
Parallel Shadow Execution to Accelerate the Debugging of
Numerical Errors

Sangeeta Chowdhary
Department of Computer Science

Rutgers University

USA

sangeeta.chowdhary@rutgers.edu

Santosh Nagarakatte
Department of Computer Science

Rutgers University

USA

santosh.nagarakatte@cs.rutgers.edu

ABSTRACT

This paper proposes a new approach for debugging errors in floating

point computation by performing shadow execution with higher

precision in parallel. The programmer specifies parts of the program

that need to be debugged for errors. Our compiler creates shadow

execution tasks, which execute on different cores and perform the

computation with higher precision. We propose a novel method

to execute a shadow execution task from an arbitrary memory

state, which is necessary because we are creating a parallel shadow

execution from a sequential program. Our approach also ensures

that the shadow execution follows the same control flow path as the

original program. Our runtime automatically distributes the shadow

execution tasks to balance the load on the cores. Our prototype for

parallel shadow execution, PFPSanitizer, provides comprehensive

detection of errors while having lower performance overheads than

prior approaches.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; • Computing methodologies→ Parallel computing

methodologies.

KEYWORDS

floating point, dynamic analysis, FPSanitizer, rounding errors

ACM Reference Format:

Sangeeta Chowdhary and Santosh Nagarakatte. 2021. Parallel Shadow Exe-

cution to Accelerate the Debugging of Numerical Errors. In Proceedings of

the 29th ACM Joint European Software Engineering Conference and Sym-

posium on the Foundations of Software Engineering (ESEC/FSE ’21), Au-

gust 23ś28, 2021, Athens, Greece. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3468264.3468585

1 INTRODUCTION

The floating point (FP) representation approximates a real number

using a finite number of bits. Hence, some rounding error with each

operation is inevitable. Such rounding errors can be amplified by

certain operations (e.g., subtraction) such that the entire result is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3468585

influenced by rounding errors. Even the control flow of the pro-

gram can differ compared to an oracle execution due to rounding

errors, which can result in slow convergence or wrong results. In

extreme cases, math libraries can produce wrong results, which can

be amplified by other operations. Further, the program can produce

exceptional values such as Not-a-Number (NaNs), which get propa-

gated throughout the program to produce incorrect results. Such

errors have caused well documented mishaps [33].

Given the history of errors with FP programs, there have been

numerous proposals to detect [1, 3, 15, 16, 24], debug [9, 38], and

repair errors [34]. There are numerous tools to detect specific er-

rors [1, 15, 16, 24]. A comprehensive approach to detect errors in

FP programs is to perform inlined shadow execution with real num-

bers [3, 9, 38]. In the shadow execution, every FP variable inmemory

and registers is represented with a type that has a large amount of

precision (e.g., using MPFR library [17]). When the FP value and

the shadow value differ significantly, the error is reported to the

user. Such shadow execution tools can comprehensively detect a

wide range of errors: cancellation errors, branch divergences, and

the presence of special values (e.g., NaNs). To assist in debugging

the error, Herbgrind [38] and FPSanitizer [9] provide a directed

acyclic graph (DAG) of instructions. Herbgrind when coupled with

Herbie [34] has been useful in rewriting FP expressions. The debug-

ging features in our prior work, FPSanitizer [9], have been useful

in our effort to develop correctly rounded math libraries [25ś29].

Inlined shadow execution is useful in detecting errors with unit

tests. However, it has more than 100× performance overhead. Soft-

ware emulation of a real number using the MPFR library and addi-

tional information (i.e., metadata) maintained with each memory

location during inlined shadow execution are the primary sources

of this performance overhead. These overheads prevent the usage

of such debugging tools in many applications.

Our objective is to enable the use of shadow execution tools for

debugging numerical errors with long running applications. This

paper proposes a new approach for debugging numerical errors that

performs shadow execution in parallel on the multicore machines.

In our approach, the user specifies parts of the code that needs to

be debugged (i.e., with directives #pragma pfpsan in Figure 3(a))

similar to task parallel programs. Our compiler creates shadow

execution tasks that mimic the original program but execute the FP

computation with higher precision in parallel. The shadow execu-

tion tasks of a sequential program, by default, are also sequential

because they need the memory state from prior tasks. To execute

the shadow execution tasks in parallel, we need to provide these

shadow execution tasks with appropriate memory state and input

arguments. We also need to ensure that the parallel task follows

ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece Sangeeta Chowdhary and Santosh Nagarakatte

the same control-flow path as the original program to be useful for

debugging.

Our key insight for parallel shadow execution from a sequential

program is to use the FP value produced by the original program as

the oracle whenever we do not have the high-precision information

available. Our approach is partly inspired from prior efforts on

speculative parallelization [44]. In our model, the shadow task can

start execution even if prior shadow tasks (according to the order in

the sequential program) have not completed as long as the original

program has executed the corresponding FP computation. The

original program pushes the live FP values, memory addresses,

and the FP values loaded from those addresses to a queue that is

used by the shadow execution task (see Figure 4). The original

program and the shadow execution task execute in a decoupled

fashion and communicate only through the queues. The shadow

execution task reads the live FP values from the queue and executes

the high-precision version of the program created by our compiler.

It maintains a high-precision value (i.e., a MPFR value) with each

FP variable in both memory and in temporaries.

When the shadow execution task loads a value from a memory

location, it needs to identify whether the memory location was pre-

viously written by that task. The high-precision value is available

in memory when the task has previously written to that address.

Otherwise, it needs to initialize the shadow execution using the

FP value from the original program. To detect such scenarios, the

shadow execution task stores both the high-precision value and the

FP value produced by the program in its memory when it performs

a store. Subsequently when the shadow execution task performs a

load, it checks whether the loaded FP value from memory and the

value produced by the program are identical. The FP values from

the program and the ones in the memory of the shadow task will

mismatch when the shadow task is accessing the memory address

for the first time or when the memory address depends on values

from prior shadow tasks. In such cases, the shadow task uses the FP

value from the program as the oracle and re-initializes its memory

(see Figure 6). This technique to use the original program’s FP value

as an oracle allows us to execute shadow execution tasks from an

arbitrary state. To enable effective debugging of numerical errors,

the shadow execution task also maintains information about the

operation that produced the value in memory, which can be used

to provide a DAG of instructions responsible for the error.

Our prototype, PFPSanitizer, is open-source and publicly avail-

able [11]. It enhances the LLVM compiler to instrument the program

and generate shadow execution tasks. PFPSanitizer’s runtime cre-

ates a team of threads for shadow execution, allocates bounded

queues to communicate values for shadow execution tasks, and

dynamically assigns shadow execution tasks to the cores to balance

the load. The speedup with PFPSanitizer over inlined shadow

execution depends on the number of shadow tasks. If the user does

not create any task, then the entire execution is a single task and

PFPSanitizer can attain a maximum speedup of 2×. When the

user creates sufficient number of shadow tasks, PFPSanitizer is

approximately 30× faster on average on a machine with 64-cores

when compared to FPSanitizer, which is the state-of-the-art for

debugging FP programs.

sign bit
(1 bit)

01100000000000000000000100000010

exponent
(8 bits)

fraction
(23 bits)

Figure 1: A 32-bit FP representation of 5.5 in decimal. First, the

number 5.5 is converted to a binary fraction (1.011)2 × 2
2 and the

actual bit patterns for the exponent and the fraction are determined.

As 𝑏𝑖𝑎𝑠 = 127 for a 32-bit float and 𝐸 − 𝑏𝑖𝑎𝑠 = 2, 𝐸 = 129 which

is 10000001 in binary. The least significant bits of the fraction are

populated with zeros.

Real: 0.5f

Computed: 0.5f

Real: 0.00134f

Computed: 0.00134f

+

-
Real: 0.50133999

Computed: 0.50133997

Real: 0.00134f

Computed: 0.00134f

Real: 0.5

Computed: 0.4999

-

Real: 0.5f

Computed: 0.5f

Real: 0

Computed: 2.98023e-08
*

Real: 200000000.0f

Computed: 200000000.0f

Real: 0

Computed: 5.96

A B

B

A

C

Computation of (A - ((A+ B) - B)) * C

Cancellation

Figure 2: Error amplification with a sequence of operations, repre-

sented as a DAG. We show the real value and the FP result for each

operation.

2 BACKGROUND

We provide a primer on the FP representation, the cause of errors

and their accumulationwith FP computation, an overview of inlined

shadow execution, and a comparison of existing approaches.

The floating point representation. The floating point (FP)

representation is the most widely used representation to approxi-

mate real numbers. It was standardized by the IEEE-754 standard.

The FP representation is specified by the total number of bits (𝑛) and

the number of bits for the exponent (|𝐸 |). The representation has

three components: a sign bit, |𝐸 | exponent bits, and 𝑛−1− |𝐸 | bits to

represent the fraction. Figure 1 shows the representation for a 32-bit

float, which has a sign bit, 8-bits for the exponent, and 23-bits for

the fraction. A 64-bit double has a sign bit, 11-bits for the exponent,

and 52-bits for the fraction. The goal of the FP representation is to

encode both large and very small values.

The sign bit indicates whether the number is positive or negative.

There are three classes of values depending on the bit pattern

in the exponent. If the exponent bits are all 1’s, the bit pattern

represents special values. It represents infinity if the fraction bits

are all 0’s andNaNs (Not-a-Number) otherwise. These special values

propagate with each operation. If the exponent bit pattern is all 0’s,

it represents denormal values (i.e., values very close to zero). The

value of the number represented is (−1)𝑠 × 0.𝐹 × 2
1−𝑏𝑖𝑎𝑠 , where

𝑏𝑖𝑎𝑠 = 2
|𝐸 |−1 − 1 and 𝐹 is the value of the binary fraction (i.e., from

the fraction bits). If the exponent bit pattern is neither all 0’s nor

ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

Table 1: Comparison of various dynamic analysis tools.We indicate whether they support parallel execution, type of instrumentation, perfor-

mance overhead, kind of errors detected, and the oracle used for the analysis. Here, IL indicates that the tool provides debugging information

at an instruction level, which is useful for debugging. FL represents information being presented at the granularity of a function.

Tool Name

Parallel

Shadow

Analysis

Instrumentation Overhead
Rounding

Errors

Branch

Flips

Conversion

Errors

Root Cause

Analysis
Oracle

BZ [1] ✗ Compiler(GIMPLE IR) 7.91× ✓ ✓ ✓ ✗ Canceled Bits

FPSpy [15] ✗ Binary(Valgrind) 127× ✓ ✗ ✗ ✗ Condition Codes

Verrou [16] ✗ Binary(Valgrind) 7× ✓ ✗ ✗ ✓(FL) Randomized Rounding

FPDebug [3] ✗ Binary(Valgrind) > 395× ✓ ✗ ✓ ✓(IL) MPFR

Herbgrind [38] ✗ Binary(Valgrind) > 574× ✓ ✓ ✓ ✓(IL) MPFR

FPSanitizer [10] ✗ Compiler(LLVM IR) > 100× ✓ ✓ ✓ ✓(IL) MPFR

PFPSanitizer ✓ Compiler(LLVM IR) 5.6× ✓ ✓ ✓ ✓(IL) MPFR

all 1’s, then it represents normal values. The value represented is

(−1)𝑠 × 1.𝐹 × 2
𝐸−𝑏𝑖𝑎𝑠 .

Rounding error. When a real number is not exactly repre-

sentable, then it must be rounded to the nearest FP number ac-

cording to the rounding mode. The IEEE-754 has multiple rounding

modes. Round-to-nearest-with-ties-to-even is the default rounding

mode [18]. Hence, each primitive arithmetic operation has some

error, which is bounded by 0.5 ULP (units in the last place) [18, 30].

Accumulation of errors. Although each primitive arithmetic

operation has a small amount of rounding error (≤ 0.5 ULP), the

error can get amplified with a sequence of operations and produce

wrong results, exceptions, and branch divergences. Figure 2 shows

the accumulation of error while computing the expression (𝐴 −

((𝐴 + 𝐵) − 𝐵)) ∗𝐶 . An execution with reals produces zero but the

FP execution produces a non-zero value. When this value is used

as a branch condition, then the outcome of the branch will diverge

from the ideal execution. One reason for this error is that when two

numbers that are close to each to other are subtracted, the most

significant precision bits can get canceled. If the remaining bits are

influenced by rounding, then the rounding error gets amplified.

Inlined shadow executionwith reals.Oneway to detect such

numerical errors is by comparing the results of the FP program and

the program that is rewritten with real numbers (i.e., differential

analysis). Such an approach can detect errors but does not help in

debugging because it is infeasible to store all intermediate results

and compare them. A lock-step inlined shadow execution [3, 9, 38]

where the analysis performs real computation after each instruction,

maintains the real value with each variable in registers and memory,

and checks error after each instruction is useful. The real numbers

are simulated with a widely used GNU MPFR library, which is a C

library for multiple-precision floating point computations with cor-

rect rounding. By maintaining appropriate information with each

memory location, such lock-step shadow execution can provide a

directed acyclic graph (DAG) of instructions (i.e., a backward slice

of instructions) to debug an error [9, 38].

Comparison of prior approaches with PFPSanitizer. Ta-

ble 1 compares various dynamic analysis tools to detect FP errors.

Many of the prior approaches do not use the real execution as an

oracle because it is expensive [1, 15, 16]. Hence, they detect likely

errors rather than actual errors. Among the shadow execution ap-

proaches that use real numbers as an oracle, Herbgrind [38] and

FPDebug [3] perform binary instrumentation and have significant

overheads. Our prior work, FPSanitizer [9], reduces the overhead

by keeping the memory usage bounded. In contrast to prior ap-

proaches, PFPSanitizer performs parallel shadow execution that

reduces overheads by an order of magnitude while providing com-

prehensive detection and debugging support.

3 PARALLEL SHADOW EXECUTION

Our objective is to facilitate detection and debugging of numerical

errors by performing a fine-grained comparison of a program’s

execution with a parallel shadow execution carried out with higher-

precision. In contrast to approaches that detect specific errors [1,

15, 16], a shadow execution with higher precision can enable com-

prehensive detection and debugging of errors such as cancellation,

exceptions, precision loss, and control-flow divergences. Typically

FP data types such as float and double are supported in hardware

and the higher-precision execution is performed using a software

library (e.g., MPFR). Hence, inlined shadow execution will be sig-

nificantly slower than the program’s execution. To address these

overheads, we propose to perform parallel shadow execution.

Performing shadow execution in parallel is challenging for the

following four reasons. First, we have to create a higher-precision

version of the program automatically, which checks its execution

with the original program in a fine-grained manner. Second, sig-

nificant communication between the original program and the

shadow execution will reduce performance. Third, executing the

entire shadow execution on another core (i.e., a single core) will

not provide significant speedup compared to inlined shadow execu-

tion because the shadow execution is significantly slower than the

original program. Hence, we need a mechanism to identify and ex-

ecute fragments of shadow execution in parallel (i.e., parallelize the

shadow execution). Finally, we need to initialize the memory state

appropriately for each such parallel fragment of shadow execution.

3.1 High-level Overview of PFPSanitizer

We propose a new approach for debugging numerical errors where

the user specifies parts of the program that needs to be debugged.

Our compiler automatically creates a high-precision version of

the original program corresponding to it, which we call as the

shadow execution task. There are two requirements for the shadow

execution: (1) it has to follow the same control-flow path as the

original program and (2) we should be able to check the shadow

ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece Sangeeta Chowdhary and Santosh Nagarakatte

1 float foo(float *a, float *b){

2 #pragma pfpsan{

3 float aval = *a;

4 float bval = *b;

5 float x1 = aval + bval;

6 float x2 = x1 - aval;

7 float x3 = x2 - bval;

8 float z = 0.0;

9 if(x3 == 0){

10 z = x2*x3;

11 }

12 else{

13 z = x2+x3;

14 }

15 }

16 return z;

17}

(a) Original program with a directive

 1 float foo(float *a, float *b){

 2 task = create_task();

 3 float aval = *a;

 3a task.enqueue(a, aval);

 4 float bval = *b;

 4a task.enqueue(b, bval);

 5 float x1 = aval + bval;

 6 float x2 = x1 - aval;

 7 float x3 = x2 - bval;

 8 float z = 0.0;

 9 task.enqueue(x3 == 0);

 9a if(x3 == 0){

 10 z = x2*x3;

 11 }

 12 else{

 13 z = x2+x3;

 14 }

 15 task.enqueue(z);

 15a end_task(task);

 16 return z;

 17}

 1 void foo_shadow(task & t){

 2

 3a <a_addr, a> = t.dequeue();

 3b a_s = pfpsan_load(a, a_addr);

 4 <b_addr, b> = t.dequeue();

 4a b_s = pfpsan_load(b, b_addr);

 5 x1_s = pfpsan_add(a_s, b_s);

 6 x2_s = pfpsan_sub(x1_s, a_s);

 7 x3_s = pfpsan_sub(x2_s, b_s);

 8 z_s = pfpsan_const(0.0);

 9 cond = t.dequeue();

 9a cond_s = pfpsan_cmp(x3_s, 0);

 9b pfpsan_check_branch(cond, cond_s);

 9c if(cond){

 10 z_s = pfpsan_mul(x2_s, x3_s);

 11 }

 12 else{

 13 z_s = pfpsan_add(x2_s, x3_s);

 14 }

 15 z = t.dequeue();

 15a pfpsan_check_return(z, z_s);

 16.

 17 }

(b) Compiler generated producer program
with FP computation

(c) Compiler generated shadow execution task
with high-precision computation

pfsan
compiler

Figure 3: Transformations done by the PFPSanitizer’s compiler. (a) Programwith pfpsan directive. (b) The producer (original program) with

additional instrumentation to write FP values and addresses to the queue. The producer passes the address of the memory read and the actual

FP value because it enables the shadow execution task to map the address to a shadowmemory address. The FP value enables it to check if the

shadow task is starting from an arbitrarymemory state. (c) The consumer (shadow execution task) that performs high-precision computation.

By default, PFPSanitizer checks error on every branch condition and return value (i.e., pfpsan_check_branch and pfpsan_check_return)

execution’s value with the original program’s value at various

points of interest. Our goal is to execute multiple shadow execution

tasks in parallel. However, these shadow execution tasks are derived

from a sequential program and they are dependent on each other. To

execute them in parallel, we need to break dependencies between

these shadow execution tasks.

To break dependencies between two shadow execution tasks, we

need to provide appropriate state for memory locations that depend

on values produced by prior shadow tasks. Our key insight is to

use the FP values from the original program as the oracle to break

dependencies. In our model, we treat a shadow execution task to

be independent of other shadow tasks and use the values produced

by the corresponding regions of the original program to initialize

the memory state. Hence, our compiler introduces additional in-

strumentation to the original program to provide live FP values,

addresses of memory accesses, FP values read from each memory

access, and outcomes of branches to the queue. Figure 3(b) presents

the instrumented version of the original program. The shadow exe-

cution tasks created by our compiler read FP values and addresses

from the queue. It executes the FP computation with higher preci-

sion. To ensure that the shadow execution task follows the same

control-flow path as the original program, PFPSanitizer’s compiler

changes every branch in the shadow task to use the outcome of the

original program. Figure 3(c) illustrates the shadow execution task

created by our compiler for the program in Figure 3(a).

The shadow task maps every memory location with an FP value

in the original program to a shadow memory location that has a

high-precision value. When the shadow task executes a memory

access, it needs to determine whether that location has been pre-

viously accessed by it. If it has previously accessed the memory

location, then the high-precision value is available in shadow mem-

ory. Otherwise, it needs to initialize the shadow memory with the

FP value from the program. Hence, every shadow memory location

maintains the high-precision value and the FP value produced by

the original program. When the shadow execution task performs

a load, we check if the FP value loaded from shadow memory and

the FP value produced by the original program are identical. If they

match, we use the high-precision value for shadow execution. Oth-

erwise, we use the FP value produced by the program to reinitialize

shadow memory for that location. This technique to use the FP

value from the original program as the oracle enables us to perform

parallel shadow execution from a sequential program. It limits the

detection of errors to instructions in the region provided by the

programmer, which we found to be sufficient to debug various FP er-

rors. To assist debugging, each shadow memory location maintains

information about the operations that produced the value. This

information enables PFPSanitizer to detect errors and provide a

DAG of instructions for those errors.

PFPSanitizer’s runtime maps a shadow execution task to one of

the cores in the system dynamically balancing the load. The original

program and the shadow execution task operate in a decoupled

fashion and communicate only through the queues (see Figure 4).

This decoupled execution with dynamic load balancing provides

significant speedups with the increase in the number of cores.

ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

for(..){

 int res = foo(….);

}

Core 0

....bkak ..

The original

program (producer)

Task 1

Task 1
(foo_shadow)

....b0a0 ..

....b1a1 ..

Task 2

Task k

Shadow

Memory

Core 1

Task 2
(foo_shadow)

Shadow

Memory

Core 2

Task k
(foo_shadow)

Shadow

Memory

Core k

Shadow execution

tasks (Consumers)

Active tasks along with

bounded queues

for live FP values

Figure 4: Parallel execution of shadow execution tasks during dy-

namic execution on a multicore machine. The producer (original

program) and the consumer communicate live FP values, addresses

of memory accesses, and branch outcomes using queues.

3.2 Our Model for Debugging FP Errors

As our goal is to enable programmers to debug numerical errors in

long running programs, performing an expensive shadow execution

for the entire program may not be feasible. In our approach, the

programmer marks parts of the program that needs to be debugged

with the pfpsan directive (i.e., pragma pfpsan in Figure 3(a)). Each

pfpsan directive represents a scoped block where the programmer

suspects the presence of numerical errors and wants to debug them

with shadow execution. Our compiler generates a shadow execution

task for each such directive. Each such directive corresponds to a

single shadow task, which can be executed on another core. We do

not support nested directives. If the dynamic execution encounters

nested directives, the nested directives are ignored and the shadow

execution task corresponds to the outermost directive.

Two non-nested directives in the dynamic execution result in

two shadow execution tasks that can execute in parallel. If the pro-

grammer places the directive at the beginning of the main method,

the entire program will be a single shadow execution task. It can at

most get a speedup of 2× over inlined shadow execution. As the

programmer introduces more directives, more shadow execution

tasks can be executed in parallel. With the introduction of addi-

tional non-nested directives, the window of instructions tracked to

debug an error decreases. Numerical errors have a relatively small

window of dynamic instructions that are useful to debug and fix the

error [9, 38]. Hence, when the programmer uses a sufficient number

of directives, the programmer can obtain sufficient speedup and

relatively rich DAG of instructions to debug the error using our

approach.

3.3 Compiler Generated Shadow Tasks

Given a program with directives, PFPSanitizer’s compiler auto-

matically creates a shadow higher-precision version of the program

that can operate in parallel with the original program on a separate

core. We want the original program and the shadow task to execute

independently with minimum communication. In our design, they

communicate through bounded queues. The original program is the

producer and the shadow execution task is the consumer. To enable

effective debugging, we need to ensure that the shadow task follows

the same control-flow path as the original program. PFPSanitizer’s

compiler identifies the pfpsan directive and creates the modified

original program and the shadow execution task corresponding to

the directive. Figure 3(b) shows the modified original program and

the shadow execution task corresponding to the directive.

Modified original program. PFPSanitizer’s compiler modi-

fies the original program to account for the creation of the shadow

task. It adds a call to the runtime to obtain an unique task identi-

fier and a queue associated with it. Subsequently, PFPSanitizer

captures the FP values that are live to the directive and introduces

enqueue operations. Our shadow tasks do not have information

about integer operations. Hence, PFPSanitizer enqueues the ad-

dress and the FP value loaded/stored for every memory operation.

To provide information about the branch conditions, the compiler

also enqueues the branch condition. At the end of the scoped block

corresponding to the directive, the compiler adds a runtime call to

indicate the end of the shadow task.

Shadow execution task. PFPSanitizer creates a shadow exe-

cution task that performs the higher-precision execution to facili-

tate detection and debugging of FP errors. To improve performance,

PFPSanitizer does not create a high-precision replica of the entire

scoped block indicated by the directive. Further, rewriting an entire

program especially global data structures with indirect references

is a challenging task. Instead, PFPSanitizer’s compiler removes

all non-FP operations (except the branch conditions), changes FP

arithmetic operations to use the corresponding higher-precision

operations in the MPFR library, and replaces FP load and store

operations with loads and stores of MPFR data type in shadow

memory.

For each live FP value in the directive, PFPSanitizer introduces

a dequeue operation to read the input FP value from the queue

associated with the shadow task. All FP arithmetic operations use

the corresponding high-precision values. For example, pfpsan_add

performs high-precision arithmetic using the MPFR library. For

each memory operation (i.e., a load or a store), PFPSanitizer’s

compiler inserts a runtime call in the shadow execution task to

access the shadow memory corresponding to the address of the

memory operation. The FP value produced by the original pro-

gram is maintained as metadata in shadow memory along with the

high-precision value. It enables us to start shadow execution at an

arbitrary point in the program by using the original program as the

oracle.

The shadow execution task does not perform any integer opera-

tions. As the shadow task needs to follow the same control flow path

as the original program, PFPSanitizer inserts a dequeue operation

from the queue to obtain the branch outcome of the producer. Sub-

sequently, it changes the branch condition in the shadow execution

task to branch based on the producer’s branch outcome. Figure 3(c)

presents the shadow execution task created by the PFPSanitizer

compiler for the program in Figure 3(a). Overall, PFPSanitizer’s

compiler generates a high-precision version of the program that

executes FP operations with a MPFR type and will follow the exact

same control-flow path as the original program during execution.

3.4 Dynamic Execution of Shadow Tasks

PFPSanitizer’s runtime creates a pool of threads at the start of the

producer’s execution, which execute the shadow execution tasks.

As the producer executes, the instrumentation corresponding to the

ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece Sangeeta Chowdhary and Santosh Nagarakatte

Metadata in Shadow Memory

Dynamic Trace of the

Shadow Execution task

x1_s = pfpsan_add(a_s, b_s);

x2_s = pfpsan_sub(x1_s, a_s);

pfpsan_store(x2_s, res);

Metadata for temporaries

Float
value

Real
value

Operand 1 Operand 2

2.5a_s 2.5…

Op

3.75 3.74900. a_s b_sx1_s +

1.25b_s 1.24900.…

1.25 1.24900. x1_s a_sx2_s -

1.25 1.24900. x2_sShadow address (res)

Float
value

Real
value

Pointer to
temporary’s
metadata

 ..

 ..

Figure 5: Metadata maintained with temporaries and in shadow

memory. Every temporary’s metadata has the operation (op), float

value, real value (MPFR), pointers to operands that produced it. Ev-

ery FP value in memory has metadata in shadow memory that has

the FP value, the real value, and the pointer to the previous writer’s

metadata. The arrows indicate how a DAG can be constructed using

the metadata.

directives create tasks and their associated queues. PFPSanitizer’s

runtime employs a work-stealing algorithm to dispatch a shadow

execution task to a thread in the pool. The thread executes a shadow

execution task to completion, which is similar to task parallel run-

times [35]. As the original program uses float or double types that

have hardware support, it is substantially faster than the software

MPFR library. Hence, there are sufficient shadow execution tasks

for the pool of threads to execute. To keep the resource (memory)

usage bounded, there are fixed number of entries in the task queue.

If the producer (i.e., original program) creates more tasks than the

size of the task queue, then the producer stalls until there is space

in the queue. To minimize contention, the queue used to communi-

cate values from the producer to the shadow execution task uses

non-blocking data structures. The use of non-blocking tasks and

the work-stealing algorithm ensures dynamic load balancing and

provides scalable speedups.

Metadata to detect and debug errors. The shadow execution

task has all the live FP values from the queue and the runtime

calls introduced by the compiler performs high-precision execution

using real numbers (i.e. the MPFR data type). The shadow execution

task stores high-precision values in shadowmemory (i.e., an address

mapped to the original address produced by the program). The

shadow memory of two different tasks are completely isolated from

each other.

To detect errors in the FP program compared to an oracle exe-

cution with real numbers (i.e., the MPFR data type), we maintain

the real value with each temporary and each memory location. The

temporaries are typically register allocated or allocated on the stack.

The metadata for temporaries also maintains information about

the operation and the pointers to the metadata of the operands of

the instruction. For every memory location, we maintain the real

value and the pointer to the metadata of the temporary that previ-

ously wrote to that memory location. Figure 5 shows the metadata

maintained with each temporary. This metadata about operands

in temporaries enables us to construct the DAG on an error (i.e.,

backward slice responsible for the error). Figure 5 also illustrates

the construction of the DAG using the metadata in shadow memory

and for the temporaries, which is similar to our design in FPSani-

tizer [9].

On a memory operation that reads a FP value from memory to a

variable, the shadow execution task creates a new metadata entry

for the variable (i.e., a temporary). It copies the real value from

shadow memory to the temporary’s metadata. Further, it copies the

information about the previous writer and its operands to facilitate

the subsequent construction of the DAG.

Shadow execution from an arbitrary memory state. As we

are creating a parallel shadow execution from a sequential program,

we need to provide appropriate memory state for the shadow exe-

cution tasks. Our key insight is to use FP values from the original

program (the producer) as the oracle whenever shadow execution

lacks information (i.e., either due to an uninstrumented library call

or the task is accessing an untracked location for the first time).

Hence, we can execute the shadow execution task even when prior

shadow execution tasks have not completed as long as the original

program has executed the corresponding instructions.

In addition to the live FP values and addresses for the memory

accesses, the producer also provides the FP value loaded by the

program on every memory read instruction. The shadow execution

task maintains the FP value in the metadata for both temporaries

and shadow memory locations as shown in Figure 5. To enable the

shadow execution task to start from an arbitrary memory state,

PFPSanitizer takes the following actions whenever the task wants

to perform a memory (read) access. First, the shadow task retrieves

the address of the memory operation and the FP value produced

by the producer from the queue. Second, it accesses the shadow

memory location corresponding to the address provided by the

producer. Third, it checks if the FP value in the metadata is exactly

equal to the FP value from the producer. If so, PFPSanitizer con-

tinues to use the real value in the metadata because the shadow

task previously wrote to that location. Otherwise, PFPSanitizer

uses the FP value from the producer as the oracle and reinitializes

the shadow memory for that memory location with the producer’s

FP value. If the FP values do not match, then the previous writer to

the particular memory location did not update metadata. Such mis-

matches happen when an update occurs in uninstrumented code or

the update happens in other shadow tasks. Figure 6 illustrates our

approach to start shadow execution from arbitrary memory state

with this technique.

Detecting errors. To detect FP errors, PFPSanitizer’s runtime

needs to convert the MPFR value in the shadow task to a double

value and compare it to the double value generated by the producer.

If the error exceeds some threshold, then it can be reported to the

user. Such checks are performed on branch conditions that use FP

values, arguments to system calls, return values from functions, and

user-specified operations. This fine-grained comparison of the FP

program and the high-precision execution enables comprehensive

detection of numerical errors.

4 IMPLEMENTATION CONSIDERATIONS

PFPSanitizer enhances the LLVM compiler to add instrumenta-

tion to the original program and to create shadow execution tasks.

PFPSanitizer’s runtime is in C++, which is linked with the binary

when the program is compiled. Specifically, the runtime manages

ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

 x_val = *x;

0x6800a0 2.35

 x_s = pfpsan_load(2.35, 0x6800a0);

enqueue dequeue

Original program
load (producer)

address FP value

Shadow execution task (consumer)

2.35

Shadow Memory (smem)

2.3486.. ..0x44ab0

..

float real

DAG
 info

..

3.5 3.51 ..

0x44ab0 = shadow_addr(0x68000);

smem(0x44ab0).float
== 2.35?

x_s = 2.3486.. x_s = 2.35

Yes No

pfpsan_load in action

Figure 6: Our approach to execute shadow task from an arbitrary memory state. PFPSanitizer maintains the FP value in shadow memory

and checks if the program’s FP value is exactly equal to the value in shadow memory. If so, it uses the real value for subsequent shadow

execution. Otherwise, it uses the program’s FP value as the oracle. Here, pfpsan_load first maps the producer’s address to a shadow address

and retrieves the metadata from shadow memory.

task creation, management of queues associated with tasks, creation

of worker threads, and the implementation of the work stealing

algorithm to dynamically balance the load among the threads. Al-

though the producer creates numerous shadow tasks, the number

of threads created by the runtime is equal to the number of cores

in the system to avoid unnecessary context switches. We describe

important implementation decisions in building the PFPSanitizer

prototype.

Shadow memory organization. A shadow execution task ac-

cesses shadow memory, which maps each memory address with

an FP value to its corresponding real value. Each worker thread

has its own shadow memory, which is completely isolated from the

shadow memory of other threads. To bound the memory usage, PF-

PSanitizer uses a fixed-size shadow memory for each thread that

is organized as a best-effort hash table (similar to a direct-mapped

cache). On a conflict, when two addresses map to the same shadow

memory location, PFPSanitizer overwrites the shadow memory

location with the information about the latest writer. We handle

this loss of information on conflicts using our technique to perform

shadow execution from an arbitrary memory state.

Management of temporary metadata space. PFPSanitizer

maintains metadata with each temporary in the LLVM intermedi-

ate representation. PFPSanitizer uses a separate bounded space

to maintain temporary metadata. When this space is completely

utilized, PFPSanitizer automatically reclaims the space allocated

to oldest entry in this metadata space. Hence, PFPSanitizer’s run-

time also checks the validity of the temporary metadata pointer

in shadow memory before dereferencing it, which is similar to FP-

Sanitizer’s temporal safety checking [9]. Rather than maintaining

unique metadata entry for each dynamic instruction, PFPSanitizer

maintains a unique entry for each static instruction. As a result, PF-

PSanitizer produces DAGs that are restricted to the last iteration

in a program with loops.

Handling indirect function calls. PFPSanitizer’s compiler

creates a high-precision version for each function in the program.

PFPSanitizer’s runtime maintains the mapping between the ad-

dress of the original function and the address of the corresponding

shadow function. PFPSanitizer’s compiler replaces all direct func-

tion calls in the shadow execution task with their corresponding

shadow functions. To handle indirect functions (i.e., calls through a

function pointer), PFPSanitizer’s compiler introduces a call to the

runtime in the shadow execution task that uses the address of the

original function provided by the producer on the queue and calls

the corresponding shadow function using the mapping maintained

by the runtime.

Support for multithreaded applications. Although we de-

scribe our approach assuming a single threaded program, our ap-

proach will work seamlessly with multithreaded applications. As

PFPSanitizer treats the FP value produced by the program as the

oracle, it can detect errors even in programs with races. However, it

will not detect errors specifically due to data races. One challenge

with multithreaded applications is the allocation of cores to the

original program and the shadow execution tasks. Parallel shadow

execution with PFPSanitizerwill be beneficial compared to inlined

shadow execution when there is at least one core unused by the

original multithreaded application.

Usage with interactive debuggers. PFPSanitizer supports

debugging with interactive debuggers like gdb. To enable such

debugging, we propagate debugging symbols from the original pro-

gram to the shadow execution task. Hence, the developer can insert

breakpoints/watchpoints on functions in the shadow execution

task. The backward slice of the instructions with the DAG and the

detection enabled us to find and debug errors with the Cholesky

application.

5 EXPERIMENTAL EVALUATION

This section briefly describes our prototype, methodology, and

performance evaluation.

5.1 Prototype and Experimental Methodology

Prototype. We built the prototype of PFPSanitizer with two com-

ponents: (1) an LLVM-9.0 compiler pass that takes C programs as

input and creates binaries with shadow tasks and (2) a runtime

written in C++ that manages worker threads, shadow memory,

and performs the high-precision computation using the MPFR li-

brary [17]. PFPSanitizer can be customized to perform shadow

execution with a wide range of precision bits and also check error

at various granularities. PFPSanitizer is open source and publicly

available [11].

Methodology. To evaluate the detection abilities and perfor-

mance of PFPSanitizer, we perform experiments using C appli-

cations from the SPEC 2000, SPEC 2006, PolyBench, and CORAL

ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece Sangeeta Chowdhary and Santosh Nagarakatte

application suites. SPEC is widely used to test the performance of

compilers and processors. CORAL is a suite of applications devel-

oped by Lawrence Livermore National Laboratory to test the perfor-

mance of supercomputers. Specifically, AMG is a C application that

is an algebraicmulti-grid linear system solver for unstructuredmesh

physics packages. To test the detection abilities, we used a test suite

with 43 micro-benchmarks that contain various FP errors that have

been used previously by prior approaches [9, 38]. We performed all

our experiments on a machine with AMD EPYC 7702P 64-Core Pro-

cessor and 126GB of main memory. We disabled hyper-threading

and turbo-boost on our machines to minimize perturbations. We

measure end-to-end wall clock time to evaluate performance. We

report speedups over our prior work FPSanitizer [9, 10] , which

is the state-of-the-art shadow execution tool for inlined shadow

execution. We use the exact same precision both for FPSanitizer

and PFPSanitizer when we report speedups. We use the uninstru-

mented original program to report slowdowns with PFPSanitizer.

To compute the error in the double value produced by the program

in comparison to the real value, we convert the MPFR value to

double and compute the ULP error between the doubles [9, 38]. If

the exponent of the two such values differ, then all the precision

bits are in error. If all the bits differ, then entire double is influenced

by rounding error.

Placement of directives. To create tasks for parallel shadow

execution, we profiled applications to identify loops with inde-

pendent iterations and placed directives. In the absence of such

fragments, we placed directives following the approach that one

typically takes to debug a large program. When the programmer

does not know if a bug exists in the program, it may be beneficial

to run it with a single directive (i.e., entire program), which can

provide a maximum speedup of 2× over inlined shadow execution.

Once we are certain about the existence of the bug, we use the fol-

lowing procedure to debug it. We profile the application using the

gprof profiler, identify the top-𝑛 functions, and place the directives

at the beginning of these functions. If this has sufficient parallelism

and we can debug the error, then the process ends. Otherwise, we

remove the old directives, insert new 𝑛/2 directives corresponding

to the top 𝑛/2 long-running functions, and repeat this process. This

process continues until we either debug the root cause of the bug

with sufficient parallelism or end up with a single directive. For

our performance experiments, we placed directives using the above

procedure to ensure that the application had enough parallelism

for execution on 64-cores.

5.2 Ability to Detect FP Errors

To test the effectiveness of PFPSanitizer in detecting existing

errors, we tested it with a test suite used by previous tools. Out

of the 43 tests, 12 test cases are from the Herbgrind test suite,

and the rest are from the FPSanitizer test suite. These test cases

include 16 cases of catastrophic cancellation (i.e., all the bits are

wrong between the real value and the FP value), 5 cases of branch

divergences, and 2 cases of exceptional conditions such as NaNs

and infinities. Rest of them do not have any numerical error but

have tricky FP computation that test dynamic tools. PFPSanitizer

detects all errors without reporting any spurious errors.

Table 2: Table reports the various kinds of bugs that we found in

the programs used for our performance experiments.We report the

number of static instructions that experience branch divergences

in the second column, the number of instances where all bits are

wrong in the third column (i.e., sign, exponent, and precision bits),

number of instances where all the precision bits are wrong in the

fourth column (i.e., 52 bits of precision with double), and number of

instances where than more than fifty percent of the precision bits

are wrong (fifth column). The last column provides the number of

non-comment and non-blank lines of code in the application.

Name
Branch

Flips

All Bits

Wrong

All Precision

Bits Wrong

50% Precision

Bits Wrong

#

Lines

art 2 0 0 0 1070

ammp 0 0 0 0 9791

equake 0 0 310 605 1125

lbm 4 0 609 1197 721

milc 1 0 378 607 8568

sphinx 0 0 2 56 11029

amg 0 0 4 14 58679

milcmk 0 0 0 0 88064

fdiv:189

float:Inf

mpfr:5472

fsub:172

float:5472.0

mpfr:5472.0

sqrt:238

float:0.0

mpfr:1.0

Error: 61 bits

Error: 61 bits

fsub:218

float:0.0

mpfr:1.0

fadd:450

float:27040000.0

mpfr:27040001.0

fmul:212

float:27040000.0

mpfr:27040000.0

Error: 28 bits

Error: 61 bits

Error: 0 bits

fmul:443

float:1.0

mpfr:1.0

Error: 0 bits

Error: 28 bits

Error: 0 bits

fadd:450

float:27040000.0

mpfr:27040001.0

fadd:450

float:27040000.0

mpfr:27040000.0

Error: 0 bits

(a) (b)

Figure 7: A DAG of instructions generated by PFPSanitizerwhile

debugging the error in Cholesky. Each node shows the opcode, in-

struction id, computed value, real value and the numerical error oc-

curred. (a) The DAG for the fdiv instruction that results in infinities

(inf). (b) The DAG for the fadd instruction that is the root cause of

the error.

Table 2 provides information on the errors that we detected in

applications from SPEC and CORAL, which have several thousand

lines of code. As these applications are well tested for exceptions,

we did not find exceptional conditions such as NaNs/infinities and

instances where all bits are wrong. However, we detected branch

divergences in the SPEC application art. When we investigated

the root cause of these branch divergences, we identified the FP

equality comparison as the culprit. Similarly, we observed many

instances of precision loss where all precision bits are wrong (52

bits in a double) or more than 50% of the precision bits are wrong.

Our investigation indicates that these are real divergences from an

oracle execution with reals. These bugs need to be validated by the

developer of these applications.

ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

5.3 Debugging an Error in Cholesky

We discovered an error in the Cholesky decomposition program

from the Polybench benchmark suite. PFPSanitizer detected infini-

ties and NaNs (i.e., exceptional conditions) at various places in the

application. The program’s code or documentation did not provide

the reason for the exception. We describe how PFPSanitizer was

helpful in both detecting and debugging the root cause of this error.

Cholesky decomposition [21] is a widely used algorithm in var-

ious domains and problems such as Monte Carlo simulation and

Kalman filters. Cholesky takes a 𝑁 × 𝑁 positive-definite matrix 𝐴

as input and outputs a lower triangular matrix where 𝐿 × 𝐿𝑇 = 𝐴,

where 𝐿𝑇 is the transpose of 𝐿. Lower triangular matrix 𝐿 is com-

puted as shown below, where i and j represent matrix indices.

𝐿𝑖, 𝑗 =




𝑖 = 𝑗 :

√
𝐴(𝑖, 𝑖) −

∑𝑖−1
𝑘=0

𝐿(𝑖, 𝑘)2

𝑖 > 𝑗 :
𝐴(𝑖, 𝑗)−

∑𝑗−1

𝑘=0
𝐿 (𝑖,𝑘)𝐿 (𝑘,𝑗)

𝐿 (𝑗, 𝑗)

(1)

It can be observed that the computation can produce infinities

(and NaNs when infinities get propagated) when 𝐿(𝑗, 𝑗) evaluates to

zero, which happens when the matrix𝐴 is not positive semi-definite.

To make the matrix positive semi-definite, Cholesky in Polybench

computes 𝐴 = 𝐴 ×𝐴𝑇 . When this computation is performed with

reals, the resulting matrix 𝐴 is positive semi-definite for all inputs.

We generated inputs to this application using an input generator

and ran the application with PFPSanitizer using those inputs.

Specifically, when we generated the input matrix.

𝐴 =



1.0 0.0 0.0

5200.0 1.0 0.0

0.0 5472.0 1.0


(2)

PFPSanitizer detected NaNs and infinities in the program. Next,

we describe the process we used to debug this error.

When the matrix 𝐴 is adjusted to make it positive semi-definite

(i.e., 𝐴 ×𝐴𝑇), the resultant matrix 𝐴 in real numbers is



1.0 5200.0 0.0

5200.0 27040001.0 5472.0

0.0 5472.0 29942785.0


(3)

Using PFPSanitizer, we observed that the program computes the

following matrix.



1.0 5200.0 0.0

5200.0 27040000.0 5472.0

0.0 5472.0 29942785.0


(4)

Specifically, 𝐴[1] [1] when computed with real numbers cannot

be exactly represented in a 32-bit float. Hence, it is rounded to

27040000. PFPSanitizer identified that the computation of𝐴[1] [1]

in the lower triangular matrix differs from the oracle execution.

Specifically, 𝐴[1] [1] is computed as 𝐴[1] [1] − (𝐴[1] [0] ∗𝐴[1] [0]).

The FP program produces a 0 where as the oracle execution with

real arithmetic produces 1. Subsequent, division operation results

in infinities for the 32-bit float version.

We used the gdb debugger to insert a conditional breakpoint

in the PFPSanitizer’s runtime when the program produces an

infinity or a NaN in the result of any operation. We observed that

breakpoint was triggered with a fdiv instruction. We generated

the DAG in the debugger. Figure 7 provides the DAG, where each

nodes provides the instruction (instruction opcode:instruction id)

and number of bits of error with it. Figure 7(a) shows that error

occurs in fadd:450 and is amplified by fsub:218. To identify why

fadd:450 has any error, we set a breakpoint on the fadd instruc-

tion if the error is greater than or equal to 28 bits. Figure 7(b) shows

the DAG generated by PFPSanitizer. The real execution with the

MPFR type computed 27040001 while the FP computation produced

27040000. The value 27040001 cannot be exactly represented in a

32-bit float and it is rounded to 27040000. We reported this bug to

the maintainers of the PolyBench suite. They have acknowledged

the error. For performance reasons, all kernels in the PolyBench

suite avoid such checks. They delegate the responsibility of check-

ing invalid inputs to the user. Our experience demonstrates that

PFPSanitizer will be useful in debugging errors that result from

such implicit preconditions.

5.4 Performance Evaluation of PFPSanitizer

Figure 8 reports the speedup with PFPSanitizer that uses 512-bits

of precision for the MPFR type when compared to FPSanitizer,

which is the state of the art for shadow execution of FP programs,

with the increase in the number of cores. On average, PFPSanitizer

provides a speedup of 30.6× speedup over FPSanitizer with 64 cores.

PFPSanitizer provides speedups of 3.0×, 7.0×, 14.3×, and 25.8×

speedup over FPSanitizer with 4 cores, 8 cores, 16 cores, and 32

cores, respectively. This increase in speedup with the increase in the

number of cores highlights PFPSanitizer’s scalability. We observe

that some applications provide more speedup with 32 cores than 64

cores because there is not enough work in the application to utilize

all cores when executed with 64 cores.

Figure 9 shows execution time slowdown of PFPSanitizer with

varying precisions for the MPFR type (128, 256, 512, and 1024 bits

of precision) over a baseline that does not perform any shadow

execution. On average, PFPSanitizer experiences a slowdown of

5.6×, 6.2×, 7.5×, and 10.9× compared to the baseline without any

shadow execution for the MPFR types with 128, 256, 512, and 1024

bits of precision, respectively. In contrast, prior work FPSanitizer

has slowdowns of 232× on average with 512 bits of precision over

the same baseline with these applications. This order of magnitude

decrease in slowdown from FPSanitizer to PFPSanitizer enables

effective debugging with long-running applications.

We also investigated the cause of the remaining overheads with

parallel shadow execution. First, the producer has to provide values

to the queue and has to wait when all the tasks are active, which

causes an overhead of 3× over the baseline. Second, accesses to

shadowmemory and the queues by the consumer task introduces an

additional overhead of 3×. Third, the high precision computation

with the MPFR library introduces additional 1.5× overhead on

average. All these overheads together add up to 7.5× slowdown

with PFPSanitizer using 512 bits of precision over the baseline.

In summary, PFPSanitizer reduces the performance overhead of

shadow execution significantly, which enables the use of shadow

execution with long-running applications.

ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece Sangeeta Chowdhary and Santosh Nagarakatte

0X

20X

40X

60X

S
p

ee
d

u
p

4-Core 8-Core 16-Core 32-Core 64-Core

ar
t

am
m

p

eq
ua

ke lb
m

m
ilc

sp
hi

nx
am

g

m
ilc

m
k

ge
om

ea
n

Figure 8: This graph reports the speedup of PFPSanitizer over FPSanitizer when the program is executed with 4 cores, 8 cores, 16 cores, 32

cores, and 64 cores, respectively. As these report speedups, higher bars are better.

0X

10X

20X

30X

S
lo

w
d

o
w

n

Prec-1024 Prec-512 Prec-256 Prec-128

ar
t

am
m

p

eq
ua

ke lb
m

m
ilc

sp
hi

nx
am

g

m
ilc

m
k

ge
om

ea
n

Figure 9: This graph reports the slowdown experienced due to parallel shadow execution with PFPSanitizer when compared to a baseline

without any instrumentation. We report the slowdowns when we vary the number of bits used for the precision in the MPFR data type: 1024

(Prec-1024), 512 (Prec-512), 256 (Prec-256), and 128 (Prec-128) bits of precision.

6 RELATED WORK

The related work can be broadly classified into two main categories:

(a) those that detect numerical errors and (2) those that accelerate

dynamic analysis with parallelism.

Detecting numerical errors. There is a large body of work on

detecting numerical errors using both static analysis and dynamic

analysis. Static analysis techniques [2, 12ś14, 19, 39] use abstract

interpretation or interval arithmetic to reason about numerical

errors for all inputs. Error bounds for all inputs from static analysis

is appealing. However, the bounds can be too large especially in the

presence of loops, function calls, and pointer-intensive programs.

Dynamic analysis for detecting and debugging numerical

errors. Dynamic analyses focus on the program’s behavior for a

given input. They can be classified into approaches that target a spe-

cific class of errors [1, 16, 22, 24] and those that are comprehensive

detectors [3, 9, 38]. Any such analysis needs some oracle to com-

pare against the FP execution. Inlined shadow execution with a real

number, which is approximated with a high-precision MPFR data

type, is one such oracle. FPDebug [3], Herbgrind [38], and FPSani-

tizer [9] are examples of approaches with inlined shadow execution.

FPDebug and Herbgrind perform shadow execution with dynamic

binary instrumentation using Valgrind [32], which introduces sig-

nificant overheads. FPSanitizer addresses this issue with a LLVM

IR based instrumentation. Among these approaches, FPDebug does

not provide additional information for debugging errors. Herbgrind

and FPSanitizer provide DAGs to debug errors. Such DAGs can be

used with tools like Herbie [34] to rewrite expressions. To provide

DAGs, Herbgrind stores metadata that is proportional to the num-

ber of dynamic instructions with each memory location. Hence, it

runs out-of-memory with long-running applications. In contrast,

FPSanitizer bounds the usage of memory and can run with large ap-

plications without encountering out-of-memory errors. However,

large performance overheads (i.e., 100× or more) makes it chal-

lenging for debugging. Further, expert-crafted code (e.g., error free

transformations [31]) is a challenge for these approaches as they

can report spurious errors with them. PSO [42] tackles this problem

by building heuristics to detect such instructions and assist tools

to avoid such scenarios. Our approach is inspired by FPSanitizer

but reduces the performance overheads significantly with parallel

execution so that the shadow execution can be performed with

long-running applications.

Instead of using the MPFR library, real arithmetic has also been

approximated with constructive reals [4, 5, 23]. However, they will

likely be as slow as the MPFR library. To address the issue of slow

oracles, BZ [1] monitors just the exponent of the operands and

the result of the FP computation. If the exponent of the operands

ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

exceeds the exponent of the result, then it flags those operations

as errors. Although approximate, such checks can be performed

without the real execution as an oracle. The propagation of such

likely errors can be tracked to see if they affect branch predicates.

RAIVE [24] uses similar approximation, computes the impact of

such likely errors on the final output of the program, and uses

vectorization to reduce performance overheads. FPSpy [15] relies

on hardware condition flags and uses exception handling to detect

FP errors in binaries. It has low overheads as long as the program

is monitored rarely and overhead can exceed shadow execution

tools when such exceptions are monitored on each instruction.

To check the sensitivity of the program to the rounding mode,

another approach is to perform dynamic analysis with random

rounding. CADNA [22] and Verrou [16] use random rounding.

Similarly, condition number of individual operations can be used

to detect numerical errors and instability in FP applications [45]. In

contrast to these approaches that detect likely errors, our approach

has similar or lower performance overheads when compared to

them while providing comprehensive detection and debugging

support using shadow execution with real numbers.

Precision tuning to reduce errors. One way to avoid com-

mon numerical errors is to select appropriate precision for each

variable. Previous approaches have explored tuning the precision

of FP variables for all inputs and for a specific execution to improve

performance and to reduce the occurrence of FP errors [7, 37].

Identifying inputs with high FP error. Dynamic analyses

need inputs that exercise operations with FP error. Hence, prior

research has explored symbolic execution, forward and backward

error analysis, and random input generation to generate such in-

puts [8, 20, 36]. Techniques to generate inputs complement our

approach and can enable us to detect and debug FP errors efficiently

as we illustrated with our Cholesky case study.

Parallel dynamic analysis. In the context of dynamic anal-

ysis for detecting memory safety errors and race detection, nu-

merous parallel analysis techniques have been explored [6, 40, 43].

Approaches that perform fine grained monitoring use hardware

support as with a dedicated operand queue in Log-Based Architec-

ture (LBA) [6]. Further, dataflow analyses have been modified to

accelerate dynamic analyses with LBA [41]. Other approaches for

parallel data race detection and deterministic execution monitor

programs at the granularity of epochs [40]. The closest related work

is Cruiser [43], which is a heap-based overflow detector. Cruiser

performs validity checks for each memory access on a separate core.

It has a single producer and a consumer, which is acceptable when

the checks are lightweight. Cruiser just needs to pass the memory

address of the access to another core performing the check. In con-

trast to Cruiser, PFPSanitizer addresses the issues of monitoring

errors even on arithmetic instructions, parallel execution from a

single threaded dynamic execution, and a relatively heavy-weight

dynamic analysis with support for debugging.

7 CONCLUSION

This paper advances the state-of-the-art in debugging numerical

errors by performing shadow execution with higher precision. To

enable the use of such shadow execution with long-running ap-

plications, we perform shadow execution in parallel. As we are

creating parallel execution from a sequential program, we need

to provide appropriate memory state for shadow execution. Our

key insight is to use the FP values from the original program as

the oracle for initializing memory state. The resulting tool is an

order of magnitude faster than existing shadow execution tools. We

believe comprehensive detection with these overheads can enable

their usage in late stages of development and debugging. Our expe-

rience suggests that other dynamic analyses (e.g., race detectors)

can also benefit from this approach, which we plan to explore in

future work.

ACKNOWLEDGMENTS

We thank the members of the Rutgers Architecture and Program-

ming Languages group for their feedback. This material is based

upon work supported in part by the National Science Foundation

under Grant No. 1908798, Grant No. 1917897, and Grant No. 2110861.

Any opinions, findings, and conclusions or recommendations ex-

pressed in this material are those of the authors and do not neces-

sarily reflect the views of the National Science Foundation.

REFERENCES
[1] Tao Bao and Xiangyu Zhang. 2013. On-the-Fly Detection of Instability Problems

in Floating-Point Program Execution. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages &
Applications (Indianapolis, Indiana, USA) (OOPSLA ’13). Association for Comput-
ing Machinery, New York, NY, USA, 817ś832. https://doi.org/10.1145/2509136.
2509526

[2] Earl T. Barr, Thanh Vo, Vu Le, and Zhendong Su. 2013. Automatic Detection
of Floating-point Exceptions. In Proceedings of the 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (Rome, Italy) (POPL
’13). ACM, New York, NY, USA, 549ś560.

[3] Florian Benz, Andreas Hildebrandt, and Sebastian Hack. 2012. A Dynamic Pro-
gram Analysis to Find Floating-point Accuracy Problems. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (Beijing, China) (PLDI ’12). ACM, New York, NY, USA, 453ś462.

[4] Hans-J. Boehm. 2005. The constructive reals as a Java library. In The Journal of
Logic and Algebraic Programming, Vol. 64. 3ś11.

[5] Hans-J. Boehm, Robert Cartwright, Mark Riggle, and Michael J. O’Donnell. 1986.
Exact Real Arithmetic: A Case Study in Higher Order Programming. In Proceed-
ings of the 1986 ACM Conference on LISP and Functional Programming (Cambridge,
Massachusetts, USA) (LFP ’86). Association for Computing Machinery, New York,
NY, USA, 162ś173.

[6] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons, T. C. Mowry, V.
Ramachandran, O. Ruwase, M. Ryan, and E. Vlachos. 2008. Flexible Hard-
ware Acceleration for Instruction-Grain Program Monitoring. In 2008 Inter-
national Symposium on Computer Architecture (ISCA 2008). 377ś388. https:
//doi.org/10.1109/ISCA.2008.20

[7] Wei-Fan Chiang, Mark Baranowski, Ian Briggs, Alexey Solovyev, Ganesh
Gopalakrishnan, and Zvonimir Rakamarić. 2017. Rigorous Floating-point Mixed-
precision Tuning. In Proceedings of the 44th ACM SIGPLAN Symposium on Princi-
ples of Programming Languages (Paris, France) (POPL 2017). ACM, New York, NY,
USA, 300ś315.

[8] Wei-Fan Chiang, Ganesh Gopalakrishnan, Zvonimir Rakamaric, and Alexey
Solovyev. 2014. Efficient Search for Inputs Causing High Floating-point Errors.
In Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (Orlando, Florida, USA) (PPoPP ’14). ACM, New York, NY,
USA, 43ś52.

[9] Sangeeta Chowdhary, Jay P. Lim, and Santosh Nagarakatte. 2020. Debugging and
Detecting Numerical Errors in Computation with Posits. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation
(London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY,
USA, 731ś746. https://doi.org/10.1145/3385412.3386004

[10] Sangeeta Chowdhary, Jay P Lim, and Santosh Nagarakatte. 2020. FPSanitizer
- A debugger to detect and diagnose numerical errors in floating point programs.
Retrieved June, 2021 from https://github.com/rutgers-apl/fpsanitizer

[11] Sangeeta Chowdhary and Santosh Nagarakatte. 2021. PFPSanitizer - Parallel
Shadow Execution to Detect and Diagnose Numerical Errors in Floating Point Pro-
grams. Retrieved June, 2021 from https://github.com/rutgers-apl/PFPSanitizer

[12] Eva Darulova and Viktor Kuncak. 2014. Sound Compilation of Reals. In Proceed-
ings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming

ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece Sangeeta Chowdhary and Santosh Nagarakatte

Languages (San Diego, California, USA) (POPL ’14). ACM, New York, NY, USA,
235ś248.

[13] Marc Daumas and Guillaume Melquiond. 2010. Certification of Bounds on
Expressions Involving Rounded Operators. ACM Trans. Math. Softw. 37, 1, Article
2 (Jan. 2010), 20 pages. https://doi.org/10.1145/1644001.1644003

[14] David Delmas and Jean Souyris. 2007. Astrée: From Research to Industry. In Pro-
ceedings of the 14th International Conference on Static Analysis (Kongens Lyngby,
Denmark) (SAS’07). Springer-Verlag, Berlin, Heidelberg, 437ś451.

[15] Peter Dinda, Alex Bernat, and Conor Hetland. 2020. Spying on the Floating Point
Behavior of Existing, Unmodified Scientific Applications. In Proceedings of the 29th
International Symposium on High-Performance Parallel and Distributed Computing
(Stockholm, Sweden) (HPDC ’20). Association for Computing Machinery, New
York, NY, USA, 5ś16. https://doi.org/10.1145/3369583.3392673

[16] François Févotte and Bruno Lathuilière. 2016. VERROU: Assessing Floating-Point
Accuracy Without Recompiling. (Oct. 2016). https://hal.archives-ouvertes.fr/hal-
01383417 working paper or preprint.

[17] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul
Zimmermann. 2007. MPFR: A Multiple-precision Binary Floating-point Library
with Correct Rounding. In ACM Transactions on Mathematical Software, Vol. 33.
ACM, New York, NY, USA, Article 13.

[18] David Goldberg. 1991. What Every Computer Scientist Should Know About
Floating-point Arithmetic. In ACM Computing Surveys, Vol. 23. ACM, New York,
NY, USA, 5ś48.

[19] Eric Goubault. 2001. Static Analyses of the Precision of Floating-Point Opera-
tions. In Proceedings of the 8th International Symposium on Static Analysis (SAS).
Springer, 234ś259.

[20] Hui Guo and Cindy Rubio-González. 2020. Efficient Generation of Error-Inducing
Floating-Point Inputs via Symbolic Execution. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering (ICSE 2020). 1261ś1272.

[21] Caroline N. Haddad. 2009. Cholesky factorizationCholesky Factorization. Springer
US, Boston, MA, 374ś377. https://doi.org/10.1007/978-0-387-74759-0_67

[22] Fabienne Jézéquel and Jean-Marie Chesneaux. 2008. CADNA: a library for
estimating round-off error propagation. Computer Physics Communications 178,
12 (June 2008), 933ś955. https://doi.org/10.1016/j.cpc.2008.02.003

[23] Vernon A. Lee, Jr. and Hans-J. Boehm. 1990. Optimizing Programs over the
Constructive Reals. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation (White Plains, New York,
USA) (PLDI ’90). ACM, New York, NY, USA, 102ś111.

[24] Wen-Chuan Lee, Tao Bao, Yunhui Zheng, Xiangyu Zhang, Keval Vora, and Rajiv
Gupta. 2015. RAIVE: Runtime Assessment of Floating-point Instability by Vec-
torization. In Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications (Pittsburgh,
PA, USA) (OOPSLA 2015). ACM, New York, NY, USA, 623ś638.

[25] Jay P. Lim, Mridul Aanjaneya, John Gustafson, and Santosh Nagarakatte. 2020. A
Novel Approach to Generate Correctly Rounded Math Libraries for New Floating
Point Representations. arXiv:2007.05344 Rutgers Department of Computer
Science Technical Report DCS-TR-753.

[26] Jay P. Lim, Mridul Aanjaneya, John Gustafson, and Santosh Nagarakatte. 2021.
An Approach to Generate Correctly Rounded Math Libraries for New Floating
Point Variants. Proceedings of the ACM on Programming Languages 6, POPL,
Article 29 (Jan. 2021), 30 pages. https://doi.org/10.1145/3434310

[27] Jay P. Lim and Santosh Nagarakatte. 2021. High Performance Correctly Rounded
Math Libraries for 32-bit Floating Point Representations. In 42nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’21). https:
//doi.org/10.1145/3453483.3454049

[28] Jay P Lim and Rutgers University Santosh Nagarakatte. 2021. RLIBM-32: High
Performance Correctly Rounded Math Libraries for 32-bit Floating Point Rep-
resentations. Rutgers Department of Computer Science Technical Report
DCS-TR-754.

[29] Jay P. Lim, Matan Shachnai, and Santosh Nagarakatte. 2020. Approximating
Trigonometric Functions for Posits Using the CORDIC Method. In Proceedings of
the 17th ACM International Conference on Computing Frontiers (Catania, Sicily,
Italy) (CF ’20). Association for Computing Machinery, New York, NY, USA, 19ś28.
https://doi.org/10.1145/3387902.3392632

[30] Jean-Michel Muller. 2005. On the definition of ulp(x). Research Report RR-5504,
LIP RR-2005-09. INRIA, LIP. 16 pages. https://hal.inria.fr/inria-00070503

[31] Jean-MichelMuller, Nicolas Brunie, Florent de Dinechin, Claude-Pierre Jeannerod,
Mioara Joldes, Vincent Lefvre, Guillaume Melquiond, Nathalie Revol, and Serge
Torres. 2018. Handbook of Floating-Point Arithmetic (2nd ed.). Birkhäuser Basel.

[32] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation (San Diego,
California, USA) (PLDI ’07). ACM, New York, NY, USA, 89ś100.

[33] United States General Accounting Office. 1992. Patriot Missile Defense: Software
Problem Led to System Failure at Dhahran, Saudi Arabia. https://www.gao.gov/
products/IMTEC-92-26

[34] Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary Tatlock.
2015. Automatically Improving Accuracy for Floating Point Expressions. In Pro-
ceedings of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation (Portland, OR, USA) (PLDI ’15). Association for Computing
Machinery, New York, NY, USA, 1ś11. https://doi.org/10.1145/2737924.2737959

[35] James Reinders. 2007. Intel Threading Building Blocks (first ed.). O’Reilly Asso-
ciates, Inc., USA.

[36] Cindy Rubio-González, Cuong Nguyen, Benjamin Mehne, Koushik Sen, James
Demmel, William Kahan, Costin Iancu, Wim Lavrijsen, David H. Bailey, and
David Hough. 2016. Floating-Point Precision Tuning Using Blame Analysis. In
Proceedings of the 38th International Conference on Software Engineering (Austin,
Texas) (ICSE ’16). Association for Computing Machinery, New York, NY, USA,
1074ś1085. https://doi.org/10.1145/2884781.2884850

[37] Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James Demmel,
William Kahan, Koushik Sen, David H. Bailey, Costin Iancu, and David Hough.
2013. Precimonious: Tuning Assistant for Floating-point Precision. In Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis (Denver, Colorado) (SC ’13). ACM, New York, NY, USA,
Article 27, 12 pages.

[38] Alex Sanchez-Stern, Pavel Panchekha, Sorin Lerner, and Zachary Tatlock. 2018.
Finding Root Causes of Floating Point Error. In Proceedings of the 39th ACM SIG-
PLAN Conference on Programming Language Design and Implementation (Philadel-
phia, PA, USA) (PLDI 2018). ACM, New York, NY, USA, 256ś269.

[39] Alexey Solovyev, Charles Jacobsen, Zvonimir Rakamaric, and Ganesh Gopalakr-
ishnan. 2015. Rigorous Estimation of Floating-Point Round-off Errors with Sym-
bolic Taylor Expansions. In Formal Methods (Lecture Notes in Computer Science),
Vol. 9109. Springer, 532ś550.

[40] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica Ouyang, Pe-
ter M. Chen, Jason Flinn, and Satish Narayanasamy. 2012. DoublePlay: Paralleliz-
ing Sequential Logging and Replay. ACM Trans. Comput. Syst. 30, 1, Article 3,
24 pages. https://doi.org/10.1145/2110356.2110359

[41] Evangelos Vlachos, Michelle L. Goodstein, Michael A. Kozuch, Shimin Chen,
Babak Falsafi, Phillip B. Gibbons, and Todd C. Mowry. 2010. ParaLog: Enabling
and Accelerating Online Parallel Monitoring of Multithreaded Applications. In
Proceedings of the Fifteenth International Conference on Architectural Support
for Programming Languages and Operating Systems (Pittsburgh, Pennsylvania,
USA) (ASPLOS XV). Association for Computing Machinery, New York, NY, USA,
271ś284. https://doi.org/10.1145/1736020.1736051

[42] Ran Wang, Daming Zou, Xinrui He, Yingfei Xiong, Lu Zhang, and Gang Huang.
2016. Detecting and Fixing Precision-specific Operations for Measuring Floating-
point Errors. In Proceedings of the 2016 24th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (Seattle, WA, USA) (FSE 2016). ACM,
New York, NY, USA, 619ś630.

[43] Qiang Zeng, Dinghao Wu, and Peng Liu. 2011. Cruiser: Concurrent Heap Buffer
Overflow Monitoring Using Lock-Free Data Structures. In Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and Implementation
(San Jose, California, USA) (PLDI ’11). Association for Computing Machinery,
New York, NY, USA, 367ś377. https://doi.org/10.1145/1993498.1993541

[44] Craig Zilles and Gurindar Sohi. 2002. Master/Slave Speculative Parallelization. In
Proceedings of the 35th Annual ACM/IEEE International Symposium on Microarchi-
tecture (Istanbul, Turkey) (MICRO 35). IEEE Computer Society Press, Washington,
DC, USA, 85ś96.

[45] Daming Zou, Muhan Zeng, Yingfei Xiong, Zhoulai Fu, Lu Zhang, and Zhendong
Su. 2019. Detecting Floating-Point Errors via Atomic Conditions. Proc. ACM
Program. Lang. 4, POPL, Article 60 (Dec. 2019), 27 pages. https://doi.org/10.1145/
3371128

	Abstract
	1 Introduction
	2 Background
	3 Parallel Shadow Execution
	3.1 High-level Overview of PFPSanitizer
	3.2 Our Model for Debugging FP Errors
	3.3 Compiler Generated Shadow Tasks
	3.4 Dynamic Execution of Shadow Tasks

	4 Implementation Considerations
	5 Experimental Evaluation
	5.1 Prototype and Experimental Methodology
	5.2 Ability to Detect FP Errors
	5.3 Debugging an Error in Cholesky
	5.4 Performance Evaluation of PFPSanitizer

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

