
Visualizing Hierarchical Performance Profiles of
Parallel Codes Using CALLFLOW

Huu Tan Nguyen , Abhinav Bhatele , Nikhil Jain, Suraj P. Kesavan , Harsh Bhatia , Todd Gamblin,

Kwan-Liu Ma , Fellow, IEEE, and Peer-Timo Bremer

Abstract—Calling context trees (CCTs) couple performance metrics with call paths, helping understand the execution and

performance of parallel programs. To identify performance bottlenecks, programmers and performance analysts visually explore CCTs

to form and validate hypotheses regarding degraded performance. However, due to the complexity of parallel programs, existing visual

representations do not scale to applications running on a large number of processors. We present CALLFLOW, an interactive visual

analysis tool that provides a high-level overview of CCTs together with semantic refinement operations to progressively explore CCTs.

Using a flow-based metaphor, we visualize a CCT by treating execution time as a resource spent during the call chain, and demonstrate

the effectiveness of our design with case studies on large-scale, production simulation codes.

Index Terms—Performance analysis, software visualization, visual analytics, hierarchical data, coordinated and multiple views

Ç

1 INTRODUCTION

COMPUTATIONAL science and engineering codes are widely
used to gain a better understanding of scientific phe-

nomena. These simulation codes are executed in parallel on
large supercomputers with tens of thousands of processors.
To achieve faster scientific breakthroughs via high through-
put of supercomputers, computational scientists look to
optimize the performance of simulation codes by profiling
and improving the execution times of different regions in
the code.

As a result, domain experts are interested in identifying
functions or code regions that are responsible for significant
fractions of the overall execution time, e.g., using gprof [1],
as well as a calling context for each function invocation
(obtained by walking up the call stack from the function),
e.g., using HPCToolkit [2]. Combining the calling contexts of
different call sites (functions) into a single hierarchy, a calling
context tree (CCT) is obtained. Call sites form the nodes of
the CCT, which is rooted typically at the program main,
where the execution starts, and the path from the root to a
particular node provides the node’s calling context. Several
existing tools generate CCTs for the whole application,
including the libraries it depends upon.

Typically, only a small fraction of the nodes in a CCT is
of interest, but such nodes can be buried deep in the tree,
and identifying them could be challenging. Furthermore,
working directly off a given CCT presents limitations in
scalability, and is tightly bound to the hierarchy of the
nodes. Instead, it can be more informative to utilize func-
tional affinities between nodes (both among siblings and
across levels), which can have a deeper semantic meaning
when analyzing CCTs. For example, different call sites that
are part of the same code modules, library interfaces, and
application function names may be grouped together for a
more-effective and easy-to-navigate visualization that still
provides desired insights to the user. Transformation of a
CCT based on such semantic information leads to the notion
of a more generic structure, called a call graph [3], [4], [5].

Effective and interactive exploration of call graphs remains
a challenge as domain experts seek easy-to-use visualization
tools to understand the profiles of large-scale parallel pro-
grams. In particular, althoughmany specific andwell-defined
queries, e.g., extracting hot paths, may be resolved through
automated analysis, domain experts often look forward to
developing new hypotheses using visual analytics tools com-
bined with human intuition. Most visualization tools cur-
rently available operate on CCTs using tree-basedmetaphors,
such as expandable tree layouts used for navigating file sys-
tems [2], [6], [7], [8], treemaps [9], or icicle plots [10]. Although
familiar to most users, expandable tree layouts do not scale
with the size and depth of CCTs, whereas other layouts also
use a lot of screen space, under-emphasize leaf nodes, or
make comparisons across subtrees difficult. Despite their limi-
tations, domain experts still consider tree-based visualization
to be intuitive and well-suited for analysis as it maintains the
central notion of hierarchy in the code structure.Nevertheless,
the need for an interactive visualization tool that preserves
users’ intuition, and yet can support a new set of sophisticated
queries to explore large-scale CCTs remains a challenge.

� H. T. Nguyen, S. P. Kesavan, and K.-L. Ma are with the Department of
Computer Science, University of California, Davis, CA 95616.
E-mail: {htpnguyen, spkesavan}@ucdavis.edu, ma@cs.ucdavis.edu.

� A. Bhatele is with the Department of Computer Science, University of
Maryland, College Park, MD 20742. E-mail: bhatele@cs.umd.edu.

� N. Jain is with NVIDIA, Inc, Santa Clara, CA 95050.
E-mail: nikhijain@nvidia.com.

� H. Bhatia, T. Gamblin, and P.-T. Bremer are with the Center for Applied
Scientific Computing, Lawrence Livermore National Laboratory, Livermore,
CA 94551. E-mail: {hbhatia, tgamblin, ptbremer}@llnl.gov.

Manuscript received 22 Jan. 2019; revised 15 Oct. 2019; accepted 28 Oct.
2019. Date of publication 15 Nov. 2019; date of current version 25 Feb. 2021.
(Corresponding author: Suraj P. Kesavan.)
Recommended for acceptance by X. M Tricoche.
Digital Object Identifier no. 10.1109/TVCG.2019.2953746

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 4, APRIL 2021 2455

1077-2626� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 08,2021 at 21:37:29 UTC from IEEE Xplore. Restrictions apply.

Contributions. In this paper, we introduce a new visual
analytic tool for interactive exploration of call graphs. Our
specific contributions are as follows.

� We present the generic notion of super graphs, which
can be used to represent sampled profiles at user-
controllable levels of detail, including but not limited
to CCTs and call graphs. We describe new abstrac-
tions of the data using semantic filtering, aggregation,
and splitting operations.

� We use a flow-based metaphor to visualize super
graphs using Sankey diagrams. Instead of using the
traditional top-down layout of trees, which empha-
sizes the levels in the hierarchy, we use execution
time as the resource spent to encode the program
execution along a given call stack.

� We present the realization of our visual encoding as
an open-source1 visualization tool, CALLFLOW (see
Fig. 1). Our tool enables interactive exploration of
large-scale CCTs through focus+context visualiza-
tion by expanding or contracting a super graph
where desired.

� We discuss our design process, including data and
task abstractions, which are relevant to visualization
researchers working in similar domains. Through
two case studies using large-scale, parallel, produc-
tion simulation codes on leadership-class computing

machines, we evaluate the design and utility of CALL-

FLOW, and report on a success story of how visualiza-
tion research can be leveraged to support crucial
inquiries in other fields.

2 PERFORMANCE PROFILES

Understanding the performance profiles of large-scale par-
allel codes is essential to maximize the output of software-
hardware investments. Although we can instrument and
gather a variety of performance data on parallel machines,
this paper focuses on sampled profiles.

Sampled profiles are collected by forcing an interrupt in the
program every nth instruction. At each interrupt, a sample
is collected, which contains two types of information: con-
textual information, i.e., the current line of code, file name,
the call path, the process ID, etc.; and performance metrics,
such as the number of floating point operations or branch
misses occurred since the last sample. Statistically, the num-
ber of samples that fall within a given function represents a
good estimate of the time spent in the function. Sampled
profiles have been employed widely for performance analy-
sis as they produce reliable data with small overhead, which
depends only upon the sampling frequency, and not on the
complexity of the call path. Table 1 exemplifies a simple
sampled profile. The collected samples can be aggregated in
different ways to simplify the analysis.

Calling Context Trees. When the samples are aggregated
by unique call paths, it results in a calling context tree [11],

Fig. 1. CALLFLOW presents dynamically interlinked visualizations to explore calling contexts of large-scale parallel applications. (a) The graph view
visualizes the call graph using tailored Sankey diagrams at the desired level of detail. (b) The histogram view enables identifying runtime variations
across processes, using histograms and shadow lines, which map histogram bins to process ids. (c) The correlation view allows finding correlation
between two attributes of interest. (d) is the tooltip that gives additional information when hovering over a node in the graph view, and (e) gives a
closeup of a node with a mini histogram, assisting a quick determination of variability across processes.

1. Released under MIT license. https://github.com/LLNL/Callflow

2456 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 4, APRIL 2021

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 08,2021 at 21:37:29 UTC from IEEE Xplore. Restrictions apply.

[12]. Each unique invocation of a function (by call path)
becomes a node in the CCT, and the path from a given node
to the root of the tree represents a distinct calling context.
Metrics on each node can be inclusive or exclusive—the for-
mer represents the metric values that can be attributed to
the body of a given function (including any function calls
in the body), and the latter represents the difference between
the inclusive value and the values that can be attributed to its
child nodes. Fig. 2a shows the call paths of the program in
Table 1, and Fig. 2b shows the corresponding CCT.

However, when using performance tools such as
HPCToolkit [2], a node is not limited to function invocations
only but can also represent loops, statements, and other
code structures. Moreover, for parallel programs, one can
aggregate samples across all threads or processes to create a
global CCT or keep a forest of CCTs in which each node car-
ries separate information for each thread/process. There-
fore, despite being very informative, CCTs pose practical
analysis challenges. Modern applications are typically built
on top of rich frameworks and libraries that provide many
layers of abstraction, increasing the depth of call paths, lead-
ing to very large CCTs. Such large-scale trees are often hard
to decipher, potentially leading to oversight. Although one
may want to reduce the size and/or depth of the CCT by
discarding the least important nodes, e.g., functions with
negligible timings, a simple filtering of such nodes could
change the topology of the CCT, and standard approaches
for analysis may not be applied.

Call Graphs. Calling context trees can be aggregated in
different ways to provide information in a more concise
manner. Call graphs [1] are created by merging CCT nodes
with the same name (function name), e.g., see Fig. 2c.

By aggregating CCTs across function names, call graphs
can significantly reduce the scale and complexity of the data.
Nevertheless, despite the simplification, call graphs of large,
parallel programs can retain additional complexity that often
prohibits the experts from unraveling the underlying pro-
files. In favor of easy visual exploration, we introduce the

generic notion of super graphs, which allow aggregating raw
profiles at appropriate and controllable levels of abstraction.
Super graphswill be introduced in detail in Section 6.

3 RELATED WORK

Most analysis tools visualize CCTs as expandable trees [2],
[6], [7], [8], using which the user can show and hide nodes
as well as sort by attributes (see e.g., Fig. 3). Although useful
in some cases, such visualizations do not provide a clear
understanding of the code structure and suffer from scal-
ability issues.

Node-link layouts [14], [15], [16], [17], [18], [19], [20], [21]
are a popular approach for tree visualization, although dense
matrix-based representations perform better for large-scale
trees [22], [23]. Node-link layouts represent entities as nodes,
and relationships as edges. In the case of a CCT, the entities
are the call sites in the call stack and edges represent the cal-
ler-callee relationship. Various types of information can be
shown on the node, e.g., time can be encoded as the color of
the node. Several techniques have been proposed to extend
node-link layouts by encoding additional information. For
example, DeRose et al. [24] embedded a histogram onto the
node to show imbalances between processes, and Nguyen
et al. [25] encode runtime variation among processes to indi-
cate the anomalies. Bohnet and D€ollner [26] identify and
visualize features in the data. For large-scale parallel applica-
tionswith hundreds to thousands of function calls, visualiza-
tion of all nodes using node-link layouts becomes intractable.
More recently, Xie et al. [27] employ a node-link layout to
represent the learned structural features of the CCT com-
puted using an anomaly behavior detection model. Burch
et al. [28] use timeline- and pixel-based aggregations to visu-
alize dynamic graphs.

Many space-filling visualization approaches have been
used to visualize large-scale hierarchical data. Treemaps [29],
[30] have been effectively used to visualize hierarchical data
by partitioning the screen space into bounding boxes that
represent the tree structure. However, treemaps under-
emphasize leaf nodes and make comparisons between sub-
trees difficult. Radio plots [31], where nodes are arcs stacked
radially outward along the depth of the tree, are also a candi-
date for tree visualization, but also suffer from scalability
issues. Since aggregation of nodes of a CCT into a call graph
(ormore generally, a super graph) can introduce nodes having
multiple call paths or nodeswithmultiple parents, hierarchi-
cal space-filling visualization layouts are not well suited.

On the other hand, although node-link layouts are effec-
tive in presenting connectivity, even for complex graphs [32],

TABLE 1
An Example Program With its Flat Profile

The profile contains the inclusive (cumulative) time, the exclusive (self) time,
and the percentage of time a function uses.

Fig. 2. The call paths (a) call tree (b) and call graph (c) of the example program in Table 1. In (a) each call path shows invocation instances of bar1()
and bar2(), rooted at main(). Each node in the corresponding call tree contains three pieces of information: node name, inclusive metric, and
exclusive metric (denoted as inclusive : exclusive). Since the call graph is constructed from the call tree, the original inclusive cost information can be
retained through edge weights.

NGUYEN ETAL.: VISUALIZING HIERARCHICAL PERFORMANCE PROFILES OF PARALLEL CODES USING CALLFLOW 2457

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 08,2021 at 21:37:29 UTC from IEEE Xplore. Restrictions apply.

[33], [34], the edges of standard node-link layouts usually
represent only connectivity. Since our domain problem
requires us to also encode the flow of resources, most notably
time spent, we employ a modified node-link layout. A flow
diagram uses a flow-based metaphor that represents how
energy is transferred from one entity is transferred to
another. It is commonly used in science and engineering in
the form of a Sankey diagram [35], [36], [37]. A Sankey dia-
gram uses a weighted, directed graph, where the width of
each link represents the amount of energy entering and leav-
ing an entity in the system. Sankey diagrams are not limited
to visualizing energy flow; other works have extended the
diagram to show the flow of time. Ogawa et al. [38] represent
the number of people participating in the mailing list of
open-source software projects each month using a Sankey
diagram. Wongsuphasawat et al. [39] and Wang et al. [40]
aggregate similar temporal events of patients’ diseases and
symptoms. In this work, we use Sankey diagrams to visual-
ize performance profiles by representing time spent along
the execution path.

4 DESIGN METHODOLOGY

Widely anticipated challenges in the design process for
domain-specific interactive visualization tools include the
gaps between the understanding and expectations of visuali-
zation scientists and domain experts and insufficient evalua-
tion strategies [41], [42], [43]. The visualization community
has developed formal guidelines [43], [44], [45], [46] for an
effective design process. A common thread among such
methodologies is to have a verifiable approach that translates
domain knowledge and vocabulary into visualization termi-
nology, and in consultation with domain experts, evaluate
various visualization choices with respect to their suitability
to the application at hand [47], [48]. For example, Sedlmair
et al. [46] present a nine-stage framework encompassing the
analysis of some specific real-world problem faced by
domain experts, design of a visualization system to support a
solution, validation of the design, and reflection about the
lessons learned. In this work, we chose the four-phase nested
model proposed byMunzner [45] for the design of CALLFLOW,
as this chosen model provides a clear balance between flexi-
bility and specificity of the process. This paper describes the
first three phases of our methodology (Sections 5, 6, and 7,
respectively). Due to space limitations, we cannot provide
the algorithmic and implementation details (fourth phase) of
the tool.

“Information visualization is usually part of some creative
activity that requires users to make hypotheses, look for patterns
and exceptions, and then refine their hypothesis.”[47] This is also
the case with the domain experts collaborating with us,
which include software developers as well as performance
analysts who assist computational scientists optimize their
codes. Through an interactive collaboration with domain
experts, including interviews and discussions over a period
of several months, we identified the primary challenges
faced by them in the exploration of performance profiles of
large-scale parallel codes. CALLFLOW was developed in an
iterative manner, with our collaborators having access to
the evolving prototypes, allowing us to refine the CALLFLOW

to best assist the experts in their inquiries.
An increasing concern among different visualization

techniques introduced for software visualization is the lack
of concrete evaluation [49]. To this end, several design deci-
sions were made in consultation with the experts, to resolve
the tradeoff between the simplicity of the tool and the types
of queries supported. Section 6 also provides validation of
some of our design choices. Finally, we describe two case
studies on real data gathered from scientific applications
running on leadership-class supercomputers, and evaluate
CALLFLOW’s effectiveness in helping the user explore parallel
application codes.

5 DOMAIN PROBLEM CHARACTERIZATION

The first phase of our design study involved developing
knowledge about the domain problem. Over a period of
about one year, we conducted several interviews with vari-
ous HPC experts at LLNL, who are interested in improving
the performance of large-scale parallel applications. Our
focus was to clearly understand their goals, as well as the
current workflow and the limitations therein.

A CCT can contain a host of different information, and has
been used for several automated analysis techniques, e.g.,
extracting hot-paths [2], [50]. However, such automated
approaches usually address only a well-defined aspect of a
more-general goal that domain experts are interested in:
“finding performance bottlenecks”. In practice, users often face
lesswell-definedproblems, e.g., an application underperform-
ing on a particular input or a new platform, without a clear
indication of the root cause of the problem. Through numer-
ous discussions with experts, it became clear that although an
automated tool to pinpoint problems would be ideal, past
experience has shown that the underlying causes are so case-
specific that human intuition and expertise are often key to
making progress. Consequently, the overarching goal when
designing CALLFLOW has been to provide a generic way of
exploring CCT data to either diagnose the problems directly
or identifywhich existing toolsmay lead to new insights.

High-Level Overview of Calling Contexts. The CCTs con-
structed directly from sampled profiles contain details up to
individual function calls, and therefore, can create tens to
hundreds of thousands of nodes. For easy navigation and
understanding of data, experts expressed interest in a high-
level overview of CCTs with filtered and/or aggregated
information. CALLFLOW develops the notion of super graphs
to allow visualization of aggregated calling contexts based
on user-defined semantics.

Fig. 3. The CCT of Miranda [13] visualized as an expandable tree using
HPCToolkit [2]. Each node of the tree is shown, but the overall structure
of the application remains hidden.

2458 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 4, APRIL 2021

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 08,2021 at 21:37:29 UTC from IEEE Xplore. Restrictions apply.

Metrics-Based Visual Profiling. Two types of performance
metrics are critical for performance analysis: inclusive versus
exclusive (see Section 2). Together, these metrics signify the
performance of different parts of the code and can offer sig-
nificant insights into bottlenecks and help address them.
For example, if the inclusive time of a given function signifi-
cantly outweighs its exclusive time, then experts explore the
performance of its callees, whereas attention is paid to the
function itself if its exclusive time is significant. One of
the goals for visual exploration of CCTs is to be able to denote
both inclusive and exclusive performancemetrics.

Process-Based Visual Profiling. When large-scale applica-
tions are deployed on supercomputers, making effective
use of the available resources is critical. Although increasing
the number of processors typically yields better perfor-
mance, maximizing the performance requires balancing the
load on different processes. A visual representation of the
time spent by individual processes in a CCT node can help
understand the balance of load [24], as well as in detecting
parts of the codes that have high exclusive costs distributed
in an inconsistent fashion.

Additionally, the experts expressed interest in finding
out whether code slowdown is related to IDs of specific
processes. For instance, the computation of the physical
domain in a simulation, e.g., a volume, is distributed among
the processes according to a certain regular pattern, e.g., a
row-major order. Knowing which MPI processes are slow
versus fast and identifying any patterns, e.g., every nth pro-
cess being slow, allows experts to form new hypotheses on
potential root causes. Note that the experts expect such pat-
terns hard to generalize, as they could be domain- and data-
dependent, that can reorder the processes arbitrarily and
thus, completely change the observed pattern.

User-Driven Interactive Visual Analytics. Given the differ-
ent types of analysis tasks that experts are interested in, a
severe limitation in their current workflow is the lack of a
comprehensive tool that allows the desired functionality in
an interactive manner. For example, HPCToolkit [2] pro-
vides two separate views for top-down (calling context) and
bottom-up (callee’s context) traversals of a given CCT, each
supporting a different type of inquiry. However, switching
between views causes additional cognitive load, leading to
an analysis that is ineffective at best and incorrect in
extreme cases. To easen and accelerate the exploration pro-
cess, experts expressed interest in an unified visualization
with an ability to resolve different types of queries while
maintaining the user’s focus.

Finally, the experts are also interested in supporting side-
by-side comparative analysis to analyze how calling con-
texts vary at the process level. For such comparative analy-
sis, the goal is to understand two types of differences: 1)
comparison of CCTs’ contexts to understand hierarchical
differences in the caller-callee relationship, and 2) per-node
comparison to analyze the differences in execution metrics.

The aforementioned limitations in existing workflows
create several gaps in experts’ understanding of the perfor-
mance of large-scale applications, leading to suboptimal use
of computing resources. CALLFLOW is designed to fill such
gaps by supporting a versatile set of interactive inquires on
CCTs. Equipped with this tool, the domain experts can not
only explore the sophisticated causes of performance

bottlenecks more effectively, but also devise new strategies
to overcome them (see Section 8).

6 DATA TYPE ABSTRACTION AND OPERATIONS

Although different profilers can have slightly varied data
formats, generally, the input data to CALLFLOW contains two
types of information: (1) the hierarchy of function calls in
the profile, and (2) the performance metrics associated with
the functions therein. Irrespective of the source, the former
type of data can be converted into a CCT or a call graph,
with its root at the first call of the application, usually, the
function main (see e.g., Fig. 2).

Super Graphs. As argued earlier, the scale and complexity
of CCTs or call graphs pose significant challenges for interac-
tive visual exploration. In this work, we present the generic
notion of a super graph, which is created by merging the
nodes of a CCT. Super graphs utilize semantic information
to provide a high-level overview of the code. For example,
several nodes in a call path often belong to the same library
and might have repetitive calls from different code modules
to form similar subtrees with different parent nodes. In such
cases, visualizing nodes that correspond to modules or
libraries are usually more meaningful than function-level
nodes. Therefore, grouping function calls by modules pro-
vides a semanticallymeaningful representation of the under-
lying CCT. Although the notion of semantic representations
for call graphs is not new [27], super graphs are introduced
as a more-general concept to express CCTs2 (merging no
nodes), call graphs (merging by call paths), module dia-
grams (merging by load module), and anything in between
(e.g., see Fig. 4).

Formally, we denote a super graph as GcctðV; EÞ, where the
set of nodes, V ¼ fvig, uniquely represent the call sites (func-
tions in the call stack), and the directed edges, E ¼ feijg, cap-
ture the caller-callee relationship between vi and vj,
respectively. Each edge eij is associated with a weight wij,
which depends upon the performance metrics of the two
nodes (see e.g., Fig. 2c). The performance metrics for nodes
are stored as rows in pandas [51] dataframes, which allow
fast access and operations. In addition to inclusive and exclu-
sive metrics, cache misses, etc., the dataframe also stores
meta-attributes of the nodes, such as function name, file
name, and location in source code.

Given the scope and requirements for CALLFLOW, the
domain-specific goals can be translated into more-specific
graph operations: filtering, aggregating, and splitting of nodes.

6.1 Filtering of CCT Nodes

The first operation when processing any CCT is typically fil-
tering out nodes unlikely to be of interest to the user. In par-
ticular, the nodes towards the bottom of Gcct typically
represent decreasingly smaller portions of the overall run
time. Since the goal of CALLFLOW is performance optimiza-
tion, functions that represent only a tiny fraction of the over-
all time are not of much interest to the user. Also, each
function could potentially be represented thousands of
times in the CCT, being called from different contexts.

2. Although a CCT is a tree, notating it as a (super) graph allows dis-
cussing the various operations of interest more concisely.

NGUYEN ETAL.: VISUALIZING HIERARCHICAL PERFORMANCE PROFILES OF PARALLEL CODES USING CALLFLOW 2459

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 08,2021 at 21:37:29 UTC from IEEE Xplore. Restrictions apply.

Therefore, filtering Gcct by removing nodes with small inclu-
sive runtimes could remove a nontrivial portion of the exe-
cution. Instead, filtering the nodes based on the total
inclusive runtimes across all the instances of the corre-
sponding function is more meaningful. The aggregate infor-
mation of the removed nodes still remains available as part
of the inclusive runtime of their ancestors. The only infor-
mation that is lost is the ability to differentiate how this fil-
tered runtime is distributed among lower level calls.

From our experiments, we noticed that even a conserva-
tive threshold (less than 0.1 percent of the root’s inclusive
run time) can reduce the number of nodes in Gcct drastically
(by approximately 70–80 percent). A majority of nodes are
filtered out because most function calls are wrapper func-
tions that are called by a library in the program and do not
contribute to effect in performance. Therefore, filtering is
key to enable an interactive tool. The output of the filtering
is a smaller super graph, Gfilt. Filtering removes information
from the CCT, and thus, in principle, could impact the
downstream analysis. To mitigate the information loss,
CALLFLOW supports repopulation of the filtered nodes, if
desired. Combined with this fail-safe operation, filtering
proves to be a powerful tool for exploration of large CCTs.

6.2 Aggregation of CCT Nodes

Modern software abstractions have numerous intermediate
call sites that are not relevant to performance analysis. Such
call sites can obscure relevant information by spuriously
increasing the height of the tree. For example, common
accessor functions in object-oriented languages or template
wrappers create additional call sites with insignificant per-
formance metrics. In most cases, these nodes are internal to
the tree and, therefore, cannot be removed without remov-
ing the corresponding subtree. Instead, these nodes should
be aggregated with respect to higher-level code abstrac-
tions, such as libraries, code modules, files, etc., which are
often more intuitive to the user.

In particular, every node in the CCT belongs to a higher-
level abstraction, which can be represented as a hierarchy
map, m. Merging the nodes of Gcct (or Gfilt) recursively based
on m until a desired level of abstraction is obtained creates
the super graph, GcfgðV

s;m; Es;mÞ. Here, the supernodes,
Vs;m ¼ fvsi g are aggregates of the nodes of Gcct (or Gfilt) with
respect to m, and the superedges Es;m connect the supernodes.
For example, given a hierarchy of a function call, module >
library > filename > function, after merging, a module

could become a supernode with the remaining hierarchy
stored as its subgraph.

To describe the performance metrics for supernodes, we
first discuss another crucial data component. The entry func-
tions are the functions through which the control enters to a
particular module or library. Specifically, given a super-
node, vs ¼ fvig, its entry functions, vs,e are defined as the
nodes whose parents do not belong to the same supernode,
i.e., vs,e ¼ fvjg such that fvjg 2 v

s and fparentðvjÞg =2 v
s.

The exclusive metrics of a supernode, vs, is the sum of those
of all its components nodes fvig. However, the inclusive
metrics of only the entry functions, fvs,eg are used to repre-
sent that of vs.

We note that although aggregation removes valuable
information, such as call paths, from the visualization, the
domain experts value the ability to quickly detect bottleneck
functions over finding the 1-to-1 caller-callee relationship.
Aggregation of nodes could introduce cycles in the super
graph when a function belonging to a library is called multi-
ple times along a call stack. However, cycles break the com-
mon understanding of control flow, and are typically
considered artifacts of specific implementation patterns,
most notably callback functions. Furthermore, cycles would
significantly complicate the visualization. Consequently, we
prevent cycles from forming during the aggregation, and
instead preserve multiple nodes from the same namespace
level. For example, when merging the nodes by the libraries
they belong to (see Fig. 4b), the supernodes lib1 and lib2

create a cycle because they call functions in each other. For
such cases, duplicate supernodes can be created for some of
the labels, e.g., lib1. Independent of the hierarchy based
on which the nodes are merged, the metrics for the superno-
des can be aggregated, and the edges preserved. The result-
ing super graph would represent the control flow at the
selected level of detail with nodes indicating concepts like
modules and edges indicating the calling hierarchy.

Aggregation of nodes can be done easily and interac-
tively using standard data structures. One potential pitfall
of these operations is that preventing cycles may result in
multiple merged nodes with the same name label, i.e., from
the same module/library, which could be counter-intuitive
to the user. However, experts anticipate that most such
cases arise due to the callback architecture used for perfor-
mance introspection, as CCTs are typically recorded using
default callback interfaces. In a callback pattern, one of the
two nodes is associated with setting the callback, and

Fig. 4. Node aggregation and splitting operations. (a) Shows the original tree, labeled as “[function_name] module_name”. (b) Shows aggregation
operation where nodes from the same module are merged together. The aggregated super graph contains two supernodes corresponding to lib1

to prevent a cycle. (c) Shows a split by entry function operation in which lib5 supernode is split with respect to its entry functions, (7, 8) versus (11).

2460 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 4, APRIL 2021

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 08,2021 at 21:37:29 UTC from IEEE Xplore. Restrictions apply.

typically does not contribute meaningful runtime. As a
result, we employ a layout that does not support cycles,
since their downsides outweigh the benefits.

6.3 Splitting of CCT Nodes

The super graph at a given level of refinement may be too
coarse to diagnose many performance problems. Therefore,
the users are interested in resolving additional details upon
request. To this end, CALLFLOW supports splitting of a cho-
sen supernode into two or more (super)nodes, and redis-
tribute the original flow. Although there could be several
strategies for splitting nodes, each guided by its own appli-
cation-dependent use case, through several discussions
with domain experts, two most relevant approaches to the
semantics of the analysis were identified.

Split by entry functions is the operation that splits a super-
node into “component” (super)nodes based on what entry
functions they are called by. As discussed earlier, entry
functions are generally the public API functions of a mod-
ule, or a library which the developers are familiar with. To
allow users to know the API calls that consume high resour-
ces, CALLFLOW allows the user to select one or multiple entry
functions belonging to a supernode, and split it into compo-
nent (super)nodes such that each component (super)node
corresponds to a single entry function. Fig. 4c shows the
splitting of node lib5 into two, based on entry functions
(7, 8) and (11), respectively.

Split by Callees. Often, lower-level libraries, e.g., MPI,
which are typically called by multiple higher-level modules,
consume more time than expected. In such cases, the logical
next step is to determine whether the problem exists in all
contexts, i.e., in all parent modules, or only in some of them.
To support such queries, CALLFLOW allows splitting a
(super)node with respect to its parents. This operation
allows the user to determine where the costs for a particular
(super)node come from and where the cost will propagate
to. Additionally, it informs the user about the functions or
modules responsible for high exclusive time, if any.

By determining entry functions as part of the aggregation
step, both splitting operations are easy to support. Both
involve only local changes in the topology of Gcfg and local
updates to the metrics. Other splitting operations could be
implemented, e.g., to isolate specific nodes of Gcfg or to
recursively split apart two subtrees. However, the former
would require first determining which node to isolate,
implying that the source of the problem is known, and
visual exploration not needed. The latter is an example of
automating certain interactions and, in practice, we have
not encountered common enough patterns to justify the
additional complexity. Another potential candidate is a split
by children; however, such a split may not be possible in
most cases, as a single node could call into multiple differ-
ent libraries, and thus may not be able to split accordingly.
In summary, the experts consider the chosen splitting oper-
ations sufficiently flexible to support the detail-on-demand
exploration of interest.

7 VISUAL DESIGN OF CALLFLOW

CALLFLOW is an interactive tool with three linked views: con-
trol flow view, histogram view, and correlation view, (see

Fig. 1 for an overview). Together, the three views support
the queries of domain experts in an interactive manner.

7.1 Control Flow View

The control flow view presents an overview of the
application’s control during execution. We visualize Gcfg (or
Gcct or Gfilt) using a flow-based metaphor with Sankey dia-
grams, where a directed graph is laid out with respect to the
amount of resource under consideration. We treat the inclu-
sive metric (usually, the execution time) as the resource
being distributed among supernodes. To effectively use the
aspect ratio of common visual mediums (e.g., computer
monitors), we use a horizontal Sankey layout, where the
direction of the graph goes from left to right. Thus, each
supernode is encoded as a rectangular bar with its height
representing the sum of the inclusive metrics of all its entry
functions. A superedge fvsi ; v

s
j g, represents the flow of

inclusive metrics between the two nodes, and the thickness
(in vertical direction) of the superedge indicates the inclu-
sive metric consumed by the target node, vsj .

By design, this visual encoding captures the direction of
the super graph, i.e., the control flow can be traced easily
from the root node (left) to leaf nodes (right). Furthermore,
our visual encoding not only highlights inclusive metrics
directly, but also indicates exclusive metrics easily. In par-
ticular, the exclusive metric for a given supernode is the
difference in the thickness of incoming and outgoing super-
edges. The exclusive metric is indicated by empty portions
towards the bottom of supernodes, where no outgoing
edges exist, e.g., the physics module in Fig. 1. However,
such differences may be difficult to notice visually when
exclusive times for nodes are small. To alleviate this limita-
tion, CALLFLOW can also use color to encode exclusive met-
rics. Finally, we use constant widths (horizontal spans) for
all supernodes to easily compare the area of the nodes and
identify nodes with high costs. Thus, the user can identify
nodes with high inclusive and exclusive cost as bars with a
large area and dark color.

Although the visual encoding described above captures
the control flow of an application, effective exploration still
requires tailoring the Sankey layout of the super graph at
hand, especially considering the interactive support of split-
ting and aggregation operation for large-scale super graphs.
CALLFLOW’s graph layout is based on a key domain-specific
insight that neither the depth of a supernode nor the order
of sibling supernodes has any inherent significance. Conse-
quently, we can vary the placement of supernodes to make
the graph as readable as possible, with the only constraint
being that the left-to-right order must preserve the call
stack order. The key criterion to optimize when choosing a
suitable layout is to minimize the number of edge crossings,
because edge crossings create visual clutter and can obscure
information.

Horizontal Positioning. Sankey visualizations place nodes
in “layers”; the spacing between layers is usually consistent,
allowing for an even distribution of horizontal space. Since
a CCT is a hierarchical tree, the derived super graphs
generally do not contain many nodes in the initial layers,
whereas there is also more overlap in the later layers due
to the increase in the number of nodes and edges. Therefore,
even horizontal spacing leads to ineffective use of space.

NGUYEN ETAL.: VISUALIZING HIERARCHICAL PERFORMANCE PROFILES OF PARALLEL CODES USING CALLFLOW 2461

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 08,2021 at 21:37:29 UTC from IEEE Xplore. Restrictions apply.

Since a supernode typically appears in multiple calling con-
texts, we define its level as the maximum depth among all
the contexts (paths in the super graph leading back up to
the root), and use supernodes at the same levels to create
“layers” in the Sankey layout. Once levels have been com-
puted for all supernodes in the super graph, the horizontal
position for lth layer is computed as xl ¼ maxðminx; l

k �max

ðnl; nl�1ÞÞ, where, minx is the minimum space between adja-
cent levels, nl denotes the number of supernodes in level l,
and k is a scaling exponent. This approach places the layers
with fewer bars closer to each other than the layers with
larger node count.

Vertical Positioning. To assign vertical position to nodes,
we follow the method described by Alemasoom et al. [37].
Similar to their technique, we add dummy nodes and edges
to connect two nodes when they are in nonconsecutive lev-
els. These intermediate nodes simplify the layout by provid-
ing anchors to long edges, and thus, reduce edge crossings.
The height of the dummy node is equal to the flow between
the original nodes it connects. The approach computes an
optimized layout that minimizes the weighted sum of dis-
tances between each two connected nodes in consecutive
layers. We impose an additional constraint to this optimiza-
tion by imposing a minimum vertical gap between two
nodes within the same level to allow embedding the histo-
gram for process-specific information. Fig. 5 demonstrates
the value of such an optimization.

7.2 Histogram View

To enable process-based visual profiling, CALLFLOW pro-
vides statistical visualization using histograms. Although
common approaches often display measures such as stan-
dard deviation, quartiles, etc., they are useful mostly when
the data comes from a known distribution. Since there is no
reason to assume that run times of parallel applications
would follow a specific distribution, such measures can be
misleading. Instead, CALLFLOW uses histograms to show the
actual distributions. The histogram view in CALLFLOW shows
the sampled distribution of process-based metrics for a
selected supernode. However, selecting a supernode to
highlight its histogram is tedious, particularly in the explo-
ration phase since it forces the user to select several nodes
before identifying the one with interesting variations.

CALLFLOW addresses this problem by also showing a mini
histogram at the top of every bar (supernode) in the control
flow view (see Fig. 1). The mini histogram is small enough
that it can be placed on every bar without creating much
visual clutter, yet big enough that the user can quickly iden-
tify which supernode has an interesting distribution. Once
an interesting distribution has been identified, the user can
select the corresponding supernode to view the larger ver-
sion of the histogram.

To assist the user explore the connection between slow-
downs in MPI ranks and the physical domain, we display
the rank-to-bin mapping in the histogram view. There are
two ways in which the histogram view indicates this map-
ping. First, hovering over a bin in the histogram pops up a
tooltip informing the user about the ranks in the corre-
sponding bin. The second approach is shadow lines, which
map the bins in the histogram to the process/rank id laid
out on an ordered line at the bottom of the histogram.
Fig. 1b shows the shadow lines within the histogram view.
Although shadow lines can create visual clutter, especially
for large processor counts, this is in fact a desired visualiza-
tion since it indicates that the code behaves normally. Clut-
ter generally appears when bins in the histogram contain a
broad range of rank, an indication that the rank id is not cor-
related to the observed run times. On the other hand, sce-
narios without clutter indicate that certain run times are
correlated to the rank id, which can be a sign of load imbal-
ances and inefficient algorithms.

7.3 Correlation View

Generally, performance bottlenecks can be observed in
many metrics. For example, many cache misses lead to
higher run times, as more time is spent accessing the mem-
ory. Analyzing many metrics individually can be cumber-
some; instead, CALLFLOW leverages the correlation between
two metrics to identify performance bottlenecks among dif-
ferent processes using a correlation view (see Fig. 1), where
each point in the scatter plot represents a process. If there is
a correlation between two metrics, we expect processing ele-
ments to form clusters, whose size informs the extent of cor-
relation. We also show the best-fit line to aid the user in
observing the trend of the scatter. Hovering over the best-fit
line displays useful statistical measures. The correlation

Fig. 5. CALLFLOW uses a modified version of layout optimization presented by Alemasoom et al. [37]. With many overlapping edges in the unoptimized
layout, (a) the connectivity is harder to decipher. Using the optimized layout (b), e.g., edges connecting mixeo and leos, and util and libmpi

can be seen more clearly as compared to (a).

2462 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 4, APRIL 2021

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 08,2021 at 21:37:29 UTC from IEEE Xplore. Restrictions apply.

aids in choosing the bins in the histogram view that cause
load imbalances among processes based on their MPI ranks,
and later compare their respective subgraphs.

7.4 User Interactions

The user can interact with CALLFLOW in several ways.
Hovering over a supernode brings a tooltip with infor-

mation about the corresponding supernode. As shown in
Fig. 1d, the tooltip shows the name of the corresponding
module/function, its inclusive and exclusive metrics. Addi-
tionally, the calling context of the supernode is shown: the
function that calls the highlighted supernode, the entry
functions called in the supernode, and the metrics spent in
those calls. For each calling function, a small square is
shown indicating which node the function belongs to. The
tooltip is useful for a quick inquiry into the functions in a
module (supernode) that consume most resources, as well
as the functions that call those expensive functions.

Selection of a supernode indicates the user’s interest in
finding more information about the corresponding nodes.
All entry functions of the supernode are enumerated, and
the histogram and the correlation views are updated to cor-
respond to the selected supernode.

Zooming and panning are key to navigating the super graph
smoothly, especially, when it is large. Although zooming out
may reduce the size of the rendered node, where possible,

the legibility of node labels is maintained by increasing the
font size.

Splitting of nodes is an important target operation for
CALLFLOW. A split by entry function requires the user to
choose a function from the list of entry functions. On the
other hand, a split by parent leads to updating the super
graph by replacing the selected supernode with its parents.
In either case, the new super graph requires recomputation
of layout, which although is done in real time, could impose
additional cognitive burden on the user.

To mitigate this burden, we use a consistent naming
scheme for supernodes to provide a consistent context in
the transition. In particular, we concatenate the names of
the (original) supernode and the (new) split supernodes
separated by a hyphen. Fig. 6 shows an example of a split-
ting interaction based on two of its entry functions.

CALLFLOW also animates the transitions to make them easy
to follow. Before supernodes transition to new locations, the
edges are removed to prevent the user from tracking too
many elements at once, thus reducing cognitive stress on the
user. Furthermore, the user is more interested in how the
nodes are split and by how much. Hiding the edges allows
the user to concentrate on the nodes. The nodes are then
moved to new locations and new ones are added in the pro-
cess. The layout minimizes node movements so that
unchanged nodes remain as static as possible. After nodes
are in the new locations, edges are added back in.

Comparing subgraphs within a super graph is often needed,
e.g., to detect load imbalances, where certain processes could
remain idle during execution. The user can performa brushing
action on the histogram, and the graph view is split into two,
showing the two super graphs (see Fig. 7) associated with the
two process groups. The brushed bins constitute the processes
that make up the top super graph and the non-brushed bins
make up the processes of the bottom super graph. Further-
more, CALLFLOW allows users to color the node based on the
difference to detect variations in their exclusivemetrics.

8 CASE STUDIES

We present two case studies on understanding profiles of
large-scale scientific applications to show the impact of

Fig. 6. A node splitting operation is applied on the (a) the green node
to create (b) two purple nodes. The split is based on the parents of the
original node, and the incoming edges of the new nodes are calculated
based on the information from their parent nodes.

Fig. 7. Understanding the impact of over-decomposition on LULESH. (a) MPI-style execution with 1 MPI rank per process: most time spent in
LULESH internals, MPI/libpsm, AMPI internals (tmp bar), and C-library. (b) With over-decomposition, time spent in most modules reduces, but
histograms of several modules show significant load imbalance.

NGUYEN ETAL.: VISUALIZING HIERARCHICAL PERFORMANCE PROFILES OF PARALLEL CODES USING CALLFLOW 2463

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 08,2021 at 21:37:29 UTC from IEEE Xplore. Restrictions apply.

CALLFLOW at Lawrence Livermore National Laboratory. Both
these studies were led by our collaborators, who are compu-
tational scientists, and work closely with application devel-
opers on performance analysis and scaling optimization of
scientific codes. These experts have extensive experience
in performance optimization of large-scale parallel applica-
tions, and have worked with other visualization tools for
performance analysis, such as HPCToolkit [2], Scalasca [6],
and Vampir [52]. The following describes the studies and
summarizes some of the informal feedback provided by
the experts.

8.1 Load Balancing of LULESH

LULESH [53] is a proxy application used for modeling the
performance of large hydrodynamics simulations. LULESH
represents the numerical algorithms, data motion, and pro-
gramming style typical of scientific applications, and is
used for studying the performance of different parallel pro-
gramming models and architectures. Here, we use CALL-

FLOW to understand the performance of LULESH when
implemented using Adaptive MPI (AMPI) [54] for solving a
problem that represents multimaterial systems. AMPI is a
paradigm of MPI applications with overdecomposition, i.e.,
multiple MPI ranks per process instead of the commonly
used one rank per process.

Fig. 7a visualizes an execution of the AMPI version of
LULESH that emulates the traditional MPI model where
one MPI rank is placed on every process in the system. By
coloring the nodes based on exclusive runtime, CALLFLOW

helps identify the distribution of time among LULESH
internals, AMPI framework, and other modules. We find
that, on average, LULESH internals and MPI/libpsm (the
lower-level messaging libraries) account for the majority of
runtime, and exhibit load imbalance among processes. Sur-
prisingly, ampi and libc also show significant runtime.

Significant time spent in MPI/libpsm and the load
imbalance across processes suggest that AMPI’s ability to
overdecompose MPI ranks and adaptively overlap compu-
tation with communication can improve performance. To
test this hypothesis, we run eight logical MPI ranks on every
process in the next experiment. This results in a reduction in
the execution time by 44% as highlighted by the difference
in the height of the root module in Figs. 7a and 7b. The mod-
ule view eases the task of identifying the code regions that

benefit from overdecomposition. Unexpectedly, the time
spent in the AMPI runtime decreases despite the fact that
an eight-fold overdecomposition leads to eight times more
messages and scheduling overhead. Further, most of this
improvement appears to come from less time spent driving
the communication in MPI/libpsm. Since both AMPI and
MPI/libpsm are large and complex frameworks, their
respective nodes in CALLFLOW abstract a large number of
CCT nodes across many levels and contexts. Therefore,
arriving at these insights from a traditional CCT display
would require substantial effort as well as an initial guess to
focus on these two components. Instead, CALLFLOW’s super
graph view immediately highlights the most important dif-
ferences in the runtimes effectively.

Despite the reduced runtime, the histogram for most
modules (see Fig. 7b) appear to be heavily skewed. To
explore this further, we split the processes based on the
time spent in LULESH (see Fig. 8). The split view reveals
that only the processes with light load for LULESH internals
spend a large amount of time in MPI/libpsm, ampi, and
libc. Discovering such a high-level correlation among dif-
ferent modules is difficult using traditional CCT tools. In
this case, these results inform the need for load balancing
the work done by the LULESH across processes.

Next, we enable load balancing in AMPI, which resulted
in 30% better performance. The resulting profile (see Fig. 9),
helps understand that the performance benefits are driven
by more-even load for LULESH internals among processes.
The view also shows that the time spent in ampi, MPI/
libpsm, and libc is reduced significantly.

8.2 Scaling Performance of Miranda

Miranda [13] is a large-scale parallel code that simulates
radiation hydrodynamics for direct numerical solution or
large-eddy simulation. In order to simulate large-scale sce-
narios, it is desirable that Miranda exhibits good weak scal-
ing, i.e., execution time should not increase significantly
when more processors are used to solve larger problems.
However, Miranda developers have observed poor scaling
behavior for Miranda. To investigate the causes of degraded
performance, we obtained CCT profiles of Miranda at two
different process counts: 256 processes and 1024 processes,

Fig. 8. Analysis of load imbalance in LULESH by dividing the processes
based on the time spent in LULESH internals. The splitting shows that
processes with light load for LULESH internals (bottom view) spend
significant time in MPI/libpsm, AMPI, and C-library, while remaining
processes (top view) spend minimal time in these modules.

Fig. 9. Impact of load balancing for LULESH (bar heights scaled as
Fig. 7): total runtime decreases and time spent in libc and MPI/
libpsm is reduced. The load for LULESH internals is more evenly
distributed across processes.

2464 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 4, APRIL 2021

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 08,2021 at 21:37:29 UTC from IEEE Xplore. Restrictions apply.

and noticed that even though the problem size per process
is kept fixed, the execution time increases by more
than 30%.

Fig. 10a shows the CALLFLOW visualization for a Miranda
execution on 256 processes. For performance experts ana-
lyzing the behavior of Miranda, who are not familiar with
Miranda, the visualization provides a high-level overview
of the control flow of Miranda, and the dependencies and
relationships between different modules. It is typically diffi-
cult to obtain such information from CCTs because hun-
dreds of functions, often with unfamiliar names, are used in
production codes. In contrast, it is tractable for performance
experts to get familiar with program modules and com-
monly used external libraries. Further, coloring the modules
by exclusive time spent in them helps identify the modules
that make up most of the overall execution time. In this
case, three modules stand out: physics (Miranda’s science
code), Hypre (a linear solvers library), and libpsm (the
lower-level messaging library underneath MPI). Fig. 10 also
shows a juxtaposed comparison of profiles from 256 process
and 1024 process executions. To facilitate such a compari-
son, we use CALLFLOW’s feature to rescale the height of the
root modules based on their inclusive time (which is also
the total execution time) and use a common time range for
coloring the two super graphs based on the exclusive time.
The contrast in the color of the libpsm module in the two
figures immediately identifies it as one of the culprits for

performance degradation. However, the visualization also
reveals that most of the time spent in the libpsm library
can be traced back to the Hypre module, implying that the
cause of poor scaling of Miranda is poor scaling of the latter.

To explore the components in Hypre that are responsible
for the time spent in libpsm, the nodes are further split to
reveal high-level control flow and inefficiency sources
inside the Hypre library (see Fig. 11). The module-based
split reduces the work that a domain expert would need to
do to identify that utility and struct_mv components
of Hypre invoke point-to-point communication calls in MPI
that result in half of the increased libpsm time. Similarly,
we find that the collective calls made by the struct_mv

module causes the remaining performance degradation.
When the time spent in messaging affects the perfor-

mance, experts tend to analyze the time distribution across
processes to find the root causes. With CALLFLOW, such a his-
togram for libpsm (or for any other module) can be
obtained simply (see Fig. 12). We observe that for the
Miranda execution on 1024 processes, the distribution of
time spent in libpsm is not heavily skewed and has a nar-
row time range, suggesting that the increased communica-
tion volume is likely the cause of the increased time. If load
imbalance or system noise would have been the culprit, a
more-skewed time distribution would be obtained. Finally,
the bin-to-MPI rank connections shown below the histo-
gram reveal that lower-ranked MPI processes are more
likely to spend higher time in the libpsm module. Such an
insight would have been difficult to obtain in traditional
tools and can help identify systematic-bias in the code.

Fig. 10. Comparison of Miranda execution on 256 and 1024 processors; height and color of a bar represent the inclusive and exclusive time spent in the
module, respectively. These visualizations help identify the modules in which significant time is spent in the execution, and reveal that the increase in
the exclusive time spent in the libpsmmodule is the primary reason for lower performance on 1024 processors.

Fig. 11. Splitting Hypre allows identifying its components responsible for
performance-degrading communication.

Fig. 12. Histogram for time spent in the libpsm module: the distribution
is normal and not heavily skewed; the bin-to-MPI rank connections
reveal that lower-ranked MPI processes are more likely to have higher
libpsm time.

NGUYEN ETAL.: VISUALIZING HIERARCHICAL PERFORMANCE PROFILES OF PARALLEL CODES USING CALLFLOW 2465

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 08,2021 at 21:37:29 UTC from IEEE Xplore. Restrictions apply.

9 CONCLUSION

CALLFLOW is a visualization tool for exploring the calling
context trees of application codes, particularly useful for
large-scale parallel codes. Through an easy-to-understand
flow-based visual metaphor in the form of Sankey diagrams,
CALLFLOW helps the users identify performance bottlenecks
in the code effectively, leading to potential optimizations
and improved overall throughput of applications. Catering
specifically to the target data, CALLFLOW customizes and
enhances the layout of Sankey diagrams, and uses multiple
linked views to provide a holistic exploration of CCTs.
Through a set of interactive operations on the underlying
graph, CALLFLOW provides both a high-level, system-oriented
overview of CCTs as well as the ability to drill down to
detailed information, making, for the first time, large-scale
CCTs accessible and explorable. CALLFLOW has been devel-
oped in close collaboration with domain scientists, and has
already garnered significant interest in our institute. To
expand accessibility, CALLFLOW is publicly released under
MIT License and a domain-specific publication establishing
its larger impact in the HPC community is forthcoming. In
this paper, we demonstrate the effectiveness of CALLFLOW

through investigation of production codes, and delivering
insights leading to their improvement.

Despite the initial successful use cases and positive feed-
back from the domain experts, there exist several avenues for
further research anddevelopment. Since the layout of Sankey
diagrams is key to the easy navigation of the visualization,
wewould like to explore and evaluate other layout optimiza-
tion techniques. For example, PQR-trees [55], may produce
more user-friendly layouts, at an additional but affordable
cost. Using constraint programming for graph layouts, as
suggested by IPSep-CoLa [56] and Zarate et al. [57] may be
another avenue. With respect to stable changes in the layout
for animation, the DynaDAG approach [58], appears attrac-
tive, although it may require modifications to support large-
scale graphs. CALLFLOW currently only loads one dataset a
time. However, simulation codes typically run under differ-
ent conditions and it is necessary to compare the perfor-
mance under these conditions. We plan to extend CALLFLOW

to support multiple datasets and incorporate animation to
transition between different data. This would also support
streaming data. We would also like to support recursive
callings between functions asmany applications in HPC uses
such techniques. Finally, although the paper concentrates
on parallel applications, the techniques described in this
paper may also be applied to analyze hierarchical and time
sequence data.

10 DISCUSSION

Most profiling visualization tools use UML sequence dia-
grams, and adopt a node-link visualization layout to visualize
the CCT. Although, node-link representation is intuitive, they
quickly become difficult to explore when the number of
components becomes too large. On the contrary, CALLFLOW

transforms the original CCT into a super graph, which
reduces the number of nodes to be visualized and presents the
control flow of the application as code modules. Since group-
ing nodes into modules could introduce nodes having multi-
ple call paths or nodes with multiple parents, hierarchical

space-filling visualization layouts are not suitable for explora-
tion. Additionally, since the hierarchy is not predetermined
but instead emerges dynamically depending on the given
data and analysis tasks, static visualization approaches do not
provide exhaustive exploration. CALLFLOW supports flexible
splitting of modules according to the parent nodes or by the
function group (i.e., all collective or all point-to-point mes-
sageswithin theMPI library).

CALLFLOW was designed for a critical, yet a somewhat
specific problem of analyzing call graphs. Although the
results of this research may not appear directly generaliz-
able, our attempt has been to focus instead on the idea of
transferability [46] to other possibly similar domains. The
data abstractions presented in Section 6, e.g., the principle of
node splitting, may support transferring our specific design
and results to other application domains that deal with dis-
tributing shared resource across hierarchical entities, e.g.,
certain types of temporal evolution [59]. Another example is
nested schedules of large construction projects, which natu-
rally follow the same pattern of high-level phases, i.e., exca-
vation, framing, etc., and with more detailed breakdowns,
each item with corresponding time and money estimates.
The key insight from CALLFLOW is that the combination of
the hierarchical representation, i.e., trees, with graph meta-
phors (combining low-level tree nodes) can provide power-
ful insights. Continuing the construction example, one may
consider all jobs requiring specific skills or materials to
form a graph indicating possible bottlenecks. Nevertheless,
the detailed linked views, i.e., the code view in our applica-
tion, would be application specific. Similarly, the exact
layout of the Sankey diagram could be optimized according
to specific needs.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory (LLNL) under contract DE-AC52-07NA27344.
The UC Davis researchers are also supported in part by
the Department of Energy through Grant DE-SC0014917.
LLNL-JRNL-797378.

REFERENCES

[1] S. L.Graham, P. B.Kessler, andM.K.Mckusick, “Gprof:A call graph
execution profiler,” SIGPLAN Notices, vol. 17, no. 6, pp. 120–126,
1982.

[2] L. Adhianto et al., “HPCToolkit: Tools for performance analysis of
optimized parallel programs,” Concurrency Comput. : Pract. Experi-
ence, vol. 22, no. 6, pp. 685–701, 2010.

[3] K. Ali and O. Lhot�ak, “Application-only call graph construction,”
in Proc. Eur. Conf. Object-Oriented Prog., 2012, pp. 688–712.

[4] D. Grove, G. DeFouw, J. Dean, and C. Chambers, “Call graph con-
struction in object-oriented languages,” ACM SIGPLAN Notices,
vol. 32, no. 10, pp. 108–124, 1997.

[5] D. Grove and C. Chambers, “A framework for call graph construc-
tion algorithms,” ACM Trans. Program. Lang. Syst., vol. 23, no. 6,
pp. 685–746, 2001.

[6] M. Geimer, F. Wolf, B. J. Wylie, E. �Abrah�am, D. Becker, and
B.Mohr, “The SCALASCA performance toolset architecture,” Con-
currency Comput. : Pract. Experience, vol. 22, no. 6, pp. 702–719, 2010.

[7] B. Mohr and F. Wolf, “KOJAK – A tool set for automatic perfor-
mance analysis of parallel programs,” in Proc. Eur. Conf. Parallel
Process., 2003, pp. 1301–1304.

[8] S. S. Shende andA.D.Malony, “The TAUparallel performance sys-
tem,” Int. J. High Perform. Comput. Appl., vol. 20, no. 2, pp. 287–311,
2006.

2466 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 4, APRIL 2021

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 08,2021 at 21:37:29 UTC from IEEE Xplore. Restrictions apply.

[9] B. Johnson and B. Shneiderman, “Tree-Maps: A space-filling app-
roach to the visualization of hierarchical information structures,” in
Proc. 2nd Conf. Vis., 1991, pp. 284–291.

[10] J. B. Kruskal and J. M. Landwehr, “Icicle plots: Better displays for
hierarchical clustering,”Amer. Statistician, vol. 37, no. 2, pp. 162–168,
1983.

[11] G. Ammons, T. Ball, and J. R. Larus, “Exploiting hardware per-
formance counters with flow and context sensitive profiling,”
SIGPLAN Notices, vol. 32, no. 5, pp. 85–96, 1997.

[12] P. Moret,W. Binder, A. Villaz�on, D. Ansaloni, andA.Heydarnoori,
“Visualizing and exploring profiles with calling context ring
charts,” Softw: Pract. Experience, vol. 40, no. 9, pp. 825–847, 2010.

[13] W. H. Cabot, A. W. Cook, P. L. Miller, D. E. Laney, M. C. Miller,
and H. R. Childs, “Large-eddy simulation of rayleigh–taylor insta-
bility,” Phys. Fluids, vol. 17, no. 9, 2005, Art. no. 091106.

[14] J. Abello, F. Van Ham, and N. Krishnan, “ASK-GraphView: A
large scale graph visualization system,” IEEE Trans. Vis. Comput.
Graphics, vol. 12, no. 5, pp. 669–676, Sep./Oct. 2006.

[15] I. Herman, G. Melançon, and M. S. Marshall, “Graph visualization
and navigation in information visualization: A survey,” IEEE
Trans. Vis. Comput. Graphics, vol. 6, no. 1, pp. 24–43, Jan.-Mar. 2000.

[16] Q. V. Nguyen and M. L. Huang, “A space-optimized tree visual-
ization,” in Proc. IEEE Symp. Inf. Vis., 2002, pp. 85–92.

[17] C. Plaisant, J. Grosjean, and B. B. Bederson, “Spacetree: Supporting
exploration in large node link tree, design evolution and empirical
evaluation,” in Proc. IEEE Symp. Inf. Vis., 2002, pp. 57–64.

[18] T. Munzner and P. Burchard, “Visualizing the structure of the
world wide web in 3D hyperbolic space,” in Proc. 1st Symp. Virtual
Reality Model. Lang., 1995, pp. 33–38.

[19] G. G. Robertson, J. D. Mackinlay, and S. K. Card, “Cone trees: Ani-
mated 3d visualizations of hierarchical information,” in Proc. Conf.
Human Factors Comput. Syst., 1991, pp. 189–194.

[20] K. E. Isaacs et al., “State of the art of performance visualization,”
EuroVis - STARs, R. Borgo, R. Maciejewski, and I. Viola, Eds.
The Eurographics Association 2014.

[21] T. D. LaToza and B. A. Myers, “Visualizing call graphs,” in Proc.
IEEE Symp. Vis. Lang. Human-Centric Comput., 2011, pp. 117–124.

[22] M. Ghoniem, J.-D. Fekete, and P. Castagliola, “On the readability
of graphs using node-link and matrix-based representations:
A controlled experiment and statistical analysis,” Inf. Vis., vol. 4,
no. 2, pp. 114–135, 2005.

[23] H. Bhatia et al., “Interactive investigation of traffic congestion on
fat-tree networks using TreeScope,” Comput. Graphics Forum, vol.
37, no. 3, pp. 561–572, 2018.

[24] L. DeRose, B. Homer, and D. Johnson, “Detecting application load
imbalance on high end massively parallel systems,” in Proc. Eur.
Conf. Parallel Process., 2007, pp. 150–159.

[25] H. T. Nguyen et al., “VIPACT: A visualization interface for ana-
lyzing calling context trees,” in Proc. 3rd Int. Work. Vis. Perform.
Anal., 2016, pp. 25–28.

[26] J. Bohnet and J. D€ollner, “Visual exploration of function call
graphs for feature location in complex software systems,” in Proc.
ACM Symp. Softw. Vis., 2006, pp. 95–104.

[27] C. Xie, W. Xu, and K. Mueller, “A visual analytics framework for
the detection of anomalous call stack trees in high performance
computing application,” IEEE Trans. Vis. Comput. Graphics, vol. 25,
no. 1, pp. 215–224, Jan. 2019.

[28] M. Burch, C. M€uller, G. Reina, H. Schmauder, M. Greis, and
D. Weiskopf, “Visualizing dynamic call graphs,” in Vision, Model-
ing and Visualization, M. Goesele, T. Grosch, H. Theisel, K. Toennies,
and B. Preim, Eds. The Eurographics Association, 2012.

[29] B. Johnson, “TreeViz: Treemap visualization of hierarchically
structured information,” in Proc. Conf. Human Factors Comput.
Syst., 1992, pp. 369–370.

[30] B. Shneiderman and M. Wattenberg, “Ordered treemap layouts,”
in Proc. IEEE Symp. Inf. Vis., 2001, pp. 73–78.

[31] A. Adamoli and M. Hauswirth, “Trevis: A context tree visualiza-
tion & analysis framework and its use for classifying performance
failure reports,” in Proc. 5th Int. Symp. Softw. Vis., 2010, pp. 73–82.

[32] G. Sander, “Graph layout through the VCG tool,” in Graph Draw-
ing. Berlin, Germany: Springer, 1995, pp. 194–205.

[33] F. Balmas, “Displaying dependence graphs: A hierarchical app-
roach,” J. Softw.Maintenance Evol., vol. 16, no. 3, pp. 151–185, 2004.

[34] S. Devkota and K. E. Isaacs, “CFGExplorer: Designing a visual con-
trol flow analytics system around basic program analysis oper-
ations,” in Comput. Graphics Forum, vol. 37, no. 3, 2018, pp. 453–464.

[35] M. Schmidt, “The sankey diagram in energy and material flow
management,” J. Ind. Ecology, vol. 12, no. 1, pp. 82–94, 2008.

[36] K. Soundararajan, H. K. Ho, and B. Su, “Sankey diagram frame-
work for energy and exergy flows,” Appl. Energy, vol. 136,
pp. 1035–1042, 2014.

[37] H. Alemasoom, F. Samavati, J. Brosz, and D. Layzell, “EnergyViz:
An interactive system for visualization of energy systems,” Vis.
Comput., vol. 32, no. 3, pp. 403–413, 2016.

[38] M. Ogawa, K.-L. Ma, C. Bird, P. Devanbu, and A. Gourley,
“Visualizing social interaction in open source software projects,”
in Proc. 6th Int. Asia-Pacific Symp. Vis., 2007, pp. 25–32.

[39] K. Wongsuphasawat and D. Gotz, “Outflow: Visualizing patient
flow by symptoms and outcome,” in Proc. IEEE VisWeek Work.
Vis. Analytics Healthcare, 2011, pp. 25–28.

[40] C.-F. Wang, J. Li, K.-L. Ma, C.-W. Huang, and Y.-C. Li, “A visual
analysis approach to cohort study of electronic patient records,”
in Proc. IEEE Int. Conf. Bioinf. Biomedicine, 2014, pp. 521–528.

[41] J. J. V. Wijk, “Bridging the gaps,” IEEE Comput. Graphics Appl.,
vol. 26, no. 6, pp. 6–9, Nov. 2006.

[42] A. J. Pretorius and J. J. VanWijk, “What does the user want to see?:
What do the data want to be?” Inf. Vis., vol. 8, no. 3, pp. 153–166,
2009.

[43] M. Brehmer, J. Ng, K. Tate, and T. Munzner, “Matches, mis-
matches, and methods: Multiple-view workflows for energy port-
folio analysis,” IEEE Trans. Vis. Comput. Graphics, vol. 22, no. 1,
pp. 449–458, Jan. 2016.

[44] R. A. Amar and J. T. Stasko, “Knowledge precepts for design and
evaluation of information visualizations,” IEEE Trans. Vis. Com-
put. Graphics, vol. 11, no. 4, pp. 432–442, Jul./Aug. 2005.

[45] T. Munzner, “A nested model for visualization design and vali-
dation,” IEEE Trans. Vis. Comput. Graphics, vol. 15, no. 6, pp. 921–928,
Nov./Dec. 2009.

[46] M. Sedlmair, M. Meyer, and T. Munzner, “Design study method-
ology: Reflections from the trenches and the stacks,” IEEE Trans.
Vis. Comput. Graphics, vol. 18, no. 12, pp. 2431–2440, Dec. 2012.

[47] B. Shneiderman and C. Plaisant, “Strategies for evaluating infor-
mation visualization tools: Multi-dimensional in-depth long-term
case studies,” in Proc. AVI Workshop BEyond Time Errors: Novel
Eval. Methods Inf. Vis., 2006, pp. 1–7.

[48] D. Lloyd and J. Dykes, “Human-centered approaches in geovisual-
ization design: Investigating multiple methods through a long-
term case study,” IEEE Trans. Vis. Comput. Graphics, vol. 17, no. 12,
pp. 2498–2507, Dec. 2011.

[49] L. Merino, M. Ghafari, C. Anslow, and O. Nierstrasz, “A system-
atic literature review of software visualization evaluation,” J. Syst.
Softw., vol. 144, pp. 165–180, 2018.

[50] L. Adhianto, J. Mellor-Crummey, and N. R. Tallent, “Effectively
presenting call path profiles of application performance,” in Proc.
39th Int. Conf. Parallel Process. Workshops, 2010, pp. 179–188.

[51] W. McKinney, “Data structures for statistical computing in
python,” in Proc. 9th Python Sci. Conf., 2010, pp. 51–56.

[52] A. Kn€upfer et al., “The vampir performance analysis tool-set,” in
Tools for High Performance Computing. Berlin, Germany: Springer,
2008, pp. 139–155.

[53] I. Karlin et al., “LULESH programming model and performance
ports overview,” Lawrence Livermore National Laboratory, Liv-
ermore, CA, USA, Tech. Rep. LLNL-TR-608824, 2012.

[54] C. Huang, G. Zheng, S. Kumar, and L. V. Kal�e, “Performance eval-
uation of adaptive MPI,” in Proc. 11th ACM SIGPLAN Symp. Princ.
Pract. Parallel Program., 2006, pp. 12–21.

[55] J. R. Marchete Filho and C. Silva, “Using PQR-trees for reducing
edge crossings in layered directed acyclic graphs,” Work. Works
Progress SIBGRAPI, A. Frery and S. Musse, Eds., 2013.

[56] T. Dwyer, Y. Koren, and K.Marriott, “IPSep-CoLa: An incremental
procedure for separation constraint layout of graphs,” IEEE Trans.
Vis. Comput. Graphics, vol. 12, no. 5, pp. 821–828, Sep./Oct. 2006.

[57] D. C. Zarate, P. L. Bodic, T. Dwyer, G. Gange, and P. Stuckey,
“Optimal sankey diagrams via integer programming,” in Proc.
IEEE Pacific Vis. Symp., Apr. 2018, pp. 135–139.

[58] S. C. North, “Incremental layout in DynaDAG,” in Graph Drawing.
Berlin, Germany: Springer, 1995, pp. 409–418.

[59] M. Monroe, R. Lan, H. Lee, C. Plaisant, and B. Shneiderman,
“Temporal event sequence simplification,” IEEE Trans. Vis. Com-
put. Graphics, vol. 19, no. 12, pp. 2227–2236, Dec. 2013.

NGUYEN ETAL.: VISUALIZING HIERARCHICAL PERFORMANCE PROFILES OF PARALLEL CODES USING CALLFLOW 2467

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 08,2021 at 21:37:29 UTC from IEEE Xplore. Restrictions apply.

Huu Tan Nguyen received the bachelor’s deg-
ree in computer science and engineering from
the University of California, Davis, in 2015. He
received the master’s degree in computer science
from the University of California, Davis, in 2017.
He is currently with Keysight Technologies as a
software engineer. His research interests include
information visualization and data analysis.

Abhinav Bhatele received the BTech degree in
computer science and engineering from I.I.T.
Kanpur, India, in May 2005, and the MS and PhD
degrees in computer science from the University
of Illinois at Urbana-Champaign, in 2007 and
2010, respectively. He is an assistant professor
with the Department of Computer Science, Uni-
versity of Maryland, College Park. Previously, he
was a senior computer scientist with the Center
for Applied Scientific Computing, Lawrence Liver-
more National Laboratory. His research interests

include systems and networks, with a focus on parallel computing and
big data analytics. He has published research in programming models
and runtimes, network design and simulation, applications of machine
learning to parallel systems, and on analyzing, modeling and optimizing
the performance of parallel software and systems. He was an ACM-
IEEE CS George Michael Memorial HPC fellow in 2009. He has received
best paper awards at Euro-Par 2009, IPDPS 2013, and IPDPS 2016.
He was selected as a recipient of the IEEE TCSC Young Achievers in
Scalable Computing Award in 2014, and the LLNL Early and Mid-Career
Recognition Award in 2018.

Nikhil Jain is a research scientist at Nvidia, inc.
Previously, he was a research scientist at Lawrence
Livermore National Laboratory. He was Sidney
Fernbach postdoctoral fellow in the Center for
Applied Scientific Computing at Lawrence Liver-
more National Laboratory. He works on topics
related to parallel computing including networks,
scalable application development, parallel algo-
rithms, communication optimization, and interoper-
ation of languages. Nikhil received a PhD degree in
Computer Science from the University of Illinois at

Urbana-Champaign in 2016, and BTech and MTech degrees in Computer
Science andEngineering from IIT. Kanpur, India inMay 2009.

Suraj P. Kesavan received the bachelor’s degree
from the National Institute of Technology, Tiruchir-
appalli. He is working toward the graduate degree
in computer science at the University of California,
Davis. His current research interests include infor-
mation visualization and data analytics.

Harsh Bhatia received the PhD degree from Sci-
entific Computing and Imaging Institute, University
of Utah, in 2015, where he worked on the feature
extraction for vector fields. He is a computer scien-
tist with the Center for Applied Scientific Comput-
ing, Lawrence Livermore National Laboratory. His
research spans the broad area of visualization and
computational topology, with special focus on sci-
entific data. He is also interested in ML-based
approaches for scientific applications.

Todd Gamblin received the BA degree in com-
puter science and japanese fromWilliamsCollege,
in 2002 and the MS and PhD degrees in computer
science from the University of North Carolina at
Chapel Hill, in 2005 and 2009. He is a computer
scientist with the Center for Applied Scientific
Computing, Lawrence Livermore National Labora-
tory. His research interests include scalable tools
for measuring, analyzing, and visualizing parallel
performance data. For this work, he received an
Early Career Research Award from the U.S.

Department of Energy in 2014. In addition to his research, he leads LLNLs
HPCDeveloper Ecosystem team, and he is the creator of Spack, a popular
HPC packagemanagement tool. He has beenwith LLNL since 2008.

Kwan-Liu Ma is a distinguished professor of com-
puter science with the University of California,
Davis. His research interests include visualization,
computer graphics, high-performance computing,
and human-computer interaction. He has served
as a papers co-chair for SciVis, InfoVis, EuroVis,
PacificVis, and Graph Drawing, as an associate
editor of the IEEE Transactions on Visualization
and Computer Graphics (2007-2011) and the
IEEE Computer Graphics and Applications (2007-
2013), and as an AEIC of the IEEE Computer
Graphics and Applications (2013-2019). He is a
fellow of the IEEE.

Peer-Timo Bremer received the diploma in math-
ematics and computer science from the Leibniz
University in Hannover, Germany, in 2000 and the
PhD degree in computer science from the Univer-
sity of California, Davis, in 2004. He is a member
of technical staff and project leader with the Cen-
ter for Applied Scientific Computing (CASC), Law-
rence Livermore National Laboratory (LLNL) and
as an associated director for research with the
Center for Extreme Data Management, Analysis,
and Visualization, University of Utah.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2468 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 4, APRIL 2021

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 08,2021 at 21:37:29 UTC from IEEE Xplore. Restrictions apply.

