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We present a variant of the immersed boundary method integrated with octree meshes for highly efficient and 
accurate Large Eddy Simulations (LES) of flows around complex geometries. We demonstrate the scalability of 
the proposed method up to (32𝐾) processors. This is achieved by (a) rapid in-out tests; (b) adaptive quadrature 
for an accurate evaluation of forces; (c) tensorized evaluation during matrix assembly. We showcase this method 
on two non-trivial applications: accurately computing the drag coefficient of a sphere across Reynolds numbers 
1 − 106 encompassing the drag crisis regime; simulating flow features across a semi-truck for investigating the 
effect of platooning on efficiency.
1. Introduction

There has been a significant demand for the development of fast, 
scalable numerical methods that can run industrial scale Large Eddy 
Simulations (LES). An ambitious goal of the community is to perform 
LES over a complex geometry overnight [1]. One bottleneck to this goal 
is creating an analysis-suitable, body-fitted mesh with appropriate re-
finement for complex geometry, which is time consuming and usually a 
labor intensive process. This becomes even more challenging for mov-
ing bodies, as deforming meshes or remeshing is required at every time 
step. The main motivation behind immersed boundary methods (IBMs) 
is to alleviate these time consuming and laborious process. The origin 
of IBM dates back to 1972 when Peskin [2] utilized it to solve a car-
diac blood flow problem on a Cartesian grid. This highlights the major 
advantage of IBM to perform the complete simulation on a structured 
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grid, and thus avoids the requirement for the grid to conform to the 
complex shape. Unfortunately, this also made the application of kine-
matic boundary conditions such as no-slip on the surface of immersed 
boundaries non-trivial. There have been several developments over the 
past two decades on the application of correct boundary condition for 
the immersed cells [3–9]. Interested readers are referred to the review 
by Mittal and Iaccarino [10].

In this work, we consider a variant of IBM, known as Immersoge-
ometric Analysis (IMGA), used in the context of Finite Element (FE) 
and Isogeometric [11] simulations. In IMGA, the surface representation 
of the body in the form of boundary representation (B-rep, NURBS or 
.stl) is immersed into a non-body-fitted spatial discretization, thereby 
preserving the exact representation of the immersed geometry. Addi-
tionally, the Dirichlet boundary conditions on the immersed geometry 
surfaces are enforced weakly using Nitsche’s method [12]. This vari-
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ational weakening of the no-slip condition into a Neumann type con-
dition provides a consistent and robust way of enforcing kinematic 
boundary conditions, especially in the context of FE analysis [13].

IMGA has been deployed by several research groups for a variety of 
fluid-structure interaction (FSI) simulations, including complex biomed-
ical applications with NURBS [14–17], design optimization [18], ex-
ternal aerodynamics simulations with tetrahedral meshes [19–22], and 
moving objects [23,24]. The weak imposition of the no-slip condition 
has been demonstrated to be numerically very advantageous, especially 
for flow past complex geometries where steep gradients are produced 
[25,26]. However, challenges remain to practical deployment of IMGA, 
especially towards the goal of overnight LES. In this work, we identify 
and resolve the following technical bottlenecks to deploying IMGA for 
large scale simulations:

• Simulations on massively parallel adaptive meshes. In contrast to using 
unstructured background meshes, we utilize octree-based, parallel 
adaptive meshes resulting in improved scalability at extreme scales, 
as well as the ability to efficiently remesh.

• Matrix assembly: The performance of linear algebra solvers has sub-
stantially improved. Several robust optimized libraries have been 
developed to perform fast numerical linear algebra calculations 
[27–30]; this has made the other parts of the code, specifically ma-
trix assembly a major bottleneck. An analysis of our IMGA solver 
suggests that up to 70% of the time is spent in matrix assembly. 
Substantial improvements are possible by optimizing matrix assem-
bly, which we accomplish using tensorized operations. This is a step 
towards our intent to transition to matrix-free methods.

• Load imbalance: The enforcement of kinematic constraints on IN-
TERCEPTED elements (see Fig. 1) requires an additional surface and 
volume integration in those elements. The volume integration must 
be performed accurately on only that fraction of each INTERCEPTED
element that is outside the object. This can be a large fraction of 
assembly time for complex geometries. We deploy a weighted, dy-
namic partitioning to ensure load balancing, even with adaptive 
quadrature.

• IN - OUT test: Classifying the location of a point in the background 
mesh with respect to the object (as inside or outside the object) is 
a quintessential IBM ingredient. We go beyond conventional ray-
tracing approaches [26,19] (which are computationally expensive) 
to a more efficient normal based test.

• Reliable numerical methods: The utility of industrial CFD (Compu-
tational Fluid Dynamics) simulations is limited by the choice of 
appropriate modeling strategies that can accurately predict the re-
gion of separation especially for the turbulent cases. Currently, the 
most widely methods used like Reynolds Averaged Navier–Stokes 
(RANS) or Detached Eddy Simulation (DES) rely on additional wall 
treatment to achieve this. Such application-specific strategies limit 
reliability of industrial scale CFD. In this work we demonstrate 
the ability to predict the drag crisis phenomena without any spe-
cial treatment, with the same method working across six orders of 
magnitude variation in Reynolds number.

This work is motivated by challenges articulated in the NASA CFD 
2030 [31] vision towards the goal of performing overnight LES: a) 
Mesh generation and adaptivity continue to be significant bottlenecks in the 
CFD workflow; b) The use of CFD... is severely limited by the inability to 
accurately and reliably predict turbulent flows with significant regions of 
separation. To the best of our knowledge, this is the first time that IMGA 
simulations in conjunction with VMS and weak BC on a massively par-
allel octree-based adaptive mesh have been performed. Fig. 1 shows the 
representative diagram of IMGA computation on octrees. In a nutshell, 
our main contributions include:

1. Deploy the variational formulation of Navier–Stokes with weak 
enforcement of Dirichlet boundary conditions on adaptive octree 
based mesh at high Reynolds numbers.
29
Fig. 1. Sketch illustrating the IMGA on octree based adaptive mesh. The solid 
red line represents the boundary of the immersed object. The elements are clas-
sified into 3 types: a) OUT ( ): all nodes are outside the body; b) IN ( ): all 
nodes are inside the body; c) INTERCEPTED ( ): some of the nodes are inside 
and some are outside. CG (Continuous Galerkin) nodes are divided into IN ( ) 
and OUT ( ) nodes. Hanging nodes are neither classified IN or OUT as they 
do not correspond to independent degrees of freedom. The nodes which nei-
ther belong to the INTERCEPTED nor OUT elements and are also not the parent 
of hanging nodes (marked by ) are not solved for in IMGA simulations.

2. Deploy adaptive quadrature based schemes for accurate integration 
of INTERCEPTED elements.

3. Demonstrate the ability of the numerical method to capture the 
drag crisis without any special wall treatment.

4. Develop a fast normal based in - out test to accurately determine 
the points in and out of the boundary.

5. Perform near optimal load balancing by accurately estimating the 
weight per element (using an empirical model) to account for im-
balance in the load arising due to IMGA.

6. Show scaling of our framework to (32𝐾) processors.
7. Illustrate framework on a complex engineering problem with im-
plications to autonomous vehicles.

The rest of the paper is organized as follows: we begin by giving 
a brief overview of IMGA and weak imposition of boundary condition 
in Section 2, the key algorithmic developments for mesh generation, 
matrix assembly, weighted partitioning and adaptive quadrature are 
outlined in Section 3; numerical and scaling benchmark results are pre-
sented and discussed in Section 4; the framework is then deployed to 
study the platooning effect on a semi-trailer truck in Section 5; and con-
cluding remarks and future outlook are made in Section 6.

2. Mathematical preliminaries: variational treatment of IMGA

The fundamentals of immersogeometric fluid-flow analysis consist 
of three main components. The flow physics is formulated using a 
variational multiscale (VMS) method for incompressible flows [32,33]. 
To capture the flow domain geometry accurately, adaptively refined 
quadrature rules are used in the INTERCEPTED elements, without mod-
ifying the background mesh [34,19]. Finally, the Dirichlet boundary 
conditions on the surface of the immersed objects are enforced weakly 
in the sense of Nitsche’s method [12,25]. We briefly discuss each of 
these components next.

2.1. Variational Multiscale Formulation (VMS)

The VMS approach has been successfully utilized to model flow 
physics across a range of applications [35,23,36–38]. It is considered 
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to be a LES type approach, and uses variational projections in place 
of the traditional filtered equations in LES. The method is derived com-
pletely from the incompressible Navier–Stokes and does not employ any 
eddy viscosity. See [33] for a detailed derivation of the VMS method.

The VMS discretization of the Navier–Stokes equations is stated as: 
Find fluid velocity 𝐮ℎ and pressure 𝑝ℎ such that for all test functions 𝐰ℎ

and 𝑞ℎ (defined in appropriate function spaces):

𝐵VMS
(
{𝐰ℎ, 𝑞ℎ},{𝐮ℎ, 𝑝ℎ}

)
− 𝐹VMS ({𝐰ℎ, 𝑞ℎ}

)
= 0 , (1)

where,

𝐵VMS
(
{𝐰ℎ, 𝑞ℎ},{𝐮ℎ, 𝑝ℎ}

)
=

∫
Ω

𝐰ℎ ⋅ 𝜌
(

𝜕𝐮ℎ

𝜕𝑡
+ 𝐮ℎ ⋅∇∇∇𝐮ℎ

)
𝑑Ω

+ ∫
Ω

𝜀𝜀𝜀(𝐰ℎ) ∶ 𝜎𝜎𝜎
(
𝐮ℎ, 𝑝ℎ

)
𝑑Ω+ ∫

Ω

𝑞ℎ∇∇∇ ⋅ 𝐮ℎ𝑑Ω

−
∑
𝑒

∫
Ω𝑒∩Ω

(
𝐮ℎ ⋅∇∇∇𝐰ℎ + ∇∇∇𝑞ℎ

𝜌

)
⋅ 𝐮′𝑑Ω

−
∑
𝑒

∫
Ω𝑒∩Ω

𝑝′ ∇∇∇ ⋅𝐰ℎ𝑑Ω

+
∑
𝑒

∫
Ω𝑒∩Ω

𝐰ℎ ⋅ (𝐮′ ⋅∇∇∇𝐮ℎ)𝑑Ω

−
∑
𝑒

∫
Ω𝑒∩Ω

∇∇∇𝐰ℎ

𝜌
∶
(
𝐮′ ⊗ 𝐮′

)
𝑑Ω

+
∑
𝑒

∫
Ω𝑒∩Ω

(
𝐮′ ⋅∇∇∇𝐰ℎ

)
𝜏 ⋅

(
𝐮′ ⋅∇∇∇𝐮ℎ

)
𝑑Ω ,

(2)

and 𝐹VMS is the force term. The fine scale velocity, 𝐮′, and pressure, 𝑝′, 
are defined as

𝐮′ = −𝜏M

(
𝜌

(
𝜕𝐮ℎ

𝜕𝑡
+ 𝐮ℎ ⋅∇∇∇𝐮ℎ − 𝐟

)
−∇∇∇ ⋅𝜎𝜎𝜎

(
𝐮ℎ, 𝑝ℎ

))
, (3)

and

𝑝′ = −𝜌𝜏C∇∇∇ ⋅ 𝐮ℎ . (4)

In the above equations, Ω𝑒 represents the disjoint elements, such that 
Ω ⊂ ∪𝑒Ω𝑒, 𝜌 is the density of the fluid, and 𝜎𝜎𝜎 and 𝜀𝜀𝜀 are the stress 
and strain-rate tensors, respectively. The terms integrated over ele-
ment interiors may be interpreted both as stabilization and as a tur-
bulence model [39–42,33,43]. 𝜏M, 𝜏C and 𝜏 are the stabilization param-
eters. Their detailed expression used in this work can be found in Xu 
et al. [19].

2.2. Adaptive quadrature

The geometric boundary of immersed object creates complex, dis-
continuous integration in the INTERCEPTED elements. In order to ensure 
the geometrically accurate integration of the volume integrals, we use a 
sub-cell based quadrature scheme [34,15]. The basic idea is to increase 
the number of quadrature points in the INTERCEPTED elements and per-
form accurate evaluation by considering the quadrature points that are 
only outside the body. We discuss an efficient approach to do this later 
in Section 3.4.

2.3. Weak enforcement of boundary conditions

The standard way of imposing Dirichlet boundary conditions is to 
enforce them strongly by ensuring that they are satisfied by all trial so-
lution functions, which is not feasible in immersed methods. Instead, 
the strong enforcement is replaced by weakly enforced Dirichlet bound-
ary conditions [25,44,45]. The semi-discrete problem can be stated as 
30
follows: Find fluid velocity 𝐮ℎ and pressure 𝑝ℎ such that for all test func-
tions 𝐰ℎ and 𝑞ℎ:

𝐵VMS
(
{𝐰ℎ, 𝑞ℎ},{𝐮ℎ, 𝑝ℎ}

)
− 𝐹VMS ({𝐰ℎ, 𝑞ℎ}

)
− ∫
Γ𝐷

𝐰ℎ ⋅
(
−𝑝ℎ 𝐧+ 2𝜇𝜀𝜀𝜀(𝐮ℎ)𝐧

)
𝑑Γ

− ∫
Γ𝐷

(
𝑞ℎ 𝐧+ 2𝜇𝜀𝜀𝜀(𝐰ℎ)𝐧

)
⋅
(
𝐮ℎ − 𝐠

)
𝑑Γ

− ∫
Γ𝐷,−

𝐰ℎ ⋅ 𝜌
(
𝐮ℎ ⋅ 𝐧

)(
𝐮ℎ − 𝐠

)
𝑑Γ

+ ∫
Γ𝐷

𝜏𝐵
TAN

(
𝐰ℎ −

(
𝐰ℎ ⋅ 𝐧

)
𝐧
)

⋅
((
𝐮ℎ − 𝐠

)
−
((
𝐮ℎ − 𝐠

)
⋅ 𝐧

)
𝐧
)
𝑑Γ

+ ∫
Γ𝐷

𝜏𝐵
NOR

(
𝐰ℎ ⋅ 𝐧

)((
𝐮ℎ − 𝐠

)
⋅ 𝐧

)
𝑑Γ = 0 ,

(5)

where 𝐧 is the outward unit normal, 𝜇 is the dynamic viscosity, Γ𝐷 is 
the Dirichlet boundary that may cut through element interiors, Γ𝐷,− is 
the inflow part of Γ𝐷 , on which 𝐮ℎ ⋅𝐧 < 0, 𝐠 is the prescribed velocity on 
Γ𝐷 , and 𝜏𝐵

TAN and 𝜏
𝐵
NOR are stabilization parameters.

Remark. The stabilization parameter for the weak imposition of the 
boundary condition is chosen such that 𝜏𝐵

TAN = 𝜏𝐵
NOR = 𝐶𝑏

𝑅𝑒ℎ𝑏
> 4, where 

ℎ𝑏 is computed as the maximum projected distance from the outside 
node(s) (i.e. fluid node) of the background INTERCEPTED elements to the 
triangulated surface. Complex surface geometries can sometimes result 
in ‘sliver cut’ elements, which exhibit ℎ𝑏 → 0. This can lead to arbitrarily 
large values of the stabilization parameter, resulting in accuracy and 
convergence issues [46]. To circumvent this issue, the lower limit on ℎ𝑏

is set to 0.01ℎ, where ℎ is the grid spacing of background element.

The weak enforcement of the boundary condition in IMGA is par-
ticularly attractive as this alleviates the need for a body-fitted mesh. 
The additional Nitsche terms (the third to last terms on the left-hand 
side of Eq. (5)) are formulated independently of the mesh. The only ad-
ditional overhead is a separate discretization of the domain boundary 
whose position in the INTERCEPTED elements can be determined.

Remark. We use a fully implicit Crank Nicholson time stepping scheme. 
All results are reported using linear basis functions, unless explicitly 
stated otherwise.

3. Algorithmic developments

In this section, we highlight some of the key algorithmic develop-
ments to accelerate IMGA computations and deploy it on massively 
parallel computers. Algorithm 1 gives an overview of the key steps in 
IMGA. We start by constructing an octree-based adaptive mesh with a 
constraint on the relative size of neighboring elements (2:1 balancing). 
The mesh is refined near the object boundary which is important to 
capture boundary layer effects. A brief overview of our mesh genera-
tion algorithm is given in Section 3.1. Based on the mesh boundaries, 
the .stl triangles are distributed across the processors, based on its over-
lap with elements that are part of the background mesh. This step is 
important to perform fast IN - OUT tests described in Section 3.3. The 
elements are labeled as IN , OUT or INTERCEPTED based on the position 
of the .stl geometry. To avoid repeated tests these labels are stored as 
element markers. Elements have different routines, and computational 
costs, based on the element marker. For IN elements, no integration 
is performed and Dirichlet conditions are set on all CG nodes corre-
sponding to IN elements. For OUT elements, integration is performed 
by looping through all quadrature points. For INTERCEPTED elements, 
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Algorithm 1 IMMERSOGEOMETRIC_ALGORITHM: Brief overview.
Require: The octree and .𝑠𝑡𝑙 file
1: for 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 ∈ 𝑙𝑒𝑎𝑓 do

2: compute element Markers ⊳ Algorithm 5
3: compute background triangles ( )
4: for time < 𝑇f inal do ⊳ Loop over time
5: for 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 ∈ 𝑙𝑒𝑎𝑓 do

6: if IN then

7: continue ⊳ Skip IN elements

8: if OUT then

9: Loop over Gauss Points
10: perform Matrix and Vector Assembly
11: if INTERCEPTED then

12: Fill the elements with Gauss points
13: Check if the Gauss point  is IN or OUT ⊳ Algorithm 6
14: if ( is OUT ) then
15: perform Matrix and Vector Assembly
16: for 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 ∈ 𝑙𝑒𝑎𝑓 do

17: if INTERCEPTED then

18: for 𝑡 ∈ do
19: Assemble weak BC contribution to 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

20: Solve system of equations

we perform adaptive quadrature Section 3.4 and perform the integra-
tion only over OUT Gauss points. The matrix assembly is an important 
part here and is optimized for achieving significant speedup and is dis-
cussed in Section 3.2.

3.1. Octree based mesh generation

Octrees are widely used in computational sciences [47–52], due to 
its conceptual simplicity and ability to scale across large number of pro-
cessors. Proceeding in a top-down fashion, an octant is refined based 
on a user-specified criteria. The refinement criteria are specified by a 
user-specified function that takes the coordinates of the octant, and re-
turns true or false. Since the refinement happens in an element-local 
fashion, this step is embarrassingly parallel. In distributed memory, the 
initial top-down tree construction, also enables an efficient partitioning 
of the domain across an arbitrary number of processes. All processes 
start at the root node (i.e., the cubic bounding box for the entire do-
main). In order to avoid communication during the refinement stage, 
we opt to perform redundant computations on all processes. Starting 
from the root node, all processes refine (similar to the sequential code) 
until at least (𝑝) octants requiring further refinement are produced. 
Then using a weighted space-filling-curve (SFC) based partitioning, we 
partition the octants across all processes. Note that we do not communi-
cate the octants as every process has a copy of the octants, and all that 
needs to be done at each process is to retain a subset of the current oc-
tants corresponding to its sub-domain. This allows us to have excellent 
scalability, as all processes perform (roughly) the same amount of work 
without requiring any communication.

Upon octree generation we enforce the 2:1 balanced constraint 
which ensures that neighboring octants differ by at most one level. Such 
a 2:1 balanced constraint simplifies mesh generation, and eliminates ill-
conditioning introduced due to extreme scaling of neighbor elements. 
Following balancing, meshing is performed which generates the re-
quired data-structures to perform FE computations, intergrid transfers, 
spatial queries and membership tests. Additional details on our octree-
based FEM framework can be found in Fernando et al. [50], Sundar 
et al. [53] and Fernando and Sundar [54].

3.2. Matrix assembly on distributed octrees

In FEM, the differential operator , after weakening and discretiza-
tion becomes a matrix (stiffness matrix) 𝐾𝑖𝑗 = (𝜙𝑖, 𝜙𝑗 ) where (𝑢, 𝑣) =∫Ω 𝑢𝑣𝑑Ω, and 𝜙𝑖 is the basis function defined at 𝑖𝑡ℎ node. In a dis-
tributed octree, each partition 𝜏𝑘 of Ω will compute the 𝐾𝑖𝑗 restricted 
to 𝜏𝑘 denoted by 𝐾𝑖𝑗|𝜏𝑘 . The octants in 𝜏𝑘 are further decomposed into 
two disjoint octant sets – independent 𝜏𝐼 , and dependent 𝜏𝐷 such that, 
31
Fig. 2. Figure depicting the memory layout for the distributed nodes/octants. 
The distributed octree 𝑇 is partitioned across 𝑝 processors, where each parti-
tioned 𝜏𝑘 tree (local octants) has pre (from 𝑡𝜏𝑚𝑚 < 𝑘) and post (from 𝑡𝜏𝑚𝑚 > 𝑘) 
ghost octant/nodal information. The local partition 𝜏𝑘 is further logically de-
composed in to independent 𝜏𝐼 , and dependent 𝜏𝐷 disjoint octant sets such that 
𝜏𝑘 = 𝜏𝐼 ∪ 𝜏𝐷 . This notion of independent and dependent is used in overlapping 
computation with communication in FEM matrix assembly.

Fig. 3. An example of a hanging face and a hanging edge where in both cases 
octant ( ) has a hanging face (left figure) and a hanging edge (right figure) 
with octant ( ). Nodes on the hanging face/edge are mapped to the larger oc-
tant and the hanging nodal values are obtained via interpolation. Note that for 
illustrative purposes, the two octants are drawn separately, but are contiguous.

Algorithm 2 MATRIX_ASSEMBLY.
Require: Octree 𝑇 , distributed across 𝑝 processors, (𝜏𝑘 local partition)
Ensure: global assembled matrix 𝐾𝑖𝑗

1: 𝐾 ← 0 matrix
2: for 𝑒 ∈ 𝜏𝐷 do ⊳ local dependent elements
3: 𝐾𝑒 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑒𝑙𝑒_𝑚𝑎𝑡𝑟𝑖𝑥() ⊳ Algorithm 4
4: 𝑀𝑒 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_ℎ𝑎𝑛𝑔𝑖𝑛𝑔_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠() ⊳ Algorithm 3
5: 𝑘𝑒 ←𝑀𝑇

𝑒
𝐾𝑒𝑀𝑒

6: 𝑠𝑡𝑎𝑟𝑡_𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦_𝑐𝑜𝑚𝑚() ⊳ start communication
7: for 𝑒 ∈ 𝜏𝐼 do ⊳ local independent elements
8: 𝑘𝑒 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑒𝑙𝑒_𝑚𝑎𝑡𝑟𝑖𝑥() ⊳ Algorithm 4
9: 𝑀𝑒 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_ℎ𝑎𝑛𝑔𝑖𝑛𝑔_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠(𝜏𝑘, 𝑒) ⊳ Algorithm 3
10: 𝐾𝑒 ←𝑀𝑇

𝑒
𝑘𝑒𝑀𝑒

11: 𝐾 ←𝐾 + O2N(𝐾𝑒)
12: 𝑒𝑛𝑑_𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦_𝑐𝑜𝑚𝑚() ⊳ wait till communication ends
13: for 𝑒 ∈ 𝜏𝐷 do

14: 𝐾 ←𝐾 + O2N(𝐾𝑒)

𝜏𝑘 = 𝜏𝐼 ∪ 𝜏𝐷 . An octant 𝑒 ∈ 𝜏𝐼 ensures that all the nodal information re-
lated to 𝑒 is local while 𝜏𝐷 is 𝜏𝑘 ⧵ 𝜏𝐼 . The notion of independent and 
dependent octants is used to overlap computation with communication 
during the matrix assembly (see Fig. 2).

Hanging nodes: Adaptivity in octree meshes causes non-conformity. 
In our framework, additional degrees of freedom on shared faces be-
tween elements of unequal sizes—the so called hanging nodes—do not 
represent independent degrees of freedom, and are not stored. Instead, 
they are represented as a linear combination of the basis functions cor-
responding to the larger face (see Fig. 3). We implement this using a 
correction operator [49,55,56] during the overall matrix assembly (see 
Algorithm 2 and Algorithm 3).

Elemental matrix assembly: We accelerate the assembly process2
by viewing each weakened differential FEM operator (FEM kernel) of 
the form (MAT_OP1, GP𝑖MAT_OP2) as an outer product and making use 
of optimized matrix-matrix multiplication libraries. Each FEM kernel 

2 Although we illustrate some promising results with a matrix-free approach 
[57], further optimization is needed—specifically in terms of tailored pre-
conditioners—to make the matrix-free approach competitive.
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Algorithm 3 COMPUTE_HANGING_CORRECTIONS.
Require: Octree 𝑇 , distributed across 𝑝 processors, (𝜏𝑘 local partition), local element 

𝑒 ∈ 𝜏𝑘

Ensure: Hanging node correction matrix 𝑀𝑒

1: 𝑀𝑒 ← 𝐼 ⊳ 𝐼 is the identity matrix
2: 𝐼2𝑑𝑖𝑗 ← 𝐼1𝑑𝑖

⨂
𝐼1𝑑𝑗 ⊳ 𝐼1𝑑 is 1d interpolation matrices

3: for 𝑓 ∈ 𝐹𝑎𝑐𝑒𝑠(𝑒) do
4: if 𝑖𝑠_ℎ𝑎𝑛𝑔𝑖𝑛𝑔(𝜏𝑘, 𝑒, 𝑓 ) then
5: 𝑀𝑒[𝑓 ] ← 𝐼2𝑑𝑖𝑗

6: for 𝑒𝑑𝑔𝑒 ∈𝐸𝑑𝑔𝑒𝑠(𝑒) do
7: if 𝑖𝑠_ℎ𝑎𝑛𝑔𝑖𝑛𝑔(𝜏𝑘, 𝑒, 𝑒𝑑𝑔𝑒) then
8: 𝑀𝑒[𝑒𝑑𝑔𝑒] ← 𝐼1𝑑𝑖
return 𝑀𝑒

Algorithm 4 COMPUTE_ELE_MATRIX.
Require: FEM operators (MAT_OP1 and MAT_OP2), Quadrature Values (GP), SCALE, Size 

of matrix(n × n): n = (bf + 1)𝑑

Ensure: The computed elemental matrix EMAT
1: GP ← GP𝑖 ×𝑊𝑖 ⊳ (n)
2: for i ← 1 to n do
3: for j ← 1 to n do
4: M𝑖𝑗 ← MAT_OP2𝑖𝑗× GP𝑗 ⊳ (n)2
5: GEMM:EMAT ← SCALE(MAT_OP1𝑇 M) ⊳ (n)3

return EMAT

comprises of two operators (MAT_OP1 and MAT_OP2) obtained as a 
result of weakening, and GP𝑖 denotes the value of interpolated vari-
ables at the Gauss points. Algorithm 4 describes the procedure along 
with the associated complexity of each step. In this work, we repre-
sent MAT_OP as a matrix of appropriate size. For better performance, 
the matrix corresponding to MAT_OP can be precomputed and cached 
(Appendix A). Step 1-4 denotes the computation of second term in the 
kernel (GP𝑖 MAT_OP2). 𝑊𝑖 denotes the weight of the quadrature points. 
Step 5 donates the action of MAT_OP1. The scalar factor SCALE is the 
resultant of mapping from the reference frame to the physical frame 
and is operator dependent.3 For example, the scale factor for the stiff-
ness matrix is Δ𝑥∕2 and for the mass matrix is Δ𝑥3∕8 for a reference 
element ∈ [−1, 1]3 in 3D. Clearly, this last step is computationally the 
most expensive. For a detailed analysis, interested readers are referred 
to Deville et al. [58].

Our approach is different from the general approach in open source 
libraries (such as deal.ii [59], for instance) that loop over individual 
Gauss points in each direction. Although the overall theoretical com-
plexity remains the same ((bf + 1)3𝑑 , where bf is the basis function 
order and 𝑑 is the number of spatial dimensions) for both implemen-
tations, implementing the operator as a matrix-matrix multiplication 
allows a natural way to leverage the power of GEMM kernel [60] that 
is available as vendor optimized libraries (such as INTEL MKL). These 
libraries are fine tuned to exploit assembly-code-level parallelism and 
are extremely fast on modern cache-based and pipelined architectures. 
As evident from the complexity analysis, optimized matrix assembly 
becomes especially important when using higher order basis functions. 
This is a careful middle ground that ensures portability across various 
computing platforms, while not as efficient as explicit vectorization.

It has been shown that the theoretical lower bound on the computa-
tional complexity for elemental matrix assembly is (bf + 1)2𝑑 , since the 
elemental matrix has many non-zero entries [58]. There has been sub-
stantial effort to achieve this lower bound [61,62,58]. However, most 
of the proposed analysis and implementation have been limited to the 
computation of stiffness and mass matrix. Deploying these algorithms 
for complicated non-linear kernels arising as a result of weakening the 
Navier–Stokes equation seems non-trivial and needs further analysis. 
This is left as future work.

3 This makes use of the fact that the octree elements, in general, are cubes 
with equal aspect ratio (Δ𝑥 = Δ𝑦 =Δ𝑧).
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Algorithm 5 ELEMENT_MARKERS: IN / OUT or INTERCEPTED.
Require: The element  and list of background triangles  associated with it.
Ensure: The marker for  ⊳ IN , OUT or INTERCEPTED
1: 𝑐𝑜𝑢𝑛𝑡𝑠 ← 0
2: for 𝑛 ∈ 𝑛𝑛𝑜𝑑𝑒𝑠 do

3: compute  ⊳ Global position of the node
4: if ISIN( , ) then ⊳ Algorithm 6
5: increment count
6: if count == 𝑛𝑛𝑜𝑑𝑒𝑠 then ⊳ All nodes are IN
7: return IN
8: if count == 0 then ⊳ All nodes are OUT
9: return OUT
10: return INTERCEPTED

Algorithm 6 ISIN: Normal based IN - OUT test.
Require: The global position  and list of background triangles  associated with each 

octant.
Ensure: Point  is IN or OUT of the given geometry
1: 𝑐𝑜𝑢𝑛𝑡 ← 0
2: for 𝑡 ∈ do
3: Compute 𝐝 =  - t ⊳ distance vector from  to t
4: if 𝐝 ⋅ 𝐧𝑡 ≤ 0 then
5: increment count
6: if 𝑐𝑜𝑢𝑛𝑡 == | | then
7: return OUT ⊳ All background triangles indicate that point is OUT
8: if 𝑐𝑜𝑢𝑛𝑡 == 0 then
9: return IN ⊳ All background triangles indicate that point is IN
10: perform RAY - TRACING ⊳ Normal based test fails

Fig. 4. Figure illustrating the normal based IN - OUT test. Fig. 4a shows the case 
where there is no sharp corners. In this case, the dot product of 𝐝1 ⋅𝐧1 and 𝐝2 ⋅𝐧2
both are greater than 0 stating that point is IN . But in case of sharp corners, 
as shown in Fig. 4b the background triangles can give conflicting decisions. 
𝐝1 ⋅ 𝐧1 < 0 and 𝐝2 ⋅ 𝐧2 > 0 In these cases, we resort to the ray-tracing algorithm.

3.3. IN - OUT test

In this work, we propose a new normal based identification of IN
- OUT test, as opposed to ray-tracing that is conventionally use in im-
mersed boundary simulations [63–66]. Algorithm 6 describes the proce-
dure to identify whether a given quadrature point  in an INTERCEPTED
element is IN or OUT . Given a point  in an element  , we identify the 
background triangles (that is stored in the data structure during parti-
tion of triangles) associated with the element. The dot product of the 
position vector (i.e. vector from  to the triangle centroid) with the 
normal of all the background triangles  is evaluated. If the result of 
the dot product with all the triangles is greater than 0, then the point 
is outside the geometry and vice versa. The normal based test comes at 
no additional cost in terms of memory requirements and involves series 
of simple dot product evaluation between the point and background tri-
angles. This makes it very cost efficient as compared to ray-tracing. In 
case of conflict, as in case of sharp corners (see Fig. 4), we revert back 
to ray-tracing.

3.4. Adaptive quadrature

There has been recent advances in the development of accurate and 
efficient quadrature rules to account for the cut cells that arise during 
IMGA computations [67–74,19,75]. In this work, to accurately account 
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Fig. 5. Sketch demonstrating adaptive quadrature. Boundary is represented by 
the red line. Octant shared nodes are represented by ( ). ( ) represents the 
new Gauss points generated as the result of 1st level of splitting and ( ) repre-
sents the Gauss point of 2nd level of splitting. It is to be noted that the splitting 
happens only for the INTERCEPTED elements. Once all the Gauss points in the 
splitted elements are either in or out the elements is not further sub-divided.

for the effect of fractional content of fluids in the INTERCEPTED cells, we 
use adaptive quadrature by recursive cell subdivision. INTERCEPTED el-
ements are further subdivided to include additional Gauss points. This 
ensures the accurate integration of the fluid domain for intersected ele-
ments. The splitting of the element is done only to add Gauss points and 
does not introduce any new degrees of freedom. The INTERCEPTED ele-
ments are recursively sub divided to fill in Gauss points till the smallest 
cells are completely IN (or OUT ); or a max split level is reached. Fig. 5
demonstrates the case with maximum split level set to 2.

3.5. Dynamic load balancing

We use a Space Filling Curve (SFC) – specifically the Hilbert curve – 
to partition our octree mesh and the associated data across all processes. 
In the case of IMGA, different elements can have different compu-
tational loads depending on the IN , OUT , and INTERCEPTED status.
INTERCEPTED elements perform the following additional computations 
compared to IN and OUT elements: a) identify whether a particular 
Gauss point is in or out, b) loop over additional Gauss points (due to 
recursive quadrature), and c) perform surface integral over the surface 
element for accumulation of the contribution from the weak bound-
ary condition. We ensure load-balance across all processes by using a 
weighted SFC partition, wherein INTERCEPTED elements are assigned 
a higher weight. The weight associated with INTERCEPTED elements is 
proportional to the ratio of computational effort of an INTERCEPTED el-
ements to an OUT element.

3.5.1. Estimation of weight for the INTERCEPTED elements
Let 𝑇𝑣 be the computational cost per volumetric quadrature point 

and 𝑇𝑠 be the cost per surface quadrature point. The relative weight for 
each element, 𝑒, can be estimated as:

𝑊 (𝑒) =
𝑛Vgp(𝑒)
𝑛Tgp

+
𝑇𝑠

𝑇𝑣

𝑛Sgp(𝑒)
𝑛Tgp

(6)

where: 𝑛Vgp is the number of Gauss point that are outside the geometry, 
𝑛Sgp is the total number of surface Gauss points belonging to the INTER-
CEPTED elements and 𝑛Tgp represents the total number of Gauss point in 
the volumetric elements which scales as (bf + 1)nsd, where bf is the or-
der of basis function. For a completely OUT element and a completely
IN element, Eq. (6) reduces to 1 and 0, respectively.

4. Benchmark results

In this section, we present the benchmark results for our solver in 
terms of accuracy and speed by considering a suite of appropriate test 
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Fig. 6. Computational domain for sphere simulations. The computation domain 
consists of a cubic domain with dimension 10𝑑 × 10𝑑 × 10𝑑. Overall there are 
three different levels of refinement: 𝑅𝑏𝑘𝑔 for the background mesh, 𝑅𝑤𝑎𝑘𝑒 within 
the blue box to capture the wake, and 𝑅𝑏𝑑𝑦 near the body within the brown box. 
The refinement level inside the body is equal to 𝑅𝑏𝑘𝑔 . The sphere of diameter 𝑑 =
1 is positioned at (3𝑑, 5𝑑, 5𝑑). A refinement level of 𝑖 would be corresponding 
to the resolution of 10𝑑

2𝑖
in each direction.

Fig. 7. Drag crisis: Variation of drag coefficient 𝐶𝑑 with 𝑅𝑒 for flow past a sphere 
compared with experimental data [76,77]. Notice that the x-axis is log(𝑅𝑒) rep-
resenting variation for a wide range of 𝑅𝑒 number spanning multiple regimes 
(from laminar to fully developed turbulence) each with distinct flow physics. 
The framework demonstrates good comparison with experimental data in all 
these regimes without any special adjustments to the numerical scheme. Mov-
ing towards the right on a log scale as 𝑅𝑒 is increased becomes increasingly 
computationally expensive, e.g. adding another point on the right of the last 
point would increase the Reynolds number ten-folds and would require a de-
crease in finest element size by 3 times.

cases. We begin by validating our framework using a canonical problem 
of flow past a sphere across a wide range of Reynolds numbers, encom-
passing the laminar-transition-turbulent regimes (Section 4.1). Next, we 
show the impact of tensorization on the matrix assembly and solve time 
using a benchmark lid driven cavity problem (Section 4.2). We next 
quantify the advantage of our proposed IN - OUT test for significantly 
complex standard geometries in Section 4.3. In order to articulate the 
advantage of using adaptive quadrature and weighted partitioning on 
IMGA simulations, we revisit flow past a sphere in Section 4.5. Finally, 
we present the scaling results of our solver for different mesh resolu-
tions (Section 4.6).
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Fig. 8. The wake structures and pressure distribution on sphere at different Reynolds number. At low 𝑅𝑒, the wake remains axisymmetric. As 𝑅𝑒 increases, it starts 
shedding and boundary layer becomes turbulent. The picture gives the phenomenological description of the drag crisis. The drag crisis is evident by noticing the 
wake structure as it changes from being divergent at 𝑅𝑒 = 160, 000 (high drag state) to being convergent at 𝑅𝑒 = 106 (low drag state). At the same time, we observe 
a high pressure region being developed behind the sphere. The development of this high pressure zone is attributed to the low drag state. Below the drag crisis, the 
flow separates at an angle smaller than 900 in the hemisphere facing the flow but above the drag crisis, the separation angle is pushed backward to the hemisphere 
pointing away from the flow.
4.1. Validation: flow past a sphere

As the first step, we validate our numerical setup by computing the 
non-dimensional drag coefficient 𝐶𝑑 on sphere in a range of Reynolds 
number from 1 to 1,000,000. Fig. 6 shows the schematic of the com-
putational domain used to perform the simulation for flow past the 
sphere. The computational domain consists of length 10𝑑 with the cen-
ter of the sphere of diameter 𝑑 = 1 placed at distance 3𝑑 from inlet (at 
(3𝑑, 5𝑑, 5𝑑)). All the walls of the cubic domain, except the outlet have 
constant non-dimensional freestream velocity of (1, 0, 0) and zero pres-
sure gradient. At the outlet, the pressure is set to 0 and zero gradient 
velocity boundary condition is applied at the wall. The no-slip boundary 
condition (zero Dirichlet) for velocity is weakly imposed on the surface 
of sphere. The octree and surface mesh resolution was varied by succes-
sively refining the mesh depending on the Reynolds number according 
to the Taylor micro length scale (𝑅𝑏𝑑𝑦 was varied from 5 to 11 with 
increasing 𝑅𝑒). At the finest resolution for the case of 𝑅𝑒 = 1 million, 
we have the equivalent of around 500 elements across the diameter of 
sphere. The spatial domain was discretized using linear basis function. 
The Crank Nicholson scheme was used for time discretization.

Remark. The finest resolution for 𝑅𝑒 = 1 million was chosen based on 
the work by Geier et al. [78]. This resolution has been shown to be suf-
ficient to capture the drag crisis. Further refinement was not considered 
in this work due to the high computational cost.

We evaluated the non-dimensional drag coefficient across this range 
of Reynolds numbers, which is plotted in Fig. 7. We can see that the 
IMGA results are in excellent agreement with experimental data. Note 
that we are able to accurately capture the drag crisis phenomena, where 
a sudden drop in drag coefficient is observed. The prediction of drag 
crisis is of significant interest to the CFD community, with important 
engineering implications in aerodynamics and vehicular dynamics. We 
emphasize that no special numerical/modeling treatment is needed in 
this framework to capture the drag crisis; this is in contrast to existing 
work where typically a wall treatment [79,80] is required to predict the 
drag crisis.

Fig. 8 show the flow structures in the wake behind the sphere for 
increasing 𝑅𝑒. At 𝑅𝑒 = 100, an attached stable ring eddy is formed be-
hind the surface of the sphere (Fig. 8a). At 𝑅𝑒 in the range of 1000, the 
ring eddy becomes unstable and starts to shed. Further increase in 𝑅𝑒

results in a fully turbulent wake (Fig. 8b and Fig. 8c). The drag crisis 
is evident by noticing difference in the wake structure between Fig. 8b 
and Fig. 8c. In the subcritical regime, the wake behind the sphere tends 
to diverge as it moves away from the sphere. Above the critical 𝑅𝑒, 
the wake tends to converge and become narrower as it moves behind 
the sphere. Subsequently, we can observe a high pressure zone being 
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Table 1

Comparison of time on different computing environment for matrix assembly 
and subsequent solve time for linear and quadratic basis function on Stampede2
SKX and KNL nodes, and Frontera CLX nodes. GP indicates the matrix assembly 
by looping over the individual Gauss points whereas MM indicates the assembly 
by imposing FEM operator as matrix–matrix multiplication.

Assembly Time Total Time

GP (s) MM (s) Speedup GP (s) MM (s) Speedup

Li
n
ea
r SKX 1.0617 0.7754 1.37 4.2598 3.9201 1.10

KNL 5.4996 3.775 1.46 7.83192 6.33589 1.24
CLX 0.80538 0.562 1.43 10.33978 10.17841 1.02

Q
u
ad
ra
ti
c SKX 71.132 10.245 6.94 234.202 175.03 1.34

KNL 385.59 40.409 9.54 664.05 346.15 1.92
CLX 59.356 8.4647 7.01 212.77 164.46 1.3

developed behind the sphere. The main reason for the drag crisis can 
be attributed to the development of this high pressure zone behind the 
sphere that tends to push the sphere in the inflow direction. These re-
sults are in agreement with the simulations by Geier et al. [78] using 
Lattice Boltzmann method to capture the drag crisis.

Remark. This shows the ability of our framework to capture the phe-
nomenological description of the drag crisis observed as 𝑅𝑒 is increased 
from 160, 000 to 106. A more detailed analysis of drag crisis is required 
to answer some of the key questions from the flow physics perspec-
tive. This includes identification of features that trigger drag crisis, 
and characterization of transition from high drag (subcritical) to low 
drag (supercritical) state (into sudden vs continuous transition). These 
questions are beyond the scope of the current methods paper, but we 
anticipate addressing these intriguing questions in subsequent work.

4.2. Matrix assembly

We report on how tensorization can speed up matrix assembly as 
described in Section 3.2 using linear and quadratic basis function. In 
order to compare the performance, we considered a canonical lid driven 
cavity problem in a unit cubic domain at 𝑅𝑒 = 100 on a uniform mesh 
of 16 × 16 × 16. Table 1 shows the comparison of the time for matrix 
assembly and subsequent solve time on TACC Stampede2 SKX and KNL 
node and Frontera CLX processors. We observe a significant speedup 
in the matrix assembly process across all these platforms, with more 
substantial speedups for higher order basis functions.

4.3. IN - OUT test

Here, we show the performance gain by using the normal based IN
- OUT test as compared to the ray-tracing for three different complex ge-

https://www.tacc.utexas.edu/systems/stampede2
https://frontera-portal.tacc.utexas.edu/
https://www.tacc.utexas.edu/systems/stampede2
https://frontera-portal.tacc.utexas.edu/
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Table 2

Comparison of the performance of the proposed IN - OUT test with the conventional ray-tracing for three different complicated geometries. 𝑃𝑠 represents the success 
fraction of normal based test and 𝑃𝑓 represents the failure fraction for which we resort to ray-tracing. 𝑇𝑎𝑣𝑔 represents the average time per evaluation of the normal 
based and ray-tracing.

Grid 
size

Total 
points

Proposed scheme Ray–tracing Speedup

Normal–based Ray–tracing Total time 
(s)

Total time 
(s)

𝑃𝑠 Time (s) 𝑇𝑎𝑣𝑔(s) 𝑃𝑓 Time (s) 𝑇𝑎𝑣𝑔(s)

B
u
n
n
y 643 1,193,640 0.79 0.996 1E-6 0.21 697.012 0.003 698.008 3247.6 4.66

1283 4,149,957 0.87 2.205 6E-7 0.13 1496.81 0.003 1499.01 11264.5 7.52
2563 10,317,097 0.91 4.234 4E-7 0.09 2555.78 0.003 2560.02 28156.6 11

D
ra
go
n 643 837,263 0.56 0.558 5E-7 0.44 1086.05 0.003 1086.32 2213.46 2.03

1283 3,351,110 0.74 0.624 2.53E-7 0.26 2615.81 0.003 2616.43 8885.58 3.4
2563 12,120,591 0.85 1.382 1.3E-7 0.15 6096.96 0.003 6098.34 35392.4 5.81

T
ru
ck

643 383,474 0.64 0.99 4E-6 0.36 621.469 0.004 622.459 1638.21 2.63
1283 1,602,839 0.80 1.84 1E-7 0.20 1724.55 0.005 1726.39 7468.15 4.33
2563 6,205,213 0.89 3.535 6.3E-7 0.11 3816.79 0.005 3820.33 34675.8 9.08
ometries: Stanford bunny, Stanford dragon (available at [81]) and truck 
(our target problem, discussed later in Section 5). These examples rep-
resent fairly complex geometries creating a diverse set of INTERCEPTED
elements. In order to mimic our simulation scenario, we generated 53
Gauss quadrature points per INTERCEPTED elements. Table 2 shows the 
comparison between the normal based IN - OUT and ray-tracing. Since 
both of these algorithms are embarrassingly parallel, the total time re-
ported is the cumulative sum of the time spent by each processor. We 
make several observations: (a) on average, normal based IN - OUT test 
is 1000 × faster than ray-tracing; (b) as the mesh resolution improves, 
the fraction of octants needing ray-tracing decreases. This is because 
any sharp corners (where our normal IN - OUT test fails) now reside 
within fewer elements; and (c) by combining ray-tracing with the nor-
mal based IN - OUT we see an overall speedup by at least 6 × (for the 
finest resolution) without compromising on accuracy.

4.4. Adaptive quadrature

In order to test the impact of adaptive quadrature on the flow 
physics, we consider a benchmark problem of flow past a sphere at 𝑅𝑒 =
100. The simulation is performed on a fixed mesh (𝑅𝑏𝑘𝑔 = 5, 𝑅𝑤𝑎𝑘𝑒 =
5, 𝑅𝑏𝑑𝑦 = 6), but with increasing levels of adaptive quadrature of INTER-
CEPTED elements. Fig. 9 shows the convergence of drag coefficient and 
associated percentage error to its reference value with increasing num-
ber of quadrature points in the INTERCEPTED elements. This indicates 
that adaptive quadrature is essential to accurately model INTERCEPTED
elements. Our numerical experiments suggest that two levels of quadra-
ture splitting (percentage error ∼ 1%) produce converged results, and 
further increase in quadrature level does not give any significant im-
provement in quantitative prediction of aerodynamic coefficient, which 
was also reported by Xu et al. [19] on unstructured meshes. With in-
crease in the quadrature levels, the associated cost with increased Gauss 
points in INTERCEPTED elements leads to a load imbalance, significantly 
increasing the time-to-solve. This suggests the need for weighted parti-
tioning.

4.5. Weighted partitioning

Here, we demonstrate the advantage of using weighted partition-
ing using flow past a sphere problem (at 𝑅𝑒 = 100) as a benchmark. 
Eq. (6) provides a theoretical estimate of the weights. This requires 
identification of the ratio, 𝑇𝑉

𝑇𝑆
, which can in principle be evaluated in an 

architecture specific way. Alternatively, simple Monte-Carlo sampling 
of volumetric and surface quadrature points provides a good estimate 
of this fraction. With this fraction, we accurately identify the weight as-
sociated with each octant using Eq. (6). Table 3 shows the estimated 
cost by running the simulation on Stampede2 SKX and KNL nodes. The 
experiments reveal the relative cost for matrix assembly to be ≈ 3.3.
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Fig. 9. Drag and percentage error for different levels of adaptive quadrature. 
We see that with increase in the number of quadrature point for INTERCEPTED
nodes, 𝐶𝑑 converges to the experimental observed value of 1.06-1.096 at 𝑅𝑒 =
100 [19]. Reference value of 1.06 [82] was chosen to compute percent error.

Table 3

The ratio 𝑇𝑣

𝑇𝑠

estimated by running the simulation on Stampede2 SKX and KNL 
nodes.

Matrix Assembly

Tv Ts Ratio

SKX 2.72E-5±7.5E-6 8.4E-6 ±1.85E-6 3.23
KNL 1.6E-4 ± 2E-5 4.83E-5 ± 1.51E-5 3.32

Table 4

Comparison of matrix assembly and solve time for equal and weighted parti-
tioning.

Equal partition Weighted partition Speedup

Matrix Assembly 72.672 s 28.01 s 2.60
Solve Time 127.4 s 47.67 s 2.67

Fig. 10 compares the predicted weight (using Eq. (6)) with the ex-
perimental weight, averaged over 10 runs, for two different meshes 
and surface discretization. We can see that the predicted weight is in 
good agreement with the actual weight. The estimated ratio of 𝑇 𝑣

𝑇 𝑠
, on 

a specific architecture only depends on the type of PDE being solved 
(which governs the number of FLOPS and data movement across mem-
ory hierarchy required per volume and surface quadrature points) and 
is independent of the number of mesh elements, the nature of surface 
discretization, as well as the parameters (like Reynolds numbers). Fur-
ther, we utilize this model to show the impact of correct load balancing 
on the actual solve time.

https://www.tacc.utexas.edu/systems/stampede2
https://www.tacc.utexas.edu/systems/stampede2
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Fig. 10. Comparison of predicted weight and actual weight for INTERCEPTED
elements for two different spatial and surface meshes on Stampede2 SKX and 
KNL nodes. The left panel corresponds to the 163 uniform grid with surface 
discretization comprising of 3000 triangles and right panel correspond to the 
323 uniform grid and surface discretization with 82000 triangles.

Fig. 11. Impact of weighted partition: Figure compares how elements and 
weights are distributed for the standard (left) and weighted (right) partition-
ing scheme. In equal partition, each processor receives the equal number of 
element whereas in case of weighted partitioning, the elements are partitioned 
in such a way that each processor receives nearly identical weight. The frac-
tions are computed by normalizing by the maximum number of elements and 
weight across all processors.

Fig. 11 shows the element and weight distribution across differ-
ent processors. In case of equal partition, the number of elements are 
equally distributed across different processors. This results in load im-
balance which is circumvented by making use of weighted partitioning. 
The weighted partitioning ensures that the elements are distributed 
such that each processor receives equal amount of work. Table 4 shows 
the overall speedup achieved in the assembly time and total solve time. 
We observe that the correct distribution of work can help to achieve a 
substantial speedup. Eq. (6) generalizes to moving meshes, where af-
ter each remeshing step, re-partitioning is performed. The enumeration 
of the viable Gauss points and surface elements in each INTERCEPTED
element is performed in linear time, involving a single pass over the 
elements.
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Table 5

The level of refinement in the various re-
gions of the domain for scaling studies.

𝑅𝑏𝑘𝑔 𝑅𝑤𝑎𝑘𝑒 𝑅𝑏𝑑𝑦

M1 5 7 8
M2 6 8 9
M3 7 9 10
M4 8 10 11

4.6. Scaling studies

Finally, in this section, we report on the scaling behavior of our 
solver by simulating the flow across a sphere case discussed in detail 
for validating the numerical method in Section 4.1.

4.6.1. Strong scaling
For strong scaling, we consider four different adaptive meshes: M1

consisting of 76,868 elements, M2 consisting of 519,800 elements, M3
consisting of around 4 million elements and M4 consisting of around 
15 million elements. The maximum refinement region in all the meshes 
was near the sphere region. Table 5 shows the refinement level in differ-
ent regions for the scaling studies for different mesh. The sphere surface 
discretization for carrying out the integration of weak boundary condi-
tions was kept constant and comprises of around 0.3 million triangle 
elements. Surface discretization of the sphere was chosen to ensure that 
we have at least 3-4 Gauss quadrature points per INTERCEPTED elements 
at the finest octree mesh resolution (Mesh M4). We used linear basis 
function for spatial discretization.

Fig. 12 shows the strong scaling result for the different meshes on 
TACC’s Frontera.4 We use a bi-conjugate gradient solver with additive 
Schwartz preconditioner. The simulation was carried out for 10 time 
steps with Δ𝑡 of 0.01. In total there were 21 rounds of non-linear solve, 
which resulted in 21 rounds of matrix assembly and 31 rounds of vector 
assembly. The average per iteration matrix and vector assembly time is 
reported. The same results are also presented in Fig. 13 as the relative 
speedup for different problem sizes. The results reveal near ideal scal-
ing till the grain size (the number of octants per processor) is around 
320. Since we are solving for 4 degrees of freedom per node, this trans-
lates to roughly 5000 degrees of freedom per processor. At smaller grain 
sizes, the amount of data being exchanged with neighboring processor 
increases compared to the amount of work being done. This makes it 
difficult to effectively overlap communication and computation, lead-
ing to a loss in scalability. We also observed that the number of linear 
solve iterations increases with the number of processors, primarily due 
to block preconditioning, which additionally contributes to the devia-
tion from the ideal scaling. Finally, at small grain sizes, load balancing 
for the intercepted elements becomes challenging, and contributes to 
the loss of scalability. Note that for most practical problems, we will be 
operating with much larger grain sizes avoiding these challenges. These 
extreme strong scaling results are presented to motivate additional re-
search into efficient preconditioners and load-balancing techniques for 
IMGA.

4.6.2. Weak scaling
For weak scaling, we considered 3 different adaptive meshes with 

number of elements per processor varying from ∼ 500 to ∼ 2000. Sim-
ilar to the strong scaling case, the discretization for the object is kept 
constant. Fig. 14 plots the results of our weak scaling experiments. We 
compare the weak scaling result for the matrix assembly, vector assem-
bly, the time taken for each KSP iteration5 and total solve time. We 
achieve excellent weak scaling performance, with similar trends as the 

4 We have shown the scaling to the maximum allocation that we had on 
Frontera supercomputer.
5 KSP is the Krylov subspace context used in PETSc for solving linear systems.

https://www.tacc.utexas.edu/systems/stampede2
https://frontera-portal.tacc.utexas.edu/
https://frontera-portal.tacc.utexas.edu/
https://www.mcs.anl.gov/petsc/
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Fig. 12. Strong scaling result on TACC Frontera on 4 different meshes. The plot shows good scaling until the grain size per processor value of ≈ 320 (5000 dof).
Fig. 13. Relative speedup for solve time as a function of number of processor 
for different problem size.

strong scaling. Overall, scaling is better at larger grain sizes, especially 
for matrix and vector assembly. We achieve a weak scaling efficiency 
∼ 0.5 for total solve time while increasing the number of processor and 
problem size by a factor of 16. The overall time to solve suffers because 
of degradation of the preconditioner and poor conditioning of the ma-
trix, which results in increase in number of KSP iteration with problem 
size.

Remark. We hypothesize that a multilevel preconditioner can improve 
the scalability (both strong and weak) as the number of iteration count 
remains approximately constant with increase in the number of proces-
sor and the problem size. However, in our experiments using Algebraic 
Multigrid (AMG) via PETSc interface, while we observed a constant 
number of iteration with increase in the number of processor as well 
as mesh independence (number of iterations remaining approximately 
constant with increase problem size), the setup costs for AMG are high 
and exhibit poor scalability for large number of processor counts (es-
pecially > 128 Frontera nodes ∼ 7000 processors) (Appendix C.1). 
Currently, for our target problems, we achieved a better time to solve 
using a single level Additive Schwarz preconditioner. The use of Geo-
metric multigrid (GMG) should address the high setup costs associated 
with AMG, as well as its scalability. This is left as future work.
37
5. Flow past a complex geometry: semi-trailer truck

In this section, we illustrate the utility of our framework on a prac-
tical application problem. We explore the flow physics across a real-
istic semi-truck geometry traveling at 65 MPH (a Reynolds number 
of 30 × 106). Then, we quantify the advantage of platooning multiple 
semi-trucks which is one of the compelling fuel saving features of next-
generation autonomous vehicles. Compared with modern motor vehi-
cles, commercial vehicles are aerodynamically inefficient due to their 
bulky design. Any reduction of drag can lower the cost of fuel consump-
tion and thus possess potential economic and environment benefit [83]. 
We demonstrate the capability of our framework to investigate the ef-
fect of individual parts of a semi-trailer truck on the drag as well as the 
platooning effect of two trucks.

5.1. Geometry of the truck

The geometry of semi-trailer consists of several parts such as trac-
tor, trailer, tanks, tires and axis. Each part is verified to be a water-tight 
triangulated manifold. The non-dimensional length of the truck is 1
(normalized by the truck length, which is 15 m). The Reynolds num-
ber of the problem, estimated based on the truck length and cruising 
at 65 mph, is around 30 × 106. We solve in a moving reference frame, 
where the truck is stationary and air is moving past at 65 MPH.

5.2. Computational domain and boundary conditions

The computational domain has a dimension of 16 × 2 × 2, with inlet 
velocity set at 1 and the outlet pressure set at 0. The surrounding walls 
are no-slip walls moving at the same speed as the incoming flow. The 
truck is positioned 5 unit lengths behind the inlet. No-slip boundary 
condition is weakly imposed on the surface of the truck. We model the 
rotating wheels by enforcing a no-slip condition corresponding to the 
wheels rotating with an angular speed of 1∕𝑟, producing a linear speed 
of 1.0. Additional details are presented in Appendix C.2.

5.3. Mesh generation

The mesh is refined adaptively using multiple refine regions around 
the truck and in the wake region. The base level of refinement is set to 
8 (i.e. 28 divisions along a dimension) and the smallest element around 
the truck has refinement level of 12 (212 divisions along a dimension). 
This level of refinement is chosen according to the Taylor length scales 
at this Reynolds number, 𝑅𝑒 = 30 × 106. This resulted in around 3.1 mil-
lion elements. A time step (Δ𝑡) of 0.00125 is chosen for the simulation, 
resulting in CFL number ranging from 0.02 to 0.32 from the largest ele-
ment to the smallest element. The simulation is started with a lower 𝑅𝑒, 
larger Δ𝑡 and a less refined mesh. As the solution converges, we ramp 

https://frontera-portal.tacc.utexas.edu/
https://www.mcs.anl.gov/petsc/
https://frontera-portal.tacc.utexas.edu/
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Fig. 14. Weak scaling result on TACC Frontera. We considered 3 different adaptive meshes with the number of elements per processor varying from 500 to 2000.

Fig. 15. Flow streamlines demonstrating the platooning effect with two trucks traveling at 65 MPH, corresponding to a Reynolds number, 𝑅𝑒 of 30 × 106 .
up the 𝑅𝑒, decrease Δ𝑡 and further refine mesh near the region of in-
terest. This is done to remove the initial transient quickly. The removal 
of transient is a major bottleneck in high fidelity CFD simulations; with 
transient removal taking several days of simulation time before any sta-
tistically reliable data can be collected. The octree based framework 
provides a principled approach to remove these transients by perform-
ing simulation starting from a relatively coarse mesh, and successively 
refining the mesh. Here, to remove transients, we used Stampede2 SKX 
and KNL processors with number of processors ranging from 192 to 
2176. Once the initial transient was removed, the simulation was car-
ried out on 64 Frontera nodes with 3584 processors. In approximately 
4 hours, we were able to collect the statistics for about 3.5 seconds.

5.4. Flow quantities of interest

Fig. 16 shows the (coefficient of) drag as a function of time. Note 
that we are plotting for time after removal of the initial transients, when 
statistically consistent results are produced. The truck head contributes 
the most to the drag force, whereas the trailer actually contributes a 
small negative quantity. This is mainly due to the pressure difference at 
the front and back of the trailer surface. The average non-dimensional 
drag coefficient 𝐶𝑑 comes around to be 0.695. The reference area 𝐴 is 
chosen to be the projected frontal area of the truck. This result is com-
parable to the previous conducted experimental studies [84–86] which 
had reported 𝐶𝑑 in the range of 0.6–0.9 for heavy vehicles. The previ-
ous numerical result reported the drag coefficient to be about 0.57 for 
RANS (Reynolds Averaged Navier–Stokes) simulation and 0.62 for DES 
38
Fig. 16. Time evolution of drag on tractor, trailer and total drag on the semi -
truck.

(Detached Eddy Simulation) simulations for the truck traveling at the 
speed of 55 MPH [87]. It must be noted that numerical results based on 
RANS and DES are susceptible to the proper choice of parameters for 
wall treatment; while our framework does not rely on any additional 
treatments. This makes our approach significantly more robust than ex-
isting state-of-art approaches.

https://frontera-portal.tacc.utexas.edu/
https://www.tacc.utexas.edu/systems/stampede2
https://frontera-portal.tacc.utexas.edu/
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Fig. 17. Platooning effect: Time-averaged non-dimensional pressure coefficient (𝐶𝑝) at the center-line of the truck; Front of vehicles 1 and 2 is represented by thick 
red and blue line and back is represented by dashed red and blue lines. Fig. 17a shows the pressure probe points.
Fig. 18. Time evolution of drag on tractor and trailer demonstrating the pla-
tooning effect. The drag on second truck is significantly lower than the first 
one.

5.5. Flow past multiple complex objects: platooning of semi-trailer trucks

Studies have shown that by platooning large, blunt vehicles, the 
overall fuel saving can be significant. This is especially significant for 
autonomous vehicles, where a platoon of trucks can operate safely and 
efficiently (with nearly 25% improved efficiency [88,87]). We explore 
this concept using the detailed LES simulations afforded by this frame-
work. We placed two identical semi-trailer trucks one truck-length 𝐷
apart, with the computation domain and boundary conditions identical 
to previous simulation. We can see that the full scale two-truck simu-
lation resulted in a mesh with about 6 million elements. The complete 
simulation was carried out on 128 Frontera CLX nodes (7168 processor) 
for about 16 hours6 to collect the data over 12 seconds, after removal 
of transients. Leveraging the ability to refine and coarsen the grid, we 
used a checkpoint solution from the one-truck simulation as the initial 
guess, which resulted in substantial reduction in overhead for transient 
removal during the two truck simulations. Fig. 18 shows the 𝐶𝑑 history 
for major components of two trucks. The averaged 𝐶𝑑 for the second 
truck is 0.475, showing a 32% decrease in total drag. This reduction in 
drag is comparable with the ones reported in literature where a reduc-
tion of 30% is observed using DES simulation [87], as well as a full scale 
experimental study [89]. Fig. 15 shows the streamlines for the flow over 
two trucks. We can see the streamlines of the first truck are effecting 
the flow around the second truck. It is clear from Fig. 17b that the main 
source of drag reduction is due to the lowered drag of the tractor head. 

6 This time includes the time taken to remove the transients for two truck 
simulation.
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The figure plots the non–dimensional pressure coefficient 𝐶𝑝 at the cen-
terline of the two tractors. The front section of the trailing truck has a 
lower pressure than the leading truck, with larger difference around the 
lower half of the truck. On the surface of the trailer, shown in Fig. 17c, 
the platooning truck shows similar pressure magnitude with both the 
front and back surface while the leading truck clearly has higher pres-
sure at the front surface of the trailer. Additional analysis of the flow 
physics is reported in Appendix C.2

6. Conclusion

We present a highly scalable, adaptive IMGA framework to solve in-
dustrial scale LES problem. We highlighted some of the key algorithmic 
challenges and improvements over the existing state-of-the-art IMGA 
methods. We have demonstrated excellent scaling results for our frame-
work on current supercomputers, and shown preliminary application to 
practical problems. We believe that this will serve as a step towards 
achieving the goal of conducting overnight large scale LES simulations. 
Some future directions that can be explored in the context of IMGA are:

• Carefully designed PDE and method specific preconditioners [90–
92] that can exploit the matrix-free method and accelerate the con-
vergence.

• Extension to higher-order finite element spaces. Higher order meth-
ods are more difficult to converge due to poor conditioning of 
matrices [93], and therefore careful design of the preconditioners 
is of utmost importance to achieve faster solve time.

• Designing fast(er) algorithms for assembly of FEM kernels (both 
matrix and matrix-free) that can achieve the lower bound on com-
plexity.

• Efficient integration schemes for the INTERCEPTED elements.
• Scalable Multigrid methods [94–96] in the context of IMGA.

Link to the Reproducible Capsule

https://codeocean .com /capsule /1654138 /tree /v1
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Appendix A. Precomputation of operators for FEM

A careful analysis of the FEM kernels resulting from the weakening 
of the Navier–Stokes equations reveals that the evaluation of these four 
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basis function values ( 𝜕𝜙

𝜕𝑥
; 𝜕𝜙

𝜕𝑦
; 𝜕𝜙

𝜕𝑧
; 𝜙) at the Gauss points is repeatedly 

performed. Thus, the values corresponding to them, over a reference el-
ement at the Gauss quadrature points can be pre-computed and cached 
in a matrix form. These matrices can be explicitly represented as:

[∇𝜙]𝑘 =
[
𝜕𝜙

𝜕𝑘

]
𝑖𝑗

for 𝑖 ∈ 1⋯nbf ; 𝑗 ∈ 1⋯ngp;𝑘 ∈ (𝑥, 𝑦, 𝑧)

𝜙 = [𝜙]𝑖𝑗 for 𝑖 ∈ 1⋯nbf ; 𝑗 ∈ 1⋯ngp;

where nbf donates the number of basis functions, ngp donates the 
number of Gauss points, [ 𝜕𝜙

𝜕𝑘
]𝑖𝑗 denotes the value of the 𝑘𝑡ℎ direction 

derivative of the 𝑖𝑡ℎ basis function at 𝑗𝑡ℎ Gauss point. Similarly 𝜙𝑖𝑗 de-
notes the value of the 𝑖𝑡ℎ basis function at Gauss point 𝑗. Using standard 
Gauss - Legendre quadrature rule, each of these forms are matrices of 
size (nbf + 1)𝑑 × (nbf + 1)𝑑 , where 𝑑 is the spatial dimension (𝑑 = 3). 
Note that the derivative along each direction 𝑘 is stored separately as a 
matrix.

Using these precomputed forms, the various contributing expres-
sions can be efficiently computed. For example, the stiffness matrix, 
can be computed as:

𝐊 =COMPUTE_ELE_MATRIX(MAT_OP1 =[∇𝜙]𝑥,MAT_OP2 =[∇𝜙]𝑥)+

COMPUTE_ELE_MATRIX(MAT_OP1 =[∇𝜙]𝑦,MAT_OP2 =[∇𝜙]𝑦)+

COMPUTE_ELE_MATRIX(MAT_OP1 =[∇𝜙]𝑧,MAT_OP2 =[∇𝜙]𝑧)

Other operators for a complicated FEM kernel, for instance (𝐮 ⋅
∇𝜙𝑖, 𝐮 ⋅∇𝜙𝑗 ), can be evaluated as a two step process: first interpolating 
nodal values (here, 𝐮) onto Gauss points (Complexity: (𝑑(bf + 1)𝑑+1)
[58]) and then performing the element-wise matrix scalar multiplica-
tion. (Complexity: (bf + 1)2𝑑 ). Thus, the overall complexity of matrix 
assembly remains bounded by the complexity of matrix-multiplication 
for all FEM kernels.

Appendix B. Details of solver selection

PETSc was used to solve all the linear algebra problems. In particu-
lar, bi-conjugate gradient descent (-ksp_type bcgs) solver was used 
in conjunction with Additive - Schwartz (-pc_type asm) precondi-
tioner to solve the linear system of equations. The NEWTONLS class 
by PETSc, that implements a Newton Line Search method, was used for 
the nonlinear problems. Both the relative residual tolerance and the ab-
solute residual tolerance for linear and non - linear solve are set to 10−6
in all numerical results.

The correctness of the code has been validated by solving the 
Navier–Stokes with a known analytical solution. The validation case 
for flow past a sphere performed in 4.1 gives us confidence in the cor-
rectness of the framework. The timings reported are measured through 
PETSc log_view routine. Below we provide additional simulation de-
tails for the semi - truck simulations.

Appendix C. Additional simulation details

C.1. Scaling studies with AMG preconditioners

Fig. C.19 shows the strong scaling result with AMG. We see that 
with increasing number of processors, the time for initial AMG setup 
increases. This result is consistent with what is observed previously in 
the simulations by Sundar et al. [97]. This limits our ability to deploy 
AMG on a large number of processor. We are currently working on GMG 
to avoid this setup cost.

C.2. Truck simulations

Fig. C.20 shows the computational domain of the truck and Fig. C.21
shows the details of the CAD model of the truck. Fig. C.22 shows the 
40
Fig. C.19. The time for AMG setup and complete solve time for mesh M3 with 
increasing number of processor.

Fig. C.20. Computational domain used for the flow simulation over a semi-
trailer truck.

streamlines starting from four different locations passing the truck. The 
blue streamline, starting from a vertical line in front of the tractor shows 
that the flow stagnates at 40% height of the truck. The lower portion 
gets pushed towards the undercarriage of the vehicle and interacts with 
the rotating wheels. The green streamlines in Fig. C.22c shows the flow 
at the top of the tractor does not pass the top surface of the trailer 
smoothly, some portion of the flow is blocked by the extra height of the 
trailer and enters the gap between the tractor and the trailer, therefore 
creating extra turbulence downstream.
Fig. C.24a shows the vertical mid-plane flow structure around the truck. 
We observed flow re-circulation at the leading edge of the top surface of 
trailer followed by flow re-attachment downstream. Fig. C.23 shows the 
effect of rotating wheel in the simulation. In case of stationary wheels, 
(Fig. C.23a), flow passes through the gap between tires and trailer with-
out obstruction and no re-circulation near the ground between tires is 
observed, whereas in case of rotating wheel (Fig. C.23b), the clear vor-
tex structures are seen near the tires.

Fig. C.24 shows the slices at different 𝑦 location at 0.05, 0.1, 0.15
and 0.2, it can be seen that the rotating tires cause flow separation at 
the leading edge of the side surface of the trailer, which maybe reduced 
by a side skirt device. Finally, in Fig. C.24b, we show the flow structure 
at different 𝑥 slices. This flow pattern resembles the vortices coming off 
the wing-tip of an airplane, which contributes to additional drag.

Fig. C.25 shows the comparison in flow structure of the leading truck 
and the trailing truck in top-down view. The platooning truck is in the 
turbulent wake of the leading truck. The asymmetric incoming flow 
triggers the separation at the side of the tractor. The flow structure 
shows reduction in the re-circulation region at both sides of the tractor 
and earlier reattachment onto the trailer surface.

https://www.mcs.anl.gov/petsc/
https://www.mcs.anl.gov/petsc/
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Fig. C.21. Geometry and parts of the simulated semi-trailer truck.

Fig. C.22. Flow streamlines passing the truck at different locations.

Fig. C.23. Comparison of flow structures of stationary vs. rotating wheels.
41



K. Saurabh, B. Gao, M. Fernando et al. Computers and Mathematics with Applications 97 (2021) 28–44

Fig. C.24. Flow structures around the truck at different locations.
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Fig. C.25. Flow structures for two platooning trucks in top-down view.
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