectorizable Elementary Functions. In Scientific Com-
puting, Computer Arithmetic, and Validated Numerics, Marco Nehmeier,
Jurgen Wolff von Gudenberg, and Warwick Tucker (Eds.). Springer
International Publishing, Cham, 14-22. https://doi.org/10.1007/978-3-
319-31769-4_2

Wonyeol Lee, Rahul Sharma, and Alex Aiken. 2017. On Automatically
Proving the Correctness of Math.h Implementations. Proceedings of
the ACM on Programming Languages 2, POPL, Article 47 (Dec. 2017),
32 pages. https://doi.org/10.1145/3158135

Vincent Lefévre and Jean-Michel Muller. 2001. Worst Cases for Correct
Rounding of the Elementary Functions in Double Precision. In 15th
IEEE Symposium on Computer Arithmetic (Arith ’01). 111-118. https:
//doi.org/10.1109/ARITH.2001.930110

Vincent Lefévre, Jean-Michel Muller, and Arnaud Tisserand. 1998.
Toward correctly rounded transcendentals. IEEE Trans. Comput. 47, 11
(1998), 1235-1243. https://doi.org/10.1109/12.736435

Cerlane Leong. 2019. SoftPosit-Math. https://gitlab.com/cerlane/
softposit-math

Jay P. Lim, Mridul Aanjaneya, John Gustafson, and Santosh Na-
garakatte. 2020. A Novel Approach to Generate Correctly
Rounded Math Libraries for New Floating Point Representations.
arXiv:2007.05344 Rutgers Department of Computer Science Technical

https://posithub.org/docs/

PLDI 21, June 20-25, 2021, Virtual, Canada

(32]

(33]

(34]

(35]

[36
(37]

—

(38]

(39]

(40]

Report DCS-TR-753.

Jay P. Lim, Mridul Aanjaneya, John Gustafson, and Santosh Na-
garakatte. 2021. An Approach to Generate Correctly Rounded Math
Libraries for New Floating Point Variants. Proceedings of the ACM
on Programming Languages 6, POPL, Article 29 (Jan. 2021), 30 pages.
https://doi.org/10.1145/3434310

Jay P. Lim and Santosh Nagarakatte. 2021. RLibm-32. https://github.
com/rutgers-apl/rlibm-32

Jay P Lim and Rutgers University Santosh Nagarakatte. 2021. RLIBM-
32: High Performance Correctly Rounded Math Libraries for 32-bit
Floating Point Representations. Rutgers Department of Computer
Science Technical Report DCS-TR-754.

Jay P. Lim, Matan Shachnai, and Santosh Nagarakatte. 2020. Approxi-
mating Trigonometric Functions for Posits Using the CORDIC Method.
In Proceedings of the 17th ACM International Conference on Computing
Frontiers (Catania, Sicily, Italy) (CF "20). Association for Computing Ma-
chinery, New York, NY, USA, 19-28. https://doi.org/10.1145/3387902.
3392632

Guillaume Melquiond. 2019. Gappa. http://gappa.gforge.inria.fr
Jean-Michel Muller. 2005. Elementary Functions: Algorithms and Im-
plementation. Birkhauser. https://doi.org/10.1007/978-1-4899-7983-4
Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary
Tatlock. 2015. Automatically Improving Accuracy for Floating Point
Expressions. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, Vol. 50. Associ-
ation for Computing Machinery, New York, NY, USA, 1-11. https:
//doi.org/10.1145/2813885.2737959

Eugene Remes. 1934. Sur un procédé convergent d’approximations
successives pour déterminer les polyndomes d’approximation. Comptes
rendus de ’Académie des Sciences 198 (1934), 2063-2065.

Alex Sanchez-Stern, Pavel Panchekha, Sorin Lerner, and Zachary Tat-
lock. 2018. Finding Root Causes of Floating Point Error. In Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design
and Implementation (Philadelphia, PA, USA) (PLDI 2018). ACM, New
York, NY, USA, 256-269. https://doi.org/10.1145/3296979.3192411

374

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Jay P. Lim and Santosh Nagarakatte

Jun Sawada. 2002. Formal verification of divide and square root algo-
rithms using series calculation. In 3rd International Workshop on the
ACL2 Theorem Prover and its Applications.

Pat H Sterbenz. 1974. Floating-point computation. Prentice-Hall, En-
glewood Cliffs, NJ.

Shane Story and Ping Tak Peter Tang. 1999. New algorithms for
improved transcendental functions on IA-64. In Proceedings 14th IEEE
Symposium on Computer Arithmetic. 4-11. https://doi.org/10.1109/
ARITH.1999.762822

Ping-Tak Peter Tang. 1989. Table-Driven Implementation of the Ex-
ponential Function in IEEE Floating-Point Arithmetic. ACM Trans.
Math. Software 15, 2 (June 1989), 144-157. https://doi.org/10.1145/
63522.214389

Ping-Tak Peter Tang. 1990. Table-Driven Implementation of the Loga-
rithm Function in IEEE Floating-Point Arithmetic. ACM Trans. Math.
Software 16, 4 (Dec. 1990), 378-400. https://doi.org/10.1145/98267.
98294

P. T. P. Tang. 1991. Table-lookup algorithms for elementary functions
and their error analysis. In [1991] Proceedings 10th IEEE Symposium on
Computer Arithmetic. 232-236. https://doi.org/10.1109/ARITH.1991.
145565

Lloyd N. Trefethen. 2012. Approximation Theory and Approximation
Practice (Other Titles in Applied Mathematics). Society for Industrial
and Applied Mathematics, USA.

Xin Yi, Liqgian Chen, Xiaoguang Mao, and Tao Ji. 2019. Efficient Au-
tomated Repair of High Floating-Point Errors in Numerical Libraries.
Proceedings of the ACM on Programming Languages 3, POPL, Article

56 (Jan. 2019), 29 pages. https://doi.org/10.1145/3290369
Abraham Ziv. 1991. Fast Evaluation of Elementary Mathematical

Functions with Correctly Rounded Last Bit. ACM Trans. Math. Software
17, 3 (Sept. 1991), 410-423. https://doi.org/10.1145/114697.116813

Daming Zou, Muhan Zeng, Yingfei Xiong, Zhoulai Fu, Lu Zhang,
and Zhendong Su. 2019. Detecting Floating-Point Errors via Atomic
Conditions. Proceedings of the ACM on Programming Languages 4,
POPL, Article 60 (Dec. 2019), 27 pages. https://doi.org/10.1145/3371128

	Abstract
	1 Introduction
	2 Overview of Our Approach with sinpi(x)
	2.1 Our Range Reduction for sinpi(x)
	2.2 Generating Piecewise Polynomials for sinpi(x)

	3 Generating Piecewise Polynomials
	3.1 Computing Rounding Intervals
	3.2 Computing Reduced Rounding Intervals
	3.3 Efficient Piecewise Polynomials
	3.4 Counterexample Driven Polynomial Generation

	4 Experimental Evaluation
	4.1 Experimental Setup and Methodology
	4.2 Generation of Correctly Rounded Results
	4.3 Performance Evaluation of RLibm-32

	5 Case Study with cospi(x) for Float
	6 Related Work
	7 Conclusion and Future Directions
	Acknowledgments
	References

