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CONTINUED FRACTIONS AND ORDERINGS ON THE MARKOV
NUMBERS

MICHELLE RABIDEAU AND RALF SCHIFFLER

ABSTRACT. Markov numbers are integers that appear in the solution triples of the Diophan-
tine equation, x2 4+ y2 + 22 = 3xyz, called the Markov equation. A classical topic in number
theory, these numbers are related to many areas of mathematics such as combinatorics,
hyperbolic geometry, approximation theory and cluster algebras.

There is a natural map from the rational numbers between zero and one to the Markov
numbers. In this paper, we prove a conjecture seen in Martin Aigner’s book, Markov’s
theorem and 100 years of the uniqueness conjecture, that determine an ordering on subsets of
the Markov numbers based on their corresponding rational. The proof relies on a relationship
between Markov numbers and continuant polynomials which originates in Frobenius’ 1913

paper.
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1. INTRODUCTION

The purpose of this article is to prove a conjecture on Markov numbers from [A].

Definition 1.1. A Markov number (alternate spelling Markoff number) is any number in the
triple (x, vy, 2) of positive integer solutions to the Diophantine equation z? + y? + 2% = 3zyz,
known as the Markov equation.

We consider the Markov equation rather than the more general Diophantine equation,
2% + y* + 22 = kayz, because for k # 1,3, this Diophantine equation has only the trivial
solution (0,0, 0). Solutions to this Diophantine equation when k£ = 1 are multiples of 3 times
solutions to the Markov equation. Hence the Markov equation is the equation of interest.
For facts about the Markov numbers we refer to [A] and [Re].
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2 MICHELLE RABIDEAU AND RALF SCHIFFLER
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(1’177 5) / \ (5727 2)
(1,34,13) (13,194, 5) (5,433, 29) (29,169, 2)

FIGURE 1. Markov Tree (non-singular triples). The underlined values are
my,/q Where p/q are values in the same position in the Farey tree.
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FIGURE 2. Farey Tree

The first few triples to satisfy the Markov equation are the triples containing repeated
values, i.e. the singular triples (1,1,1) and (1,2,1). All of the other solutions are non-
singular triples, some of which are depicted in Figure 1. Since the set of Markov numbers is
the union of the entries in the triples, the first few Markov numbers are 1, 2, 5, 13, 29, 34,
89, 169, 194, 233, 433, 610, 985, etc.

Every Markov number appears as the maximum of some Markov triple. Notice that with
the exception of the first non-singular triple, we only underline the maximum of each triple
in the tree in Figure 1. It is known that these underlined values provide a complete list of
the Markov numbers. However, it is an open conjecture by Frobenius from 1913 whether
each Markov number appears as the maximum of a unique Markov triple.

The Markov numbers can be indexed by the rational numbers between zero and one.
This is done by comparing the combinatorially identical trees in Figure 1 and Figure 2.
Figure 1 is the beginning of the binary tree called the Markov tree. Each branch of the tree
is constructed in a specific manner. From the vertex (z,v, z) the branch leading below and
to the left will be (x,3zy — z,y) and below to the right will be (y,3yz — z, 2).

In Figure 2 we have the Farey tree, a binary tree of Farey triples. When starting with a

a atc c

triple, (— gre —), we produce the next triple to the left and right respectively by

b btd’ d
a a+(a+c) atc and [(&F€ (a+c)+c ¢
bbb+ (b+d) b+d b+d (b+d)+d d)

Since the underlined values in the Farey tree provide a list of every distinct rational number
from zero to one, we can correspond Qo) to the Markov numbers. We refer to a Markov
number as m,;, where p < g and ¢, p are relatively prime positive integers.

Therefore we are now ready to state the fixed numerator conjecture [A, 10.11] that is the
main topic of this paper.
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CONTINUED FRACTIONS AND ORDERINGS ON THE MARKOV NUMBERS 3

Conjecture 1.2. (Fized Numerator Conjecture) Let p,q and i be positive integers such that
p < q, ged(q,p) =1 and ged(q +4,p) = 1, then myq < Myj(g4a) -

Example 1.3. This example highlights some of the orderings implied by Conjecture 1.2.

My < My < Mg < My < My <
5 < 13 < 34 < 8 < 233 <

Moz < My < Mgy < Mgy < My <
29 < 194 < 1,325 < 9,077 < 62,210 <

Remark 1.4. In addition to Conjecture 1.2, Aigner presents a fixed denominator conjecture
(Mg < Mip+iy/q) and a fixed sum conjecture (m,,/, < M4 /(g+4) ), which are both still open
problems.

The interest of Conjecture 1.2 is two-fold. On the one hand, it is a subcase of Frobenius’
uniqueness conjecture and on the other hand, if the uniqueness conjecture holds, then the
Markov numbers induce a total ordering <,, of the rational numbers between zero and one
defined by

P r
5 <m g = Mp/qg < Myys.
Conjecture 1.2 is a step towards understanding this total order.
We are now ready to state our main result.

Theorem 1.5. The conjecture 1.2 holds.

The proof relies on a connection between Christoffel paths and Markov numbers which
provides a formulation of Markov numbers as continuant polynomials. This result is already
contained in Frobenius’ paper, [F]. We thank the referee for pointing this out. For a modern
reference see Reutenauer [Re]. Originally, we knew of Frobenius’ result from a cluster algebra
perspective which gives an alternative, albeit roundabout proof.

It is shown in [BBH, P] that Markov triples are related to the cluster algebra of the
torus with one puncture; namely, the Markov tree is obtained from the exchange graph of
the cluster algebra by specializing the initial cluster variables to 1. Then, via a formula
from [MSW], one can express each Markov number as the number of perfect matchings of
an associated graph, called a Markov snake graph. Finally, using results of [CS4, CS5],
each Markov number can then be expressed as the numerator of a very particular continued
fraction.

Having the description of Markov numbers as continuant polynomials, the main steps in
the proof of the conjecture are the following.

Theorem 3.3, which we think is interesting in its own right, is a new identity on continuant
polynomials. It states that if one changes two consecutive interior entries 1,1 into one entry
2, the value of the continuant polynomial increases.

Theorem 4.8 is a result on the continued fraction c,,, of a Markov number. It states that
the value of the continued fraction of the reversal of a certain initial segment of ¢, /, is smaller
than the value of the continued fraction of a corresponding terminal segment. The proof of
this result involves convergents of continued fractions as well as geometric arguments.

The main result, Theorem 5.2, then follows from the above and computations with con-
tinuant polynomials.
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4 MICHELLE RABIDEAU AND RALF SCHIFFLER

The paper is organized as follows. We start by reviewing basic properties of continued
fractions in Section 2 and prove our new result on continued fractions in Section 3. In Section
4, we discuss the connection between Christoffel words and Markov numbers through the
lense of cluster algebras which allows us to visualize continuant polynomials as snake graphs.
Section 5 is devoted to the proof our main theorem.

2. BASIC PROPERTIES OF CONTINUED FRACTIONS

In this section, we provide the necessary definitions and properties of continued fractions
that will be necessary to prove our results. We restrict ourselves in this paper to finite
continued fractions with non-negative integer entries. For a; € Z>, a,, # 0, we define

1

lat, ..., a4, == a1 + .
a2+‘—1
.._I__

an

When we evaluate a continued fraction, we obtain a reduced rational number with numera-
tor we denote by Nlay, ..., a,], which is known as the continuant polynomial of the variables
ai,...,a,. For example, see [GKP]. Proposition 2.1 below lists some basic properties.

Proposition 2.1. Let a; € Z>.

(2.1) Nlay,...,a,) = a1Nlag,...,a,] + Nlas, ..., a,]
(2.2) Nlai,...,a,] = ap,Nlay,...,an_1] + Nlai, ..., a,_2].
(2.3) a1, ... an, 1,1 =laq,. .., an,2]
(2.4) N[1,1,aq,...,a,) = N[2,a4,...,a,)
(2.5) Nlay,...,a,) = Nlap, ..., a1]
(2.6) lay,...,a;] <|ai,...,a,]if 7 is odd:
(2.7) [ai,...,a;] > lay,...,ay,] if @ is even.
We call a,, ..., a; the reversal of aq, ..., a,. We would now like to extend the definition of
the numerator of a continued fraction. First, we let N[ ] = 1, so that the recursion equations

(2.1) and (2.2) still hold when the continued fraction has only two entries.

3. A THEOREM ON CONTINUED FRACTIONS

In this section, we prove a result on continued fractions in general. In Section 5, we will
apply it to the continued fractions related to Markov numbers.

Soon it will become tedious and unnecessary to list every entry of a continued fraction.
Thus we introduce the following notation.

30 Aug 2019 10:38:02 PDT
Version 2 - Submitted to Adv. Math.



CONTINUED FRACTIONS AND ORDERINGS ON THE MARKOV NUMBERS 5

Definition 3.1. Let u = ay,...,a, be a sequence of positive integers Then we define the
following notation, N[u] = Nlaq, ..., a,].
N[p~] = Nlag,...,a, 1] N[pu] = Nlag,...,a,) forn>1
Njp=] = N[]=1 N[Tp] = N[]=1 forn=1
N[ p~] = Nlag,...,a,-1] for n > 2
N[-p7] = N[]=1 forn =2

Definition 3.2. A replacement is an operation on the entries of a continued fraction such
that a either 1,1 is replaced with 2 or 2 is replaced with 1,1.

N[:ulv L 17#’2] A N[ula 27#2]

Theorem 3.3. Let each u; be a sequence of positive integers Then

(3.1) Nlpa, 1,1, o] = Npa, 2, po] = N{uy N[ po]

Proof. We will prove the statement by induction on the number of entries before the 1,1 in
the first continued fraction. For our base case we let uy = a;. We apply Equation (2.1) to
both continuant polynomials in the expression on the left hand side of Equation (3.1).

Nla1, 1,1, o] = Nla1, 2, po] = a1 N[L 1, pio] + N1, pio] — (a1 N[2, pia] + Npiz])
= a1(N[1,1, pa] = N2, pa]) + N1, p2] — Nlpo]

Since N[1,1, us] = N2, us], the first term is zero. We can decompose the second term using
Equation (2.1), then combine like terms.

N[ahlvl’:uQ] _N[a1727:u2] = N[L/I’?] _N[:u2]
= 1IN[uo] + N[ po] — Nuo]
= N[ p]

Since 3 = a1, we have that N|u; ] = N[ ] = 1 and therefore the right side of Equation
(3.1) is N[uy N[ pe] = N[ N[ pe] = N[ p2]. Therefore the statement holds in the base
case.

Next, let p; have n > 1 entries and assume Equation (3.1) holds for any u; with n or less
entries. We would like to prove that Nfag, u1, 1,1, pia] — Nlao, 1,2, po] = Nlag, py |N[™ pa].
We apply Equation (2.1) and then regroup the expression.

Nlag, p1, 1,1, o] — Nlao, pi1, 2, pto]

aoN 1, 1,1, o] + N["p1, 1,1, o] — (aoN {1, 2, pro] + N[™pa, 2, po])
= Qo (N[lu’lv 17 17/*62] - N[/'L1727,u2]) + N[ilulv 17 17/*62] - NI:7//L17 27/*62]
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6 MICHELLE RABIDEAU AND RALF SCHIFFLER

Applying our induction hypothesis to each difference, we see that this expression is equal to
aoN [y [N pia] + N7 py IN[™ o]
= (aoN[uy ]+ N[Tp N o]
= Nlao, py N[ pal,

where the last identity holds by Equation (2.1). Therefore Theorem 3.3 is proved by induc-
tion. U

4. MARKOV NUMBERS

In this section we study the continued fractions associated to Markov numbers. We start
by recalling the definition of Markov snake graphs and their continued fractions.

4.1. Markov snake graphs. In this subsection, we give the background necessary to un-
derstand the relationship between Markov numbers and snake graphs. We often refer to
work done in the field of cluster algebras because Markov triples are related to the clusters
of the cluster algebra of a torus with one puncture [BBH, P]. More specifically, Markov
snake graphs, which we will define below, correspond to the cluster variables of a cluster
algebra from a once punctured torus.

Let p and g be relatively prime integers with p < ¢. First, we define the (g, p)-rectangle
to be the rectangle formed in R? with the origin and (g, p) as vertices. We call the diagonal
through these vertices, ¢,,,, because it is a line segment with slope p/q. The unique lattice
path L,/, in Z x Z from the origin to (¢, p) lying strictly below ¢,/, and with no lattice
points strictly between the path L,/, and the diagonal /,,, is called the Christoffel lattice
path. For example, the Christoffel path Lj/s is shown in Figure 3. We construct a Markov
snake graph, G,/,, from the Christoffel lattice path L, .

Simply put, snake graphs in general are graphs consisting of square tiles where each tile is
placed either to the right or above the previous tile. General snake graphs were introduced
in [MSW] in order to give a combinatorial formula for cluster variables in terms of perfect
matchings. These graphs were further studied in [CS, CS2, CS3, CS4, CS5, R]. The special
case of Markov snake graphs already appeared in [P]. The following definition is from [CS5].

Definition 4.1. The Markov snake graph, G,/,, is the snake graph with half unit length
tiles, lying on the Christoffel lattice path L,/ such that the south west vertex of the first
tile is (0.5,0) and the north east vertex of the last tile is (¢,p — 0.5).

For an example, see Figure 3 for the construction of the Markov snake graph Gs/s. Once
the Markov snake graph is constructed, we consider the number of perfect matchings it has.
A perfect matching is a collection of edges in a graph such that each vertex on the graph is
adjacent to exactly one edge in the collection. The following is a reformulation from [CS5]
of a result due to [P].

Theorem 4.2. Let q,p be relatively prime positive integers. The number of perfect matchings
of the Markov snake graph, G,q, in the (q,p)-rectangle is the Markov number my,,.

According to Theorem 4.2, when considering Conjecture 1.2, we can instead analyze the
number of perfect matchings of the corresponding Markov snake graphs.
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CONTINUED FRACTIONS AND ORDERINGS ON THE MARKOV NUMBERS 7

|

FIGURE 3. On the left we have the line /3,5 with the unique Christoffel
lattice path Ljz/s marked in red. On the right we have the Markov snake
graph Gs/5 in blue lying on the Christoffel lattice path. The continued frac-
tion c,/, associated to Gs/5 is [2,2,2,1,1,2,2,2], which means that G5 has
N[2,2,2,1,1,2,2,2] = 433 perfect matchings.

When p and ¢ are not relatively prime, we can still associate a numerical value to m,,/, in a
somewhat analogous manner. We construct a unique lattice path L, in the (¢, p)-rectangle
from the origin to (¢, p) such that L,/, lies below or on the line segment ¢,,, from the origin
to (¢, p) and no lattice points lie strictly between L,/, and €,,,. Then we construct a snake
graph on this lattice path in the same manner as before. We call this a lattice path snake
graph, rather than the more specific Markov snake graph. We let the number of perfect
matchings of this lattice path snake graph be m,,/,.

4.2. Continued fractions of Markov snake graphs. Every snake graph has a corre-
sponding continued fraction. Moreover, the numerator of that continued fraction is the
number of perfect matchings of its associated snake graph. This relation to continued frac-
tions was found in [CS4] and applications were given in [CS5, CLS, LS, R]. Therefore by
Theorem 4.2, the numerator of the continued fraction associated to a Markov snake graph
is that Markov number. Thus we will study Markov numbers by analyzing the numerators
of continued fractions, or, the continuant polynomials.

Regardless of whether p and ¢ are relatively prime, we study m,/, by considering its asso-
ciated continued fraction which we denote by c,,,. The continued fraction of a snake graph
is determined by the snake graph’s sign function as in [CS4]. For lattice path snake graphs,
including Markov snake graphs, we can determine the entries in the continued fraction by
the following process. Shade the first and last tiles in the snake graph, then shade any corner
tiles. The entries in the continued fraction can then be read off the snake graph. Any shaded
tile represents an entry 2 and each interior edge strictly between shaded tiles represents an
entry 1. See Example 4.3.

Example 4.3. Here we have the Markov snake graph associated to the (5, 3)-rectangle. The

continued fraction is ¢35 = [2,2,2,1,1,2,2,2], which has numerator equal to mg/; = 433.
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8 MICHELLE RABIDEAU AND RALF SCHIFFLER

Remark 4.4. The continued fraction, [aq,...,a,] has entries a; € {1,2} such that the sum
of the entries is Z?:l a; = 2q + 2p — 2 . Moreover, a; = a, = 2, n is even, and a; = a;41
whenever 7 is even and 2 < i <n — 2.

While we are going to consider each 2 separately, we would like to refer to the pairs of 1’s
as a single entry.

Definition 4.5. Let [aq,aq,...,a,] be the continued fraction associated to a lattice path
snake graph. The sequence aq, as, ..., a, can be decomposed into the subsequence v, ..., v,
where each v; = 1,1 or 1; = 2 such that we have an identity of sequences aq,as, ..., a, =
v, Vo, ..., Vm. Then each v; is called a replaceable entry.

Example 4.6. In this example, we observe that m,,, < my/4+1) when ¢ = 7 and p = 3.
In the continuant polynomial below, we have highlighted the different replacements. Notice
that the (¢ + 1, p)-Markov continuant polynomial has one more replaceable entry than the
(¢, p)-Markov continuant polynomial.

2, 1,1, 2] =

2,1,1 561
2,11, 2, 2, 1,1, 2 ]

897

Myp)(g+1) = Majs = N|

2.1,1 7.
mp/q:m3/7:N[ 271717 2,

It will be of interest for us to know the number of replaceable entries in the continued
fraction associated to m,,,. The sum of the entries in the continued fraction is the sum of
twice the number of pairs of 1’s with twice the number of 2’s that appear. Hence, we have
2q + 2p — 2 = 2(# of pairs of 1’s) + 2(2p), which implies that the number of replaceable
entries in the continued fraction associated to m,,, is ¢ +p— 1. In Example 4.7 we compare
the two Markov snake graphs for mys/2 and mis/23 to see how the associated continued
fractions differ by replacements.

Example 4.7. In this example, the Markov snake graph Gis/23 is shown in blue on the
same graph as G502 in red, with their overlap in purple. The black shaded tiles rep-
resent the tiles for which a replacement in the corresponding continued fraction occurs.
mys o3 = 187,611,224, 490, 881 and mys5/00 = 73,224,462, 646, 361

2,

2, 2,1,1,2,2, 2, 2,1,1,2,2, 2, 2,1,1,2,2, 2
1,1,2,

mis/22 = 1\'[ ) s
1,2, 2, 2)2,1,1,2, 2, 2,2,1,1,2, 2, 2,21, 1,

2
Mi5/23 = ]\‘"[2

12,2, 1,1,2,2, 2, 2.1,1,2,2, 2 2.1,1,2,2, 2, 2.2
.2,2, 2, 2,2,1,1,2, 2, 2,2,1, 2,2, 2,2,1,1,2,2,2]
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CONTINUED FRACTIONS AND ORDERINGS ON THE MARKOV NUMBERS 9

(22, 15)
(23,15)

(0,0)

4.3. A theorem on the continued fraction of a Markov snake graph. Let m,,, be
the Markov number of slope p/q < 1 and denote by G, /, the corresponding Markov snake
graph and by c,/, its continued fraction. Thus m,, is the numerator of c,/,. Recall that
Cp/q has even length and that its first and its last entry is a 2.

Theorem 4.8. Let c,/q = [11,2,0,1,1,v], where p, 6 and v all have odd length and 0 is
a sequence of 2s. Let i be the sequence p in reverse order. Then we have the following
inequality of continued fractions

(2] < [v].
Proof. Let 4 = ag,ap_1,...,a2,a1 SO I = ay,das,...,ap. By Remark 4.4, we have a, = 2,
Qp_1 = Qy_9,...,04 = a3,09 = aq. Thus
(4.1) a; = a;11, forallodd i, i=1,3,...,¢ —2.

Assume that i and v agree up to but not including position k. In other words, the first
difference in the sequence occurs at position k.

Case A: i=ay,as...,05_1,0%,...,ap and v = ay,..., Q1.

Then aj_, is the last entry of c,/, and hence ay_, = 2. Moreover, k£ — 1 is odd, since v has
odd length, and thus a; = 2 by (4.1). We shall show that this case is impossible. Consider
the Markov snake graph G, , corresponding to the continued fraction [u,2,0,1,1,v] in the
(q, p)-rectangle, see Figure 4. Denote the lattice point on the south-east vertex of the ay
tile by (z1,y1) and denote the lattice point on the south-east vertex of the last tile in §
by (x2,%2). Then we let (x3,y3) be the lattice point one unit directly above the south-east
vertex of the ay_; tile in v. By construction, (z3,y3) = (¢,p). Let G(u) and G(v) be the
subgraphs corresponding to the segments p and v, see Figure 4.
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10 MICHELLE RABIDEAU AND RALF SCHIFFLER

o (23, 93)

2 [F o g,

2 2| (w2,92)

Ap—1 = 2 — | |

(.’I}l — 1,:1/1 +1)”.

| l f (1, 91)

(Lk:2

FIGURE 4. Proof of Theorem 4.8 Case A; k is even.

To obtain a contradiction, we shall show that (x3,ys3) lies strictly below the line £, /,.
Equivalently, we shall show g—‘;” < %’. Since (zg,ys2) lies on the Christoffel lattice path, we

know that f’t’—z < §7 hence it suffices to show g—"; < g—z
We introduce the following notation.
a = %#{ie {1,2,...,k =2} | a; =2}
= a+i#{ie{,2,....k—2}|a; =1}
1

¢ = 1 (number of twos between y and v in ¢,/,) = 5(1 + (number of twos in §)).

Thus a is the number of pairs of twos in i up to (not including) ay_1, b is the sum of the
number of pairs of ones and pairs of twos in fz up to (not including) ay_;. Then xo—x1 = b+c
and yo — y; = a + ¢ + 1, where the extra 1 accounts for the vertical step at a;_;. Similarly
x3 — 1 = 2b + ¢ + 2, where the extra 2 accounts for the horizontal segment of length 3/2
between (x2, y2) and G(v) and the last tile labeled aj_; of width 1/2. Also y5—y; = 2a+c+2.
We thus have the following coordinates.

(4.2) (z2,92) = (x1+b+c,y1+a+c+1) and (z3,93) = (v1+2b+c+2,y1 +2a+c+2).

Therefore, in order to show that z—i < z—z, it suffices to show

(x14+b+c)(y1+2a+c+2) < (z1+2b+c+2)(y1 +a+c+1).
Expanding and collecting like terms shows that this inequality is equivalent to
a+1 Y1+ c
b+2 x1+c—2
Now, the point (z1 +c¢—2,51+¢) = (x; — 1+ (¢ —1),y1 + 1+ (¢ — 1)) lies above the line
l,/q, because the point (z; — 1,31 + 1) does, see Figure 4. Therefore § < te Thus it

r1+c—2°
suffices to show that ¢5 < £. Using the coordinates (4.2), we see that

a+1 _ Yo — (31 +¢)
b+2 29— (r1+c—2)
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o (73,93)

akfl
TR, net

bk+1 =1
- 2| [2] (w2,1) G(v)
a
o o LII2
| T
T
(z1 = Ly)e | 4‘ak—l
| 1 / (z1,91)
T
Ap+1 = 2

FI1GURE 5. Proof of Theorem 4.8 Case C; k is odd.

Therefore $£5 is the slope of the line segment from (1 + ¢ — 2,51 + ¢) to (22, y2), and since
(1 4+ ¢ — 2,31 + ¢) lies above the line £,,, and to the left of (x3,92), and (2, y2) lies below

the line ¢,/,, we have ¢t < %’. This completes the proof in case A.

p/q> b+2
Case B: i=ay,...,ap,_1and v =aq,...,a5_1,bg, ..., brin

Since i has odd length, £ —1 is odd. In this case, [fi] is the £ — 1 convergent of [v]. Therefore
[fi] < [v] because odd convergents of a continued fraction increase towards the limit of the
continued fraction, see Proposition 2.1.

Case C: i =aq,...,a5_1,0%,...,ap and v = aq,...,ax_1,bg, ..., b, where a; # by.

First we show that k is odd. Note that the first entry of v sits at an even position in the
continued fraction c,/, = [11,2,6,1,1,v], since 1 and § both have odd length. Thus, if £ was
even, then the k-th entry by in v sits at an odd position in the continued fraction, and by
Remark 4.4 this implies that it is equal to the preceding entry, thus ay_; = bg. On the other
hand, (4.1) implies a;, = a;_1 and we get aj, = by, a contradiction. Thus k& must be odd.

We distinguish two subcases. Suppose first that ay = 1. Then a1 = 1, and since ay # by,
by = 2. Then [v] is larger than its odd convergent [ay,. .., ar_1,2] and the even convergent,
lai,...,ax_1,1,1], of [fi] is larger than [f]. Therefore by transitivity, [v] > [f].

Now suppose that a, = 2. We shall show that this case is impossible. Consider the Markov
snake graph corresponding to the continued fraction [u, 2,0, 1, 1, v] in the (g, p)-rectangle, see
Figure 5. As in case A, we denote the lattice point on the south-east vertex of the a; tile by
(x1,11), note however that now, since k is odd, this tile corresponds to an upper left corner
in the snake graph. Also as in case A, we denote the lattice point on the south-east vertex
of the last tile in § by (29, y2). But now we let (z3,y3) be the lattice point one unit directly
above the south vertex of the byy; = 1 edge.

Since the lattice point (x3,ys) lies above the snake graph, it also lies above the Christoffel
lattice path. To obtain a contradiction, we shall show that (x3,ys3) lies below the line ¢, /,.
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Equivalently, we shall show g—i < 5 . Since (x9,%9) lies on the Christoffel lattice path, we

know that £ < 1;’ hence it suffices to show £ < 2.
Similar to case A, we introduce the followmg notatlon

a = 1#{ie{l,2,....k—1}]a; =2}
b = a+3#{ie{l,2,...,k—1}|a; =1}
¢ = 3 (number of twos between g and v in ¢,,) = 3(1 + (number of twos in §)).

The difference with case A is that in the definition of a and b, the index i is allowed to be
k—1.

Then xo — 1 = b+ c and y, — y1 = a + ¢, because now the point (z1, %) is a vertex in an
upper left corner tile. Similarly x3 — x1 = 2b + ¢ + 2, where the extra 2 again accounts for
the horizontal segment of length 3/2 between (x2,%,) and G(v) and the tile whose vertical
edges are labeled by, b1 of width 1/2. Also y3 —y; = 2a+c+ 1. We thus have the following
coordinates.

(4.3) (x9,y2) =(x1+b+c,y1+a+c) and (x3,y3) = (r1+2b+c+ 2,51 +2a+c+1).

Therefore, in order to show that y3 < y2 , it suffices to show

(x1+b+c)( —i—2a+c+ 1) (x14+20+c+2) (1 +a+c).
Expanding and collecting like terms shows that this inequality is equivalent to
a+1 - y1+c—1
b+2 xi+c—2
Now, the point (1 + ¢ — 2,y + ¢ — 1) lies above the line ¢, ,,, because (x1 — 1,%) does,

see Figure 5. Therefore 2 < nre mrel “and hence it suffices to show that 25 < 2. Using the
q z1+c—2 b+2 q

coordinates (4.3), we see that

a+1  ypp—(p+c—1)
b+2 my— (v +c—2)
Therefore = b+2 is the slope of the line segment from (z1 + ¢ —2,y; +¢—1) to (z2,¥2), and
since (x1 4+ ¢ — 2,31 + ¢ — 1) is above the line £/, and to the left of (x2,y,), and (x2,y,) lies
below the line £, (since it is on the Christoffel path), we have %1 < £. This completes the

b+2
proof. O

The theorem has the following immediate consequence on the continuant polynomials.

Corollary 4.9. With the notation of Theorem 4.8
NUN[ V] < N[u N[V

o . Nlp] N

Proof. The theorem yields [] < [v], which means N7 < N The result now follows,
Q v

because N[ii] = N|u| and N[~ fi] = N[u~], by equation (2.5). O

5. PROOF OF CONJECTURE 1.2

The purpose of this section is to provide a proof for the fixed numerator conjecture seen
in [A] and reworded in Conjecture 1.2. In order to do so, we will prove a more general
statement, Theorem 5.2.
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(a+1,0+1)
l

(a,b) (a,b)

l \ (a+3,b+1)
(a +2,b) (a+2,b)
(@bZ1) (@+1,6—1) (@b—a+§%i%f_n
) ) (a 43,04 1)
(a+2,b) (a+2,b)

(@b>1) (@+1,b—1)  (a,b1) (a+1,b—1)

FIGURE 6. Proof of Lemma 5.1

5.1. A preparatory lemma. We start with a lemma on the difference between the contin-
ued fractions c,/, and c,/g+1)-

Lemma 5.1. Let p and q be positive integers such that p < q.

(a) If the lattice point (a,b) with a < p,b < q lies between the two line segments {,,, and
lp/q+1 then nmone of the points (a — 1,b),(a + 1,b),(a,b — 1), (a,b+ 1) lies between the line
segments.

(b) If cprq = (11,2,9,1,1,0] and cpjqr1 = (1, 1,1,0,2,0'], where p, 1’ have the same odd
length, then all entries of the sequence § are equal to 2.

Proof. (a) The maximal horizontal distance between the line segments ¢,/ and €,,/(441) is 1,
and it is attained at the endpoints (¢, p), (¢+1,p). The maximal vertical distance is attained
at the points (¢,p) and (¢, pq/(q+ 1)), and it is equal to p/(¢ + 1) < 1. This proves (a).

(b) By definition, the Christoffel paths of (¢, p) and (¢ + 1, p) go through the same lattice
points except for those points that lie between the line segments ¢,,, and £,/,41. Suppose
(a,b) is a lattice point that lies between the line segments.

Then by part (a) we know that both Christoffel paths go through the points (a,b—1) and
(a + 1,b). We distinguish two cases.

If the point (a+1, b+1) does not lie between the lines then we have the situation illustrated
in the left picture of Figure 6, where both paths go through the point (a + 2,b). The
corresponding snake graphs are indicated in red or blue and the common tiles in purple.
The continued fraction ¢, /g1 is [...,1,1,2,2,...] where the 1,1 corresponds to the tile whose
southeast vertex is (a,b— 1) and the two twos correspond to the tiles with southeast vertex
(a+1,b—1) and (a + 1,b) respectively. On the other hand, the corresponding segment of
the continued fraction c,/q is [...,2,2,1,1,...]. Thus in this case, 0 = 2.

If the point (a+1,b+ 1) lies between the lines then we have the situation illustrated in the
right picture of Figure 6, where the path of (¢, p) goes through the lattice point (a+1,b+ 1)
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14 MICHELLE RABIDEAU AND RALF SCHIFFLER

while the path of (¢ 4+ 1,p) goes through the point (a + 2,0). By part (a), the two paths
must meet again at the point (a 4+ 2,b + 1), after which there are again two cases. Either
both paths go through the point (@ 4+ 3,b+ 1), in which case the corresponding segments of
the continued fraction are [...1,1,2,2,2,2 ... ]and [...,2,2,2,2,1,1,...], and § = 2,2,2; or
the point (a 4+ 2,b + 2) lies between the lines. Repeating the argument shows part (b). [

5.2. Main result. The fixed numerator conjecture holds as a result of the following theorem.
Theorem 5.2. Let p and q be positive integers such that p < q. Then my;q < My/g41)-

Proof. We can write the continued fraction of m,/, as a list of ¢ + p — 1 replaceable entries,
a; = 1,1 or 2. Whereas the continued fraction of m,,/(441) would have g+ p replaceable entries.
We are considering replacements from the continued fraction of m,/441) to the continued
fraction of m,/,. This means that the first replacement substitutes a pair 1,1 by a 2, and
then the replacements alternate between replacing a 2 with a pair 1,1 and replacing a pair
1,1 with a 2 and so on.

Moreover, Lemma 5.1 implies that between two such replacements, both continued frac-
tions consist entirely of 2s. Thus we can write

Mpjgr1 = N(p,1,1,6,2,1,2] and m,, = N{p,2,6,1,1,7],

where u, v, are sequences of ones and twos, and § consists only of twos.

First, we prove the result for an even number replacements by induction on the number
of pairs of replacements. Suppose first that there is exactly one pair of replacements, that
is v = 1/, so that v and v/ contain no replacements.

We would like to show N{u,1,1,6,2,v,2] — N[u,2,0,1,1,v] > 0.

Nilp,1,1,6,2,v,2] — N[, 2,9,1,1, v

= Nip,1,1,6,2,v, 1]+ Np,1,1,6,2,v] — N[u,2,0,1,1, V]

= N[:ua L, ]-]N[(Sazvya ]-] + N[:ua I]N[_(S,Q,V? 1] + N[Nﬁ L 1]N[5727 V] + N[N7 1]N[_5727 V]
_N[/JHQ]N[& L1, V] - N[M}N[_(sa L, 17V]

= N, 1,1]N[4,2]N[v,1] + N|u, 1, 1]N[0|N[ v, 1]

+N[u, N[76,2]N v, 1] + N{u, N |G N[ v, 1]
+N[u, 1, 1N [5 2IN[v] + Nlu, 1, 1]N[5]N[ V]
N[ N[0, 2N [v] + N{u, 1IN[TO]IN[" ]
~N[u 2]N[5,1,1] V] — Nlu, 2]N[8, N[ V]
[

, ]
—N[pN[76,1, 1]N[v] = N{u]N["6,1]N["v]

The first negative term plus the fifth term equals zero. The sum of the second negative
term and the first term is positive. The sum of the third negative term and the third term
is positive. The sum of the last negative term and the seventh term is positive. Therefore
Nlp,1,1,6,2,v,2] — Nu,2,0,1,1,v] > 0 and this proves the base case of our induction.
Now we proceed with the inductive step. Assume Nu,1,1,0,2,v,2]—Nu,2,6,1,1,'] > 0
when v and v/ contain n—1 pairs of replacements. We would like to show Nu, 1,1,0,2,v,2]—
Np,2,0,1,1,'] > 0 when v and v/ contain n pairs of replacements. We have
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Nlp,1,1,0,2,v,2] — N(u,2,0,1,1, /]
= Nu,1,1,6,2,v,1] + Np,1,1,8,2,v] — N[u,2,8,1,1, 0]

= Nlu,1,1,6,2]N[v,1] + N, 1,1,0]N[ v, 1]
—l—N[;L,l,l,(SQ]N[]+N[M’17175] [ ]
_N[M72757171]N[ ] [M72757 1] [ ]

= Np,1,1,8,2|(N[v,1] + N[v]) + N{p, 1,1, 8] (N[ v, 1] + N["v])
—Nlu,2,6,1, 1IN [V'] = N[u, 2,6, 1]N["V].

= Nu,1,1,0,2]N[v,2] + N{u, 1,1,0]N[ v, 2]
—N[p, 2,0, 1, 1]N[V] — N[u, 2,5, 1|N["V].

Following Theorem 3.3, we may substitute N{u,1,1,0,2] = N[u,2,9,2] + N[u~|N[74, 2],
Nlp,1,1,6] = Nlp,2,] + N[p~]N[d] and we can also substitute N|u,2,0,1] = Ny, 2,6] +
Np,2,07]. Thus we have the following equivalent expressions.

Nlp,2,6,2|N[v,2] + N[pu~|N[76,2]N|v, 2]
+N{p,2,0]N["v,2] + N{pu"|N[O]N[ v, 2]
—N[u,2,6,1,1]N[V'] = N[p, 2, ] N["V'] = N[w, 2,0 |N[V]

(5.1) = N[p,2,8,2](N[v,2] = N[V']) + N, 2,0](N[v,2] — N["V])
+N[p"IN[76,2]N[v,2] + N[p" N[N [v,2] — N{u, 2,0 N[V

Let us show that the first two terms in (5.1) are in fact positive. Indeed, the induction hy-
pothesis says that N[u,1,1,8,2,v,2]—N|u,2,6,1,1,2/] > 0if v,/ contain at most n—1 pairs
of replacements. Observe that our v, v/ in (5.1) are of the form v = [u,1,1,01,2,14],V =
(11,2, 01,1, 1,14], for some sequences piy, 01, v1, vy Since vy and v} contain only n — 1 pairs of
replacements, the induction shows N[v,2] > N[v/] and N["v,2] > N[V/]. Using the same
inequalities on the third and fourth term, we only need to show that the following expression
is positive.

N{p" N[0, 2IN[V]+ N[p"IN[TOIN["V] = N(u, 2,67 IN["V/]
= N IN[76,2IN[V] + N[ IN[TOIN[ V]
—N[uN[2, 67 IN [V = N[ IN[STIN[ V]

= N IN[8,2N[Y] — NuIN[2, 6 N[/
— N[6A(N N - NN[ V)

By Corollary 4.9, this last expression is greater than zero.
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16 MICHELLE RABIDEAU AND RALF SCHIFFLER

Next, we prove the result for an odd number of replacements. Let
mp/q+1 :N[[L,l,l,l/,Q] and mp/q :N[Mlvzal/]a

where u, ¢/, and v are sequences of ones and twos, p and ' start with a 2 and contain an
even number of replacements. We would like to show that N|u, 1,1,v,2] — N[/, 2,v] > 0.

Nlu,1,1,v,2] — N[/, 2,v] = Nlu,2,v,2] — N[i/',2,v]+ N[p~|N["v,2]

The difference Nu,2,v,2] — N[i/,2,v] contains an even number of replacements and is
therefore positive. Hence N{u,1,1,v,2] — N[¢/,2,v] > 0. In any case, my/q < Mp/g+1y. O

Remark 5.3. Note that if p and ¢ are relatively prime, we can apply Theorem 5.2 repeatedly
to obtain the inequality in Conjecture 1.2.
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