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ABSTRACT

This paper proposes a new approach for debugging errors in floating
point computation by performing shadow execution with higher
precision in parallel. The programmer specifies parts of the program
that need to be debugged for errors. Our compiler creates shadow
execution tasks, which execute on different cores and perform the
computation with higher precision. We propose a novel method
to execute a shadow execution task from an arbitrary memory
state, which is necessary because we are creating a parallel shadow
execution from a sequential program. Our approach also ensures
that the shadow execution follows the same control flow path as the
original program. Our runtime automatically distributes the shadow
execution tasks to balance the load on the cores. Our prototype for
parallel shadow execution, PFPSANITIZER, provides comprehensive
detection of errors while having lower performance overheads than
prior approaches.

CCS CONCEPTS

« Software and its engineering — Software testing and de-
bugging; « Computing methodologies — Parallel computing
methodologies.
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1 INTRODUCTION

The floating point (FP) representation approximates a real number
using a finite number of bits. Hence, some rounding error with each
operation is inevitable. Such rounding errors can be amplified by
certain operations (e.g., subtraction) such that the entire result is
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influenced by rounding errors. Even the control flow of the pro-
gram can differ compared to an oracle execution due to rounding
errors, which can result in slow convergence or wrong results. In
extreme cases, math libraries can produce wrong results, which can
be amplified by other operations. Further, the program can produce
exceptional values such as Not-a-Number (NaNs), which get propa-
gated throughout the program to produce incorrect results. Such
errors have caused well documented mishaps [33].

Given the history of errors with FP programs, there have been
numerous proposals to detect [1, 3, 15, 16, 24], debug [9, 38], and
repair errors [34]. There are numerous tools to detect specific er-
rors [1, 15, 16, 24]. A comprehensive approach to detect errors in
FP programs is to perform inlined shadow execution with real num-
bers 3, 9, 38]. In the shadow execution, every FP variable in memory
and registers is represented with a type that has a large amount of
precision (e.g., using MPFR library [17]). When the FP value and
the shadow value differ significantly, the error is reported to the
user. Such shadow execution tools can comprehensively detect a
wide range of errors: cancellation errors, branch divergences, and
the presence of special values (e.g., NaNs). To assist in debugging
the error, Herbgrind [38] and FPSanitizer [9] provide a directed
acyclic graph (DAG) of instructions. Herbgrind when coupled with
Herbie [34] has been useful in rewriting FP expressions. The debug-
ging features in our prior work, FPSANITIZER [9], have been useful
in our effort to develop correctly rounded math libraries [25-29].

Inlined shadow execution is useful in detecting errors with unit
tests. However, it has more than 100X performance overhead. Soft-
ware emulation of a real number using the MPFR library and addi-
tional information (i.e., metadata) maintained with each memory
location during inlined shadow execution are the primary sources
of this performance overhead. These overheads prevent the usage
of such debugging tools in many applications.

Our objective is to enable the use of shadow execution tools for
debugging numerical errors with long running applications. This
paper proposes a new approach for debugging numerical errors that
performs shadow execution in parallel on the multicore machines.
In our approach, the user specifies parts of the code that needs to
be debugged (i.e., with directives #pragma pfpsan in Figure 3(a))
similar to task parallel programs. Our compiler creates shadow
execution tasks that mimic the original program but execute the FP
computation with higher precision in parallel. The shadow execu-
tion tasks of a sequential program, by default, are also sequential
because they need the memory state from prior tasks. To execute
the shadow execution tasks in parallel, we need to provide these
shadow execution tasks with appropriate memory state and input
arguments. We also need to ensure that the parallel task follows
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the same control-flow path as the original program to be useful for
debugging.

Our key insight for parallel shadow execution from a sequential
program is to use the FP value produced by the original program as
the oracle whenever we do not have the high-precision information
available. Our approach is partly inspired from prior efforts on
speculative parallelization [44]. In our model, the shadow task can
start execution even if prior shadow tasks (according to the order in
the sequential program) have not completed as long as the original
program has executed the corresponding FP computation. The
original program pushes the live FP values, memory addresses,
and the FP values loaded from those addresses to a queue that is
used by the shadow execution task (see Figure 4). The original
program and the shadow execution task execute in a decoupled
fashion and communicate only through the queues. The shadow
execution task reads the live FP values from the queue and executes
the high-precision version of the program created by our compiler.
It maintains a high-precision value (i.e., a MPFR value) with each
FP variable in both memory and in temporaries.

When the shadow execution task loads a value from a memory
location, it needs to identify whether the memory location was pre-
viously written by that task. The high-precision value is available
in memory when the task has previously written to that address.
Otherwise, it needs to initialize the shadow execution using the
FP value from the original program. To detect such scenarios, the
shadow execution task stores both the high-precision value and the
FP value produced by the program in its memory when it performs
a store. Subsequently when the shadow execution task performs a
load, it checks whether the loaded FP value from memory and the
value produced by the program are identical. The FP values from
the program and the ones in the memory of the shadow task will
mismatch when the shadow task is accessing the memory address
for the first time or when the memory address depends on values
from prior shadow tasks. In such cases, the shadow task uses the FP
value from the program as the oracle and re-initializes its memory
(see Figure 6). This technique to use the original program’s FP value
as an oracle allows us to execute shadow execution tasks from an
arbitrary state. To enable effective debugging of numerical errors,
the shadow execution task also maintains information about the
operation that produced the value in memory, which can be used
to provide a DAG of instructions responsible for the error.

Our prototype, PFPSANITIZER, is open-source and publicly avail-
able [11]. It enhances the LLVM compiler to instrument the program
and generate shadow execution tasks. PFPSANITIZER’s runtime cre-
ates a team of threads for shadow execution, allocates bounded
queues to communicate values for shadow execution tasks, and
dynamically assigns shadow execution tasks to the cores to balance
the load. The speedup with PFPSANITIZER over inlined shadow
execution depends on the number of shadow tasks. If the user does
not create any task, then the entire execution is a single task and
PFPSANITIZER can attain a maximum speedup of 2X. When the
user creates sufficient number of shadow tasks, PFPSANITIZER is
approximately 30X faster on average on a machine with 64-cores
when compared to FPSANITIZER, which is the state-of-the-art for
debugging FP programs.
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Figure 1: A 32-bit FP representation of 5.5 in decimal. First, the
number 5.5 is converted to a binary fraction (1.011); x 2? and the
actual bit patterns for the exponent and the fraction are determined.
As bias = 127 for a 32-bit float and E — bias = 2, E = 129 which
is 10000001 in binary. The least significant bits of the fraction are
populated with zeros.
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Figure 2: Error amplification with a sequence of operations, repre-
sented as a DAG. We show the real value and the FP result for each
operation.

2 BACKGROUND

We provide a primer on the FP representation, the cause of errors
and their accumulation with FP computation, an overview of inlined
shadow execution, and a comparison of existing approaches.

The floating point representation. The floating point (FP)
representation is the most widely used representation to approxi-
mate real numbers. It was standardized by the IEEE-754 standard.
The FP representation is specified by the total number of bits (n) and
the number of bits for the exponent (|E|). The representation has
three components: a sign bit, |E| exponent bits, and n—1—|E| bits to
represent the fraction. Figure 1 shows the representation for a 32-bit
float, which has a sign bit, 8-bits for the exponent, and 23-bits for
the fraction. A 64-bit double has a sign bit, 11-bits for the exponent,
and 52-bits for the fraction. The goal of the FP representation is to
encode both large and very small values.

The sign bit indicates whether the number is positive or negative.
There are three classes of values depending on the bit pattern
in the exponent. If the exponent bits are all 1’s, the bit pattern
represents special values. It represents infinity if the fraction bits
are all 0°’s and NaNs (Not-a-Number) otherwise. These special values
propagate with each operation. If the exponent bit pattern is all 0’s,
it represents denormal values (i.e., values very close to zero). The
value of the number represented is (—1)° X 0.F X 21-bias yhere
bias = 2/E1=1 — 1 and F is the value of the binary fraction (i.e., from
the fraction bits). If the exponent bit pattern is neither all 0’s nor
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Table 1: Comparison of various dynamic analysis tools. We indicate whether they support parallel execution, type of instrumentation, perfor-
mance overhead, kind of errors detected, and the oracle used for the analysis. Here, IL indicates that the tool provides debugging information
at an instruction level, which is useful for debugging. FL represents information being presented at the granularity of a function.

Parallel . .
Tool Name Shadow Instrumentation Overhead Rounding Bra'nch Conversion | Root Cal}se Oracle
. Errors Flips Errors Analysis
Analysis
BZ [1] X Compiler(GIMPLE IR) 7.91% v v 4 X Canceled Bits
FPSpy [15] X Binary(Valgrind) 127X v X X X Condition Codes
Verrou [16] X Binary(Valgrind) 7% v X X v/(FL) Randomized Rounding
FPDebug [3] X Binary(Valgrind) > 395X v X v v/ (IL) MPFR
Herbgrind [38] X Binary(Valgrind) > 574X v v v V(IL) MPFR
FPSanitizer [10] X Compiler(LLVM IR) > 100X v v v v(IL) MPFR
PFPSANITIZER v Compiler(LLVM IR) 5.6X v v v v(IL) MPFR

all 1’s, then it represents normal values. The value represented is
(-1)% x 1.F x 2E-bias,

Rounding error. When a real number is not exactly repre-
sentable, then it must be rounded to the nearest FP number ac-
cording to the rounding mode. The IEEE-754 has multiple rounding
modes. Round-to-nearest-with-ties-to-even is the default rounding
mode [18]. Hence, each primitive arithmetic operation has some
error, which is bounded by 0.5 ULP (units in the last place) [18, 30].

Accumulation of errors. Although each primitive arithmetic
operation has a small amount of rounding error (< 0.5 ULP), the
error can get amplified with a sequence of operations and produce
wrong results, exceptions, and branch divergences. Figure 2 shows
the accumulation of error while computing the expression (A —
((A+ B) — B)) = C. An execution with reals produces zero but the
FP execution produces a non-zero value. When this value is used
as a branch condition, then the outcome of the branch will diverge
from the ideal execution. One reason for this error is that when two
numbers that are close to each to other are subtracted, the most
significant precision bits can get canceled. If the remaining bits are
influenced by rounding, then the rounding error gets amplified.

Inlined shadow execution with reals. One way to detect such
numerical errors is by comparing the results of the FP program and
the program that is rewritten with real numbers (i.e., differential
analysis). Such an approach can detect errors but does not help in
debugging because it is infeasible to store all intermediate results
and compare them. A lock-step inlined shadow execution [3, 9, 38]
where the analysis performs real computation after each instruction,
maintains the real value with each variable in registers and memory,
and checks error after each instruction is useful. The real numbers
are simulated with a widely used GNU MPFR library, which is a C
library for multiple-precision floating point computations with cor-
rect rounding. By maintaining appropriate information with each
memory location, such lock-step shadow execution can provide a
directed acyclic graph (DAG) of instructions (i.e., a backward slice
of instructions) to debug an error [9, 38].

Comparison of prior approaches with PFPSANITIZER. Ta-
ble 1 compares various dynamic analysis tools to detect FP errors.
Many of the prior approaches do not use the real execution as an
oracle because it is expensive [1, 15, 16]. Hence, they detect likely
errors rather than actual errors. Among the shadow execution ap-
proaches that use real numbers as an oracle, Herbgrind [38] and
FPDebug [3] perform binary instrumentation and have significant

overheads. Our prior work, FPSanitizer [9], reduces the overhead
by keeping the memory usage bounded. In contrast to prior ap-
proaches, PFPSANITIZER performs parallel shadow execution that
reduces overheads by an order of magnitude while providing com-
prehensive detection and debugging support.

3 PARALLEL SHADOW EXECUTION

Our objective is to facilitate detection and debugging of numerical
errors by performing a fine-grained comparison of a program’s
execution with a parallel shadow execution carried out with higher-
precision. In contrast to approaches that detect specific errors [1,
15, 16], a shadow execution with higher precision can enable com-
prehensive detection and debugging of errors such as cancellation,
exceptions, precision loss, and control-flow divergences. Typically
FP data types such as float and double are supported in hardware
and the higher-precision execution is performed using a software
library (e.g., MPFR). Hence, inlined shadow execution will be sig-
nificantly slower than the program’s execution. To address these
overheads, we propose to perform parallel shadow execution.
Performing shadow execution in parallel is challenging for the
following four reasons. First, we have to create a higher-precision
version of the program automatically, which checks its execution
with the original program in a fine-grained manner. Second, sig-
nificant communication between the original program and the
shadow execution will reduce performance. Third, executing the
entire shadow execution on another core (i.e., a single core) will
not provide significant speedup compared to inlined shadow execu-
tion because the shadow execution is significantly slower than the
original program. Hence, we need a mechanism to identify and ex-
ecute fragments of shadow execution in parallel (i.e., parallelize the
shadow execution). Finally, we need to initialize the memory state
appropriately for each such parallel fragment of shadow execution.

3.1 High-level Overview of PFPSANITIZER

We propose a new approach for debugging numerical errors where
the user specifies parts of the program that needs to be debugged.
Our compiler automatically creates a high-precision version of
the original program corresponding to it, which we call as the
shadow execution task. There are two requirements for the shadow
execution: (1) it has to follow the same control-flow path as the
original program and (2) we should be able to check the shadow
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(a) Original program with a directive

1 float foo(float *a, float *b){ i1 float foo(float *a, float *b){ | |1 void foo_shadow(task & ©){ :
2 #pragma pfpsan{ 12 task = create_task(Q); 5 i 2 !
3  float aval = *a; 13 float aval = *a; ! ' 3a <a_addr, a> = t.dequeue(); 1
E 3a task.enqueue(a, aval); i ' 3b a_s = pfpsan_load(a, a_addr); E
4  float bval = *b; 14 float bval = *b; 1 1 4 <b_addr, b> = t.dequeue(); !
E 4a task.enqueue(b, bval); E E 4a b_s = pfpsan_load(b, b_addr); 1
5 float x1 = aval + bval; ) float x1 = aval + bval; \ E 5 x1_s = pfpsan_add(a_s, b_s); E
6 float x2 = x1 - aval; E 6 float x2 = x1 - aval; ! 16 x2_s = pfpsan_sub(x1l_s, a_s); 1
7 float x3 = x2 - bval; 17 float x3 = x2 - bval; 1 17 x3_s = pfpsan_sub(x2_s, b_s); E
8 float z = 0.0; i 8 float z = 0.0; E E 8 z_s = pfpsan_const(0.0); !
pfsan 19 task.enqueue(x3 == 0); ! 19  cond = t.dequeue(); :
9 if(x3 == 0){ compiler 19a if(x3 == 0){ E E 9a cond_s = pfpsan_cmp(x3_s, @); E
> E ! ' 9b  pfpsan_check_branch(cond, cond_s); |
! ! 1 9c  if(cond){ E
10 z = x2*x3; 110z = x2*x3; E E 10  z_s = pfpsan_mul(x2_s, Xx3_s); !
1 3} 111} o1} |
12 else{ 112 else{ | E 12 else{ E
13 z = x2+x3; E 13 Z = Xx2+x3; E 113 z_s = pfpsan_add(x2_s, x3_s); !
14 } 114} Lol14 3 :
15 } 1 15 task.enqueue(z); i E 15 z = t.dequeue(Q); E
i 15a end_task(task); ! ! 15a pfpsan_check_return(z, z_s); \

16 return z; 116 return z; | 1 16.
17} LAY T i

(b) Compiler generated producer program
with FP computation

(c) Compiler generated shadow execution task
with high-precision computation

Figure 3: Transformations done by the PFPSANITIZER’s compiler. (a) Program with pfpsan directive. (b) The producer (original program) with
additional instrumentation to write FP values and addresses to the queue. The producer passes the address of the memory read and the actual
FP value because it enables the shadow execution task to map the address to a shadow memory address. The FP value enables it to check if the
shadow task is starting from an arbitrary memory state. (c) The consumer (shadow execution task) that performs high-precision computation.
By default, PFPSANITIZER checks error on every branch condition and return value (i.e., pfpsan_check_branch and pfpsan_check_return)

execution’s value with the original program’s value at various
points of interest. Our goal is to execute multiple shadow execution
tasks in parallel. However, these shadow execution tasks are derived
from a sequential program and they are dependent on each other. To
execute them in parallel, we need to break dependencies between
these shadow execution tasks.

To break dependencies between two shadow execution tasks, we
need to provide appropriate state for memory locations that depend
on values produced by prior shadow tasks. Our key insight is to
use the FP values from the original program as the oracle to break
dependencies. In our model, we treat a shadow execution task to
be independent of other shadow tasks and use the values produced
by the corresponding regions of the original program to initialize
the memory state. Hence, our compiler introduces additional in-
strumentation to the original program to provide live FP values,
addresses of memory accesses, FP values read from each memory
access, and outcomes of branches to the queue. Figure 3(b) presents
the instrumented version of the original program. The shadow exe-
cution tasks created by our compiler read FP values and addresses
from the queue. It executes the FP computation with higher preci-
sion. To ensure that the shadow execution task follows the same
control-flow path as the original program, PFPSANITIZER’s compiler
changes every branch in the shadow task to use the outcome of the
original program. Figure 3(c) illustrates the shadow execution task
created by our compiler for the program in Figure 3(a).

The shadow task maps every memory location with an FP value
in the original program to a shadow memory location that has a

high-precision value. When the shadow task executes a memory
access, it needs to determine whether that location has been pre-
viously accessed by it. If it has previously accessed the memory
location, then the high-precision value is available in shadow mem-
ory. Otherwise, it needs to initialize the shadow memory with the
FP value from the program. Hence, every shadow memory location
maintains the high-precision value and the FP value produced by
the original program. When the shadow execution task performs
a load, we check if the FP value loaded from shadow memory and
the FP value produced by the original program are identical. If they
match, we use the high-precision value for shadow execution. Oth-
erwise, we use the FP value produced by the program to reinitialize
shadow memory for that location. This technique to use the FP
value from the original program as the oracle enables us to perform
parallel shadow execution from a sequential program. It limits the
detection of errors to instructions in the region provided by the
programmer, which we found to be sufficient to debug various FP er-
rors. To assist debugging, each shadow memory location maintains
information about the operations that produced the value. This
information enables PFPSANITIZER to detect errors and provide a
DAG of instructions for those errors.

PFPSANITIZER s runtime maps a shadow execution task to one of
the cores in the system dynamically balancing the load. The original
program and the shadow execution task operate in a decoupled
fashion and communicate only through the queues (see Figure 4).
This decoupled execution with dynamic load balancing provides
significant speedups with the increase in the number of cores.
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Figure 4: Parallel execution of shadow execution tasks during dy-
namic execution on a multicore machine. The producer (original
program) and the consumer communicate live FP values, addresses
of memory accesses, and branch outcomes using queues.

3.2 Our Model for Debugging FP Errors

As our goal is to enable programmers to debug numerical errors in
long running programs, performing an expensive shadow execution
for the entire program may not be feasible. In our approach, the
programmer marks parts of the program that needs to be debugged
with the pfpsan directive (i.e., pragma pfpsan in Figure 3(a)). Each
pfpsan directive represents a scoped block where the programmer
suspects the presence of numerical errors and wants to debug them
with shadow execution. Our compiler generates a shadow execution
task for each such directive. Each such directive corresponds to a
single shadow task, which can be executed on another core. We do
not support nested directives. If the dynamic execution encounters
nested directives, the nested directives are ignored and the shadow
execution task corresponds to the outermost directive.

Two non-nested directives in the dynamic execution result in
two shadow execution tasks that can execute in parallel. If the pro-
grammer places the directive at the beginning of the main method,
the entire program will be a single shadow execution task. It can at
most get a speedup of 2x over inlined shadow execution. As the
programmer introduces more directives, more shadow execution
tasks can be executed in parallel. With the introduction of addi-
tional non-nested directives, the window of instructions tracked to
debug an error decreases. Numerical errors have a relatively small
window of dynamic instructions that are useful to debug and fix the
error [9, 38]. Hence, when the programmer uses a sufficient number
of directives, the programmer can obtain sufficient speedup and
relatively rich DAG of instructions to debug the error using our
approach.

3.3 Compiler Generated Shadow Tasks

Given a program with directives, PFPSANITIZER’s compiler auto-
matically creates a shadow higher-precision version of the program
that can operate in parallel with the original program on a separate
core. We want the original program and the shadow task to execute
independently with minimum communication. In our design, they
communicate through bounded queues. The original program is the
producer and the shadow execution task is the consumer. To enable
effective debugging, we need to ensure that the shadow task follows
the same control-flow path as the original program. PFPSANITIZER’s
compiler identifies the pfpsan directive and creates the modified
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original program and the shadow execution task corresponding to
the directive. Figure 3(b) shows the modified original program and
the shadow execution task corresponding to the directive.

Modified original program. PFPSANITIZER’s compiler modi-
fies the original program to account for the creation of the shadow
task. It adds a call to the runtime to obtain an unique task identi-
fier and a queue associated with it. Subsequently, PFPSANITIZER
captures the FP values that are live to the directive and introduces
enqueue operations. Our shadow tasks do not have information
about integer operations. Hence, PFPSANITIZER enqueues the ad-
dress and the FP value loaded/stored for every memory operation.
To provide information about the branch conditions, the compiler
also enqueues the branch condition. At the end of the scoped block
corresponding to the directive, the compiler adds a runtime call to
indicate the end of the shadow task.

Shadow execution task. PFPSANITIZER creates a shadow exe-
cution task that performs the higher-precision execution to facili-
tate detection and debugging of FP errors. To improve performance,
PFPSANITIZER does not create a high-precision replica of the entire
scoped block indicated by the directive. Further, rewriting an entire
program especially global data structures with indirect references
is a challenging task. Instead, PFPSANITIZER’s compiler removes
all non-FP operations (except the branch conditions), changes FP
arithmetic operations to use the corresponding higher-precision
operations in the MPFR library, and replaces FP load and store
operations with loads and stores of MPFR data type in shadow
memory.

For each live FP value in the directive, PFPSANITIZER introduces
a dequeue operation to read the input FP value from the queue
associated with the shadow task. All FP arithmetic operations use
the corresponding high-precision values. For example, pfpsan_add
performs high-precision arithmetic using the MPFR library. For
each memory operation (i.e., a load or a store), PFPSANITIZER’S
compiler inserts a runtime call in the shadow execution task to
access the shadow memory corresponding to the address of the
memory operation. The FP value produced by the original pro-
gram is maintained as metadata in shadow memory along with the
high-precision value. It enables us to start shadow execution at an
arbitrary point in the program by using the original program as the
oracle.

The shadow execution task does not perform any integer opera-
tions. As the shadow task needs to follow the same control flow path
as the original program, PFPSANITIZER inserts a dequeue operation
from the queue to obtain the branch outcome of the producer. Sub-
sequently, it changes the branch condition in the shadow execution
task to branch based on the producer’s branch outcome. Figure 3(c)
presents the shadow execution task created by the PFPSANITIZER
compiler for the program in Figure 3(a). Overall, PFPSANITIZER’S
compiler generates a high-precision version of the program that
executes FP operations with a MPFR type and will follow the exact
same control-flow path as the original program during execution.

3.4 Dynamic Execution of Shadow Tasks

PFPSANITIZER s runtime creates a pool of threads at the start of the
producer’s execution, which execute the shadow execution tasks.
As the producer executes, the instrumentation corresponding to the
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Dynamic Trace of the
Shadow Execution task

Metadata for temporaries

Op 5;?5; \ZTS; Operand 1 Operand 2
as[..] 25 [ 25 | . [ . |
bs [..[ 125 [1.24900.

x1_s = pfpsan_add(a_s, b_s); x1_s[+ | 3.75 [3.74900.] as

x2_s = pfpsan_sub(x1l_s, a_s); x2,s\ - \ 1.25 \1.24900.\ x1_s \ as

Shadow address (res) 1.24900.

Float Real  Pointer to
value value temporary’s
metadata
Metadata in Shadow Memory

pfpsan_store(x2_s, res);

Figure 5: Metadata maintained with temporaries and in shadow
memory. Every temporary’s metadata has the operation (op), float
value, real value (MPFR), pointers to operands that produced it. Ev-
ery FP value in memory has metadata in shadow memory that has
the FP value, the real value, and the pointer to the previous writer’s
metadata. The arrows indicate how a DAG can be constructed using
the metadata.

directives create tasks and their associated queues. PFPSANITIZERs
runtime employs a work-stealing algorithm to dispatch a shadow
execution task to a thread in the pool. The thread executes a shadow
execution task to completion, which is similar to task parallel run-
times [35]. As the original program uses float or double types that
have hardware support, it is substantially faster than the software
MPER library. Hence, there are sufficient shadow execution tasks
for the pool of threads to execute. To keep the resource (memory)
usage bounded, there are fixed number of entries in the task queue.
If the producer (i.e., original program) creates more tasks than the
size of the task queue, then the producer stalls until there is space
in the queue. To minimize contention, the queue used to communi-
cate values from the producer to the shadow execution task uses
non-blocking data structures. The use of non-blocking tasks and
the work-stealing algorithm ensures dynamic load balancing and
provides scalable speedups.

Metadata to detect and debug errors. The shadow execution
task has all the live FP values from the queue and the runtime
calls introduced by the compiler performs high-precision execution
using real numbers (i.e. the MPFR data type). The shadow execution
task stores high-precision values in shadow memory (i.e., an address
mapped to the original address produced by the program). The
shadow memory of two different tasks are completely isolated from
each other.

To detect errors in the FP program compared to an oracle exe-
cution with real numbers (i.e., the MPFR data type), we maintain
the real value with each temporary and each memory location. The
temporaries are typically register allocated or allocated on the stack.
The metadata for temporaries also maintains information about
the operation and the pointers to the metadata of the operands of
the instruction. For every memory location, we maintain the real
value and the pointer to the metadata of the temporary that previ-
ously wrote to that memory location. Figure 5 shows the metadata
maintained with each temporary. This metadata about operands
in temporaries enables us to construct the DAG on an error (i.e.,
backward slice responsible for the error). Figure 5 also illustrates
the construction of the DAG using the metadata in shadow memory
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and for the temporaries, which is similar to our design in FPSANT-
TIZER [9].

On a memory operation that reads a FP value from memory to a
variable, the shadow execution task creates a new metadata entry
for the variable (i.e., a temporary). It copies the real value from
shadow memory to the temporary’s metadata. Further, it copies the
information about the previous writer and its operands to facilitate
the subsequent construction of the DAG.

Shadow execution from an arbitrary memory state. As we
are creating a parallel shadow execution from a sequential program,
we need to provide appropriate memory state for the shadow exe-
cution tasks. Our key insight is to use FP values from the original
program (the producer) as the oracle whenever shadow execution
lacks information (i.e., either due to an uninstrumented library call
or the task is accessing an untracked location for the first time).
Hence, we can execute the shadow execution task even when prior
shadow execution tasks have not completed as long as the original
program has executed the corresponding instructions.

In addition to the live FP values and addresses for the memory
accesses, the producer also provides the FP value loaded by the
program on every memory read instruction. The shadow execution
task maintains the FP value in the metadata for both temporaries
and shadow memory locations as shown in Figure 5. To enable the
shadow execution task to start from an arbitrary memory state,
PFPSANITIZER takes the following actions whenever the task wants
to perform a memory (read) access. First, the shadow task retrieves
the address of the memory operation and the FP value produced
by the producer from the queue. Second, it accesses the shadow
memory location corresponding to the address provided by the
producer. Third, it checks if the FP value in the metadata is exactly
equal to the FP value from the producer. If so, PFPSANITIZER con-
tinues to use the real value in the metadata because the shadow
task previously wrote to that location. Otherwise, PFPSANITIZER
uses the FP value from the producer as the oracle and reinitializes
the shadow memory for that memory location with the producer’s
FP value. If the FP values do not match, then the previous writer to
the particular memory location did not update metadata. Such mis-
matches happen when an update occurs in uninstrumented code or
the update happens in other shadow tasks. Figure 6 illustrates our
approach to start shadow execution from arbitrary memory state
with this technique.

Detecting errors. To detect FP errors, PFPSANITIZER’S runtime
needs to convert the MPFR value in the shadow task to a double
value and compare it to the double value generated by the producer.
If the error exceeds some threshold, then it can be reported to the
user. Such checks are performed on branch conditions that use FP
values, arguments to system calls, return values from functions, and
user-specified operations. This fine-grained comparison of the FP
program and the high-precision execution enables comprehensive
detection of numerical errors.

4 IMPLEMENTATION CONSIDERATIONS

PFPSANITIZER enhances the LLVM compiler to add instrumenta-
tion to the original program and to create shadow execution tasks.
PFPSANITIZER’s runtime is in C++, which is linked with the binary
when the program is compiled. Specifically, the runtime manages
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Figure 6: Our approach to execute shadow task from an arbitrary memory state. PFPSANITIZER maintains the FP value in shadow memory
and checks if the program’s FP value is exactly equal to the value in shadow memory. If so, it uses the real value for subsequent shadow
execution. Otherwise, it uses the program’s FP value as the oracle. Here, pfpsan_load first maps the producer’s address to a shadow address

and retrieves the metadata from shadow memory.

task creation, management of queues associated with tasks, creation
of worker threads, and the implementation of the work stealing
algorithm to dynamically balance the load among the threads. Al-
though the producer creates numerous shadow tasks, the number
of threads created by the runtime is equal to the number of cores
in the system to avoid unnecessary context switches. We describe
important implementation decisions in building the PFPSANITIZER
prototype.

Shadow memory organization. A shadow execution task ac-
cesses shadow memory, which maps each memory address with
an FP value to its corresponding real value. Each worker thread
has its own shadow memory, which is completely isolated from the
shadow memory of other threads. To bound the memory usage, PF-
PSANITIZER uses a fixed-size shadow memory for each thread that
is organized as a best-effort hash table (similar to a direct-mapped
cache). On a conflict, when two addresses map to the same shadow
memory location, PFPSANITIZER overwrites the shadow memory
location with the information about the latest writer. We handle
this loss of information on conflicts using our technique to perform
shadow execution from an arbitrary memory state.

Management of temporary metadata space. PFPSANITIZER
maintains metadata with each temporary in the LLVM intermedi-
ate representation. PFPSANITIZER uses a separate bounded space
to maintain temporary metadata. When this space is completely
utilized, PFPSANITIZER automatically reclaims the space allocated
to oldest entry in this metadata space. Hence, PFPSANITIZER’s run-
time also checks the validity of the temporary metadata pointer
in shadow memory before dereferencing it, which is similar to FP-
Sanitizer’s temporal safety checking [9]. Rather than maintaining
unique metadata entry for each dynamic instruction, PFPSANITIZER
maintains a unique entry for each static instruction. As a result, PF-
PSaN1TIZER produces DAGs that are restricted to the last iteration
in a program with loops.

Handling indirect function calls. PFPSANITIZER’s compiler
creates a high-precision version for each function in the program.
PFPSANITIZER’s runtime maintains the mapping between the ad-
dress of the original function and the address of the corresponding
shadow function. PFPSANITIZER’s compiler replaces all direct func-
tion calls in the shadow execution task with their corresponding
shadow functions. To handle indirect functions (i.e., calls through a
function pointer), PFPSANITIZER’s compiler introduces a call to the

runtime in the shadow execution task that uses the address of the
original function provided by the producer on the queue and calls
the corresponding shadow function using the mapping maintained
by the runtime.

Support for multithreaded applications. Although we de-
scribe our approach assuming a single threaded program, our ap-
proach will work seamlessly with multithreaded applications. As
PFPSANITIZER treats the FP value produced by the program as the
oracle, it can detect errors even in programs with races. However, it
will not detect errors specifically due to data races. One challenge
with multithreaded applications is the allocation of cores to the
original program and the shadow execution tasks. Parallel shadow
execution with PFPSANITIZER will be beneficial compared to inlined
shadow execution when there is at least one core unused by the
original multithreaded application.

Usage with interactive debuggers. PFPSANITIZER supports
debugging with interactive debuggers like gdb. To enable such
debugging, we propagate debugging symbols from the original pro-
gram to the shadow execution task. Hence, the developer can insert
breakpoints/watchpoints on functions in the shadow execution
task. The backward slice of the instructions with the DAG and the
detection enabled us to find and debug errors with the Cholesky
application.

5 EXPERIMENTAL EVALUATION

This section briefly describes our prototype, methodology, and
performance evaluation.

5.1 Prototype and Experimental Methodology

Prototype. We built the prototype of PFPSANITIZER with two com-
ponents: (1) an LLVM-9.0 compiler pass that takes C programs as
input and creates binaries with shadow tasks and (2) a runtime
written in C++ that manages worker threads, shadow memory,
and performs the high-precision computation using the MPFR li-
brary [17]. PFPSANITIZER can be customized to perform shadow
execution with a wide range of precision bits and also check error
at various granularities. PFPSANITIZER is open source and publicly
available [11].

Methodology. To evaluate the detection abilities and perfor-
mance of PFPSANITIZER, we perform experiments using C appli-
cations from the SPEC 2000, SPEC 2006, PolyBench, and CORAL
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application suites. SPEC is widely used to test the performance of
compilers and processors. CORAL is a suite of applications devel-
oped by Lawrence Livermore National Laboratory to test the perfor-
mance of supercomputers. Specifically, AMG is a C application that
is an algebraic multi-grid linear system solver for unstructured mesh
physics packages. To test the detection abilities, we used a test suite
with 43 micro-benchmarks that contain various FP errors that have
been used previously by prior approaches [9, 38]. We performed all
our experiments on a machine with AMD EPYC 7702P 64-Core Pro-
cessor and 126GB of main memory. We disabled hyper-threading
and turbo-boost on our machines to minimize perturbations. We
measure end-to-end wall clock time to evaluate performance. We
report speedups over our prior work FPSanitizer [9, 10] , which
is the state-of-the-art shadow execution tool for inlined shadow
execution. We use the exact same precision both for FPSANITIZER
and PFPSANITIZER when we report speedups. We use the uninstru-
mented original program to report slowdowns with PFPSANITIZER.
To compute the error in the double value produced by the program
in comparison to the real value, we convert the MPFR value to
double and compute the ULP error between the doubles [9, 38]. If
the exponent of the two such values differ, then all the precision
bits are in error. If all the bits differ, then entire double is influenced
by rounding error.

Placement of directives. To create tasks for parallel shadow
execution, we profiled applications to identify loops with inde-
pendent iterations and placed directives. In the absence of such
fragments, we placed directives following the approach that one
typically takes to debug a large program. When the programmer
does not know if a bug exists in the program, it may be beneficial
to run it with a single directive (i.e., entire program), which can
provide a maximum speedup of 2x over inlined shadow execution.
Once we are certain about the existence of the bug, we use the fol-
lowing procedure to debug it. We profile the application using the
gprof profiler, identify the top-n functions, and place the directives
at the beginning of these functions. If this has sufficient parallelism
and we can debug the error, then the process ends. Otherwise, we
remove the old directives, insert new n/2 directives corresponding
to the top n/2 long-running functions, and repeat this process. This
process continues until we either debug the root cause of the bug
with sufficient parallelism or end up with a single directive. For
our performance experiments, we placed directives using the above
procedure to ensure that the application had enough parallelism
for execution on 64-cores.

5.2 Ability to Detect FP Errors

To test the effectiveness of PFPSANITIZER in detecting existing
errors, we tested it with a test suite used by previous tools. Out
of the 43 tests, 12 test cases are from the Herbgrind test suite,
and the rest are from the FPSanitizer test suite. These test cases
include 16 cases of catastrophic cancellation (i.e., all the bits are
wrong between the real value and the FP value), 5 cases of branch
divergences, and 2 cases of exceptional conditions such as NaNs
and infinities. Rest of them do not have any numerical error but
have tricky FP computation that test dynamic tools. PFPSANITIZER
detects all errors without reporting any spurious errors.
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Table 2: Table reports the various kinds of bugs that we found in
the programs used for our performance experiments. We report the
number of static instructions that experience branch divergences
in the second column, the number of instances where all bits are
wrong in the third column (i.e, sign, exponent, and precision bits),
number of instances where all the precision bits are wrong in the
fourth column (i.e., 52 bits of precision with double), and number of
instances where than more than fifty percent of the precision bits
are wrong (fifth column). The last column provides the number of
non-comment and non-blank lines of code in the application.

Name Branch | All Bits | All Precision | 50% Precision #

Flips Wrong Bits Wrong Bits Wrong Lines

art 2 0 0 0 1070
ammp 0 0 0 0 9791
equake 0 0 310 605 1125

Ibm 4 0 609 1197 721
milc 1 0 378 607 8568
sphinx 0 0 2 56 11029
amg 0 0 4 14 58679
milcmk 0 0 0 0 88064

Tavi18s rror: 61 bits
float:Inf
mpfr:5472

Error: 61 bits. Error: 0 bits

Tadd:450 Error: 28 bits
float:27040000.0
mpfr:27040001.0

Error: 0 bits

fsub:172
float:5472.0
mpfr:5472.0

sqrt:238
float:0.0
mpfr:1.0

fadd:450
float:27040000.0
mpfr:27040000.0

fmul:443
float:1.0
mpfr:1.0

Error: 61 bits

fsub:218
float:0.0
mpfr:1.0

Error: 28 bits Error: 0 bits

fadd:450
float:27040000.0
mpfr:27040001.0

fmul:212
float:27040000.0
mpfr:27040000.0

(@ (b)

Figure 7: A DAG of instructions generated by PFPSANITIZER while
debugging the error in Cholesky. Each node shows the opcode, in-
struction id, computed value, real value and the numerical error oc-
curred. (a) The DAG for the fdiv instruction that results in infinities
(inf). (b) The DAG for the fadd instruction that is the root cause of
the error.

Table 2 provides information on the errors that we detected in
applications from SPEC and CORAL, which have several thousand
lines of code. As these applications are well tested for exceptions,
we did not find exceptional conditions such as NaNs/infinities and
instances where all bits are wrong. However, we detected branch
divergences in the SPEC application art. When we investigated
the root cause of these branch divergences, we identified the FP
equality comparison as the culprit. Similarly, we observed many
instances of precision loss where all precision bits are wrong (52
bits in a double) or more than 50% of the precision bits are wrong.
Our investigation indicates that these are real divergences from an
oracle execution with reals. These bugs need to be validated by the
developer of these applications.



5.3 Debugging an Error in Cholesky

We discovered an error in the Cholesky decomposition program
from the Polybench benchmark suite. PFPSANITIZER detected infini-
ties and NaNss (i.e., exceptional conditions) at various places in the
application. The program’s code or documentation did not provide
the reason for the exception. We describe how PFPSANITIZER was
helpful in both detecting and debugging the root cause of this error.
Cholesky decomposition [21] is a widely used algorithm in var-
ious domains and problems such as Monte Carlo simulation and
Kalman filters. Cholesky takes a N X N positive-definite matrix A
as input and outputs a lower triangular matrix where L x LT = A,
where LT is the transpose of L. Lower triangular matrix L is com-
puted as shown below, where i and j represent matrix indices.

i=j: \/A(i, i) - X L. k)?
A~ ZI LKL k) M
L(j.j)

It can be observed that the computation can produce infinities
(and NaNs when infinities get propagated) when L(j, j) evaluates to
zero, which happens when the matrix A is not positive semi-definite.
To make the matrix positive semi-definite, Cholesky in Polybench
computes A = A x AT. When this computation is performed with
reals, the resulting matrix A is positive semi-definite for all inputs.

We generated inputs to this application using an input generator
and ran the application with PFPSANITIZER using those inputs.
Specifically, when we generated the input matrix.

Lij =

i>j:

1.0 00 0.0
A=1[52000 1.0 0.0 (2)
00 54720 1.0

PFPSANITIZER detected NaNs and infinities in the program. Next,
we describe the process we used to debug this error.

When the matrix A is adjusted to make it positive semi-definite
(i.e, A x AT), the resultant matrix A in real numbers is

1.0 5200.0 0.0
5200.0 27040001.0 5472.0 3)
0.0 5472.0 29942785.0

Using PFPSANITIZER, we observed that the program computes the
following matrix.

1.0 5200.0 0.0
5200.0 27040000.0 5472.0 4)
0.0 5472.0 29942785.0

Specifically, A[1][1] when computed with real numbers cannot
be exactly represented in a 32-bit float. Hence, it is rounded to
27040000. PFPSANTTIZER identified that the computation of A[1][1]
in the lower triangular matrix differs from the oracle execution.
Specifically, A[1][1] is computed as A[1][1] — (A[1][0] = A[1][0]).
The FP program produces a 0 where as the oracle execution with
real arithmetic produces 1. Subsequent, division operation results
in infinities for the 32-bit float version.

We used the gdb debugger to insert a conditional breakpoint
in the PFPSANITIZER’s runtime when the program produces an
infinity or a NaN in the result of any operation. We observed that
breakpoint was triggered with a fdiv instruction. We generated
the DAG in the debugger. Figure 7 provides the DAG, where each
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nodes provides the instruction (instruction opcode:instruction id)
and number of bits of error with it. Figure 7(a) shows that error
occurs in fadd: 450 and is amplified by fsub:218. To identify why
fadd: 450 has any error, we set a breakpoint on the fadd instruc-
tion if the error is greater than or equal to 28 bits. Figure 7(b) shows
the DAG generated by PFPSANITIZER. The real execution with the
MPER type computed 27040001 while the FP computation produced
27040000. The value 27040001 cannot be exactly represented in a
32-bit float and it is rounded to 27040000. We reported this bug to
the maintainers of the PolyBench suite. They have acknowledged
the error. For performance reasons, all kernels in the PolyBench
suite avoid such checks. They delegate the responsibility of check-
ing invalid inputs to the user. Our experience demonstrates that
PFPSANITIZER Will be useful in debugging errors that result from
such implicit preconditions.

5.4 Performance Evaluation of PFPSANITIZER

Figure 8 reports the speedup with PFPSANITIZER that uses 512-bits
of precision for the MPFR type when compared to FPSanitizer,
which is the state of the art for shadow execution of FP programs,
with the increase in the number of cores. On average, PFPSANITIZER
provides a speedup of 30.6X speedup over FPSanitizer with 64 cores.
PFPSANITIZER provides speedups of 3.0x, 7.0, 14.3%, and 25.8x
speedup over FPSanitizer with 4 cores, 8 cores, 16 cores, and 32
cores, respectively. This increase in speedup with the increase in the
number of cores highlights PFPSANITIZER’s scalability. We observe
that some applications provide more speedup with 32 cores than 64
cores because there is not enough work in the application to utilize
all cores when executed with 64 cores.

Figure 9 shows execution time slowdown of PFPSANITIZER with
varying precisions for the MPFR type (128, 256, 512, and 1024 bits
of precision) over a baseline that does not perform any shadow
execution. On average, PFPSANITIZER experiences a slowdown of
5.6%, 6.2, 7.5%, and 10.9X compared to the baseline without any
shadow execution for the MPFR types with 128, 256, 512, and 1024
bits of precision, respectively. In contrast, prior work FPSanitizer
has slowdowns of 232X on average with 512 bits of precision over
the same baseline with these applications. This order of magnitude
decrease in slowdown from FPSanitizer to PFPSANITIZER enables
effective debugging with long-running applications.

We also investigated the cause of the remaining overheads with
parallel shadow execution. First, the producer has to provide values
to the queue and has to wait when all the tasks are active, which
causes an overhead of 3x over the baseline. Second, accesses to
shadow memory and the queues by the consumer task introduces an
additional overhead of 3x. Third, the high precision computation
with the MPFR library introduces additional 1.5X overhead on
average. All these overheads together add up to 7.5x slowdown
with PFPSANITIZER using 512 bits of precision over the baseline.
In summary, PFPSANITIZER reduces the performance overhead of
shadow execution significantly, which enables the use of shadow
execution with long-running applications.
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Figure 8: This graph reports the speedup of PFPSANITIZER over FPSanitizer when the program is executed with 4 cores, 8 cores, 16 cores, 32
cores, and 64 cores, respectively. As these report speedups, higher bars are better.
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Figure 9: This graph reports the slowdown experienced due to parallel shadow execution with PFPSANITIZER when compared to a baseline
without any instrumentation. We report the slowdowns when we vary the number of bits used for the precision in the MPFR data type: 1024
(Prec-1024), 512 (Prec-512), 256 (Prec-256), and 128 (Prec-128) bits of precision.

6 RELATED WORK

The related work can be broadly classified into two main categories:
(a) those that detect numerical errors and (2) those that accelerate
dynamic analysis with parallelism.

Detecting numerical errors. There is a large body of work on
detecting numerical errors using both static analysis and dynamic
analysis. Static analysis techniques [2, 12-14, 19, 39] use abstract
interpretation or interval arithmetic to reason about numerical
errors for all inputs. Error bounds for all inputs from static analysis
is appealing. However, the bounds can be too large especially in the
presence of loops, function calls, and pointer-intensive programs.

Dynamic analysis for detecting and debugging numerical
errors. Dynamic analyses focus on the program’s behavior for a
given input. They can be classified into approaches that target a spe-
cific class of errors [1, 16, 22, 24] and those that are comprehensive
detectors [3, 9, 38]. Any such analysis needs some oracle to com-
pare against the FP execution. Inlined shadow execution with a real
number, which is approximated with a high-precision MPFR data
type, is one such oracle. FPDebug [3], Herbgrind [38], and FPSani-
tizer [9] are examples of approaches with inlined shadow execution.
FPDebug and Herbgrind perform shadow execution with dynamic
binary instrumentation using Valgrind [32], which introduces sig-
nificant overheads. FPSanitizer addresses this issue with a LLVM

IR based instrumentation. Among these approaches, FPDebug does
not provide additional information for debugging errors. Herbgrind
and FPSanitizer provide DAGs to debug errors. Such DAGs can be
used with tools like Herbie [34] to rewrite expressions. To provide
DAGs, Herbgrind stores metadata that is proportional to the num-
ber of dynamic instructions with each memory location. Hence, it
runs out-of-memory with long-running applications. In contrast,
FPSanitizer bounds the usage of memory and can run with large ap-
plications without encountering out-of-memory errors. However,
large performance overheads (i.e., 100X or more) makes it chal-
lenging for debugging. Further, expert-crafted code (e.g., error free
transformations [31]) is a challenge for these approaches as they
can report spurious errors with them. PSO [42] tackles this problem
by building heuristics to detect such instructions and assist tools
to avoid such scenarios. Our approach is inspired by FPSanitizer
but reduces the performance overheads significantly with parallel
execution so that the shadow execution can be performed with
long-running applications.

Instead of using the MPFR library, real arithmetic has also been
approximated with constructive reals [4, 5, 23]. However, they will
likely be as slow as the MPFR library. To address the issue of slow
oracles, BZ [1] monitors just the exponent of the operands and
the result of the FP computation. If the exponent of the operands



exceeds the exponent of the result, then it flags those operations
as errors. Although approximate, such checks can be performed
without the real execution as an oracle. The propagation of such
likely errors can be tracked to see if they affect branch predicates.
RAIVE [24] uses similar approximation, computes the impact of
such likely errors on the final output of the program, and uses
vectorization to reduce performance overheads. FPSpy [15] relies
on hardware condition flags and uses exception handling to detect
FP errors in binaries. It has low overheads as long as the program
is monitored rarely and overhead can exceed shadow execution
tools when such exceptions are monitored on each instruction.
To check the sensitivity of the program to the rounding mode,
another approach is to perform dynamic analysis with random
rounding. CADNA [22] and Verrou [16] use random rounding.
Similarly, condition number of individual operations can be used
to detect numerical errors and instability in FP applications [45]. In
contrast to these approaches that detect likely errors, our approach
has similar or lower performance overheads when compared to
them while providing comprehensive detection and debugging
support using shadow execution with real numbers.

Precision tuning to reduce errors. One way to avoid com-
mon numerical errors is to select appropriate precision for each
variable. Previous approaches have explored tuning the precision
of FP variables for all inputs and for a specific execution to improve
performance and to reduce the occurrence of FP errors [7, 37].

Identifying inputs with high FP error. Dynamic analyses
need inputs that exercise operations with FP error. Hence, prior
research has explored symbolic execution, forward and backward
error analysis, and random input generation to generate such in-
puts [8, 20, 36]. Techniques to generate inputs complement our
approach and can enable us to detect and debug FP errors efficiently
as we illustrated with our Cholesky case study.

Parallel dynamic analysis. In the context of dynamic anal-
ysis for detecting memory safety errors and race detection, nu-
merous parallel analysis techniques have been explored [6, 40, 43].
Approaches that perform fine grained monitoring use hardware
support as with a dedicated operand queue in Log-Based Architec-
ture (LBA) [6]. Further, dataflow analyses have been modified to
accelerate dynamic analyses with LBA [41]. Other approaches for
parallel data race detection and deterministic execution monitor
programs at the granularity of epochs [40]. The closest related work
is Cruiser [43], which is a heap-based overflow detector. Cruiser
performs validity checks for each memory access on a separate core.
It has a single producer and a consumer, which is acceptable when
the checks are lightweight. Cruiser just needs to pass the memory
address of the access to another core performing the check. In con-
trast to Cruiser, PFPSANITIZER addresses the issues of monitoring
errors even on arithmetic instructions, parallel execution from a
single threaded dynamic execution, and a relatively heavy-weight
dynamic analysis with support for debugging.

7 CONCLUSION

This paper advances the state-of-the-art in debugging numerical
errors by performing shadow execution with higher precision. To
enable the use of such shadow execution with long-running ap-
plications, we perform shadow execution in parallel. As we are
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creating parallel execution from a sequential program, we need
to provide appropriate memory state for shadow execution. Our
key insight is to use the FP values from the original program as
the oracle for initializing memory state. The resulting tool is an
order of magnitude faster than existing shadow execution tools. We
believe comprehensive detection with these overheads can enable
their usage in late stages of development and debugging. Our expe-
rience suggests that other dynamic analyses (e.g., race detectors)
can also benefit from this approach, which we plan to explore in
future work.
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